aboutsummaryrefslogtreecommitdiffstats
path: root/fs/quota/dquot.c
blob: 607c579e5eca0cc0427c53a844d68ff159186e47 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
/*
 * Implementation of the diskquota system for the LINUX operating system. QUOTA
 * is implemented using the BSD system call interface as the means of
 * communication with the user level. This file contains the generic routines
 * called by the different filesystems on allocation of an inode or block.
 * These routines take care of the administration needed to have a consistent
 * diskquota tracking system. The ideas of both user and group quotas are based
 * on the Melbourne quota system as used on BSD derived systems. The internal
 * implementation is based on one of the several variants of the LINUX
 * inode-subsystem with added complexity of the diskquota system.
 * 
 * Author:	Marco van Wieringen <mvw@planets.elm.net>
 *
 * Fixes:   Dmitry Gorodchanin <pgmdsg@ibi.com>, 11 Feb 96
 *
 *		Revised list management to avoid races
 *		-- Bill Hawes, <whawes@star.net>, 9/98
 *
 *		Fixed races in dquot_transfer(), dqget() and dquot_alloc_...().
 *		As the consequence the locking was moved from dquot_decr_...(),
 *		dquot_incr_...() to calling functions.
 *		invalidate_dquots() now writes modified dquots.
 *		Serialized quota_off() and quota_on() for mount point.
 *		Fixed a few bugs in grow_dquots().
 *		Fixed deadlock in write_dquot() - we no longer account quotas on
 *		quota files
 *		remove_dquot_ref() moved to inode.c - it now traverses through inodes
 *		add_dquot_ref() restarts after blocking
 *		Added check for bogus uid and fixed check for group in quotactl.
 *		Jan Kara, <jack@suse.cz>, sponsored by SuSE CR, 10-11/99
 *
 *		Used struct list_head instead of own list struct
 *		Invalidation of referenced dquots is no longer possible
 *		Improved free_dquots list management
 *		Quota and i_blocks are now updated in one place to avoid races
 *		Warnings are now delayed so we won't block in critical section
 *		Write updated not to require dquot lock
 *		Jan Kara, <jack@suse.cz>, 9/2000
 *
 *		Added dynamic quota structure allocation
 *		Jan Kara <jack@suse.cz> 12/2000
 *
 *		Rewritten quota interface. Implemented new quota format and
 *		formats registering.
 *		Jan Kara, <jack@suse.cz>, 2001,2002
 *
 *		New SMP locking.
 *		Jan Kara, <jack@suse.cz>, 10/2002
 *
 *		Added journalled quota support, fix lock inversion problems
 *		Jan Kara, <jack@suse.cz>, 2003,2004
 *
 * (C) Copyright 1994 - 1997 Marco van Wieringen 
 */

#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/mm.h>
#include <linux/time.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/stat.h>
#include <linux/tty.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/sysctl.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/security.h>
#include <linux/kmod.h>
#include <linux/namei.h>
#include <linux/buffer_head.h>
#include <linux/capability.h>
#include <linux/quotaops.h>
#include <linux/writeback.h> /* for inode_lock, oddly enough.. */
#ifdef CONFIG_QUOTA_NETLINK_INTERFACE
#include <net/netlink.h>
#include <net/genetlink.h>
#endif

#include <asm/uaccess.h>

#define __DQUOT_PARANOIA

/*
 * There are three quota SMP locks. dq_list_lock protects all lists with quotas
 * and quota formats, dqstats structure containing statistics about the lists
 * dq_data_lock protects data from dq_dqb and also mem_dqinfo structures and
 * also guards consistency of dquot->dq_dqb with inode->i_blocks, i_bytes.
 * i_blocks and i_bytes updates itself are guarded by i_lock acquired directly
 * in inode_add_bytes() and inode_sub_bytes(). dq_state_lock protects
 * modifications of quota state (on quotaon and quotaoff) and readers who care
 * about latest values take it as well.
 *
 * The spinlock ordering is hence: dq_data_lock > dq_list_lock > i_lock,
 *   dq_list_lock > dq_state_lock
 *
 * Note that some things (eg. sb pointer, type, id) doesn't change during
 * the life of the dquot structure and so needn't to be protected by a lock
 *
 * Any operation working on dquots via inode pointers must hold dqptr_sem.  If
 * operation is just reading pointers from inode (or not using them at all) the
 * read lock is enough. If pointers are altered function must hold write lock
 * (these locking rules also apply for S_NOQUOTA flag in the inode - note that
 * for altering the flag i_mutex is also needed).
 *
 * Each dquot has its dq_lock mutex. Locked dquots might not be referenced
 * from inodes (dquot_alloc_space() and such don't check the dq_lock).
 * Currently dquot is locked only when it is being read to memory (or space for
 * it is being allocated) on the first dqget() and when it is being released on
 * the last dqput(). The allocation and release oparations are serialized by
 * the dq_lock and by checking the use count in dquot_release().  Write
 * operations on dquots don't hold dq_lock as they copy data under dq_data_lock
 * spinlock to internal buffers before writing.
 *
 * Lock ordering (including related VFS locks) is the following:
 *   i_mutex > dqonoff_sem > journal_lock > dqptr_sem > dquot->dq_lock >
 *   dqio_mutex
 * The lock ordering of dqptr_sem imposed by quota code is only dqonoff_sem >
 * dqptr_sem. But filesystem has to count with the fact that functions such as
 * dquot_alloc_space() acquire dqptr_sem and they usually have to be called
 * from inside a transaction to keep filesystem consistency after a crash. Also
 * filesystems usually want to do some IO on dquot from ->mark_dirty which is
 * called with dqptr_sem held.
 * i_mutex on quota files is special (it's below dqio_mutex)
 */

static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dq_list_lock);
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dq_state_lock);
__cacheline_aligned_in_smp DEFINE_SPINLOCK(dq_data_lock);
EXPORT_SYMBOL(dq_data_lock);

static char *quotatypes[] = INITQFNAMES;
static struct quota_format_type *quota_formats;	/* List of registered formats */
static struct quota_module_name module_names[] = INIT_QUOTA_MODULE_NAMES;

/* SLAB cache for dquot structures */
static struct kmem_cache *dquot_cachep;

int register_quota_format(struct quota_format_type *fmt)
{
	spin_lock(&dq_list_lock);
	fmt->qf_next = quota_formats;
	quota_formats = fmt;
	spin_unlock(&dq_list_lock);
	return 0;
}
EXPORT_SYMBOL(register_quota_format);

void unregister_quota_format(struct quota_format_type *fmt)
{
	struct quota_format_type **actqf;

	spin_lock(&dq_list_lock);
	for (actqf = &quota_formats; *actqf && *actqf != fmt;
	     actqf = &(*actqf)->qf_next)
		;
	if (*actqf)
		*actqf = (*actqf)->qf_next;
	spin_unlock(&dq_list_lock);
}
EXPORT_SYMBOL(unregister_quota_format);

static struct quota_format_type *find_quota_format(int id)
{
	struct quota_format_type *actqf;

	spin_lock(&dq_list_lock);
	for (actqf = quota_formats; actqf && actqf->qf_fmt_id != id;
	     actqf = actqf->qf_next)
		;
	if (!actqf || !try_module_get(actqf->qf_owner)) {
		int qm;

		spin_unlock(&dq_list_lock);
		
		for (qm = 0; module_names[qm].qm_fmt_id &&
			     module_names[qm].qm_fmt_id != id; qm++)
			;
		if (!module_names[qm].qm_fmt_id ||
		    request_module(module_names[qm].qm_mod_name))
			return NULL;

		spin_lock(&dq_list_lock);
		for (actqf = quota_formats; actqf && actqf->qf_fmt_id != id;
		     actqf = actqf->qf_next)
			;
		if (actqf && !try_module_get(actqf->qf_owner))
			actqf = NULL;
	}
	spin_unlock(&dq_list_lock);
	return actqf;
}

static void put_quota_format(struct quota_format_type *fmt)
{
	module_put(fmt->qf_owner);
}

/*
 * Dquot List Management:
 * The quota code uses three lists for dquot management: the inuse_list,
 * free_dquots, and dquot_hash[] array. A single dquot structure may be
 * on all three lists, depending on its current state.
 *
 * All dquots are placed to the end of inuse_list when first created, and this
 * list is used for invalidate operation, which must look at every dquot.
 *
 * Unused dquots (dq_count == 0) are added to the free_dquots list when freed,
 * and this list is searched whenever we need an available dquot.  Dquots are
 * removed from the list as soon as they are used again, and
 * dqstats.free_dquots gives the number of dquots on the list. When
 * dquot is invalidated it's completely released from memory.
 *
 * Dquots with a specific identity (device, type and id) are placed on
 * one of the dquot_hash[] hash chains. The provides an efficient search
 * mechanism to locate a specific dquot.
 */

static LIST_HEAD(inuse_list);
static LIST_HEAD(free_dquots);
static unsigned int dq_hash_bits, dq_hash_mask;
static struct hlist_head *dquot_hash;

struct dqstats dqstats;
EXPORT_SYMBOL(dqstats);

static inline unsigned int
hashfn(const struct super_block *sb, unsigned int id, int type)
{
	unsigned long tmp;

	tmp = (((unsigned long)sb>>L1_CACHE_SHIFT) ^ id) * (MAXQUOTAS - type);
	return (tmp + (tmp >> dq_hash_bits)) & dq_hash_mask;
}

/*
 * Following list functions expect dq_list_lock to be held
 */
static inline void insert_dquot_hash(struct dquot *dquot)
{
	struct hlist_head *head;
	head = dquot_hash + hashfn(dquot->dq_sb, dquot->dq_id, dquot->dq_type);
	hlist_add_head(&dquot->dq_hash, head);
}

static inline void remove_dquot_hash(struct dquot *dquot)
{
	hlist_del_init(&dquot->dq_hash);
}

static struct dquot *find_dquot(unsigned int hashent, struct super_block *sb,
				unsigned int id, int type)
{
	struct hlist_node *node;
	struct dquot *dquot;

	hlist_for_each (node, dquot_hash+hashent) {
		dquot = hlist_entry(node, struct dquot, dq_hash);
		if (dquot->dq_sb == sb && dquot->dq_id == id &&
		    dquot->dq_type == type)
			return dquot;
	}
	return NULL;
}

/* Add a dquot to the tail of the free list */
static inline void put_dquot_last(struct dquot *dquot)
{
	list_add_tail(&dquot->dq_free, &free_dquots);
	dqstats.free_dquots++;
}

static inline void remove_free_dquot(struct dquot *dquot)
{
	if (list_empty(&dquot->dq_free))
		return;
	list_del_init(&dquot->dq_free);
	dqstats.free_dquots--;
}

static inline void put_inuse(struct dquot *dquot)
{
	/* We add to the back of inuse list so we don't have to restart
	 * when traversing this list and we block */
	list_add_tail(&dquot->dq_inuse, &inuse_list);
	dqstats.allocated_dquots++;
}

static inline void remove_inuse(struct dquot *dquot)
{
	dqstats.allocated_dquots--;
	list_del(&dquot->dq_inuse);
}
/*
 * End of list functions needing dq_list_lock
 */

static void wait_on_dquot(struct dquot *dquot)
{
	mutex_lock(&dquot->dq_lock);
	mutex_unlock(&dquot->dq_lock);
}

static inline int dquot_dirty(struct dquot *dquot)
{
	return test_bit(DQ_MOD_B, &dquot->dq_flags);
}

static inline int mark_dquot_dirty(struct dquot *dquot)
{
	return dquot->dq_sb->dq_op->mark_dirty(dquot);
}

int dquot_mark_dquot_dirty(struct dquot *dquot)
{
	spin_lock(&dq_list_lock);
	if (!test_and_set_bit(DQ_MOD_B, &dquot->dq_flags))
		list_add(&dquot->dq_dirty, &sb_dqopt(dquot->dq_sb)->
				info[dquot->dq_type].dqi_dirty_list);
	spin_unlock(&dq_list_lock);
	return 0;
}
EXPORT_SYMBOL(dquot_mark_dquot_dirty);

/* This function needs dq_list_lock */
static inline int clear_dquot_dirty(struct dquot *dquot)
{
	if (!test_and_clear_bit(DQ_MOD_B, &dquot->dq_flags))
		return 0;
	list_del_init(&dquot->dq_dirty);
	return 1;
}

void mark_info_dirty(struct super_block *sb, int type)
{
	set_bit(DQF_INFO_DIRTY_B, &sb_dqopt(sb)->info[type].dqi_flags);
}
EXPORT_SYMBOL(mark_info_dirty);

/*
 *	Read dquot from disk and alloc space for it
 */

int dquot_acquire(struct dquot *dquot)
{
	int ret = 0, ret2 = 0;
	struct quota_info *dqopt = sb_dqopt(dquot->dq_sb);

	mutex_lock(&dquot->dq_lock);
	mutex_lock(&dqopt->dqio_mutex);
	if (!test_bit(DQ_READ_B, &dquot->dq_flags))
		ret = dqopt->ops[dquot->dq_type]->read_dqblk(dquot);
	if (ret < 0)
		goto out_iolock;
	set_bit(DQ_READ_B, &dquot->dq_flags);
	/* Instantiate dquot if needed */
	if (!test_bit(DQ_ACTIVE_B, &dquot->dq_flags) && !dquot->dq_off) {
		ret = dqopt->ops[dquot->dq_type]->commit_dqblk(dquot);
		/* Write the info if needed */
		if (info_dirty(&dqopt->info[dquot->dq_type])) {
			ret2 = dqopt->ops[dquot->dq_type]->write_file_info(
						dquot->dq_sb, dquot->dq_type);
		}
		if (ret < 0)
			goto out_iolock;
		if (ret2 < 0) {
			ret = ret2;
			goto out_iolock;
		}
	}
	set_bit(DQ_ACTIVE_B, &dquot->dq_flags);
out_iolock:
	mutex_unlock(&dqopt->dqio_mutex);
	mutex_unlock(&dquot->dq_lock);
	return ret;
}
EXPORT_SYMBOL(dquot_acquire);

/*
 *	Write dquot to disk
 */
int dquot_commit(struct dquot *dquot)
{
	int ret = 0, ret2 = 0;
	struct quota_info *dqopt = sb_dqopt(dquot->dq_sb);

	mutex_lock(&dqopt->dqio_mutex);
	spin_lock(&dq_list_lock);
	if (!clear_dquot_dirty(dquot)) {
		spin_unlock(&dq_list_lock);
		goto out_sem;
	}
	spin_unlock(&dq_list_lock);
	/* Inactive dquot can be only if there was error during read/init
	 * => we have better not writing it */
	if (test_bit(DQ_ACTIVE_B, &dquot->dq_flags)) {
		ret = dqopt->ops[dquot->dq_type]->commit_dqblk(dquot);
		if (info_dirty(&dqopt->info[dquot->dq_type])) {
			ret2 = dqopt->ops[dquot->dq_type]->write_file_info(
						dquot->dq_sb, dquot->dq_type);
		}
		if (ret >= 0)
			ret = ret2;
	}
out_sem:
	mutex_unlock(&dqopt->dqio_mutex);
	return ret;
}
EXPORT_SYMBOL(dquot_commit);

/*
 *	Release dquot
 */
int dquot_release(struct dquot *dquot)
{
	int ret = 0, ret2 = 0;
	struct quota_info *dqopt = sb_dqopt(dquot->dq_sb);

	mutex_lock(&dquot->dq_lock);
	/* Check whether we are not racing with some other dqget() */
	if (atomic_read(&dquot->dq_count) > 1)
		goto out_dqlock;
	mutex_lock(&dqopt->dqio_mutex);
	if (dqopt->ops[dquot->dq_type]->release_dqblk) {
		ret = dqopt->ops[dquot->dq_type]->release_dqblk(dquot);
		/* Write the info */
		if (info_dirty(&dqopt->info[dquot->dq_type])) {
			ret2 = dqopt->ops[dquot->dq_type]->write_file_info(
						dquot->dq_sb, dquot->dq_type);
		}
		if (ret >= 0)
			ret = ret2;
	}
	clear_bit(DQ_ACTIVE_B, &dquot->dq_flags);
	mutex_unlock(&dqopt->dqio_mutex);
out_dqlock:
	mutex_unlock(&dquot->dq_lock);
	return ret;
}
EXPORT_SYMBOL(dquot_release);

void dquot_destroy(struct dquot *dquot)
{
	kmem_cache_free(dquot_cachep, dquot);
}
EXPORT_SYMBOL(dquot_destroy);

static inline void do_destroy_dquot(struct dquot *dquot)
{
	dquot->dq_sb->dq_op->destroy_dquot(dquot);
}

/* Invalidate all dquots on the list. Note that this function is called after
 * quota is disabled and pointers from inodes removed so there cannot be new
 * quota users. There can still be some users of quotas due to inodes being
 * just deleted or pruned by prune_icache() (those are not attached to any
 * list) or parallel quotactl call. We have to wait for such users.
 */
static void invalidate_dquots(struct super_block *sb, int type)
{
	struct dquot *dquot, *tmp;

restart:
	spin_lock(&dq_list_lock);
	list_for_each_entry_safe(dquot, tmp, &inuse_list, dq_inuse) {
		if (dquot->dq_sb != sb)
			continue;
		if (dquot->dq_type != type)
			continue;
		/* Wait for dquot users */
		if (atomic_read(&dquot->dq_count)) {
			DEFINE_WAIT(wait);

			atomic_inc(&dquot->dq_count);
			prepare_to_wait(&dquot->dq_wait_unused, &wait,
					TASK_UNINTERRUPTIBLE);
			spin_unlock(&dq_list_lock);
			/* Once dqput() wakes us up, we know it's time to free
			 * the dquot.
			 * IMPORTANT: we rely on the fact that there is always
			 * at most one process waiting for dquot to free.
			 * Otherwise dq_count would be > 1 and we would never
			 * wake up.
			 */
			if (atomic_read(&dquot->dq_count) > 1)
				schedule();
			finish_wait(&dquot->dq_wait_unused, &wait);
			dqput(dquot);
			/* At this moment dquot() need not exist (it could be
			 * reclaimed by prune_dqcache(). Hence we must
			 * restart. */
			goto restart;
		}
		/*
		 * Quota now has no users and it has been written on last
		 * dqput()
		 */
		remove_dquot_hash(dquot);
		remove_free_dquot(dquot);
		remove_inuse(dquot);
		do_destroy_dquot(dquot);
	}
	spin_unlock(&dq_list_lock);
}

/* Call callback for every active dquot on given filesystem */
int dquot_scan_active(struct super_block *sb,
		      int (*fn)(struct dquot *dquot, unsigned long priv),
		      unsigned long priv)
{
	struct dquot *dquot, *old_dquot = NULL;
	int ret = 0;

	mutex_lock(&sb_dqopt(sb)->dqonoff_mutex);
	spin_lock(&dq_list_lock);
	list_for_each_entry(dquot, &inuse_list, dq_inuse) {
		if (!test_bit(DQ_ACTIVE_B, &dquot->dq_flags))
			continue;
		if (dquot->dq_sb != sb)
			continue;
		/* Now we have active dquot so we can just increase use count */
		atomic_inc(&dquot->dq_count);
		dqstats.lookups++;
		spin_unlock(&dq_list_lock);
		dqput(old_dquot);
		old_dquot = dquot;
		ret = fn(dquot, priv);
		if (ret < 0)
			goto out;
		spin_lock(&dq_list_lock);
		/* We are safe to continue now because our dquot could not
		 * be moved out of the inuse list while we hold the reference */
	}
	spin_unlock(&dq_list_lock);
out:
	dqput(old_dquot);
	mutex_unlock(&sb_dqopt(sb)->dqonoff_mutex);
	return ret;
}
EXPORT_SYMBOL(dquot_scan_active);

int vfs_quota_sync(struct super_block *sb, int type)
{
	struct list_head *dirty;
	struct dquot *dquot;
	struct quota_info *dqopt = sb_dqopt(sb);
	int cnt;

	mutex_lock(&dqopt->dqonoff_mutex);
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (type != -1 && cnt != type)
			continue;
		if (!sb_has_quota_active(sb, cnt))
			continue;
		spin_lock(&dq_list_lock);
		dirty = &dqopt->info[cnt].dqi_dirty_list;
		while (!list_empty(dirty)) {
			dquot = list_first_entry(dirty, struct dquot,
						 dq_dirty);
			/* Dirty and inactive can be only bad dquot... */
			if (!test_bit(DQ_ACTIVE_B, &dquot->dq_flags)) {
				clear_dquot_dirty(dquot);
				continue;
			}
			/* Now we have active dquot from which someone is
 			 * holding reference so we can safely just increase
			 * use count */
			atomic_inc(&dquot->dq_count);
			dqstats.lookups++;
			spin_unlock(&dq_list_lock);
			sb->dq_op->write_dquot(dquot);
			dqput(dquot);
			spin_lock(&dq_list_lock);
		}
		spin_unlock(&dq_list_lock);
	}

	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		if ((cnt == type || type == -1) && sb_has_quota_active(sb, cnt)
		    && info_dirty(&dqopt->info[cnt]))
			sb->dq_op->write_info(sb, cnt);
	spin_lock(&dq_list_lock);
	dqstats.syncs++;
	spin_unlock(&dq_list_lock);
	mutex_unlock(&dqopt->dqonoff_mutex);

	return 0;
}
EXPORT_SYMBOL(vfs_quota_sync);

/* Free unused dquots from cache */
static void prune_dqcache(int count)
{
	struct list_head *head;
	struct dquot *dquot;

	head = free_dquots.prev;
	while (head != &free_dquots && count) {
		dquot = list_entry(head, struct dquot, dq_free);
		remove_dquot_hash(dquot);
		remove_free_dquot(dquot);
		remove_inuse(dquot);
		do_destroy_dquot(dquot);
		count--;
		head = free_dquots.prev;
	}
}

/*
 * This is called from kswapd when we think we need some
 * more memory
 */

static int shrink_dqcache_memory(int nr, gfp_t gfp_mask)
{
	if (nr) {
		spin_lock(&dq_list_lock);
		prune_dqcache(nr);
		spin_unlock(&dq_list_lock);
	}
	return (dqstats.free_dquots / 100) * sysctl_vfs_cache_pressure;
}

static struct shrinker dqcache_shrinker = {
	.shrink = shrink_dqcache_memory,
	.seeks = DEFAULT_SEEKS,
};

/*
 * Put reference to dquot
 * NOTE: If you change this function please check whether dqput_blocks() works right...
 */
void dqput(struct dquot *dquot)
{
	int ret;

	if (!dquot)
		return;
#ifdef __DQUOT_PARANOIA
	if (!atomic_read(&dquot->dq_count)) {
		printk("VFS: dqput: trying to free free dquot\n");
		printk("VFS: device %s, dquot of %s %d\n",
			dquot->dq_sb->s_id,
			quotatypes[dquot->dq_type],
			dquot->dq_id);
		BUG();
	}
#endif
	
	spin_lock(&dq_list_lock);
	dqstats.drops++;
	spin_unlock(&dq_list_lock);
we_slept:
	spin_lock(&dq_list_lock);
	if (atomic_read(&dquot->dq_count) > 1) {
		/* We have more than one user... nothing to do */
		atomic_dec(&dquot->dq_count);
		/* Releasing dquot during quotaoff phase? */
		if (!sb_has_quota_active(dquot->dq_sb, dquot->dq_type) &&
		    atomic_read(&dquot->dq_count) == 1)
			wake_up(&dquot->dq_wait_unused);
		spin_unlock(&dq_list_lock);
		return;
	}
	/* Need to release dquot? */
	if (test_bit(DQ_ACTIVE_B, &dquot->dq_flags) && dquot_dirty(dquot)) {
		spin_unlock(&dq_list_lock);
		/* Commit dquot before releasing */
		ret = dquot->dq_sb->dq_op->write_dquot(dquot);
		if (ret < 0) {
			printk(KERN_ERR "VFS: cannot write quota structure on "
				"device %s (error %d). Quota may get out of "
				"sync!\n", dquot->dq_sb->s_id, ret);
			/*
			 * We clear dirty bit anyway, so that we avoid
			 * infinite loop here
			 */
			spin_lock(&dq_list_lock);
			clear_dquot_dirty(dquot);
			spin_unlock(&dq_list_lock);
		}
		goto we_slept;
	}
	/* Clear flag in case dquot was inactive (something bad happened) */
	clear_dquot_dirty(dquot);
	if (test_bit(DQ_ACTIVE_B, &dquot->dq_flags)) {
		spin_unlock(&dq_list_lock);
		dquot->dq_sb->dq_op->release_dquot(dquot);
		goto we_slept;
	}
	atomic_dec(&dquot->dq_count);
#ifdef __DQUOT_PARANOIA
	/* sanity check */
	BUG_ON(!list_empty(&dquot->dq_free));
#endif
	put_dquot_last(dquot);
	spin_unlock(&dq_list_lock);
}
EXPORT_SYMBOL(dqput);

struct dquot *dquot_alloc(struct super_block *sb, int type)
{
	return kmem_cache_zalloc(dquot_cachep, GFP_NOFS);
}
EXPORT_SYMBOL(dquot_alloc);

static struct dquot *get_empty_dquot(struct super_block *sb, int type)
{
	struct dquot *dquot;

	dquot = sb->dq_op->alloc_dquot(sb, type);
	if(!dquot)
		return NULL;

	mutex_init(&dquot->dq_lock);
	INIT_LIST_HEAD(&dquot->dq_free);
	INIT_LIST_HEAD(&dquot->dq_inuse);
	INIT_HLIST_NODE(&dquot->dq_hash);
	INIT_LIST_HEAD(&dquot->dq_dirty);
	init_waitqueue_head(&dquot->dq_wait_unused);
	dquot->dq_sb = sb;
	dquot->dq_type = type;
	atomic_set(&dquot->dq_count, 1);

	return dquot;
}

/*
 * Get reference to dquot
 *
 * Locking is slightly tricky here. We are guarded from parallel quotaoff()
 * destroying our dquot by:
 *   a) checking for quota flags under dq_list_lock and
 *   b) getting a reference to dquot before we release dq_list_lock
 */
struct dquot *dqget(struct super_block *sb, unsigned int id, int type)
{
	unsigned int hashent = hashfn(sb, id, type);
	struct dquot *dquot = NULL, *empty = NULL;

        if (!sb_has_quota_active(sb, type))
		return NULL;
we_slept:
	spin_lock(&dq_list_lock);
	spin_lock(&dq_state_lock);
	if (!sb_has_quota_active(sb, type)) {
		spin_unlock(&dq_state_lock);
		spin_unlock(&dq_list_lock);
		goto out;
	}
	spin_unlock(&dq_state_lock);

	dquot = find_dquot(hashent, sb, id, type);
	if (!dquot) {
		if (!empty) {
			spin_unlock(&dq_list_lock);
			empty = get_empty_dquot(sb, type);
			if (!empty)
				schedule();	/* Try to wait for a moment... */
			goto we_slept;
		}
		dquot = empty;
		empty = NULL;
		dquot->dq_id = id;
		/* all dquots go on the inuse_list */
		put_inuse(dquot);
		/* hash it first so it can be found */
		insert_dquot_hash(dquot);
		dqstats.lookups++;
		spin_unlock(&dq_list_lock);
	} else {
		if (!atomic_read(&dquot->dq_count))
			remove_free_dquot(dquot);
		atomic_inc(&dquot->dq_count);
		dqstats.cache_hits++;
		dqstats.lookups++;
		spin_unlock(&dq_list_lock);
	}
	/* Wait for dq_lock - after this we know that either dquot_release() is
	 * already finished or it will be canceled due to dq_count > 1 test */
	wait_on_dquot(dquot);
	/* Read the dquot / allocate space in quota file */
	if (!test_bit(DQ_ACTIVE_B, &dquot->dq_flags) &&
	    sb->dq_op->acquire_dquot(dquot) < 0) {
		dqput(dquot);
		dquot = NULL;
		goto out;
	}
#ifdef __DQUOT_PARANOIA
	BUG_ON(!dquot->dq_sb);	/* Has somebody invalidated entry under us? */
#endif
out:
	if (empty)
		do_destroy_dquot(empty);

	return dquot;
}
EXPORT_SYMBOL(dqget);

static int dqinit_needed(struct inode *inode, int type)
{
	int cnt;

	if (IS_NOQUOTA(inode))
		return 0;
	if (type != -1)
		return !inode->i_dquot[type];
	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		if (!inode->i_dquot[cnt])
			return 1;
	return 0;
}

/* This routine is guarded by dqonoff_mutex mutex */
static void add_dquot_ref(struct super_block *sb, int type)
{
	struct inode *inode, *old_inode = NULL;

	spin_lock(&inode_lock);
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
			continue;
		if (!atomic_read(&inode->i_writecount))
			continue;
		if (!dqinit_needed(inode, type))
			continue;

		__iget(inode);
		spin_unlock(&inode_lock);

		iput(old_inode);
		sb->dq_op->initialize(inode, type);
		/* We hold a reference to 'inode' so it couldn't have been
		 * removed from s_inodes list while we dropped the inode_lock.
		 * We cannot iput the inode now as we can be holding the last
		 * reference and we cannot iput it under inode_lock. So we
		 * keep the reference and iput it later. */
		old_inode = inode;
		spin_lock(&inode_lock);
	}
	spin_unlock(&inode_lock);
	iput(old_inode);
}

/*
 * Return 0 if dqput() won't block.
 * (note that 1 doesn't necessarily mean blocking)
 */
static inline int dqput_blocks(struct dquot *dquot)
{
	if (atomic_read(&dquot->dq_count) <= 1)
		return 1;
	return 0;
}

/*
 * Remove references to dquots from inode and add dquot to list for freeing
 * if we have the last referece to dquot
 * We can't race with anybody because we hold dqptr_sem for writing...
 */
static int remove_inode_dquot_ref(struct inode *inode, int type,
				  struct list_head *tofree_head)
{
	struct dquot *dquot = inode->i_dquot[type];

	inode->i_dquot[type] = NULL;
	if (dquot) {
		if (dqput_blocks(dquot)) {
#ifdef __DQUOT_PARANOIA
			if (atomic_read(&dquot->dq_count) != 1)
				printk(KERN_WARNING "VFS: Adding dquot with dq_count %d to dispose list.\n", atomic_read(&dquot->dq_count));
#endif
			spin_lock(&dq_list_lock);
			/* As dquot must have currently users it can't be on
			 * the free list... */
			list_add(&dquot->dq_free, tofree_head);
			spin_unlock(&dq_list_lock);
			return 1;
		}
		else
			dqput(dquot);   /* We have guaranteed we won't block */
	}
	return 0;
}

/*
 * Free list of dquots
 * Dquots are removed from inodes and no new references can be got so we are
 * the only ones holding reference
 */
static void put_dquot_list(struct list_head *tofree_head)
{
	struct list_head *act_head;
	struct dquot *dquot;

	act_head = tofree_head->next;
	while (act_head != tofree_head) {
		dquot = list_entry(act_head, struct dquot, dq_free);
		act_head = act_head->next;
		/* Remove dquot from the list so we won't have problems... */
		list_del_init(&dquot->dq_free);
		dqput(dquot);
	}
}

static void remove_dquot_ref(struct super_block *sb, int type,
		struct list_head *tofree_head)
{
	struct inode *inode;

	spin_lock(&inode_lock);
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
		/*
		 *  We have to scan also I_NEW inodes because they can already
		 *  have quota pointer initialized. Luckily, we need to touch
		 *  only quota pointers and these have separate locking
		 *  (dqptr_sem).
		 */
		if (!IS_NOQUOTA(inode))
			remove_inode_dquot_ref(inode, type, tofree_head);
	}
	spin_unlock(&inode_lock);
}

/* Gather all references from inodes and drop them */
static void drop_dquot_ref(struct super_block *sb, int type)
{
	LIST_HEAD(tofree_head);

	if (sb->dq_op) {
		down_write(&sb_dqopt(sb)->dqptr_sem);
		remove_dquot_ref(sb, type, &tofree_head);
		up_write(&sb_dqopt(sb)->dqptr_sem);
		put_dquot_list(&tofree_head);
	}
}

static inline void dquot_incr_inodes(struct dquot *dquot, qsize_t number)
{
	dquot->dq_dqb.dqb_curinodes += number;
}

static inline void dquot_incr_space(struct dquot *dquot, qsize_t number)
{
	dquot->dq_dqb.dqb_curspace += number;
}

static inline void dquot_resv_space(struct dquot *dquot, qsize_t number)
{
	dquot->dq_dqb.dqb_rsvspace += number;
}

/*
 * Claim reserved quota space
 */
static void dquot_claim_reserved_space(struct dquot *dquot,
						qsize_t number)
{
	WARN_ON(dquot->dq_dqb.dqb_rsvspace < number);
	dquot->dq_dqb.dqb_curspace += number;
	dquot->dq_dqb.dqb_rsvspace -= number;
}

static inline
void dquot_free_reserved_space(struct dquot *dquot, qsize_t number)
{
	dquot->dq_dqb.dqb_rsvspace -= number;
}

static void dquot_decr_inodes(struct dquot *dquot, qsize_t number)
{
	if (sb_dqopt(dquot->dq_sb)->flags & DQUOT_NEGATIVE_USAGE ||
	    dquot->dq_dqb.dqb_curinodes >= number)
		dquot->dq_dqb.dqb_curinodes -= number;
	else
		dquot->dq_dqb.dqb_curinodes = 0;
	if (dquot->dq_dqb.dqb_curinodes <= dquot->dq_dqb.dqb_isoftlimit)
		dquot->dq_dqb.dqb_itime = (time_t) 0;
	clear_bit(DQ_INODES_B, &dquot->dq_flags);
}

static void dquot_decr_space(struct dquot *dquot, qsize_t number)
{
	if (sb_dqopt(dquot->dq_sb)->flags & DQUOT_NEGATIVE_USAGE ||
	    dquot->dq_dqb.dqb_curspace >= number)
		dquot->dq_dqb.dqb_curspace -= number;
	else
		dquot->dq_dqb.dqb_curspace = 0;
	if (dquot->dq_dqb.dqb_curspace <= dquot->dq_dqb.dqb_bsoftlimit)
		dquot->dq_dqb.dqb_btime = (time_t) 0;
	clear_bit(DQ_BLKS_B, &dquot->dq_flags);
}

static int warning_issued(struct dquot *dquot, const int warntype)
{
	int flag = (warntype == QUOTA_NL_BHARDWARN ||
		warntype == QUOTA_NL_BSOFTLONGWARN) ? DQ_BLKS_B :
		((warntype == QUOTA_NL_IHARDWARN ||
		warntype == QUOTA_NL_ISOFTLONGWARN) ? DQ_INODES_B : 0);

	if (!flag)
		return 0;
	return test_and_set_bit(flag, &dquot->dq_flags);
}

#ifdef CONFIG_PRINT_QUOTA_WARNING
static int flag_print_warnings = 1;

static int need_print_warning(struct dquot *dquot)
{
	if (!flag_print_warnings)
		return 0;

	switch (dquot->dq_type) {
		case USRQUOTA:
			return current_fsuid() == dquot->dq_id;
		case GRPQUOTA:
			return in_group_p(dquot->dq_id);
	}
	return 0;
}

/* Print warning to user which exceeded quota */
static void print_warning(struct dquot *dquot, const int warntype)
{
	char *msg = NULL;
	struct tty_struct *tty;

	if (warntype == QUOTA_NL_IHARDBELOW ||
	    warntype == QUOTA_NL_ISOFTBELOW ||
	    warntype == QUOTA_NL_BHARDBELOW ||
	    warntype == QUOTA_NL_BSOFTBELOW || !need_print_warning(dquot))
		return;

	tty = get_current_tty();
	if (!tty)
		return;
	tty_write_message(tty, dquot->dq_sb->s_id);
	if (warntype == QUOTA_NL_ISOFTWARN || warntype == QUOTA_NL_BSOFTWARN)
		tty_write_message(tty, ": warning, ");
	else
		tty_write_message(tty, ": write failed, ");
	tty_write_message(tty, quotatypes[dquot->dq_type]);
	switch (warntype) {
		case QUOTA_NL_IHARDWARN:
			msg = " file limit reached.\r\n";
			break;
		case QUOTA_NL_ISOFTLONGWARN:
			msg = " file quota exceeded too long.\r\n";
			break;
		case QUOTA_NL_ISOFTWARN:
			msg = " file quota exceeded.\r\n";
			break;
		case QUOTA_NL_BHARDWARN:
			msg = " block limit reached.\r\n";
			break;
		case QUOTA_NL_BSOFTLONGWARN:
			msg = " block quota exceeded too long.\r\n";
			break;
		case QUOTA_NL_BSOFTWARN:
			msg = " block quota exceeded.\r\n";
			break;
	}
	tty_write_message(tty, msg);
	tty_kref_put(tty);
}
#endif

#ifdef CONFIG_QUOTA_NETLINK_INTERFACE

/* Netlink family structure for quota */
static struct genl_family quota_genl_family = {
	.id = GENL_ID_GENERATE,
	.hdrsize = 0,
	.name = "VFS_DQUOT",
	.version = 1,
	.maxattr = QUOTA_NL_A_MAX,
};

/* Send warning to userspace about user which exceeded quota */
static void send_warning(const struct dquot *dquot, const char warntype)
{
	static atomic_t seq;
	struct sk_buff *skb;
	void *msg_head;
	int ret;
	int msg_size = 4 * nla_total_size(sizeof(u32)) +
		       2 * nla_total_size(sizeof(u64));

	/* We have to allocate using GFP_NOFS as we are called from a
	 * filesystem performing write and thus further recursion into
	 * the fs to free some data could cause deadlocks. */
	skb = genlmsg_new(msg_size, GFP_NOFS);
	if (!skb) {
		printk(KERN_ERR
		  "VFS: Not enough memory to send quota warning.\n");
		return;
	}
	msg_head = genlmsg_put(skb, 0, atomic_add_return(1, &seq),
			&quota_genl_family, 0, QUOTA_NL_C_WARNING);
	if (!msg_head) {
		printk(KERN_ERR
		  "VFS: Cannot store netlink header in quota warning.\n");
		goto err_out;
	}
	ret = nla_put_u32(skb, QUOTA_NL_A_QTYPE, dquot->dq_type);
	if (ret)
		goto attr_err_out;
	ret = nla_put_u64(skb, QUOTA_NL_A_EXCESS_ID, dquot->dq_id);
	if (ret)
		goto attr_err_out;
	ret = nla_put_u32(skb, QUOTA_NL_A_WARNING, warntype);
	if (ret)
		goto attr_err_out;
	ret = nla_put_u32(skb, QUOTA_NL_A_DEV_MAJOR,
		MAJOR(dquot->dq_sb->s_dev));
	if (ret)
		goto attr_err_out;
	ret = nla_put_u32(skb, QUOTA_NL_A_DEV_MINOR,
		MINOR(dquot->dq_sb->s_dev));
	if (ret)
		goto attr_err_out;
	ret = nla_put_u64(skb, QUOTA_NL_A_CAUSED_ID, current_uid());
	if (ret)
		goto attr_err_out;
	genlmsg_end(skb, msg_head);

	genlmsg_multicast(skb, 0, quota_genl_family.id, GFP_NOFS);
	return;
attr_err_out:
	printk(KERN_ERR "VFS: Not enough space to compose quota message!\n");
err_out:
	kfree_skb(skb);
}
#endif
/*
 * Write warnings to the console and send warning messages over netlink.
 *
 * Note that this function can sleep.
 */
static void flush_warnings(struct dquot *const *dquots, char *warntype)
{
	int i;

	for (i = 0; i < MAXQUOTAS; i++)
		if (dquots[i] && warntype[i] != QUOTA_NL_NOWARN &&
		    !warning_issued(dquots[i], warntype[i])) {
#ifdef CONFIG_PRINT_QUOTA_WARNING
			print_warning(dquots[i], warntype[i]);
#endif
#ifdef CONFIG_QUOTA_NETLINK_INTERFACE
			send_warning(dquots[i], warntype[i]);
#endif
		}
}

static int ignore_hardlimit(struct dquot *dquot)
{
	struct mem_dqinfo *info = &sb_dqopt(dquot->dq_sb)->info[dquot->dq_type];

	return capable(CAP_SYS_RESOURCE) &&
	       (info->dqi_format->qf_fmt_id != QFMT_VFS_OLD ||
		!(info->dqi_flags & V1_DQF_RSQUASH));
}

/* needs dq_data_lock */
static int check_idq(struct dquot *dquot, qsize_t inodes, char *warntype)
{
	qsize_t newinodes = dquot->dq_dqb.dqb_curinodes + inodes;

	*warntype = QUOTA_NL_NOWARN;
	if (!sb_has_quota_limits_enabled(dquot->dq_sb, dquot->dq_type) ||
	    test_bit(DQ_FAKE_B, &dquot->dq_flags))
		return QUOTA_OK;

	if (dquot->dq_dqb.dqb_ihardlimit &&
	    newinodes > dquot->dq_dqb.dqb_ihardlimit &&
            !ignore_hardlimit(dquot)) {
		*warntype = QUOTA_NL_IHARDWARN;
		return NO_QUOTA;
	}

	if (dquot->dq_dqb.dqb_isoftlimit &&
	    newinodes > dquot->dq_dqb.dqb_isoftlimit &&
	    dquot->dq_dqb.dqb_itime &&
	    get_seconds() >= dquot->dq_dqb.dqb_itime &&
            !ignore_hardlimit(dquot)) {
		*warntype = QUOTA_NL_ISOFTLONGWARN;
		return NO_QUOTA;
	}

	if (dquot->dq_dqb.dqb_isoftlimit &&
	    newinodes > dquot->dq_dqb.dqb_isoftlimit &&
	    dquot->dq_dqb.dqb_itime == 0) {
		*warntype = QUOTA_NL_ISOFTWARN;
		dquot->dq_dqb.dqb_itime = get_seconds() +
		    sb_dqopt(dquot->dq_sb)->info[dquot->dq_type].dqi_igrace;
	}

	return QUOTA_OK;
}

/* needs dq_data_lock */
static int check_bdq(struct dquot *dquot, qsize_t space, int prealloc, char *warntype)
{
	qsize_t tspace;
	struct super_block *sb = dquot->dq_sb;

	*warntype = QUOTA_NL_NOWARN;
	if (!sb_has_quota_limits_enabled(sb, dquot->dq_type) ||
	    test_bit(DQ_FAKE_B, &dquot->dq_flags))
		return QUOTA_OK;

	tspace = dquot->dq_dqb.dqb_curspace + dquot->dq_dqb.dqb_rsvspace
		+ space;

	if (dquot->dq_dqb.dqb_bhardlimit &&
	    tspace > dquot->dq_dqb.dqb_bhardlimit &&
            !ignore_hardlimit(dquot)) {
		if (!prealloc)
			*warntype = QUOTA_NL_BHARDWARN;
		return NO_QUOTA;
	}

	if (dquot->dq_dqb.dqb_bsoftlimit &&
	    tspace > dquot->dq_dqb.dqb_bsoftlimit &&
	    dquot->dq_dqb.dqb_btime &&
	    get_seconds() >= dquot->dq_dqb.dqb_btime &&
            !ignore_hardlimit(dquot)) {
		if (!prealloc)
			*warntype = QUOTA_NL_BSOFTLONGWARN;
		return NO_QUOTA;
	}

	if (dquot->dq_dqb.dqb_bsoftlimit &&
	    tspace > dquot->dq_dqb.dqb_bsoftlimit &&
	    dquot->dq_dqb.dqb_btime == 0) {
		if (!prealloc) {
			*warntype = QUOTA_NL_BSOFTWARN;
			dquot->dq_dqb.dqb_btime = get_seconds() +
			    sb_dqopt(sb)->info[dquot->dq_type].dqi_bgrace;
		}
		else
			/*
			 * We don't allow preallocation to exceed softlimit so exceeding will
			 * be always printed
			 */
			return NO_QUOTA;
	}

	return QUOTA_OK;
}

static int info_idq_free(struct dquot *dquot, qsize_t inodes)
{
	qsize_t newinodes;

	if (test_bit(DQ_FAKE_B, &dquot->dq_flags) ||
	    dquot->dq_dqb.dqb_curinodes <= dquot->dq_dqb.dqb_isoftlimit ||
	    !sb_has_quota_limits_enabled(dquot->dq_sb, dquot->dq_type))
		return QUOTA_NL_NOWARN;

	newinodes = dquot->dq_dqb.dqb_curinodes - inodes;
	if (newinodes <= dquot->dq_dqb.dqb_isoftlimit)
		return QUOTA_NL_ISOFTBELOW;
	if (dquot->dq_dqb.dqb_curinodes >= dquot->dq_dqb.dqb_ihardlimit &&
	    newinodes < dquot->dq_dqb.dqb_ihardlimit)
		return QUOTA_NL_IHARDBELOW;
	return QUOTA_NL_NOWARN;
}

static int info_bdq_free(struct dquot *dquot, qsize_t space)
{
	if (test_bit(DQ_FAKE_B, &dquot->dq_flags) ||
	    dquot->dq_dqb.dqb_curspace <= dquot->dq_dqb.dqb_bsoftlimit)
		return QUOTA_NL_NOWARN;

	if (dquot->dq_dqb.dqb_curspace - space <= dquot->dq_dqb.dqb_bsoftlimit)
		return QUOTA_NL_BSOFTBELOW;
	if (dquot->dq_dqb.dqb_curspace >= dquot->dq_dqb.dqb_bhardlimit &&
	    dquot->dq_dqb.dqb_curspace - space < dquot->dq_dqb.dqb_bhardlimit)
		return QUOTA_NL_BHARDBELOW;
	return QUOTA_NL_NOWARN;
}
/*
 *	Initialize quota pointers in inode
 *	We do things in a bit complicated way but by that we avoid calling
 *	dqget() and thus filesystem callbacks under dqptr_sem.
 */
int dquot_initialize(struct inode *inode, int type)
{
	unsigned int id = 0;
	int cnt, ret = 0;
	struct dquot *got[MAXQUOTAS] = { NULL, NULL };
	struct super_block *sb = inode->i_sb;

	/* First test before acquiring mutex - solves deadlocks when we
         * re-enter the quota code and are already holding the mutex */
	if (IS_NOQUOTA(inode))
		return 0;

	/* First get references to structures we might need. */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (type != -1 && cnt != type)
			continue;
		switch (cnt) {
		case USRQUOTA:
			id = inode->i_uid;
			break;
		case GRPQUOTA:
			id = inode->i_gid;
			break;
		}
		got[cnt] = dqget(sb, id, cnt);
	}

	down_write(&sb_dqopt(sb)->dqptr_sem);
	/* Having dqptr_sem we know NOQUOTA flags can't be altered... */
	if (IS_NOQUOTA(inode))
		goto out_err;
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (type != -1 && cnt != type)
			continue;
		/* Avoid races with quotaoff() */
		if (!sb_has_quota_active(sb, cnt))
			continue;
		if (!inode->i_dquot[cnt]) {
			inode->i_dquot[cnt] = got[cnt];
			got[cnt] = NULL;
		}
	}
out_err:
	up_write(&sb_dqopt(sb)->dqptr_sem);
	/* Drop unused references */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		dqput(got[cnt]);
	return ret;
}
EXPORT_SYMBOL(dquot_initialize);

/*
 * 	Release all quotas referenced by inode
 */
int dquot_drop(struct inode *inode)
{
	int cnt;
	struct dquot *put[MAXQUOTAS];

	down_write(&sb_dqopt(inode->i_sb)->dqptr_sem);
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		put[cnt] = inode->i_dquot[cnt];
		inode->i_dquot[cnt] = NULL;
	}
	up_write(&sb_dqopt(inode->i_sb)->dqptr_sem);

	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		dqput(put[cnt]);
	return 0;
}
EXPORT_SYMBOL(dquot_drop);

/* Wrapper to remove references to quota structures from inode */
void vfs_dq_drop(struct inode *inode)
{
	/* Here we can get arbitrary inode from clear_inode() so we have
	 * to be careful. OTOH we don't need locking as quota operations
	 * are allowed to change only at mount time */
	if (!IS_NOQUOTA(inode) && inode->i_sb && inode->i_sb->dq_op
	    && inode->i_sb->dq_op->drop) {
		int cnt;
		/* Test before calling to rule out calls from proc and such
                 * where we are not allowed to block. Note that this is
		 * actually reliable test even without the lock - the caller
		 * must assure that nobody can come after the DQUOT_DROP and
		 * add quota pointers back anyway */
		for (cnt = 0; cnt < MAXQUOTAS; cnt++)
			if (inode->i_dquot[cnt])
				break;
		if (cnt < MAXQUOTAS)
			inode->i_sb->dq_op->drop(inode);
	}
}
EXPORT_SYMBOL(vfs_dq_drop);

/*
 * Following four functions update i_blocks+i_bytes fields and
 * quota information (together with appropriate checks)
 * NOTE: We absolutely rely on the fact that caller dirties
 * the inode (usually macros in quotaops.h care about this) and
 * holds a handle for the current transaction so that dquot write and
 * inode write go into the same transaction.
 */

/*
 * This operation can block, but only after everything is updated
 */
int __dquot_alloc_space(struct inode *inode, qsize_t number,
			int warn, int reserve)
{
	int cnt, ret = QUOTA_OK;
	char warntype[MAXQUOTAS];

	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		warntype[cnt] = QUOTA_NL_NOWARN;

	spin_lock(&dq_data_lock);
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (!inode->i_dquot[cnt])
			continue;
		if (check_bdq(inode->i_dquot[cnt], number, warn, warntype+cnt)
		    == NO_QUOTA) {
			ret = NO_QUOTA;
			goto out_unlock;
		}
	}
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (!inode->i_dquot[cnt])
			continue;
		if (reserve)
			dquot_resv_space(inode->i_dquot[cnt], number);
		else
			dquot_incr_space(inode->i_dquot[cnt], number);
	}
	if (!reserve)
		inode_add_bytes(inode, number);
out_unlock:
	spin_unlock(&dq_data_lock);
	flush_warnings(inode->i_dquot, warntype);
	return ret;
}

int dquot_alloc_space(struct inode *inode, qsize_t number, int warn)
{
	int cnt, ret = QUOTA_OK;

	/*
	 * First test before acquiring mutex - solves deadlocks when we
	 * re-enter the quota code and are already holding the mutex
	 */
	if (IS_NOQUOTA(inode)) {
		inode_add_bytes(inode, number);
		goto out;
	}

	down_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
	if (IS_NOQUOTA(inode)) {
		inode_add_bytes(inode, number);
		goto out_unlock;
	}

	ret = __dquot_alloc_space(inode, number, warn, 0);
	if (ret == NO_QUOTA)
		goto out_unlock;

	/* Dirtify all the dquots - this can block when journalling */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		if (inode->i_dquot[cnt])
			mark_dquot_dirty(inode->i_dquot[cnt]);
out_unlock:
	up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
out:
	return ret;
}
EXPORT_SYMBOL(dquot_alloc_space);

int dquot_reserve_space(struct inode *inode, qsize_t number, int warn)
{
	int ret = QUOTA_OK;

	if (IS_NOQUOTA(inode))
		goto out;

	down_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
	if (IS_NOQUOTA(inode))
		goto out_unlock;

	ret = __dquot_alloc_space(inode, number, warn, 1);
out_unlock:
	up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
out:
	return ret;
}
EXPORT_SYMBOL(dquot_reserve_space);

/*
 * This operation can block, but only after everything is updated
 */
int dquot_alloc_inode(const struct inode *inode, qsize_t number)
{
	int cnt, ret = NO_QUOTA;
	char warntype[MAXQUOTAS];

	/* First test before acquiring mutex - solves deadlocks when we
         * re-enter the quota code and are already holding the mutex */
	if (IS_NOQUOTA(inode))
		return QUOTA_OK;
	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		warntype[cnt] = QUOTA_NL_NOWARN;
	down_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
	if (IS_NOQUOTA(inode)) {
		up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
		return QUOTA_OK;
	}
	spin_lock(&dq_data_lock);
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (!inode->i_dquot[cnt])
			continue;
		if (check_idq(inode->i_dquot[cnt], number, warntype+cnt)
		    == NO_QUOTA)
			goto warn_put_all;
	}

	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (!inode->i_dquot[cnt])
			continue;
		dquot_incr_inodes(inode->i_dquot[cnt], number);
	}
	ret = QUOTA_OK;
warn_put_all:
	spin_unlock(&dq_data_lock);
	if (ret == QUOTA_OK)
		/* Dirtify all the dquots - this can block when journalling */
		for (cnt = 0; cnt < MAXQUOTAS; cnt++)
			if (inode->i_dquot[cnt])
				mark_dquot_dirty(inode->i_dquot[cnt]);
	flush_warnings(inode->i_dquot, warntype);
	up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
	return ret;
}
EXPORT_SYMBOL(dquot_alloc_inode);

int dquot_claim_space(struct inode *inode, qsize_t number)
{
	int cnt;
	int ret = QUOTA_OK;

	if (IS_NOQUOTA(inode)) {
		inode_add_bytes(inode, number);
		goto out;
	}

	down_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
	if (IS_NOQUOTA(inode))	{
		up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
		inode_add_bytes(inode, number);
		goto out;
	}

	spin_lock(&dq_data_lock);
	/* Claim reserved quotas to allocated quotas */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (inode->i_dquot[cnt])
			dquot_claim_reserved_space(inode->i_dquot[cnt],
							number);
	}
	/* Update inode bytes */
	inode_add_bytes(inode, number);
	spin_unlock(&dq_data_lock);
	/* Dirtify all the dquots - this can block when journalling */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		if (inode->i_dquot[cnt])
			mark_dquot_dirty(inode->i_dquot[cnt]);
	up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
out:
	return ret;
}
EXPORT_SYMBOL(dquot_claim_space);

/*
 * Release reserved quota space
 */
void dquot_release_reserved_space(struct inode *inode, qsize_t number)
{
	int cnt;

	if (IS_NOQUOTA(inode))
		goto out;

	down_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
	if (IS_NOQUOTA(inode))
		goto out_unlock;

	spin_lock(&dq_data_lock);
	/* Release reserved dquots */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (inode->i_dquot[cnt])
			dquot_free_reserved_space(inode->i_dquot[cnt], number);
	}
	spin_unlock(&dq_data_lock);

out_unlock:
	up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
out:
	return;
}
EXPORT_SYMBOL(dquot_release_reserved_space);

/*
 * This operation can block, but only after everything is updated
 */
int dquot_free_space(struct inode *inode, qsize_t number)
{
	unsigned int cnt;
	char warntype[MAXQUOTAS];

	/* First test before acquiring mutex - solves deadlocks when we
         * re-enter the quota code and are already holding the mutex */
	if (IS_NOQUOTA(inode)) {
out_sub:
		inode_sub_bytes(inode, number);
		return QUOTA_OK;
	}

	down_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
	/* Now recheck reliably when holding dqptr_sem */
	if (IS_NOQUOTA(inode)) {
		up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
		goto out_sub;
	}
	spin_lock(&dq_data_lock);
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (!inode->i_dquot[cnt])
			continue;
		warntype[cnt] = info_bdq_free(inode->i_dquot[cnt], number);
		dquot_decr_space(inode->i_dquot[cnt], number);
	}
	inode_sub_bytes(inode, number);
	spin_unlock(&dq_data_lock);
	/* Dirtify all the dquots - this can block when journalling */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		if (inode->i_dquot[cnt])
			mark_dquot_dirty(inode->i_dquot[cnt]);
	flush_warnings(inode->i_dquot, warntype);
	up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
	return QUOTA_OK;
}
EXPORT_SYMBOL(dquot_free_space);

/*
 * This operation can block, but only after everything is updated
 */
int dquot_free_inode(const struct inode *inode, qsize_t number)
{
	unsigned int cnt;
	char warntype[MAXQUOTAS];

	/* First test before acquiring mutex - solves deadlocks when we
         * re-enter the quota code and are already holding the mutex */
	if (IS_NOQUOTA(inode))
		return QUOTA_OK;

	down_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
	/* Now recheck reliably when holding dqptr_sem */
	if (IS_NOQUOTA(inode)) {
		up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
		return QUOTA_OK;
	}
	spin_lock(&dq_data_lock);
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (!inode->i_dquot[cnt])
			continue;
		warntype[cnt] = info_idq_free(inode->i_dquot[cnt], number);
		dquot_decr_inodes(inode->i_dquot[cnt], number);
	}
	spin_unlock(&dq_data_lock);
	/* Dirtify all the dquots - this can block when journalling */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		if (inode->i_dquot[cnt])
			mark_dquot_dirty(inode->i_dquot[cnt]);
	flush_warnings(inode->i_dquot, warntype);
	up_read(&sb_dqopt(inode->i_sb)->dqptr_sem);
	return QUOTA_OK;
}
EXPORT_SYMBOL(dquot_free_inode);

/*
 * call back function, get reserved quota space from underlying fs
 */
qsize_t dquot_get_reserved_space(struct inode *inode)
{
	qsize_t reserved_space = 0;

	if (sb_any_quota_active(inode->i_sb) &&
	    inode->i_sb->dq_op->get_reserved_space)
		reserved_space = inode->i_sb->dq_op->get_reserved_space(inode);
	return reserved_space;
}

/*
 * Transfer the number of inode and blocks from one diskquota to an other.
 *
 * This operation can block, but only after everything is updated
 * A transaction must be started when entering this function.
 */
int dquot_transfer(struct inode *inode, struct iattr *iattr)
{
	qsize_t space, cur_space;
	qsize_t rsv_space = 0;
	struct dquot *transfer_from[MAXQUOTAS];
	struct dquot *transfer_to[MAXQUOTAS];
	int cnt, ret = QUOTA_OK;
	int chuid = iattr->ia_valid & ATTR_UID && inode->i_uid != iattr->ia_uid,
	    chgid = iattr->ia_valid & ATTR_GID && inode->i_gid != iattr->ia_gid;
	char warntype_to[MAXQUOTAS];
	char warntype_from_inodes[MAXQUOTAS], warntype_from_space[MAXQUOTAS];

	/* First test before acquiring mutex - solves deadlocks when we
         * re-enter the quota code and are already holding the mutex */
	if (IS_NOQUOTA(inode))
		return QUOTA_OK;
	/* Initialize the arrays */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		transfer_from[cnt] = NULL;
		transfer_to[cnt] = NULL;
		warntype_to[cnt] = QUOTA_NL_NOWARN;
	}
	if (chuid)
		transfer_to[USRQUOTA] = dqget(inode->i_sb, iattr->ia_uid,
					      USRQUOTA);
	if (chgid)
		transfer_to[GRPQUOTA] = dqget(inode->i_sb, iattr->ia_gid,
					      GRPQUOTA);

	down_write(&sb_dqopt(inode->i_sb)->dqptr_sem);
	/* Now recheck reliably when holding dqptr_sem */
	if (IS_NOQUOTA(inode)) {	/* File without quota accounting? */
		up_write(&sb_dqopt(inode->i_sb)->dqptr_sem);
		goto put_all;
	}
	spin_lock(&dq_data_lock);
	cur_space = inode_get_bytes(inode);
	rsv_space = dquot_get_reserved_space(inode);
	space = cur_space + rsv_space;
	/* Build the transfer_from list and check the limits */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (!transfer_to[cnt])
			continue;
		transfer_from[cnt] = inode->i_dquot[cnt];
		if (check_idq(transfer_to[cnt], 1, warntype_to + cnt) ==
		    NO_QUOTA || check_bdq(transfer_to[cnt], space, 0,
		    warntype_to + cnt) == NO_QUOTA)
			goto over_quota;
	}

	/*
	 * Finally perform the needed transfer from transfer_from to transfer_to
	 */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		/*
		 * Skip changes for same uid or gid or for turned off quota-type.
		 */
		if (!transfer_to[cnt])
			continue;

		/* Due to IO error we might not have transfer_from[] structure */
		if (transfer_from[cnt]) {
			warntype_from_inodes[cnt] =
				info_idq_free(transfer_from[cnt], 1);
			warntype_from_space[cnt] =
				info_bdq_free(transfer_from[cnt], space);
			dquot_decr_inodes(transfer_from[cnt], 1);
			dquot_decr_space(transfer_from[cnt], cur_space);
			dquot_free_reserved_space(transfer_from[cnt],
						  rsv_space);
		}

		dquot_incr_inodes(transfer_to[cnt], 1);
		dquot_incr_space(transfer_to[cnt], cur_space);
		dquot_resv_space(transfer_to[cnt], rsv_space);

		inode->i_dquot[cnt] = transfer_to[cnt];
	}
	spin_unlock(&dq_data_lock);
	up_write(&sb_dqopt(inode->i_sb)->dqptr_sem);

	/* Dirtify all the dquots - this can block when journalling */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		if (transfer_from[cnt])
			mark_dquot_dirty(transfer_from[cnt]);
		if (transfer_to[cnt]) {
			mark_dquot_dirty(transfer_to[cnt]);
			/* The reference we got is transferred to the inode */
			transfer_to[cnt] = NULL;
		}
	}
warn_put_all:
	flush_warnings(transfer_to, warntype_to);
	flush_warnings(transfer_from, warntype_from_inodes);
	flush_warnings(transfer_from, warntype_from_space);
put_all:
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		dqput(transfer_from[cnt]);
		dqput(transfer_to[cnt]);
	}
	return ret;
over_quota:
	spin_unlock(&dq_data_lock);
	up_write(&sb_dqopt(inode->i_sb)->dqptr_sem);
	/* Clear dquot pointers we don't want to dqput() */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		transfer_from[cnt] = NULL;
	ret = NO_QUOTA;
	goto warn_put_all;
}
EXPORT_SYMBOL(dquot_transfer);

/* Wrapper for transferring ownership of an inode */
int vfs_dq_transfer(struct inode *inode, struct iattr *iattr)
{
	if (sb_any_quota_active(inode->i_sb) && !IS_NOQUOTA(inode)) {
		vfs_dq_init(inode);
		if (inode->i_sb->dq_op->transfer(inode, iattr) == NO_QUOTA)
			return 1;
	}
	return 0;
}
EXPORT_SYMBOL(vfs_dq_transfer);

/*
 * Write info of quota file to disk
 */
int dquot_commit_info(struct super_block *sb, int type)
{
	int ret;
	struct quota_info *dqopt = sb_dqopt(sb);

	mutex_lock(&dqopt->dqio_mutex);
	ret = dqopt->ops[type]->write_file_info(sb, type);
	mutex_unlock(&dqopt->dqio_mutex);
	return ret;
}
EXPORT_SYMBOL(dquot_commit_info);

/*
 * Definitions of diskquota operations.
 */
struct dquot_operations dquot_operations = {
	.initialize	= dquot_initialize,
	.drop		= dquot_drop,
	.alloc_space	= dquot_alloc_space,
	.alloc_inode	= dquot_alloc_inode,
	.free_space	= dquot_free_space,
	.free_inode	= dquot_free_inode,
	.transfer	= dquot_transfer,
	.write_dquot	= dquot_commit,
	.acquire_dquot	= dquot_acquire,
	.release_dquot	= dquot_release,
	.mark_dirty	= dquot_mark_dquot_dirty,
	.write_info	= dquot_commit_info,
	.alloc_dquot	= dquot_alloc,
	.destroy_dquot	= dquot_destroy,
};

/*
 * Turn quota off on a device. type == -1 ==> quotaoff for all types (umount)
 */
int vfs_quota_disable(struct super_block *sb, int type, unsigned int flags)
{
	int cnt, ret = 0;
	struct quota_info *dqopt = sb_dqopt(sb);
	struct inode *toputinode[MAXQUOTAS];

	/* Cannot turn off usage accounting without turning off limits, or
	 * suspend quotas and simultaneously turn quotas off. */
	if ((flags & DQUOT_USAGE_ENABLED && !(flags & DQUOT_LIMITS_ENABLED))
	    || (flags & DQUOT_SUSPENDED && flags & (DQUOT_LIMITS_ENABLED |
	    DQUOT_USAGE_ENABLED)))
		return -EINVAL;

	/* We need to serialize quota_off() for device */
	mutex_lock(&dqopt->dqonoff_mutex);

	/*
	 * Skip everything if there's nothing to do. We have to do this because
	 * sometimes we are called when fill_super() failed and calling
	 * sync_fs() in such cases does no good.
	 */
	if (!sb_any_quota_loaded(sb)) {
		mutex_unlock(&dqopt->dqonoff_mutex);
		return 0;
	}
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		toputinode[cnt] = NULL;
		if (type != -1 && cnt != type)
			continue;
		if (!sb_has_quota_loaded(sb, cnt))
			continue;

		if (flags & DQUOT_SUSPENDED) {
			spin_lock(&dq_state_lock);
			dqopt->flags |=
				dquot_state_flag(DQUOT_SUSPENDED, cnt);
			spin_unlock(&dq_state_lock);
		} else {
			spin_lock(&dq_state_lock);
			dqopt->flags &= ~dquot_state_flag(flags, cnt);
			/* Turning off suspended quotas? */
			if (!sb_has_quota_loaded(sb, cnt) &&
			    sb_has_quota_suspended(sb, cnt)) {
				dqopt->flags &=	~dquot_state_flag(
							DQUOT_SUSPENDED, cnt);
				spin_unlock(&dq_state_lock);
				iput(dqopt->files[cnt]);
				dqopt->files[cnt] = NULL;
				continue;
			}
			spin_unlock(&dq_state_lock);
		}

		/* We still have to keep quota loaded? */
		if (sb_has_quota_loaded(sb, cnt) && !(flags & DQUOT_SUSPENDED))
			continue;

		/* Note: these are blocking operations */
		drop_dquot_ref(sb, cnt);
		invalidate_dquots(sb, cnt);
		/*
		 * Now all dquots should be invalidated, all writes done so we
		 * should be only users of the info. No locks needed.
		 */
		if (info_dirty(&dqopt->info[cnt]))
			sb->dq_op->write_info(sb, cnt);
		if (dqopt->ops[cnt]->free_file_info)
			dqopt->ops[cnt]->free_file_info(sb, cnt);
		put_quota_format(dqopt->info[cnt].dqi_format);

		toputinode[cnt] = dqopt->files[cnt];
		if (!sb_has_quota_loaded(sb, cnt))
			dqopt->files[cnt] = NULL;
		dqopt->info[cnt].dqi_flags = 0;
		dqopt->info[cnt].dqi_igrace = 0;
		dqopt->info[cnt].dqi_bgrace = 0;
		dqopt->ops[cnt] = NULL;
	}
	mutex_unlock(&dqopt->dqonoff_mutex);

	/* Skip syncing and setting flags if quota files are hidden */
	if (dqopt->flags & DQUOT_QUOTA_SYS_FILE)
		goto put_inodes;

	/* Sync the superblock so that buffers with quota data are written to
	 * disk (and so userspace sees correct data afterwards). */
	if (sb->s_op->sync_fs)
		sb->s_op->sync_fs(sb, 1);
	sync_blockdev(sb->s_bdev);
	/* Now the quota files are just ordinary files and we can set the
	 * inode flags back. Moreover we discard the pagecache so that
	 * userspace sees the writes we did bypassing the pagecache. We
	 * must also discard the blockdev buffers so that we see the
	 * changes done by userspace on the next quotaon() */
	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		if (toputinode[cnt]) {
			mutex_lock(&dqopt->dqonoff_mutex);
			/* If quota was reenabled in the meantime, we have
			 * nothing to do */
			if (!sb_has_quota_loaded(sb, cnt)) {
				mutex_lock_nested(&toputinode[cnt]->i_mutex,
						  I_MUTEX_QUOTA);
				toputinode[cnt]->i_flags &= ~(S_IMMUTABLE |
				  S_NOATIME | S_NOQUOTA);
				truncate_inode_pages(&toputinode[cnt]->i_data,
						     0);
				mutex_unlock(&toputinode[cnt]->i_mutex);
				mark_inode_dirty(toputinode[cnt]);
			}
			mutex_unlock(&dqopt->dqonoff_mutex);
		}
	if (sb->s_bdev)
		invalidate_bdev(sb->s_bdev);
put_inodes:
	for (cnt = 0; cnt < MAXQUOTAS; cnt++)
		if (toputinode[cnt]) {
			/* On remount RO, we keep the inode pointer so that we
			 * can reenable quota on the subsequent remount RW. We
			 * have to check 'flags' variable and not use sb_has_
			 * function because another quotaon / quotaoff could
			 * change global state before we got here. We refuse
			 * to suspend quotas when there is pending delete on
			 * the quota file... */
			if (!(flags & DQUOT_SUSPENDED))
				iput(toputinode[cnt]);
			else if (!toputinode[cnt]->i_nlink)
				ret = -EBUSY;
		}
	return ret;
}
EXPORT_SYMBOL(vfs_quota_disable);

int vfs_quota_off(struct super_block *sb, int type, int remount)
{
	return vfs_quota_disable(sb, type, remount ? DQUOT_SUSPENDED :
				 (DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED));
}
EXPORT_SYMBOL(vfs_quota_off);
/*
 *	Turn quotas on on a device
 */

/*
 * Helper function to turn quotas on when we already have the inode of
 * quota file and no quota information is loaded.
 */
static int vfs_load_quota_inode(struct inode *inode, int type, int format_id,
	unsigned int flags)
{
	struct quota_format_type *fmt = find_quota_format(format_id);
	struct super_block *sb = inode->i_sb;
	struct quota_info *dqopt = sb_dqopt(sb);
	int error;
	int oldflags = -1;

	if (!fmt)
		return -ESRCH;
	if (!S_ISREG(inode->i_mode)) {
		error = -EACCES;
		goto out_fmt;
	}
	if (IS_RDONLY(inode)) {
		error = -EROFS;
		goto out_fmt;
	}
	if (!sb->s_op->quota_write || !sb->s_op->quota_read) {
		error = -EINVAL;
		goto out_fmt;
	}
	/* Usage always has to be set... */
	if (!(flags & DQUOT_USAGE_ENABLED)) {
		error = -EINVAL;
		goto out_fmt;
	}

	if (!(dqopt->flags & DQUOT_QUOTA_SYS_FILE)) {
		/* As we bypass the pagecache we must now flush the inode so
		 * that we see all the changes from userspace... */
		write_inode_now(inode, 1);
		/* And now flush the block cache so that kernel sees the
		 * changes */
		invalidate_bdev(sb->s_bdev);
	}
	mutex_lock(&inode->i_mutex);
	mutex_lock(&dqopt->dqonoff_mutex);
	if (sb_has_quota_loaded(sb, type)) {
		error = -EBUSY;
		goto out_lock;
	}

	if (!(dqopt->flags & DQUOT_QUOTA_SYS_FILE)) {
		/* We don't want quota and atime on quota files (deadlocks
		 * possible) Also nobody should write to the file - we use
		 * special IO operations which ignore the immutable bit. */
		down_write(&dqopt->dqptr_sem);
		oldflags = inode->i_flags & (S_NOATIME | S_IMMUTABLE |
					     S_NOQUOTA);
		inode->i_flags |= S_NOQUOTA | S_NOATIME | S_IMMUTABLE;
		up_write(&dqopt->dqptr_sem);
		sb->dq_op->drop(inode);
	}

	error = -EIO;
	dqopt->files[type] = igrab(inode);
	if (!dqopt->files[type])
		goto out_lock;
	error = -EINVAL;
	if (!fmt->qf_ops->check_quota_file(sb, type))
		goto out_file_init;

	dqopt->ops[type] = fmt->qf_ops;
	dqopt->info[type].dqi_format = fmt;
	dqopt->info[type].dqi_fmt_id = format_id;
	INIT_LIST_HEAD(&dqopt->info[type].dqi_dirty_list);
	mutex_lock(&dqopt->dqio_mutex);
	error = dqopt->ops[type]->read_file_info(sb, type);
	if (error < 0) {
		mutex_unlock(&dqopt->dqio_mutex);
		goto out_file_init;
	}
	mutex_unlock(&dqopt->dqio_mutex);
	mutex_unlock(&inode->i_mutex);
	spin_lock(&dq_state_lock);
	dqopt->flags |= dquot_state_flag(flags, type);
	spin_unlock(&dq_state_lock);

	add_dquot_ref(sb, type);
	mutex_unlock(&dqopt->dqonoff_mutex);

	return 0;

out_file_init:
	dqopt->files[type] = NULL;
	iput(inode);
out_lock:
	mutex_unlock(&dqopt->dqonoff_mutex);
	if (oldflags != -1) {
		down_write(&dqopt->dqptr_sem);
		/* Set the flags back (in the case of accidental quotaon()
		 * on a wrong file we don't want to mess up the flags) */
		inode->i_flags &= ~(S_NOATIME | S_NOQUOTA | S_IMMUTABLE);
		inode->i_flags |= oldflags;
		up_write(&dqopt->dqptr_sem);
	}
	mutex_unlock(&inode->i_mutex);
out_fmt:
	put_quota_format(fmt);

	return error; 
}

/* Reenable quotas on remount RW */
static int vfs_quota_on_remount(struct super_block *sb, int type)
{
	struct quota_info *dqopt = sb_dqopt(sb);
	struct inode *inode;
	int ret;
	unsigned int flags;

	mutex_lock(&dqopt->dqonoff_mutex);
	if (!sb_has_quota_suspended(sb, type)) {
		mutex_unlock(&dqopt->dqonoff_mutex);
		return 0;
	}
	inode = dqopt->files[type];
	dqopt->files[type] = NULL;
	spin_lock(&dq_state_lock);
	flags = dqopt->flags & dquot_state_flag(DQUOT_USAGE_ENABLED |
						DQUOT_LIMITS_ENABLED, type);
	dqopt->flags &= ~dquot_state_flag(DQUOT_STATE_FLAGS, type);
	spin_unlock(&dq_state_lock);
	mutex_unlock(&dqopt->dqonoff_mutex);

	flags = dquot_generic_flag(flags, type);
	ret = vfs_load_quota_inode(inode, type, dqopt->info[type].dqi_fmt_id,
				   flags);
	iput(inode);

	return ret;
}

int vfs_quota_on_path(struct super_block *sb, int type, int format_id,
		      struct path *path)
{
	int error = security_quota_on(path->dentry);
	if (error)
		return error;
	/* Quota file not on the same filesystem? */
	if (path->mnt->mnt_sb != sb)
		error = -EXDEV;
	else
		error = vfs_load_quota_inode(path->dentry->d_inode, type,
					     format_id, DQUOT_USAGE_ENABLED |
					     DQUOT_LIMITS_ENABLED);
	return error;
}
EXPORT_SYMBOL(vfs_quota_on_path);

int vfs_quota_on(struct super_block *sb, int type, int format_id, char *name,
		 int remount)
{
	struct path path;
	int error;

	if (remount)
		return vfs_quota_on_remount(sb, type);

	error = kern_path(name, LOOKUP_FOLLOW, &path);
	if (!error) {
		error = vfs_quota_on_path(sb, type, format_id, &path);
		path_put(&path);
	}
	return error;
}
EXPORT_SYMBOL(vfs_quota_on);

/*
 * More powerful function for turning on quotas allowing setting
 * of individual quota flags
 */
int vfs_quota_enable(struct inode *inode, int type, int format_id,
		unsigned int flags)
{
	int ret = 0;
	struct super_block *sb = inode->i_sb;
	struct quota_info *dqopt = sb_dqopt(sb);

	/* Just unsuspend quotas? */
	if (flags & DQUOT_SUSPENDED)
		return vfs_quota_on_remount(sb, type);
	if (!flags)
		return 0;
	/* Just updating flags needed? */
	if (sb_has_quota_loaded(sb, type)) {
		mutex_lock(&dqopt->dqonoff_mutex);
		/* Now do a reliable test... */
		if (!sb_has_quota_loaded(sb, type)) {
			mutex_unlock(&dqopt->dqonoff_mutex);
			goto load_quota;
		}
		if (flags & DQUOT_USAGE_ENABLED &&
		    sb_has_quota_usage_enabled(sb, type)) {
			ret = -EBUSY;
			goto out_lock;
		}
		if (flags & DQUOT_LIMITS_ENABLED &&
		    sb_has_quota_limits_enabled(sb, type)) {
			ret = -EBUSY;
			goto out_lock;
		}
		spin_lock(&dq_state_lock);
		sb_dqopt(sb)->flags |= dquot_state_flag(flags, type);
		spin_unlock(&dq_state_lock);
out_lock:
		mutex_unlock(&dqopt->dqonoff_mutex);
		return ret;
	}

load_quota:
	return vfs_load_quota_inode(inode, type, format_id, flags);
}
EXPORT_SYMBOL(vfs_quota_enable);

/*
 * This function is used when filesystem needs to initialize quotas
 * during mount time.
 */
int vfs_quota_on_mount(struct super_block *sb, char *qf_name,
		int format_id, int type)
{
	struct dentry *dentry;
	int error;

	dentry = lookup_one_len(qf_name, sb->s_root, strlen(qf_name));
	if (IS_ERR(dentry))
		return PTR_ERR(dentry);

	if (!dentry->d_inode) {
		error = -ENOENT;
		goto out;
	}

	error = security_quota_on(dentry);
	if (!error)
		error = vfs_load_quota_inode(dentry->d_inode, type, format_id,
				DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);

out:
	dput(dentry);
	return error;
}
EXPORT_SYMBOL(vfs_quota_on_mount);

/* Wrapper to turn on quotas when remounting rw */
int vfs_dq_quota_on_remount(struct super_block *sb)
{
	int cnt;
	int ret = 0, err;

	if (!sb->s_qcop || !sb->s_qcop->quota_on)
		return -ENOSYS;
	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
		err = sb->s_qcop->quota_on(sb, cnt, 0, NULL, 1);
		if (err < 0 && !ret)
			ret = err;
	}
	return ret;
}
EXPORT_SYMBOL(vfs_dq_quota_on_remount);

static inline qsize_t qbtos(qsize_t blocks)
{
	return blocks << QIF_DQBLKSIZE_BITS;
}

static inline qsize_t stoqb(qsize_t space)
{
	return (space + QIF_DQBLKSIZE - 1) >> QIF_DQBLKSIZE_BITS;
}

/* Generic routine for getting common part of quota structure */
static void do_get_dqblk(struct dquot *dquot, struct if_dqblk *di)
{
	struct mem_dqblk *dm = &dquot->dq_dqb;

	spin_lock(&dq_data_lock);
	di->dqb_bhardlimit = stoqb(dm->dqb_bhardlimit);
	di->dqb_bsoftlimit = stoqb(dm->dqb_bsoftlimit);
	di->dqb_curspace = dm->dqb_curspace + dm->dqb_rsvspace;
	di->dqb_ihardlimit = dm->dqb_ihardlimit;
	di->dqb_isoftlimit = dm->dqb_isoftlimit;
	di->dqb_curinodes = dm->dqb_curinodes;
	di->dqb_btime = dm->dqb_btime;
	di->dqb_itime = dm->dqb_itime;
	di->dqb_valid = QIF_ALL;
	spin_unlock(&dq_data_lock);
}

int vfs_get_dqblk(struct super_block *sb, int type, qid_t id,
		  struct if_dqblk *di)
{
	struct dquot *dquot;

	dquot = dqget(sb, id, type);
	if (!dquot)
		return -ESRCH;
	do_get_dqblk(dquot, di);
	dqput(dquot);

	return 0;
}
EXPORT_SYMBOL(vfs_get_dqblk);

/* Generic routine for setting common part of quota structure */
static int do_set_dqblk(struct dquot *dquot, struct if_dqblk *di)
{
	struct mem_dqblk *dm = &dquot->dq_dqb;
	int check_blim = 0, check_ilim = 0;
	struct mem_dqinfo *dqi = &sb_dqopt(dquot->dq_sb)->info[dquot->dq_type];

	if ((di->dqb_valid & QIF_BLIMITS &&
	     (di->dqb_bhardlimit > dqi->dqi_maxblimit ||
	      di->dqb_bsoftlimit > dqi->dqi_maxblimit)) ||
	    (di->dqb_valid & QIF_ILIMITS &&
	     (di->dqb_ihardlimit > dqi->dqi_maxilimit ||
	      di->dqb_isoftlimit > dqi->dqi_maxilimit)))
		return -ERANGE;

	spin_lock(&dq_data_lock);
	if (di->dqb_valid & QIF_SPACE) {
		dm->dqb_curspace = di->dqb_curspace - dm->dqb_rsvspace;
		check_blim = 1;
		__set_bit(DQ_LASTSET_B + QIF_SPACE_B, &dquot->dq_flags);
	}
	if (di->dqb_valid & QIF_BLIMITS) {
		dm->dqb_bsoftlimit = qbtos(di->dqb_bsoftlimit);
		dm->dqb_bhardlimit = qbtos(di->dqb_bhardlimit);
		check_blim = 1;
		__set_bit(DQ_LASTSET_B + QIF_BLIMITS_B, &dquot->dq_flags);
	}
	if (di->dqb_valid & QIF_INODES) {
		dm->dqb_curinodes = di->dqb_curinodes;
		check_ilim = 1;
		__set_bit(DQ_LASTSET_B + QIF_INODES_B, &dquot->dq_flags);
	}
	if (di->dqb_valid & QIF_ILIMITS) {
		dm->dqb_isoftlimit = di->dqb_isoftlimit;
		dm->dqb_ihardlimit = di->dqb_ihardlimit;
		check_ilim = 1;
		__set_bit(DQ_LASTSET_B + QIF_ILIMITS_B, &dquot->dq_flags);
	}
	if (di->dqb_valid & QIF_BTIME) {
		dm->dqb_btime = di->dqb_btime;
		check_blim = 1;
		__set_bit(DQ_LASTSET_B + QIF_BTIME_B, &dquot->dq_flags);
	}
	if (di->dqb_valid & QIF_ITIME) {
		dm->dqb_itime = di->dqb_itime;
		check_ilim = 1;
		__set_bit(DQ_LASTSET_B + QIF_ITIME_B, &dquot->dq_flags);
	}

	if (check_blim) {
		if (!dm->dqb_bsoftlimit ||
		    dm->dqb_curspace < dm->dqb_bsoftlimit) {
			dm->dqb_btime = 0;
			clear_bit(DQ_BLKS_B, &dquot->dq_flags);
		} else if (!(di->dqb_valid & QIF_BTIME))
			/* Set grace only if user hasn't provided his own... */
			dm->dqb_btime = get_seconds() + dqi->dqi_bgrace;
	}
	if (check_ilim) {
		if (!dm->dqb_isoftlimit ||
		    dm->dqb_curinodes < dm->dqb_isoftlimit) {
			dm->dqb_itime = 0;
			clear_bit(DQ_INODES_B, &dquot->dq_flags);
		} else if (!(di->dqb_valid & QIF_ITIME))
			/* Set grace only if user hasn't provided his own... */
			dm->dqb_itime = get_seconds() + dqi->dqi_igrace;
	}
	if (dm->dqb_bhardlimit || dm->dqb_bsoftlimit || dm->dqb_ihardlimit ||
	    dm->dqb_isoftlimit)
		clear_bit(DQ_FAKE_B, &dquot->dq_flags);
	else
		set_bit(DQ_FAKE_B, &dquot->dq_flags);
	spin_unlock(&dq_data_lock);
	mark_dquot_dirty(dquot);

	return 0;
}

int vfs_set_dqblk(struct super_block *sb, int type, qid_t id,
		  struct if_dqblk *di)
{
	struct dquot *dquot;
	int rc;

	dquot = dqget(sb, id, type);
	if (!dquot) {
		rc = -ESRCH;
		goto out;
	}
	rc = do_set_dqblk(dquot, di);
	dqput(dquot);
out:
	return rc;
}
EXPORT_SYMBOL(vfs_set_dqblk);

/* Generic routine for getting common part of quota file information */
int vfs_get_dqinfo(struct super_block *sb, int type, struct if_dqinfo *ii)
{
	struct mem_dqinfo *mi;
  
	mutex_lock(&sb_dqopt(sb)->dqonoff_mutex);
	if (!sb_has_quota_active(sb, type)) {
		mutex_unlock(&sb_dqopt(sb)->dqonoff_mutex);
		return -ESRCH;
	}
	mi = sb_dqopt(sb)->info + type;
	spin_lock(&dq_data_lock);
	ii->dqi_bgrace = mi->dqi_bgrace;
	ii->dqi_igrace = mi->dqi_igrace;
	ii->dqi_flags = mi->dqi_flags & DQF_MASK;
	ii->dqi_valid = IIF_ALL;
	spin_unlock(&dq_data_lock);
	mutex_unlock(&sb_dqopt(sb)->dqonoff_mutex);
	return 0;
}
EXPORT_SYMBOL(vfs_get_dqinfo);

/* Generic routine for setting common part of quota file information */
int vfs_set_dqinfo(struct super_block *sb, int type, struct if_dqinfo *ii)
{
	struct mem_dqinfo *mi;
	int err = 0;

	mutex_lock(&sb_dqopt(sb)->dqonoff_mutex);
	if (!sb_has_quota_active(sb, type)) {
		err = -ESRCH;
		goto out;
	}
	mi = sb_dqopt(sb)->info + type;
	spin_lock(&dq_data_lock);
	if (ii->dqi_valid & IIF_BGRACE)
		mi->dqi_bgrace = ii->dqi_bgrace;
	if (ii->dqi_valid & IIF_IGRACE)
		mi->dqi_igrace = ii->dqi_igrace;
	if (ii->dqi_valid & IIF_FLAGS)
		mi->dqi_flags = (mi->dqi_flags & ~DQF_MASK) |
				(ii->dqi_flags & DQF_MASK);
	spin_unlock(&dq_data_lock);
	mark_info_dirty(sb, type);
	/* Force write to disk */
	sb->dq_op->write_info(sb, type);
out:
	mutex_unlock(&sb_dqopt(sb)->dqonoff_mutex);
	return err;
}
EXPORT_SYMBOL(vfs_set_dqinfo);

struct quotactl_ops vfs_quotactl_ops = {
	.quota_on	= vfs_quota_on,
	.quota_off	= vfs_quota_off,
	.quota_sync	= vfs_quota_sync,
	.get_info	= vfs_get_dqinfo,
	.set_info	= vfs_set_dqinfo,
	.get_dqblk	= vfs_get_dqblk,
	.set_dqblk	= vfs_set_dqblk
};

static ctl_table fs_dqstats_table[] = {
	{
		.ctl_name	= FS_DQ_LOOKUPS,
		.procname	= "lookups",
		.data		= &dqstats.lookups,
		.maxlen		= sizeof(int),
		.mode		= 0444,
		.proc_handler	= &proc_dointvec,
	},
	{
		.ctl_name	= FS_DQ_DROPS,
		.procname	= "drops",
		.data		= &dqstats.drops,
		.maxlen		= sizeof(int),
		.mode		= 0444,
		.proc_handler	= &proc_dointvec,
	},
	{
		.ctl_name	= FS_DQ_READS,
		.procname	= "reads",
		.data		= &dqstats.reads,
		.maxlen		= sizeof(int),
		.mode		= 0444,
		.proc_handler	= &proc_dointvec,
	},
	{
		.ctl_name	= FS_DQ_WRITES,
		.procname	= "writes",
		.data		= &dqstats.writes,
		.maxlen		= sizeof(int),
		.mode		= 0444,
		.proc_handler	= &proc_dointvec,
	},
	{
		.ctl_name	= FS_DQ_CACHE_HITS,
		.procname	= "cache_hits",
		.data		= &dqstats.cache_hits,
		.maxlen		= sizeof(int),
		.mode		= 0444,
		.proc_handler	= &proc_dointvec,
	},
	{
		.ctl_name	= FS_DQ_ALLOCATED,
		.procname	= "allocated_dquots",
		.data		= &dqstats.allocated_dquots,
		.maxlen		= sizeof(int),
		.mode		= 0444,
		.proc_handler	= &proc_dointvec,
	},
	{
		.ctl_name	= FS_DQ_FREE,
		.procname	= "free_dquots",
		.data		= &dqstats.free_dquots,
		.maxlen		= sizeof(int),
		.mode		= 0444,
		.proc_handler	= &proc_dointvec,
	},
	{
		.ctl_name	= FS_DQ_SYNCS,
		.procname	= "syncs",
		.data		= &dqstats.syncs,
		.maxlen		= sizeof(int),
		.mode		= 0444,
		.proc_handler	= &proc_dointvec,
	},
#ifdef CONFIG_PRINT_QUOTA_WARNING
	{
		.ctl_name	= FS_DQ_WARNINGS,
		.procname	= "warnings",
		.data		= &flag_print_warnings,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= &proc_dointvec,
	},
#endif
	{ .ctl_name = 0 },
};

static ctl_table fs_table[] = {
	{
		.ctl_name	= FS_DQSTATS,
		.procname	= "quota",
		.mode		= 0555,
		.child		= fs_dqstats_table,
	},
	{ .ctl_name = 0 },
};

static ctl_table sys_table[] = {
	{
		.ctl_name	= CTL_FS,
		.procname	= "fs",
		.mode		= 0555,
		.child		= fs_table,
	},
	{ .ctl_name = 0 },
};

static int __init dquot_init(void)
{
	int i;
	unsigned long nr_hash, order;

	printk(KERN_NOTICE "VFS: Disk quotas %s\n", __DQUOT_VERSION__);

	register_sysctl_table(sys_table);

	dquot_cachep = kmem_cache_create("dquot",
			sizeof(struct dquot), sizeof(unsigned long) * 4,
			(SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
				SLAB_MEM_SPREAD|SLAB_PANIC),
			NULL);

	order = 0;
	dquot_hash = (struct hlist_head *)__get_free_pages(GFP_ATOMIC, order);
	if (!dquot_hash)
		panic("Cannot create dquot hash table");

	/* Find power-of-two hlist_heads which can fit into allocation */
	nr_hash = (1UL << order) * PAGE_SIZE / sizeof(struct hlist_head);
	dq_hash_bits = 0;
	do {
		dq_hash_bits++;
	} while (nr_hash >> dq_hash_bits);
	dq_hash_bits--;

	nr_hash = 1UL << dq_hash_bits;
	dq_hash_mask = nr_hash - 1;
	for (i = 0; i < nr_hash; i++)
		INIT_HLIST_HEAD(dquot_hash + i);

	printk("Dquot-cache hash table entries: %ld (order %ld, %ld bytes)\n",
			nr_hash, order, (PAGE_SIZE << order));

	register_shrinker(&dqcache_shrinker);

#ifdef CONFIG_QUOTA_NETLINK_INTERFACE
	if (genl_register_family(&quota_genl_family) != 0)
		printk(KERN_ERR
		       "VFS: Failed to create quota netlink interface.\n");
#endif

	return 0;
}
module_init(dquot_init);
span class="hl opt">= queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; if (rdev->sb_size & bmask) rdev->sb_size = (rdev->sb_size | bmask) + 1; if (minor_version && rdev->data_offset < sb_start + (rdev->sb_size/512)) return -EINVAL; if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) rdev->desc_nr = -1; else rdev->desc_nr = le32_to_cpu(sb->dev_number); if (!refdev) { ret = 1; } else { __u64 ev1, ev2; struct mdp_superblock_1 *refsb = (struct mdp_superblock_1*)page_address(refdev->sb_page); if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || sb->level != refsb->level || sb->layout != refsb->layout || sb->chunksize != refsb->chunksize) { printk(KERN_WARNING "md: %s has strangely different" " superblock to %s\n", bdevname(rdev->bdev,b), bdevname(refdev->bdev,b2)); return -EINVAL; } ev1 = le64_to_cpu(sb->events); ev2 = le64_to_cpu(refsb->events); if (ev1 > ev2) ret = 1; else ret = 0; } if (minor_version) rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) - le64_to_cpu(sb->data_offset); else rdev->sectors = rdev->sb_start; if (rdev->sectors < le64_to_cpu(sb->data_size)) return -EINVAL; rdev->sectors = le64_to_cpu(sb->data_size); if (le64_to_cpu(sb->size) > rdev->sectors) return -EINVAL; return ret; } static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) { struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); __u64 ev1 = le64_to_cpu(sb->events); rdev->raid_disk = -1; clear_bit(Faulty, &rdev->flags); clear_bit(In_sync, &rdev->flags); clear_bit(WriteMostly, &rdev->flags); clear_bit(BarriersNotsupp, &rdev->flags); if (mddev->raid_disks == 0) { mddev->major_version = 1; mddev->patch_version = 0; mddev->external = 0; mddev->chunk_sectors = le32_to_cpu(sb->chunksize); mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); mddev->level = le32_to_cpu(sb->level); mddev->clevel[0] = 0; mddev->layout = le32_to_cpu(sb->layout); mddev->raid_disks = le32_to_cpu(sb->raid_disks); mddev->dev_sectors = le64_to_cpu(sb->size); mddev->events = ev1; mddev->bitmap_offset = 0; mddev->default_bitmap_offset = 1024 >> 9; mddev->recovery_cp = le64_to_cpu(sb->resync_offset); memcpy(mddev->uuid, sb->set_uuid, 16); mddev->max_disks = (4096-256)/2; if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && mddev->bitmap_file == NULL ) mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { mddev->reshape_position = le64_to_cpu(sb->reshape_position); mddev->delta_disks = le32_to_cpu(sb->delta_disks); mddev->new_level = le32_to_cpu(sb->new_level); mddev->new_layout = le32_to_cpu(sb->new_layout); mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); } else { mddev->reshape_position = MaxSector; mddev->delta_disks = 0; mddev->new_level = mddev->level; mddev->new_layout = mddev->layout; mddev->new_chunk_sectors = mddev->chunk_sectors; } } else if (mddev->pers == NULL) { /* Insist of good event counter while assembling */ ++ev1; if (ev1 < mddev->events) return -EINVAL; } else if (mddev->bitmap) { /* If adding to array with a bitmap, then we can accept an * older device, but not too old. */ if (ev1 < mddev->bitmap->events_cleared) return 0; } else { if (ev1 < mddev->events) /* just a hot-add of a new device, leave raid_disk at -1 */ return 0; } if (mddev->level != LEVEL_MULTIPATH) { int role; role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); switch(role) { case 0xffff: /* spare */ break; case 0xfffe: /* faulty */ set_bit(Faulty, &rdev->flags); break; default: if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); else set_bit(In_sync, &rdev->flags); rdev->raid_disk = role; break; } if (sb->devflags & WriteMostly1) set_bit(WriteMostly, &rdev->flags); } else /* MULTIPATH are always insync */ set_bit(In_sync, &rdev->flags); return 0; } static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) { struct mdp_superblock_1 *sb; mdk_rdev_t *rdev2; int max_dev, i; /* make rdev->sb match mddev and rdev data. */ sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); sb->feature_map = 0; sb->pad0 = 0; sb->recovery_offset = cpu_to_le64(0); memset(sb->pad1, 0, sizeof(sb->pad1)); memset(sb->pad2, 0, sizeof(sb->pad2)); memset(sb->pad3, 0, sizeof(sb->pad3)); sb->utime = cpu_to_le64((__u64)mddev->utime); sb->events = cpu_to_le64(mddev->events); if (mddev->in_sync) sb->resync_offset = cpu_to_le64(mddev->recovery_cp); else sb->resync_offset = cpu_to_le64(0); sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); sb->raid_disks = cpu_to_le32(mddev->raid_disks); sb->size = cpu_to_le64(mddev->dev_sectors); sb->chunksize = cpu_to_le32(mddev->chunk_sectors); sb->level = cpu_to_le32(mddev->level); sb->layout = cpu_to_le32(mddev->layout); if (mddev->bitmap && mddev->bitmap_file == NULL) { sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); } if (rdev->raid_disk >= 0 && !test_bit(In_sync, &rdev->flags)) { if (mddev->curr_resync_completed > rdev->recovery_offset) rdev->recovery_offset = mddev->curr_resync_completed; if (rdev->recovery_offset > 0) { sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); } } if (mddev->reshape_position != MaxSector) { sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); sb->reshape_position = cpu_to_le64(mddev->reshape_position); sb->new_layout = cpu_to_le32(mddev->new_layout); sb->delta_disks = cpu_to_le32(mddev->delta_disks); sb->new_level = cpu_to_le32(mddev->new_level); sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); } max_dev = 0; list_for_each_entry(rdev2, &mddev->disks, same_set) if (rdev2->desc_nr+1 > max_dev) max_dev = rdev2->desc_nr+1; if (max_dev > le32_to_cpu(sb->max_dev)) sb->max_dev = cpu_to_le32(max_dev); for (i=0; i<max_dev;i++) sb->dev_roles[i] = cpu_to_le16(0xfffe); list_for_each_entry(rdev2, &mddev->disks, same_set) { i = rdev2->desc_nr; if (test_bit(Faulty, &rdev2->flags)) sb->dev_roles[i] = cpu_to_le16(0xfffe); else if (test_bit(In_sync, &rdev2->flags)) sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); else sb->dev_roles[i] = cpu_to_le16(0xffff); } sb->sb_csum = calc_sb_1_csum(sb); } static unsigned long long super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) { struct mdp_superblock_1 *sb; sector_t max_sectors; if (num_sectors && num_sectors < rdev->mddev->dev_sectors) return 0; /* component must fit device */ if (rdev->sb_start < rdev->data_offset) { /* minor versions 1 and 2; superblock before data */ max_sectors = rdev->bdev->bd_inode->i_size >> 9; max_sectors -= rdev->data_offset; if (!num_sectors || num_sectors > max_sectors) num_sectors = max_sectors; } else if (rdev->mddev->bitmap_offset) { /* minor version 0 with bitmap we can't move */ return 0; } else { /* minor version 0; superblock after data */ sector_t sb_start; sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; sb_start &= ~(sector_t)(4*2 - 1); max_sectors = rdev->sectors + sb_start - rdev->sb_start; if (!num_sectors || num_sectors > max_sectors) num_sectors = max_sectors; rdev->sb_start = sb_start; } sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); sb->data_size = cpu_to_le64(num_sectors); sb->super_offset = rdev->sb_start; sb->sb_csum = calc_sb_1_csum(sb); md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, rdev->sb_page); md_super_wait(rdev->mddev); return num_sectors / 2; /* kB for sysfs */ } static struct super_type super_types[] = { [0] = { .name = "0.90.0", .owner = THIS_MODULE, .load_super = super_90_load, .validate_super = super_90_validate, .sync_super = super_90_sync, .rdev_size_change = super_90_rdev_size_change, }, [1] = { .name = "md-1", .owner = THIS_MODULE, .load_super = super_1_load, .validate_super = super_1_validate, .sync_super = super_1_sync, .rdev_size_change = super_1_rdev_size_change, }, }; static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) { mdk_rdev_t *rdev, *rdev2; rcu_read_lock(); rdev_for_each_rcu(rdev, mddev1) rdev_for_each_rcu(rdev2, mddev2) if (rdev->bdev->bd_contains == rdev2->bdev->bd_contains) { rcu_read_unlock(); return 1; } rcu_read_unlock(); return 0; } static LIST_HEAD(pending_raid_disks); static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev) { struct mdk_personality *pers = mddev->pers; struct gendisk *disk = mddev->gendisk; struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); struct blk_integrity *bi_mddev = blk_get_integrity(disk); /* Data integrity passthrough not supported on RAID 4, 5 and 6 */ if (pers && pers->level >= 4 && pers->level <= 6) return; /* If rdev is integrity capable, register profile for mddev */ if (!bi_mddev && bi_rdev) { if (blk_integrity_register(disk, bi_rdev)) printk(KERN_ERR "%s: %s Could not register integrity!\n", __func__, disk->disk_name); else printk(KERN_NOTICE "Enabling data integrity on %s\n", disk->disk_name); return; } /* Check that mddev and rdev have matching profiles */ if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) { printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__, disk->disk_name, rdev->bdev->bd_disk->disk_name); printk(KERN_NOTICE "Disabling data integrity on %s\n", disk->disk_name); blk_integrity_unregister(disk); } } static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) { char b[BDEVNAME_SIZE]; struct kobject *ko; char *s; int err; if (rdev->mddev) { MD_BUG(); return -EINVAL; } /* prevent duplicates */ if (find_rdev(mddev, rdev->bdev->bd_dev)) return -EEXIST; /* make sure rdev->sectors exceeds mddev->dev_sectors */ if (rdev->sectors && (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { if (mddev->pers) { /* Cannot change size, so fail * If mddev->level <= 0, then we don't care * about aligning sizes (e.g. linear) */ if (mddev->level > 0) return -ENOSPC; } else mddev->dev_sectors = rdev->sectors; } /* Verify rdev->desc_nr is unique. * If it is -1, assign a free number, else * check number is not in use */ if (rdev->desc_nr < 0) { int choice = 0; if (mddev->pers) choice = mddev->raid_disks; while (find_rdev_nr(mddev, choice)) choice++; rdev->desc_nr = choice; } else { if (find_rdev_nr(mddev, rdev->desc_nr)) return -EBUSY; } if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { printk(KERN_WARNING "md: %s: array is limited to %d devices\n", mdname(mddev), mddev->max_disks); return -EBUSY; } bdevname(rdev->bdev,b); while ( (s=strchr(b, '/')) != NULL) *s = '!'; rdev->mddev = mddev; printk(KERN_INFO "md: bind<%s>\n", b); if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) goto fail; ko = &part_to_dev(rdev->bdev->bd_part)->kobj; if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { kobject_del(&rdev->kobj); goto fail; } rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state"); list_add_rcu(&rdev->same_set, &mddev->disks); bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); /* May as well allow recovery to be retried once */ mddev->recovery_disabled = 0; md_integrity_check(rdev, mddev); return 0; fail: printk(KERN_WARNING "md: failed to register dev-%s for %s\n", b, mdname(mddev)); return err; } static void md_delayed_delete(struct work_struct *ws) { mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); kobject_del(&rdev->kobj); kobject_put(&rdev->kobj); } static void unbind_rdev_from_array(mdk_rdev_t * rdev) { char b[BDEVNAME_SIZE]; if (!rdev->mddev) { MD_BUG(); return; } bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); list_del_rcu(&rdev->same_set); printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); rdev->mddev = NULL; sysfs_remove_link(&rdev->kobj, "block"); sysfs_put(rdev->sysfs_state); rdev->sysfs_state = NULL; /* We need to delay this, otherwise we can deadlock when * writing to 'remove' to "dev/state". We also need * to delay it due to rcu usage. */ synchronize_rcu(); INIT_WORK(&rdev->del_work, md_delayed_delete); kobject_get(&rdev->kobj); schedule_work(&rdev->del_work); } /* * prevent the device from being mounted, repartitioned or * otherwise reused by a RAID array (or any other kernel * subsystem), by bd_claiming the device. */ static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) { int err = 0; struct block_device *bdev; char b[BDEVNAME_SIZE]; bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); if (IS_ERR(bdev)) { printk(KERN_ERR "md: could not open %s.\n", __bdevname(dev, b)); return PTR_ERR(bdev); } err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); if (err) { printk(KERN_ERR "md: could not bd_claim %s.\n", bdevname(bdev, b)); blkdev_put(bdev, FMODE_READ|FMODE_WRITE); return err; } if (!shared) set_bit(AllReserved, &rdev->flags); rdev->bdev = bdev; return err; } static void unlock_rdev(mdk_rdev_t *rdev) { struct block_device *bdev = rdev->bdev; rdev->bdev = NULL; if (!bdev) MD_BUG(); bd_release(bdev); blkdev_put(bdev, FMODE_READ|FMODE_WRITE); } void md_autodetect_dev(dev_t dev); static void export_rdev(mdk_rdev_t * rdev) { char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); if (rdev->mddev) MD_BUG(); free_disk_sb(rdev); #ifndef MODULE if (test_bit(AutoDetected, &rdev->flags)) md_autodetect_dev(rdev->bdev->bd_dev); #endif unlock_rdev(rdev); kobject_put(&rdev->kobj); } static void kick_rdev_from_array(mdk_rdev_t * rdev) { unbind_rdev_from_array(rdev); export_rdev(rdev); } static void export_array(mddev_t *mddev) { mdk_rdev_t *rdev, *tmp; rdev_for_each(rdev, tmp, mddev) { if (!rdev->mddev) { MD_BUG(); continue; } kick_rdev_from_array(rdev); } if (!list_empty(&mddev->disks)) MD_BUG(); mddev->raid_disks = 0; mddev->major_version = 0; } static void print_desc(mdp_disk_t *desc) { printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, desc->major,desc->minor,desc->raid_disk,desc->state); } static void print_sb_90(mdp_super_t *sb) { int i; printk(KERN_INFO "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", sb->major_version, sb->minor_version, sb->patch_version, sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, sb->ctime); printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", sb->level, sb->size, sb->nr_disks, sb->raid_disks, sb->md_minor, sb->layout, sb->chunk_size); printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" " FD:%d SD:%d CSUM:%08x E:%08lx\n", sb->utime, sb->state, sb->active_disks, sb->working_disks, sb->failed_disks, sb->spare_disks, sb->sb_csum, (unsigned long)sb->events_lo); printk(KERN_INFO); for (i = 0; i < MD_SB_DISKS; i++) { mdp_disk_t *desc; desc = sb->disks + i; if (desc->number || desc->major || desc->minor || desc->raid_disk || (desc->state && (desc->state != 4))) { printk(" D %2d: ", i); print_desc(desc); } } printk(KERN_INFO "md: THIS: "); print_desc(&sb->this_disk); } static void print_sb_1(struct mdp_superblock_1 *sb) { __u8 *uuid; uuid = sb->set_uuid; printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x" ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n" "md: Name: \"%s\" CT:%llu\n", le32_to_cpu(sb->major_version), le32_to_cpu(sb->feature_map), uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7], uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15], sb->set_name, (unsigned long long)le64_to_cpu(sb->ctime) & MD_SUPERBLOCK_1_TIME_SEC_MASK); uuid = sb->device_uuid; printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" " RO:%llu\n" "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x" ":%02x%02x%02x%02x%02x%02x\n" "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" "md: (MaxDev:%u) \n", le32_to_cpu(sb->level), (unsigned long long)le64_to_cpu(sb->size), le32_to_cpu(sb->raid_disks), le32_to_cpu(sb->layout), le32_to_cpu(sb->chunksize), (unsigned long long)le64_to_cpu(sb->data_offset), (unsigned long long)le64_to_cpu(sb->data_size), (unsigned long long)le64_to_cpu(sb->super_offset), (unsigned long long)le64_to_cpu(sb->recovery_offset), le32_to_cpu(sb->dev_number), uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7], uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15], sb->devflags, (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, (unsigned long long)le64_to_cpu(sb->events), (unsigned long long)le64_to_cpu(sb->resync_offset), le32_to_cpu(sb->sb_csum), le32_to_cpu(sb->max_dev) ); } static void print_rdev(mdk_rdev_t *rdev, int major_version) { char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), rdev->desc_nr); if (rdev->sb_loaded) { printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); switch (major_version) { case 0: print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); break; case 1: print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); break; } } else printk(KERN_INFO "md: no rdev superblock!\n"); } static void md_print_devices(void) { struct list_head *tmp; mdk_rdev_t *rdev; mddev_t *mddev; char b[BDEVNAME_SIZE]; printk("\n"); printk("md: **********************************\n"); printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); printk("md: **********************************\n"); for_each_mddev(mddev, tmp) { if (mddev->bitmap) bitmap_print_sb(mddev->bitmap); else printk("%s: ", mdname(mddev)); list_for_each_entry(rdev, &mddev->disks, same_set) printk("<%s>", bdevname(rdev->bdev,b)); printk("\n"); list_for_each_entry(rdev, &mddev->disks, same_set) print_rdev(rdev, mddev->major_version); } printk("md: **********************************\n"); printk("\n"); } static void sync_sbs(mddev_t * mddev, int nospares) { /* Update each superblock (in-memory image), but * if we are allowed to, skip spares which already * have the right event counter, or have one earlier * (which would mean they aren't being marked as dirty * with the rest of the array) */ mdk_rdev_t *rdev; list_for_each_entry(rdev, &mddev->disks, same_set) { if (rdev->sb_events == mddev->events || (nospares && rdev->raid_disk < 0 && (rdev->sb_events&1)==0 && rdev->sb_events+1 == mddev->events)) { /* Don't update this superblock */ rdev->sb_loaded = 2; } else { super_types[mddev->major_version]. sync_super(mddev, rdev); rdev->sb_loaded = 1; } } } static void md_update_sb(mddev_t * mddev, int force_change) { mdk_rdev_t *rdev; int sync_req; int nospares = 0; mddev->utime = get_seconds(); if (mddev->external) return; repeat: spin_lock_irq(&mddev->write_lock); set_bit(MD_CHANGE_PENDING, &mddev->flags); if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) force_change = 1; if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) /* just a clean<-> dirty transition, possibly leave spares alone, * though if events isn't the right even/odd, we will have to do * spares after all */ nospares = 1; if (force_change) nospares = 0; if (mddev->degraded) /* If the array is degraded, then skipping spares is both * dangerous and fairly pointless. * Dangerous because a device that was removed from the array * might have a event_count that still looks up-to-date, * so it can be re-added without a resync. * Pointless because if there are any spares to skip, * then a recovery will happen and soon that array won't * be degraded any more and the spare can go back to sleep then. */ nospares = 0; sync_req = mddev->in_sync; /* If this is just a dirty<->clean transition, and the array is clean * and 'events' is odd, we can roll back to the previous clean state */ if (nospares && (mddev->in_sync && mddev->recovery_cp == MaxSector) && (mddev->events & 1) && mddev->events != 1) mddev->events--; else { /* otherwise we have to go forward and ... */ mddev->events ++; if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ /* .. if the array isn't clean, insist on an odd 'events' */ if ((mddev->events&1)==0) { mddev->events++; nospares = 0; } } else { /* otherwise insist on an even 'events' (for clean states) */ if ((mddev->events&1)) { mddev->events++; nospares = 0; } } } if (!mddev->events) { /* * oops, this 64-bit counter should never wrap. * Either we are in around ~1 trillion A.C., assuming * 1 reboot per second, or we have a bug: */ MD_BUG(); mddev->events --; } /* * do not write anything to disk if using * nonpersistent superblocks */ if (!mddev->persistent) { if (!mddev->external) clear_bit(MD_CHANGE_PENDING, &mddev->flags); spin_unlock_irq(&mddev->write_lock); wake_up(&mddev->sb_wait); return; } sync_sbs(mddev, nospares); spin_unlock_irq(&mddev->write_lock); dprintk(KERN_INFO "md: updating %s RAID superblock on device (in sync %d)\n", mdname(mddev),mddev->in_sync); bitmap_update_sb(mddev->bitmap); list_for_each_entry(rdev, &mddev->disks, same_set) { char b[BDEVNAME_SIZE]; dprintk(KERN_INFO "md: "); if (rdev->sb_loaded != 1) continue; /* no noise on spare devices */ if (test_bit(Faulty, &rdev->flags)) dprintk("(skipping faulty "); dprintk("%s ", bdevname(rdev->bdev,b)); if (!test_bit(Faulty, &rdev->flags)) { md_super_write(mddev,rdev, rdev->sb_start, rdev->sb_size, rdev->sb_page); dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", bdevname(rdev->bdev,b), (unsigned long long)rdev->sb_start); rdev->sb_events = mddev->events; } else dprintk(")\n"); if (mddev->level == LEVEL_MULTIPATH) /* only need to write one superblock... */ break; } md_super_wait(mddev); /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ spin_lock_irq(&mddev->write_lock); if (mddev->in_sync != sync_req || test_bit(MD_CHANGE_DEVS, &mddev->flags)) { /* have to write it out again */ spin_unlock_irq(&mddev->write_lock); goto repeat; } clear_bit(MD_CHANGE_PENDING, &mddev->flags); spin_unlock_irq(&mddev->write_lock); wake_up(&mddev->sb_wait); if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) sysfs_notify(&mddev->kobj, NULL, "sync_completed"); } /* words written to sysfs files may, or may not, be \n terminated. * We want to accept with case. For this we use cmd_match. */ static int cmd_match(const char *cmd, const char *str) { /* See if cmd, written into a sysfs file, matches * str. They must either be the same, or cmd can * have a trailing newline */ while (*cmd && *str && *cmd == *str) { cmd++; str++; } if (*cmd == '\n') cmd++; if (*str || *cmd) return 0; return 1; } struct rdev_sysfs_entry { struct attribute attr; ssize_t (*show)(mdk_rdev_t *, char *); ssize_t (*store)(mdk_rdev_t *, const char *, size_t); }; static ssize_t state_show(mdk_rdev_t *rdev, char *page) { char *sep = ""; size_t len = 0; if (test_bit(Faulty, &rdev->flags)) { len+= sprintf(page+len, "%sfaulty",sep); sep = ","; } if (test_bit(In_sync, &rdev->flags)) { len += sprintf(page+len, "%sin_sync",sep); sep = ","; } if (test_bit(WriteMostly, &rdev->flags)) { len += sprintf(page+len, "%swrite_mostly",sep); sep = ","; } if (test_bit(Blocked, &rdev->flags)) { len += sprintf(page+len, "%sblocked", sep); sep = ","; } if (!test_bit(Faulty, &rdev->flags) && !test_bit(In_sync, &rdev->flags)) { len += sprintf(page+len, "%sspare", sep); sep = ","; } return len+sprintf(page+len, "\n"); } static ssize_t state_store(mdk_rdev_t *rdev, const char *buf, size_t len) { /* can write * faulty - simulates and error * remove - disconnects the device * writemostly - sets write_mostly * -writemostly - clears write_mostly * blocked - sets the Blocked flag * -blocked - clears the Blocked flag * insync - sets Insync providing device isn't active */ int err = -EINVAL; if (cmd_match(buf, "faulty") && rdev->mddev->pers) { md_error(rdev->mddev, rdev); err = 0; } else if (cmd_match(buf, "remove")) { if (rdev->raid_disk >= 0) err = -EBUSY; else { mddev_t *mddev = rdev->mddev; kick_rdev_from_array(rdev); if (mddev->pers) md_update_sb(mddev, 1); md_new_event(mddev); err = 0; } } else if (cmd_match(buf, "writemostly")) { set_bit(WriteMostly, &rdev->flags); err = 0; } else if (cmd_match(buf, "-writemostly")) { clear_bit(WriteMostly, &rdev->flags); err = 0; } else if (cmd_match(buf, "blocked")) { set_bit(Blocked, &rdev->flags); err = 0; } else if (cmd_match(buf, "-blocked")) { clear_bit(Blocked, &rdev->flags); wake_up(&rdev->blocked_wait); set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); md_wakeup_thread(rdev->mddev->thread); err = 0; } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { set_bit(In_sync, &rdev->flags); err = 0; } if (!err && rdev->sysfs_state) sysfs_notify_dirent(rdev->sysfs_state); return err ? err : len; } static struct rdev_sysfs_entry rdev_state = __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); static ssize_t errors_show(mdk_rdev_t *rdev, char *page) { return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); } static ssize_t errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) { char *e; unsigned long n = simple_strtoul(buf, &e, 10); if (*buf && (*e == 0 || *e == '\n')) { atomic_set(&rdev->corrected_errors, n); return len; } return -EINVAL; } static struct rdev_sysfs_entry rdev_errors = __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); static ssize_t slot_show(mdk_rdev_t *rdev, char *page) { if (rdev->raid_disk < 0) return sprintf(page, "none\n"); else return sprintf(page, "%d\n", rdev->raid_disk); } static ssize_t slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) { char *e; int err; char nm[20]; int slot = simple_strtoul(buf, &e, 10); if (strncmp(buf, "none", 4)==0) slot = -1; else if (e==buf || (*e && *e!= '\n')) return -EINVAL; if (rdev->mddev->pers && slot == -1) { /* Setting 'slot' on an active array requires also * updating the 'rd%d' link, and communicating * with the personality with ->hot_*_disk. * For now we only support removing * failed/spare devices. This normally happens automatically, * but not when the metadata is externally managed. */ if (rdev->raid_disk == -1) return -EEXIST; /* personality does all needed checks */ if (rdev->mddev->pers->hot_add_disk == NULL) return -EINVAL; err = rdev->mddev->pers-> hot_remove_disk(rdev->mddev, rdev->raid_disk); if (err) return err; sprintf(nm, "rd%d", rdev->raid_disk); sysfs_remove_link(&rdev->mddev->kobj, nm); set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); md_wakeup_thread(rdev->mddev->thread); } else if (rdev->mddev->pers) { mdk_rdev_t *rdev2; /* Activating a spare .. or possibly reactivating * if we ever get bitmaps working here. */ if (rdev->raid_disk != -1) return -EBUSY; if (rdev->mddev->pers->hot_add_disk == NULL) return -EINVAL; list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) if (rdev2->raid_disk == slot) return -EEXIST; rdev->raid_disk = slot; if (test_bit(In_sync, &rdev->flags)) rdev->saved_raid_disk = slot; else rdev->saved_raid_disk = -1; err = rdev->mddev->pers-> hot_add_disk(rdev->mddev, rdev); if (err) { rdev->raid_disk = -1; return err; } else sysfs_notify_dirent(rdev->sysfs_state); sprintf(nm, "rd%d", rdev->raid_disk); if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) printk(KERN_WARNING "md: cannot register " "%s for %s\n", nm, mdname(rdev->mddev)); /* don't wakeup anyone, leave that to userspace. */ } else { if (slot >= rdev->mddev->raid_disks) return -ENOSPC; rdev->raid_disk = slot; /* assume it is working */ clear_bit(Faulty, &rdev->flags); clear_bit(WriteMostly, &rdev->flags); set_bit(In_sync, &rdev->flags); sysfs_notify_dirent(rdev->sysfs_state); } return len; } static struct rdev_sysfs_entry rdev_slot = __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); static ssize_t offset_show(mdk_rdev_t *rdev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); } static ssize_t offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) { char *e; unsigned long long offset = simple_strtoull(buf, &e, 10); if (e==buf || (*e && *e != '\n')) return -EINVAL; if (rdev->mddev->pers && rdev->raid_disk >= 0) return -EBUSY; if (rdev->sectors && rdev->mddev->external) /* Must set offset before size, so overlap checks * can be sane */ return -EBUSY; rdev->data_offset = offset; return len; } static struct rdev_sysfs_entry rdev_offset = __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); static ssize_t rdev_size_show(mdk_rdev_t *rdev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); } static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) { /* check if two start/length pairs overlap */ if (s1+l1 <= s2) return 0; if (s2+l2 <= s1) return 0; return 1; } static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) { unsigned long long blocks; sector_t new; if (strict_strtoull(buf, 10, &blocks) < 0) return -EINVAL; if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) return -EINVAL; /* sector conversion overflow */ new = blocks * 2; if (new != blocks * 2) return -EINVAL; /* unsigned long long to sector_t overflow */ *sectors = new; return 0; } static ssize_t rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) { mddev_t *my_mddev = rdev->mddev; sector_t oldsectors = rdev->sectors; sector_t sectors; if (strict_blocks_to_sectors(buf, &sectors) < 0) return -EINVAL; if (my_mddev->pers && rdev->raid_disk >= 0) { if (my_mddev->persistent) { sectors = super_types[my_mddev->major_version]. rdev_size_change(rdev, sectors); if (!sectors) return -EBUSY; } else if (!sectors) sectors = (rdev->bdev->bd_inode->i_size >> 9) - rdev->data_offset; } if (sectors < my_mddev->dev_sectors) return -EINVAL; /* component must fit device */ rdev->sectors = sectors; if (sectors > oldsectors && my_mddev->external) { /* need to check that all other rdevs with the same ->bdev * do not overlap. We need to unlock the mddev to avoid * a deadlock. We have already changed rdev->sectors, and if * we have to change it back, we will have the lock again. */ mddev_t *mddev; int overlap = 0; struct list_head *tmp; mddev_unlock(my_mddev); for_each_mddev(mddev, tmp) { mdk_rdev_t *rdev2; mddev_lock(mddev); list_for_each_entry(rdev2, &mddev->disks, same_set) if (test_bit(AllReserved, &rdev2->flags) || (rdev->bdev == rdev2->bdev && rdev != rdev2 && overlaps(rdev->data_offset, rdev->sectors, rdev2->data_offset, rdev2->sectors))) { overlap = 1; break; } mddev_unlock(mddev); if (overlap) { mddev_put(mddev); break; } } mddev_lock(my_mddev); if (overlap) { /* Someone else could have slipped in a size * change here, but doing so is just silly. * We put oldsectors back because we *know* it is * safe, and trust userspace not to race with * itself */ rdev->sectors = oldsectors; return -EBUSY; } } return len; } static struct rdev_sysfs_entry rdev_size = __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); static struct attribute *rdev_default_attrs[] = { &rdev_state.attr, &rdev_errors.attr, &rdev_slot.attr, &rdev_offset.attr, &rdev_size.attr, NULL, }; static ssize_t rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) { struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); mddev_t *mddev = rdev->mddev; ssize_t rv; if (!entry->show) return -EIO; rv = mddev ? mddev_lock(mddev) : -EBUSY; if (!rv) { if (rdev->mddev == NULL) rv = -EBUSY; else rv = entry->show(rdev, page); mddev_unlock(mddev); } return rv; } static ssize_t rdev_attr_store(struct kobject *kobj, struct attribute *attr, const char *page, size_t length) { struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); ssize_t rv; mddev_t *mddev = rdev->mddev; if (!entry->store) return -EIO; if (!capable(CAP_SYS_ADMIN)) return -EACCES; rv = mddev ? mddev_lock(mddev): -EBUSY; if (!rv) { if (rdev->mddev == NULL) rv = -EBUSY; else rv = entry->store(rdev, page, length); mddev_unlock(mddev); } return rv; } static void rdev_free(struct kobject *ko) { mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); kfree(rdev); } static struct sysfs_ops rdev_sysfs_ops = { .show = rdev_attr_show, .store = rdev_attr_store, }; static struct kobj_type rdev_ktype = { .release = rdev_free, .sysfs_ops = &rdev_sysfs_ops, .default_attrs = rdev_default_attrs, }; /* * Import a device. If 'super_format' >= 0, then sanity check the superblock * * mark the device faulty if: * * - the device is nonexistent (zero size) * - the device has no valid superblock * * a faulty rdev _never_ has rdev->sb set. */ static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) { char b[BDEVNAME_SIZE]; int err; mdk_rdev_t *rdev; sector_t size; rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); if (!rdev) { printk(KERN_ERR "md: could not alloc mem for new device!\n"); return ERR_PTR(-ENOMEM); } if ((err = alloc_disk_sb(rdev))) goto abort_free; err = lock_rdev(rdev, newdev, super_format == -2); if (err) goto abort_free; kobject_init(&rdev->kobj, &rdev_ktype); rdev->desc_nr = -1; rdev->saved_raid_disk = -1; rdev->raid_disk = -1; rdev->flags = 0; rdev->data_offset = 0; rdev->sb_events = 0; atomic_set(&rdev->nr_pending, 0); atomic_set(&rdev->read_errors, 0); atomic_set(&rdev->corrected_errors, 0); size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; if (!size) { printk(KERN_WARNING "md: %s has zero or unknown size, marking faulty!\n", bdevname(rdev->bdev,b)); err = -EINVAL; goto abort_free; } if (super_format >= 0) { err = super_types[super_format]. load_super(rdev, NULL, super_minor); if (err == -EINVAL) { printk(KERN_WARNING "md: %s does not have a valid v%d.%d " "superblock, not importing!\n", bdevname(rdev->bdev,b), super_format, super_minor); goto abort_free; } if (err < 0) { printk(KERN_WARNING "md: could not read %s's sb, not importing!\n", bdevname(rdev->bdev,b)); goto abort_free; } } INIT_LIST_HEAD(&rdev->same_set); init_waitqueue_head(&rdev->blocked_wait); return rdev; abort_free: if (rdev->sb_page) { if (rdev->bdev) unlock_rdev(rdev); free_disk_sb(rdev); } kfree(rdev); return ERR_PTR(err); } /* * Check a full RAID array for plausibility */ static void analyze_sbs(mddev_t * mddev) { int i; mdk_rdev_t *rdev, *freshest, *tmp; char b[BDEVNAME_SIZE]; freshest = NULL; rdev_for_each(rdev, tmp, mddev) switch (super_types[mddev->major_version]. load_super(rdev, freshest, mddev->minor_version)) { case 1: freshest = rdev; break; case 0: break; default: printk( KERN_ERR \ "md: fatal superblock inconsistency in %s" " -- removing from array\n", bdevname(rdev->bdev,b)); kick_rdev_from_array(rdev); } super_types[mddev->major_version]. validate_super(mddev, freshest); i = 0; rdev_for_each(rdev, tmp, mddev) { if (rdev->desc_nr >= mddev->max_disks || i > mddev->max_disks) { printk(KERN_WARNING "md: %s: %s: only %d devices permitted\n", mdname(mddev), bdevname(rdev->bdev, b), mddev->max_disks); kick_rdev_from_array(rdev); continue; } if (rdev != freshest) if (super_types[mddev->major_version]. validate_super(mddev, rdev)) { printk(KERN_WARNING "md: kicking non-fresh %s" " from array!\n", bdevname(rdev->bdev,b)); kick_rdev_from_array(rdev); continue; } if (mddev->level == LEVEL_MULTIPATH) { rdev->desc_nr = i++; rdev->raid_disk = rdev->desc_nr; set_bit(In_sync, &rdev->flags); } else if (rdev->raid_disk >= mddev->raid_disks) { rdev->raid_disk = -1; clear_bit(In_sync, &rdev->flags); } } } static void md_safemode_timeout(unsigned long data); static ssize_t safe_delay_show(mddev_t *mddev, char *page) { int msec = (mddev->safemode_delay*1000)/HZ; return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); } static ssize_t safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) { int scale=1; int dot=0; int i; unsigned long msec; char buf[30]; /* remove a period, and count digits after it */ if (len >= sizeof(buf)) return -EINVAL; strlcpy(buf, cbuf, sizeof(buf)); for (i=0; i<len; i++) { if (dot) { if (isdigit(buf[i])) { buf[i-1] = buf[i]; scale *= 10; } buf[i] = 0; } else if (buf[i] == '.') { dot=1; buf[i] = 0; } } if (strict_strtoul(buf, 10, &msec) < 0) return -EINVAL; msec = (msec * 1000) / scale; if (msec == 0) mddev->safemode_delay = 0; else { unsigned long old_delay = mddev->safemode_delay; mddev->safemode_delay = (msec*HZ)/1000; if (mddev->safemode_delay == 0) mddev->safemode_delay = 1; if (mddev->safemode_delay < old_delay) md_safemode_timeout((unsigned long)mddev); } return len; } static struct md_sysfs_entry md_safe_delay = __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); static ssize_t level_show(mddev_t *mddev, char *page) { struct mdk_personality *p = mddev->pers; if (p) return sprintf(page, "%s\n", p->name); else if (mddev->clevel[0]) return sprintf(page, "%s\n", mddev->clevel); else if (mddev->level != LEVEL_NONE) return sprintf(page, "%d\n", mddev->level); else return 0; } static ssize_t level_store(mddev_t *mddev, const char *buf, size_t len) { char level[16]; ssize_t rv = len; struct mdk_personality *pers; void *priv; if (mddev->pers == NULL) { if (len == 0) return 0; if (len >= sizeof(mddev->clevel)) return -ENOSPC; strncpy(mddev->clevel, buf, len); if (mddev->clevel[len-1] == '\n') len--; mddev->clevel[len] = 0; mddev->level = LEVEL_NONE; return rv; } /* request to change the personality. Need to ensure: * - array is not engaged in resync/recovery/reshape * - old personality can be suspended * - new personality will access other array. */ if (mddev->sync_thread || mddev->reshape_position != MaxSector) return -EBUSY; if (!mddev->pers->quiesce) { printk(KERN_WARNING "md: %s: %s does not support online personality change\n", mdname(mddev), mddev->pers->name); return -EINVAL; } /* Now find the new personality */ if (len == 0 || len >= sizeof(level)) return -EINVAL; strncpy(level, buf, len); if (level[len-1] == '\n') len--; level[len] = 0; request_module("md-%s", level); spin_lock(&pers_lock); pers = find_pers(LEVEL_NONE, level); if (!pers || !try_module_get(pers->owner)) { spin_unlock(&pers_lock); printk(KERN_WARNING "md: personality %s not loaded\n", level); return -EINVAL; } spin_unlock(&pers_lock); if (pers == mddev->pers) { /* Nothing to do! */ module_put(pers->owner); return rv; } if (!pers->takeover) { module_put(pers->owner); printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", mdname(mddev), level); return -EINVAL; } /* ->takeover must set new_* and/or delta_disks * if it succeeds, and may set them when it fails. */ priv = pers->takeover(mddev); if (IS_ERR(priv)) { mddev->new_level = mddev->level; mddev->new_layout = mddev->layout; mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->raid_disks -= mddev->delta_disks; mddev->delta_disks = 0; module_put(pers->owner); printk(KERN_WARNING "md: %s: %s would not accept array\n", mdname(mddev), level); return PTR_ERR(priv); } /* Looks like we have a winner */ mddev_suspend(mddev); mddev->pers->stop(mddev); module_put(mddev->pers->owner); mddev->pers = pers; mddev->private = priv; strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); mddev->level = mddev->new_level; mddev->layout = mddev->new_layout; mddev->chunk_sectors = mddev->new_chunk_sectors; mddev->delta_disks = 0; pers->run(mddev); mddev_resume(mddev); set_bit(MD_CHANGE_DEVS, &mddev->flags); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); return rv; } static struct md_sysfs_entry md_level = __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); static ssize_t layout_show(mddev_t *mddev, char *page) { /* just a number, not meaningful for all levels */ if (mddev->reshape_position != MaxSector && mddev->layout != mddev->new_layout) return sprintf(page, "%d (%d)\n", mddev->new_layout, mddev->layout); return sprintf(page, "%d\n", mddev->layout); } static ssize_t layout_store(mddev_t *mddev, const char *buf, size_t len) { char *e; unsigned long n = simple_strtoul(buf, &e, 10); if (!*buf || (*e && *e != '\n')) return -EINVAL; if (mddev->pers) { int err; if (mddev->pers->check_reshape == NULL) return -EBUSY; mddev->new_layout = n; err = mddev->pers->check_reshape(mddev); if (err) { mddev->new_layout = mddev->layout; return err; } } else { mddev->new_layout = n; if (mddev->reshape_position == MaxSector) mddev->layout = n; } return len; } static struct md_sysfs_entry md_layout = __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); static ssize_t raid_disks_show(mddev_t *mddev, char *page) { if (mddev->raid_disks == 0) return 0; if (mddev->reshape_position != MaxSector && mddev->delta_disks != 0) return sprintf(page, "%d (%d)\n", mddev->raid_disks, mddev->raid_disks - mddev->delta_disks); return sprintf(page, "%d\n", mddev->raid_disks); } static int update_raid_disks(mddev_t *mddev, int raid_disks); static ssize_t raid_disks_store(mddev_t *mddev, const char *buf, size_t len) { char *e; int rv = 0; unsigned long n = simple_strtoul(buf, &e, 10); if (!*buf || (*e && *e != '\n')) return -EINVAL; if (mddev->pers) rv = update_raid_disks(mddev, n); else if (mddev->reshape_position != MaxSector) { int olddisks = mddev->raid_disks - mddev->delta_disks; mddev->delta_disks = n - olddisks; mddev->raid_disks = n; } else mddev->raid_disks = n; return rv ? rv : len; } static struct md_sysfs_entry md_raid_disks = __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); static ssize_t chunk_size_show(mddev_t *mddev, char *page) { if (mddev->reshape_position != MaxSector && mddev->chunk_sectors != mddev->new_chunk_sectors) return sprintf(page, "%d (%d)\n", mddev->new_chunk_sectors << 9, mddev->chunk_sectors << 9); return sprintf(page, "%d\n", mddev->chunk_sectors << 9); } static ssize_t chunk_size_store(mddev_t *mddev, const char *buf, size_t len) { char *e; unsigned long n = simple_strtoul(buf, &e, 10); if (!*buf || (*e && *e != '\n')) return -EINVAL; if (mddev->pers) { int err; if (mddev->pers->check_reshape == NULL) return -EBUSY; mddev->new_chunk_sectors = n >> 9; err = mddev->pers->check_reshape(mddev); if (err) { mddev->new_chunk_sectors = mddev->chunk_sectors; return err; } } else { mddev->new_chunk_sectors = n >> 9; if (mddev->reshape_position == MaxSector) mddev->chunk_sectors = n >> 9; } return len; } static struct md_sysfs_entry md_chunk_size = __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); static ssize_t resync_start_show(mddev_t *mddev, char *page) { if (mddev->recovery_cp == MaxSector) return sprintf(page, "none\n"); return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); } static ssize_t resync_start_store(mddev_t *mddev, const char *buf, size_t len) { char *e; unsigned long long n = simple_strtoull(buf, &e, 10); if (mddev->pers) return -EBUSY; if (!*buf || (*e && *e != '\n')) return -EINVAL; mddev->recovery_cp = n; return len; } static struct md_sysfs_entry md_resync_start = __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); /* * The array state can be: * * clear * No devices, no size, no level * Equivalent to STOP_ARRAY ioctl * inactive * May have some settings, but array is not active * all IO results in error * When written, doesn't tear down array, but just stops it * suspended (not supported yet) * All IO requests will block. The array can be reconfigured. * Writing this, if accepted, will block until array is quiescent * readonly * no resync can happen. no superblocks get written. * write requests fail * read-auto * like readonly, but behaves like 'clean' on a write request. * * clean - no pending writes, but otherwise active. * When written to inactive array, starts without resync * If a write request arrives then * if metadata is known, mark 'dirty' and switch to 'active'. * if not known, block and switch to write-pending * If written to an active array that has pending writes, then fails. * active * fully active: IO and resync can be happening. * When written to inactive array, starts with resync * * write-pending * clean, but writes are blocked waiting for 'active' to be written. * * active-idle * like active, but no writes have been seen for a while (100msec). * */ enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, write_pending, active_idle, bad_word}; static char *array_states[] = { "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", "write-pending", "active-idle", NULL }; static int match_word(const char *word, char **list) { int n; for (n=0; list[n]; n++) if (cmd_match(word, list[n])) break; return n; } static ssize_t array_state_show(mddev_t *mddev, char *page) { enum array_state st = inactive; if (mddev->pers) switch(mddev->ro) { case 1: st = readonly; break; case 2: st = read_auto; break; case 0: if (mddev->in_sync) st = clean; else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) st = write_pending; else if (mddev->safemode) st = active_idle; else st = active; } else { if (list_empty(&mddev->disks) && mddev->raid_disks == 0 && mddev->dev_sectors == 0) st = clear; else st = inactive; } return sprintf(page, "%s\n", array_states[st]); } static int do_md_stop(mddev_t * mddev, int ro, int is_open); static int do_md_run(mddev_t * mddev); static int restart_array(mddev_t *mddev); static ssize_t array_state_store(mddev_t *mddev, const char *buf, size_t len) { int err = -EINVAL; enum array_state st = match_word(buf, array_states); switch(st) { case bad_word: break; case clear: /* stopping an active array */ if (atomic_read(&mddev->openers) > 0) return -EBUSY; err = do_md_stop(mddev, 0, 0); break; case inactive: /* stopping an active array */ if (mddev->pers) { if (atomic_read(&mddev->openers) > 0) return -EBUSY; err = do_md_stop(mddev, 2, 0); } else err = 0; /* already inactive */ break; case suspended: break; /* not supported yet */ case readonly: if (mddev->pers) err = do_md_stop(mddev, 1, 0); else { mddev->ro = 1; set_disk_ro(mddev->gendisk, 1); err = do_md_run(mddev); } break; case read_auto: if (mddev->pers) { if (mddev->ro == 0) err = do_md_stop(mddev, 1, 0); else if (mddev->ro == 1) err = restart_array(mddev); if (err == 0) { mddev->ro = 2; set_disk_ro(mddev->gendisk, 0); } } else { mddev->ro = 2; err = do_md_run(mddev); } break; case clean: if (mddev->pers) { restart_array(mddev); spin_lock_irq(&mddev->write_lock); if (atomic_read(&mddev->writes_pending) == 0) { if (mddev->in_sync == 0) { mddev->in_sync = 1; if (mddev->safemode == 1) mddev->safemode = 0; if (mddev->persistent) set_bit(MD_CHANGE_CLEAN, &mddev->flags); } err = 0; } else err = -EBUSY; spin_unlock_irq(&mddev->write_lock); } else err = -EINVAL; break; case active: if (mddev->pers) { restart_array(mddev); if (mddev->external) clear_bit(MD_CHANGE_CLEAN, &mddev->flags); wake_up(&mddev->sb_wait); err = 0; } else { mddev->ro = 0; set_disk_ro(mddev->gendisk, 0); err = do_md_run(mddev); } break; case write_pending: case active_idle: /* these cannot be set */ break; } if (err) return err; else { sysfs_notify_dirent(mddev->sysfs_state); return len; } } static struct md_sysfs_entry md_array_state = __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); static ssize_t null_show(mddev_t *mddev, char *page) { return -EINVAL; } static ssize_t new_dev_store(mddev_t *mddev, const char *buf, size_t len) { /* buf must be %d:%d\n? giving major and minor numbers */ /* The new device is added to the array. * If the array has a persistent superblock, we read the * superblock to initialise info and check validity. * Otherwise, only checking done is that in bind_rdev_to_array, * which mainly checks size. */ char *e; int major = simple_strtoul(buf, &e, 10); int minor; dev_t dev; mdk_rdev_t *rdev; int err; if (!*buf || *e != ':' || !e[1] || e[1] == '\n') return -EINVAL; minor = simple_strtoul(e+1, &e, 10); if (*e && *e != '\n') return -EINVAL; dev = MKDEV(major, minor); if (major != MAJOR(dev) || minor != MINOR(dev)) return -EOVERFLOW; if (mddev->persistent) { rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, mdk_rdev_t, same_set); err = super_types[mddev->major_version] .load_super(rdev, rdev0, mddev->minor_version); if (err < 0) goto out; } } else if (mddev->external) rdev = md_import_device(dev, -2, -1); else rdev = md_import_device(dev, -1, -1); if (IS_ERR(rdev)) return PTR_ERR(rdev); err = bind_rdev_to_array(rdev, mddev); out: if (err) export_rdev(rdev); return err ? err : len; } static struct md_sysfs_entry md_new_device = __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); static ssize_t bitmap_store(mddev_t *mddev, const char *buf, size_t len) { char *end; unsigned long chunk, end_chunk; if (!mddev->bitmap) goto out; /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ while (*buf) { chunk = end_chunk = simple_strtoul(buf, &end, 0); if (buf == end) break; if (*end == '-') { /* range */ buf = end + 1; end_chunk = simple_strtoul(buf, &end, 0); if (buf == end) break; } if (*end && !isspace(*end)) break; bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); buf = end; while (isspace(*buf)) buf++; } bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ out: return len; } static struct md_sysfs_entry md_bitmap = __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); static ssize_t size_show(mddev_t *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)mddev->dev_sectors / 2); } static int update_size(mddev_t *mddev, sector_t num_sectors); static ssize_t size_store(mddev_t *mddev, const char *buf, size_t len) { /* If array is inactive, we can reduce the component size, but * not increase it (except from 0). * If array is active, we can try an on-line resize */ sector_t sectors; int err = strict_blocks_to_sectors(buf, &sectors); if (err < 0) return err; if (mddev->pers) { err = update_size(mddev, sectors); md_update_sb(mddev, 1); } else { if (mddev->dev_sectors == 0 || mddev->dev_sectors > sectors) mddev->dev_sectors = sectors; else err = -ENOSPC; } return err ? err : len; } static struct md_sysfs_entry md_size = __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); /* Metdata version. * This is one of * 'none' for arrays with no metadata (good luck...) * 'external' for arrays with externally managed metadata, * or N.M for internally known formats */ static ssize_t metadata_show(mddev_t *mddev, char *page) { if (mddev->persistent) return sprintf(page, "%d.%d\n", mddev->major_version, mddev->minor_version); else if (mddev->external) return sprintf(page, "external:%s\n", mddev->metadata_type); else return sprintf(page, "none\n"); } static ssize_t metadata_store(mddev_t *mddev, const char *buf, size_t len) { int major, minor; char *e; /* Changing the details of 'external' metadata is * always permitted. Otherwise there must be * no devices attached to the array. */ if (mddev->external && strncmp(buf, "external:", 9) == 0) ; else if (!list_empty(&mddev->disks)) return -EBUSY; if (cmd_match(buf, "none")) { mddev->persistent = 0; mddev->external = 0; mddev->major_version = 0; mddev->minor_version = 90; return len; } if (strncmp(buf, "external:", 9) == 0) { size_t namelen = len-9; if (namelen >= sizeof(mddev->metadata_type)) namelen = sizeof(mddev->metadata_type)-1; strncpy(mddev->metadata_type, buf+9, namelen); mddev->metadata_type[namelen] = 0; if (namelen && mddev->metadata_type[namelen-1] == '\n') mddev->metadata_type[--namelen] = 0; mddev->persistent = 0; mddev->external = 1; mddev->major_version = 0; mddev->minor_version = 90; return len; } major = simple_strtoul(buf, &e, 10); if (e==buf || *e != '.') return -EINVAL; buf = e+1; minor = simple_strtoul(buf, &e, 10); if (e==buf || (*e && *e != '\n') ) return -EINVAL; if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) return -ENOENT; mddev->major_version = major; mddev->minor_version = minor; mddev->persistent = 1; mddev->external = 0; return len; } static struct md_sysfs_entry md_metadata = __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); static ssize_t action_show(mddev_t *mddev, char *page) { char *type = "idle"; if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) type = "frozen"; else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) type = "reshape"; else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) type = "resync"; else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) type = "check"; else type = "repair"; } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) type = "recover"; } return sprintf(page, "%s\n", type); } static ssize_t action_store(mddev_t *mddev, const char *page, size_t len) { if (!mddev->pers || !mddev->pers->sync_request) return -EINVAL; if (cmd_match(page, "frozen")) set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); else clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { if (mddev->sync_thread) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_unregister_thread(mddev->sync_thread); mddev->sync_thread = NULL; mddev->recovery = 0; } } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return -EBUSY; else if (cmd_match(page, "resync")) set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); else if (cmd_match(page, "recover")) { set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); } else if (cmd_match(page, "reshape")) { int err; if (mddev->pers->start_reshape == NULL) return -EINVAL; err = mddev->pers->start_reshape(mddev); if (err) return err; sysfs_notify(&mddev->kobj, NULL, "degraded"); } else { if (cmd_match(page, "check")) set_bit(MD_RECOVERY_CHECK, &mddev->recovery); else if (!cmd_match(page, "repair")) return -EINVAL; set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); set_bit(MD_RECOVERY_SYNC, &mddev->recovery); } set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); sysfs_notify_dirent(mddev->sysfs_action); return len; } static ssize_t mismatch_cnt_show(mddev_t *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long) mddev->resync_mismatches); } static struct md_sysfs_entry md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); static ssize_t sync_min_show(mddev_t *mddev, char *page) { return sprintf(page, "%d (%s)\n", speed_min(mddev), mddev->sync_speed_min ? "local": "system"); } static ssize_t sync_min_store(mddev_t *mddev, const char *buf, size_t len) { int min; char *e; if (strncmp(buf, "system", 6)==0) { mddev->sync_speed_min = 0; return len; } min = simple_strtoul(buf, &e, 10); if (buf == e || (*e && *e != '\n') || min <= 0) return -EINVAL; mddev->sync_speed_min = min; return len; } static struct md_sysfs_entry md_sync_min = __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); static ssize_t sync_max_show(mddev_t *mddev, char *page) { return sprintf(page, "%d (%s)\n", speed_max(mddev), mddev->sync_speed_max ? "local": "system"); } static ssize_t sync_max_store(mddev_t *mddev, const char *buf, size_t len) { int max; char *e; if (strncmp(buf, "system", 6)==0) { mddev->sync_speed_max = 0; return len; } max = simple_strtoul(buf, &e, 10); if (buf == e || (*e && *e != '\n') || max <= 0) return -EINVAL; mddev->sync_speed_max = max; return len; } static struct md_sysfs_entry md_sync_max = __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); static ssize_t degraded_show(mddev_t *mddev, char *page) { return sprintf(page, "%d\n", mddev->degraded); } static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); static ssize_t sync_force_parallel_show(mddev_t *mddev, char *page) { return sprintf(page, "%d\n", mddev->parallel_resync); } static ssize_t sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) { long n; if (strict_strtol(buf, 10, &n)) return -EINVAL; if (n != 0 && n != 1) return -EINVAL; mddev->parallel_resync = n; if (mddev->sync_thread) wake_up(&resync_wait); return len; } /* force parallel resync, even with shared block devices */ static struct md_sysfs_entry md_sync_force_parallel = __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, sync_force_parallel_show, sync_force_parallel_store); static ssize_t sync_speed_show(mddev_t *mddev, char *page) { unsigned long resync, dt, db; if (mddev->curr_resync == 0) return sprintf(page, "none\n"); resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); dt = (jiffies - mddev->resync_mark) / HZ; if (!dt) dt++; db = resync - mddev->resync_mark_cnt; return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ } static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); static ssize_t sync_completed_show(mddev_t *mddev, char *page) { unsigned long max_sectors, resync; if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) return sprintf(page, "none\n"); if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) max_sectors = mddev->resync_max_sectors; else max_sectors = mddev->dev_sectors; resync = mddev->curr_resync_completed; return sprintf(page, "%lu / %lu\n", resync, max_sectors); } static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); static ssize_t min_sync_show(mddev_t *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)mddev->resync_min); } static ssize_t min_sync_store(mddev_t *mddev, const char *buf, size_t len) { unsigned long long min; if (strict_strtoull(buf, 10, &min)) return -EINVAL; if (min > mddev->resync_max) return -EINVAL; if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) return -EBUSY; /* Must be a multiple of chunk_size */ if (mddev->chunk_sectors) { sector_t temp = min; if (sector_div(temp, mddev->chunk_sectors)) return -EINVAL; } mddev->resync_min = min; return len; } static struct md_sysfs_entry md_min_sync = __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); static ssize_t max_sync_show(mddev_t *mddev, char *page) { if (mddev->resync_max == MaxSector) return sprintf(page, "max\n"); else return sprintf(page, "%llu\n", (unsigned long long)mddev->resync_max); } static ssize_t max_sync_store(mddev_t *mddev, const char *buf, size_t len) { if (strncmp(buf, "max", 3) == 0) mddev->resync_max = MaxSector; else { unsigned long long max; if (strict_strtoull(buf, 10, &max)) return -EINVAL; if (max < mddev->resync_min) return -EINVAL; if (max < mddev->resync_max && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) return -EBUSY; /* Must be a multiple of chunk_size */ if (mddev->chunk_sectors) { sector_t temp = max; if (sector_div(temp, mddev->chunk_sectors)) return -EINVAL; } mddev->resync_max = max; } wake_up(&mddev->recovery_wait); return len; } static struct md_sysfs_entry md_max_sync = __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); static ssize_t suspend_lo_show(mddev_t *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); } static ssize_t suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) { char *e; unsigned long long new = simple_strtoull(buf, &e, 10); if (mddev->pers == NULL || mddev->pers->quiesce == NULL) return -EINVAL; if (buf == e || (*e && *e != '\n')) return -EINVAL; if (new >= mddev->suspend_hi || (new > mddev->suspend_lo && new < mddev->suspend_hi)) { mddev->suspend_lo = new; mddev->pers->quiesce(mddev, 2); return len; } else return -EINVAL; } static struct md_sysfs_entry md_suspend_lo = __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); static ssize_t suspend_hi_show(mddev_t *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); } static ssize_t suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) { char *e; unsigned long long new = simple_strtoull(buf, &e, 10); if (mddev->pers == NULL || mddev->pers->quiesce == NULL) return -EINVAL; if (buf == e || (*e && *e != '\n')) return -EINVAL; if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || (new > mddev->suspend_lo && new > mddev->suspend_hi)) { mddev->suspend_hi = new; mddev->pers->quiesce(mddev, 1); mddev->pers->quiesce(mddev, 0); return len; } else return -EINVAL; } static struct md_sysfs_entry md_suspend_hi = __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); static ssize_t reshape_position_show(mddev_t *mddev, char *page) { if (mddev->reshape_position != MaxSector) return sprintf(page, "%llu\n", (unsigned long long)mddev->reshape_position); strcpy(page, "none\n"); return 5; } static ssize_t reshape_position_store(mddev_t *mddev, const char *buf, size_t len) { char *e; unsigned long long new = simple_strtoull(buf, &e, 10); if (mddev->pers) return -EBUSY; if (buf == e || (*e && *e != '\n')) return -EINVAL; mddev->reshape_position = new; mddev->delta_disks = 0; mddev->new_level = mddev->level; mddev->new_layout = mddev->layout; mddev->new_chunk_sectors = mddev->chunk_sectors; return len; } static struct md_sysfs_entry md_reshape_position = __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, reshape_position_store); static ssize_t array_size_show(mddev_t *mddev, char *page) { if (mddev->external_size) return sprintf(page, "%llu\n", (unsigned long long)mddev->array_sectors/2); else return sprintf(page, "default\n"); } static ssize_t array_size_store(mddev_t *mddev, const char *buf, size_t len) { sector_t sectors; if (strncmp(buf, "default", 7) == 0) { if (mddev->pers) sectors = mddev->pers->size(mddev, 0, 0); else sectors = mddev->array_sectors; mddev->external_size = 0; } else { if (strict_blocks_to_sectors(buf, &sectors) < 0) return -EINVAL; if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) return -E2BIG; mddev->external_size = 1; } mddev->array_sectors = sectors; set_capacity(mddev->gendisk, mddev->array_sectors); if (mddev->pers) { struct block_device *bdev = bdget_disk(mddev->gendisk, 0); if (bdev) { mutex_lock(&bdev->bd_inode->i_mutex); i_size_write(bdev->bd_inode, (loff_t)mddev->array_sectors << 9); mutex_unlock(&bdev->bd_inode->i_mutex); bdput(bdev); } } return len; } static struct md_sysfs_entry md_array_size = __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, array_size_store); static struct attribute *md_default_attrs[] = { &md_level.attr, &md_layout.attr, &md_raid_disks.attr, &md_chunk_size.attr, &md_size.attr, &md_resync_start.attr, &md_metadata.attr, &md_new_device.attr, &md_safe_delay.attr, &md_array_state.attr, &md_reshape_position.attr, &md_array_size.attr, NULL, }; static struct attribute *md_redundancy_attrs[] = { &md_scan_mode.attr, &md_mismatches.attr, &md_sync_min.attr, &md_sync_max.attr, &md_sync_speed.attr, &md_sync_force_parallel.attr, &md_sync_completed.attr, &md_min_sync.attr, &md_max_sync.attr, &md_suspend_lo.attr, &md_suspend_hi.attr, &md_bitmap.attr, &md_degraded.attr, NULL, }; static struct attribute_group md_redundancy_group = { .name = NULL, .attrs = md_redundancy_attrs, }; static ssize_t md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) { struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); ssize_t rv; if (!entry->show) return -EIO; rv = mddev_lock(mddev); if (!rv) { rv = entry->show(mddev, page); mddev_unlock(mddev); } return rv; } static ssize_t md_attr_store(struct kobject *kobj, struct attribute *attr, const char *page, size_t length) { struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); ssize_t rv; if (!entry->store) return -EIO; if (!capable(CAP_SYS_ADMIN)) return -EACCES; rv = mddev_lock(mddev); if (mddev->hold_active == UNTIL_IOCTL) mddev->hold_active = 0; if (!rv) { rv = entry->store(mddev, page, length); mddev_unlock(mddev); } return rv; } static void md_free(struct kobject *ko) { mddev_t *mddev = container_of(ko, mddev_t, kobj); if (mddev->sysfs_state) sysfs_put(mddev->sysfs_state); if (mddev->gendisk) { del_gendisk(mddev->gendisk); put_disk(mddev->gendisk); } if (mddev->queue) blk_cleanup_queue(mddev->queue); kfree(mddev); } static struct sysfs_ops md_sysfs_ops = { .show = md_attr_show, .store = md_attr_store, }; static struct kobj_type md_ktype = { .release = md_free, .sysfs_ops = &md_sysfs_ops, .default_attrs = md_default_attrs, }; int mdp_major = 0; static void mddev_delayed_delete(struct work_struct *ws) { mddev_t *mddev = container_of(ws, mddev_t, del_work); if (mddev->private == &md_redundancy_group) { sysfs_remove_group(&mddev->kobj, &md_redundancy_group); if (mddev->sysfs_action) sysfs_put(mddev->sysfs_action); mddev->sysfs_action = NULL; mddev->private = NULL; } kobject_del(&mddev->kobj); kobject_put(&mddev->kobj); } static int md_alloc(dev_t dev, char *name) { static DEFINE_MUTEX(disks_mutex); mddev_t *mddev = mddev_find(dev); struct gendisk *disk; int partitioned; int shift; int unit; int error; if (!mddev) return -ENODEV; partitioned = (MAJOR(mddev->unit) != MD_MAJOR); shift = partitioned ? MdpMinorShift : 0; unit = MINOR(mddev->unit) >> shift; /* wait for any previous instance if this device * to be completed removed (mddev_delayed_delete). */ flush_scheduled_work(); mutex_lock(&disks_mutex); error = -EEXIST; if (mddev->gendisk) goto abort; if (name) { /* Need to ensure that 'name' is not a duplicate. */ mddev_t *mddev2; spin_lock(&all_mddevs_lock); list_for_each_entry(mddev2, &all_mddevs, all_mddevs) if (mddev2->gendisk && strcmp(mddev2->gendisk->disk_name, name) == 0) { spin_unlock(&all_mddevs_lock); goto abort; } spin_unlock(&all_mddevs_lock); } error = -ENOMEM; mddev->queue = blk_alloc_queue(GFP_KERNEL); if (!mddev->queue) goto abort; mddev->queue->queuedata = mddev; /* Can be unlocked because the queue is new: no concurrency */ queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue); blk_queue_make_request(mddev->queue, md_make_request); disk = alloc_disk(1 << shift); if (!disk) { blk_cleanup_queue(mddev->queue); mddev->queue = NULL; goto abort; } disk->major = MAJOR(mddev->unit); disk->first_minor = unit << shift; if (name) strcpy(disk->disk_name, name); else if (partitioned) sprintf(disk->disk_name, "md_d%d", unit); else sprintf(disk->disk_name, "md%d", unit); disk->fops = &md_fops; disk->private_data = mddev; disk->queue = mddev->queue; /* Allow extended partitions. This makes the * 'mdp' device redundant, but we can't really * remove it now. */ disk->flags |= GENHD_FL_EXT_DEVT; add_disk(disk); mddev->gendisk = disk; error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk_to_dev(disk)->kobj, "%s", "md"); if (error) { /* This isn't possible, but as kobject_init_and_add is marked * __must_check, we must do something with the result */ printk(KERN_WARNING "md: cannot register %s/md - name in use\n", disk->disk_name); error = 0; } abort: mutex_unlock(&disks_mutex); if (!error) { kobject_uevent(&mddev->kobj, KOBJ_ADD); mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state"); } mddev_put(mddev); return error; } static struct kobject *md_probe(dev_t dev, int *part, void *data) { md_alloc(dev, NULL); return NULL; } static int add_named_array(const char *val, struct kernel_param *kp) { /* val must be "md_*" where * is not all digits. * We allocate an array with a large free minor number, and * set the name to val. val must not already be an active name. */ int len = strlen(val); char buf[DISK_NAME_LEN]; while (len && val[len-1] == '\n') len--; if (len >= DISK_NAME_LEN) return -E2BIG; strlcpy(buf, val, len+1); if (strncmp(buf, "md_", 3) != 0) return -EINVAL; return md_alloc(0, buf); } static void md_safemode_timeout(unsigned long data) { mddev_t *mddev = (mddev_t *) data; if (!atomic_read(&mddev->writes_pending)) { mddev->safemode = 1; if (mddev->external) sysfs_notify_dirent(mddev->sysfs_state); } md_wakeup_thread(mddev->thread); } static int start_dirty_degraded; static int do_md_run(mddev_t * mddev) { int err; mdk_rdev_t *rdev; struct gendisk *disk; struct mdk_personality *pers; if (list_empty(&mddev->disks)) /* cannot run an array with no devices.. */ return -EINVAL; if (mddev->pers) return -EBUSY; /* * Analyze all RAID superblock(s) */ if (!mddev->raid_disks) { if (!mddev->persistent) return -EINVAL; analyze_sbs(mddev); } if (mddev->level != LEVEL_NONE) request_module("md-level-%d", mddev->level); else if (mddev->clevel[0]) request_module("md-%s", mddev->clevel); /* * Drop all container device buffers, from now on * the only valid external interface is through the md * device. */ list_for_each_entry(rdev, &mddev->disks, same_set) { if (test_bit(Faulty, &rdev->flags)) continue; sync_blockdev(rdev->bdev); invalidate_bdev(rdev->bdev); /* perform some consistency tests on the device. * We don't want the data to overlap the metadata, * Internal Bitmap issues have been handled elsewhere. */ if (rdev->data_offset < rdev->sb_start) { if (mddev->dev_sectors && rdev->data_offset + mddev->dev_sectors > rdev->sb_start) { printk("md: %s: data overlaps metadata\n", mdname(mddev)); return -EINVAL; } } else { if (rdev->sb_start + rdev->sb_size/512 > rdev->data_offset) { printk("md: %s: metadata overlaps data\n", mdname(mddev)); return -EINVAL; } } sysfs_notify_dirent(rdev->sysfs_state); } md_probe(mddev->unit, NULL, NULL); disk = mddev->gendisk; if (!disk) return -ENOMEM; spin_lock(&pers_lock); pers = find_pers(mddev->level, mddev->clevel); if (!pers || !try_module_get(pers->owner)) { spin_unlock(&pers_lock); if (mddev->level != LEVEL_NONE) printk(KERN_WARNING "md: personality for level %d is not loaded!\n", mddev->level); else printk(KERN_WARNING "md: personality for level %s is not loaded!\n", mddev->clevel); return -EINVAL; } mddev->pers = pers; spin_unlock(&pers_lock); if (mddev->level != pers->level) { mddev->level = pers->level; mddev->new_level = pers->level; } strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); if (pers->level >= 4 && pers->level <= 6) /* Cannot support integrity (yet) */ blk_integrity_unregister(mddev->gendisk); if (mddev->reshape_position != MaxSector && pers->start_reshape == NULL) { /* This personality cannot handle reshaping... */ mddev->pers = NULL; module_put(pers->owner); return -EINVAL; } if (pers->sync_request) { /* Warn if this is a potentially silly * configuration. */ char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; mdk_rdev_t *rdev2; int warned = 0; list_for_each_entry(rdev, &mddev->disks, same_set) list_for_each_entry(rdev2, &mddev->disks, same_set) { if (rdev < rdev2 && rdev->bdev->bd_contains == rdev2->bdev->bd_contains) { printk(KERN_WARNING "%s: WARNING: %s appears to be" " on the same physical disk as" " %s.\n", mdname(mddev), bdevname(rdev->bdev,b), bdevname(rdev2->bdev,b2)); warned = 1; } } if (warned) printk(KERN_WARNING "True protection against single-disk" " failure might be compromised.\n"); } mddev->recovery = 0; /* may be over-ridden by personality */ mddev->resync_max_sectors = mddev->dev_sectors; mddev->barriers_work = 1; mddev->ok_start_degraded = start_dirty_degraded; if (start_readonly) mddev->ro = 2; /* read-only, but switch on first write */ err = mddev->pers->run(mddev); if (err) printk(KERN_ERR "md: pers->run() failed ...\n"); else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { WARN_ONCE(!mddev->external_size, "%s: default size too small," " but 'external_size' not in effect?\n", __func__); printk(KERN_ERR "md: invalid array_size %llu > default size %llu\n", (unsigned long long)mddev->array_sectors / 2, (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); err = -EINVAL; mddev->pers->stop(mddev); } if (err == 0 && mddev->pers->sync_request) { err = bitmap_create(mddev); if (err) { printk(KERN_ERR "%s: failed to create bitmap (%d)\n", mdname(mddev), err); mddev->pers->stop(mddev); } } if (err) { module_put(mddev->pers->owner); mddev->pers = NULL; bitmap_destroy(mddev); return err; } if (mddev->pers->sync_request) { if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) printk(KERN_WARNING "md: cannot register extra attributes for %s\n", mdname(mddev)); mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); } else if (mddev->ro == 2) /* auto-readonly not meaningful */ mddev->ro = 0; atomic_set(&mddev->writes_pending,0); mddev->safemode = 0; mddev->safemode_timer.function = md_safemode_timeout; mddev->safemode_timer.data = (unsigned long) mddev; mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ mddev->in_sync = 1; list_for_each_entry(rdev, &mddev->disks, same_set) if (rdev->raid_disk >= 0) { char nm[20]; sprintf(nm, "rd%d", rdev->raid_disk); if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) printk("md: cannot register %s for %s\n", nm, mdname(mddev)); } set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); if (mddev->flags) md_update_sb(mddev, 0); set_capacity(disk, mddev->array_sectors); /* If there is a partially-recovered drive we need to * start recovery here. If we leave it to md_check_recovery, * it will remove the drives and not do the right thing */ if (mddev->degraded && !mddev->sync_thread) { int spares = 0; list_for_each_entry(rdev, &mddev->disks, same_set) if (rdev->raid_disk >= 0 && !test_bit(In_sync, &rdev->flags) && !test_bit(Faulty, &rdev->flags)) /* complete an interrupted recovery */ spares++; if (spares && mddev->pers->sync_request) { mddev->recovery = 0; set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); mddev->sync_thread = md_register_thread(md_do_sync, mddev, "%s_resync"); if (!mddev->sync_thread) { printk(KERN_ERR "%s: could not start resync" " thread...\n", mdname(mddev)); /* leave the spares where they are, it shouldn't hurt */ mddev->recovery = 0; } } } md_wakeup_thread(mddev->thread); md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ mddev->changed = 1; md_new_event(mddev); sysfs_notify_dirent(mddev->sysfs_state); if (mddev->sysfs_action) sysfs_notify_dirent(mddev->sysfs_action); sysfs_notify(&mddev->kobj, NULL, "degraded"); kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); return 0; } static int restart_array(mddev_t *mddev) { struct gendisk *disk = mddev->gendisk; /* Complain if it has no devices */ if (list_empty(&mddev->disks)) return -ENXIO; if (!mddev->pers) return -EINVAL; if (!mddev->ro) return -EBUSY; mddev->safemode = 0; mddev->ro = 0; set_disk_ro(disk, 0); printk(KERN_INFO "md: %s switched to read-write mode.\n", mdname(mddev)); /* Kick recovery or resync if necessary */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); md_wakeup_thread(mddev->sync_thread); sysfs_notify_dirent(mddev->sysfs_state); return 0; } /* similar to deny_write_access, but accounts for our holding a reference * to the file ourselves */ static int deny_bitmap_write_access(struct file * file) { struct inode *inode = file->f_mapping->host; spin_lock(&inode->i_lock); if (atomic_read(&inode->i_writecount) > 1) { spin_unlock(&inode->i_lock); return -ETXTBSY; } atomic_set(&inode->i_writecount, -1); spin_unlock(&inode->i_lock); return 0; } static void restore_bitmap_write_access(struct file *file) { struct inode *inode = file->f_mapping->host; spin_lock(&inode->i_lock); atomic_set(&inode->i_writecount, 1); spin_unlock(&inode->i_lock); } /* mode: * 0 - completely stop and dis-assemble array * 1 - switch to readonly * 2 - stop but do not disassemble array */ static int do_md_stop(mddev_t * mddev, int mode, int is_open) { int err = 0; struct gendisk *disk = mddev->gendisk; mdk_rdev_t *rdev; if (atomic_read(&mddev->openers) > is_open) { printk("md: %s still in use.\n",mdname(mddev)); return -EBUSY; } if (mddev->pers) { if (mddev->sync_thread) { set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_unregister_thread(mddev->sync_thread); mddev->sync_thread = NULL; } del_timer_sync(&mddev->safemode_timer); switch(mode) { case 1: /* readonly */ err = -ENXIO; if (mddev->ro==1) goto out; mddev->ro = 1; break; case 0: /* disassemble */ case 2: /* stop */ bitmap_flush(mddev); md_super_wait(mddev); if (mddev->ro) set_disk_ro(disk, 0); mddev->pers->stop(mddev); mddev->queue->merge_bvec_fn = NULL; mddev->queue->unplug_fn = NULL; mddev->queue->backing_dev_info.congested_fn = NULL; module_put(mddev->pers->owner); if (mddev->pers->sync_request) mddev->private = &md_redundancy_group; mddev->pers = NULL; /* tell userspace to handle 'inactive' */ sysfs_notify_dirent(mddev->sysfs_state); list_for_each_entry(rdev, &mddev->disks, same_set) if (rdev->raid_disk >= 0) { char nm[20]; sprintf(nm, "rd%d", rdev->raid_disk); sysfs_remove_link(&mddev->kobj, nm); } set_capacity(disk, 0); mddev->changed = 1; if (mddev->ro) mddev->ro = 0; } if (!mddev->in_sync || mddev->flags) { /* mark array as shutdown cleanly */ mddev->in_sync = 1; md_update_sb(mddev, 1); } if (mode == 1) set_disk_ro(disk, 1); clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); } /* * Free resources if final stop */ if (mode == 0) { printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); bitmap_destroy(mddev); if (mddev->bitmap_file) { restore_bitmap_write_access(mddev->bitmap_file); fput(mddev->bitmap_file); mddev->bitmap_file = NULL; } mddev->bitmap_offset = 0; /* make sure all md_delayed_delete calls have finished */ flush_scheduled_work(); export_array(mddev); mddev->array_sectors = 0; mddev->external_size = 0; mddev->dev_sectors = 0; mddev->raid_disks = 0; mddev->recovery_cp = 0; mddev->resync_min = 0; mddev->resync_max = MaxSector; mddev->reshape_position = MaxSector; mddev->external = 0; mddev->persistent = 0; mddev->level = LEVEL_NONE; mddev->clevel[0] = 0; mddev->flags = 0; mddev->ro = 0; mddev->metadata_type[0] = 0; mddev->chunk_sectors = 0; mddev->ctime = mddev->utime = 0; mddev->layout = 0; mddev->max_disks = 0; mddev->events = 0; mddev->delta_disks = 0; mddev->new_level = LEVEL_NONE; mddev->new_layout = 0; mddev->new_chunk_sectors = 0; mddev->curr_resync = 0; mddev->resync_mismatches = 0; mddev->suspend_lo = mddev->suspend_hi = 0; mddev->sync_speed_min = mddev->sync_speed_max = 0; mddev->recovery = 0; mddev->in_sync = 0; mddev->changed = 0; mddev->degraded = 0; mddev->barriers_work = 0; mddev->safemode = 0; kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); if (mddev->hold_active == UNTIL_STOP) mddev->hold_active = 0; } else if (mddev->pers) printk(KERN_INFO "md: %s switched to read-only mode.\n", mdname(mddev)); err = 0; blk_integrity_unregister(disk); md_new_event(mddev); sysfs_notify_dirent(mddev->sysfs_state); out: return err; } #ifndef MODULE static void autorun_array(mddev_t *mddev) { mdk_rdev_t *rdev; int err; if (list_empty(&mddev->disks)) return; printk(KERN_INFO "md: running: "); list_for_each_entry(rdev, &mddev->disks, same_set) { char b[BDEVNAME_SIZE]; printk("<%s>", bdevname(rdev->bdev,b)); } printk("\n"); err = do_md_run(mddev); if (err) { printk(KERN_WARNING "md: do_md_run() returned %d\n", err); do_md_stop(mddev, 0, 0); } } /* * lets try to run arrays based on all disks that have arrived * until now. (those are in pending_raid_disks) * * the method: pick the first pending disk, collect all disks with * the same UUID, remove all from the pending list and put them into * the 'same_array' list. Then order this list based on superblock * update time (freshest comes first), kick out 'old' disks and * compare superblocks. If everything's fine then run it. * * If "unit" is allocated, then bump its reference count */ static void autorun_devices(int part) { mdk_rdev_t *rdev0, *rdev, *tmp; mddev_t *mddev; char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: autorun ...\n"); while (!list_empty(&pending_raid_disks)) { int unit; dev_t dev; LIST_HEAD(candidates); rdev0 = list_entry(pending_raid_disks.next, mdk_rdev_t, same_set); printk(KERN_INFO "md: considering %s ...\n", bdevname(rdev0->bdev,b)); INIT_LIST_HEAD(&candidates); rdev_for_each_list(rdev, tmp, &pending_raid_disks) if (super_90_load(rdev, rdev0, 0) >= 0) { printk(KERN_INFO "md: adding %s ...\n", bdevname(rdev->bdev,b)); list_move(&rdev->same_set, &candidates); } /* * now we have a set of devices, with all of them having * mostly sane superblocks. It's time to allocate the * mddev. */ if (part) { dev = MKDEV(mdp_major, rdev0->preferred_minor << MdpMinorShift); unit = MINOR(dev) >> MdpMinorShift; } else { dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); unit = MINOR(dev); } if (rdev0->preferred_minor != unit) { printk(KERN_INFO "md: unit number in %s is bad: %d\n", bdevname(rdev0->bdev, b), rdev0->preferred_minor); break; } md_probe(dev, NULL, NULL); mddev = mddev_find(dev); if (!mddev || !mddev->gendisk) { if (mddev) mddev_put(mddev); printk(KERN_ERR "md: cannot allocate memory for md drive.\n"); break; } if (mddev_lock(mddev)) printk(KERN_WARNING "md: %s locked, cannot run\n", mdname(mddev)); else if (mddev->raid_disks || mddev->major_version || !list_empty(&mddev->disks)) { printk(KERN_WARNING "md: %s already running, cannot run %s\n", mdname(mddev), bdevname(rdev0->bdev,b)); mddev_unlock(mddev); } else { printk(KERN_INFO "md: created %s\n", mdname(mddev)); mddev->persistent = 1; rdev_for_each_list(rdev, tmp, &candidates) { list_del_init(&rdev->same_set); if (bind_rdev_to_array(rdev, mddev)) export_rdev(rdev); } autorun_array(mddev); mddev_unlock(mddev); } /* on success, candidates will be empty, on error * it won't... */ rdev_for_each_list(rdev, tmp, &candidates) { list_del_init(&rdev->same_set); export_rdev(rdev); } mddev_put(mddev); } printk(KERN_INFO "md: ... autorun DONE.\n"); } #endif /* !MODULE */ static int get_version(void __user * arg) { mdu_version_t ver; ver.major = MD_MAJOR_VERSION; ver.minor = MD_MINOR_VERSION; ver.patchlevel = MD_PATCHLEVEL_VERSION; if (copy_to_user(arg, &ver, sizeof(ver))) return -EFAULT; return 0; } static int get_array_info(mddev_t * mddev, void __user * arg) { mdu_array_info_t info; int nr,working,active,failed,spare; mdk_rdev_t *rdev; nr=working=active=failed=spare=0; list_for_each_entry(rdev, &mddev->disks, same_set) { nr++; if (test_bit(Faulty, &rdev->flags)) failed++; else { working++; if (test_bit(In_sync, &rdev->flags)) active++; else spare++; } } info.major_version = mddev->major_version; info.minor_version = mddev->minor_version; info.patch_version = MD_PATCHLEVEL_VERSION; info.ctime = mddev->ctime; info.level = mddev->level; info.size = mddev->dev_sectors / 2; if (info.size != mddev->dev_sectors / 2) /* overflow */ info.size = -1; info.nr_disks = nr; info.raid_disks = mddev->raid_disks; info.md_minor = mddev->md_minor; info.not_persistent= !mddev->persistent; info.utime = mddev->utime; info.state = 0; if (mddev->in_sync) info.state = (1<<MD_SB_CLEAN); if (mddev->bitmap && mddev->bitmap_offset) info.state = (1<<MD_SB_BITMAP_PRESENT); info.active_disks = active; info.working_disks = working; info.failed_disks = failed; info.spare_disks = spare; info.layout = mddev->layout; info.chunk_size = mddev->chunk_sectors << 9; if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int get_bitmap_file(mddev_t * mddev, void __user * arg) { mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ char *ptr, *buf = NULL; int err = -ENOMEM; if (md_allow_write(mddev)) file = kmalloc(sizeof(*file), GFP_NOIO); else file = kmalloc(sizeof(*file), GFP_KERNEL); if (!file) goto out; /* bitmap disabled, zero the first byte and copy out */ if (!mddev->bitmap || !mddev->bitmap->file) { file->pathname[0] = '\0'; goto copy_out; } buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); if (!buf) goto out; ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); if (IS_ERR(ptr)) goto out; strcpy(file->pathname, ptr); copy_out: err = 0; if (copy_to_user(arg, file, sizeof(*file))) err = -EFAULT; out: kfree(buf); kfree(file); return err; } static int get_disk_info(mddev_t * mddev, void __user * arg) { mdu_disk_info_t info; mdk_rdev_t *rdev; if (copy_from_user(&info, arg, sizeof(info))) return -EFAULT; rdev = find_rdev_nr(mddev, info.number); if (rdev) { info.major = MAJOR(rdev->bdev->bd_dev); info.minor = MINOR(rdev->bdev->bd_dev); info.raid_disk = rdev->raid_disk; info.state = 0; if (test_bit(Faulty, &rdev->flags)) info.state |= (1<<MD_DISK_FAULTY); else if (test_bit(In_sync, &rdev->flags)) { info.state |= (1<<MD_DISK_ACTIVE); info.state |= (1<<MD_DISK_SYNC); } if (test_bit(WriteMostly, &rdev->flags)) info.state |= (1<<MD_DISK_WRITEMOSTLY); } else { info.major = info.minor = 0; info.raid_disk = -1; info.state = (1<<MD_DISK_REMOVED); } if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) { char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; mdk_rdev_t *rdev; dev_t dev = MKDEV(info->major,info->minor); if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) return -EOVERFLOW; if (!mddev->raid_disks) { int err; /* expecting a device which has a superblock */ rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: md_import_device returned %ld\n", PTR_ERR(rdev)); return PTR_ERR(rdev); } if (!list_empty(&mddev->disks)) { mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, mdk_rdev_t, same_set); int err = super_types[mddev->major_version] .load_super(rdev, rdev0, mddev->minor_version); if (err < 0) { printk(KERN_WARNING "md: %s has different UUID to %s\n", bdevname(rdev->bdev,b), bdevname(rdev0->bdev,b2)); export_rdev(rdev); return -EINVAL; } } err = bind_rdev_to_array(rdev, mddev); if (err) export_rdev(rdev); return err; } /* * add_new_disk can be used once the array is assembled * to add "hot spares". They must already have a superblock * written */ if (mddev->pers) { int err; if (!mddev->pers->hot_add_disk) { printk(KERN_WARNING "%s: personality does not support diskops!\n", mdname(mddev)); return -EINVAL; } if (mddev->persistent) rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); else rdev = md_import_device(dev, -1, -1); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: md_import_device returned %ld\n", PTR_ERR(rdev)); return PTR_ERR(rdev); } /* set save_raid_disk if appropriate */ if (!mddev->persistent) { if (info->state & (1<<MD_DISK_SYNC) && info->raid_disk < mddev->raid_disks) rdev->raid_disk = info->raid_disk; else rdev->raid_disk = -1; } else super_types[mddev->major_version]. validate_super(mddev, rdev); rdev->saved_raid_disk = rdev->raid_disk; clear_bit(In_sync, &rdev->flags); /* just to be sure */ if (info->state & (1<<MD_DISK_WRITEMOSTLY)) set_bit(WriteMostly, &rdev->flags); else clear_bit(WriteMostly, &rdev->flags); rdev->raid_disk = -1; err = bind_rdev_to_array(rdev, mddev); if (!err && !mddev->pers->hot_remove_disk) { /* If there is hot_add_disk but no hot_remove_disk * then added disks for geometry changes, * and should be added immediately. */ super_types[mddev->major_version]. validate_super(mddev, rdev); err = mddev->pers->hot_add_disk(mddev, rdev); if (err) unbind_rdev_from_array(rdev); } if (err) export_rdev(rdev); else sysfs_notify_dirent(rdev->sysfs_state); md_update_sb(mddev, 1); if (mddev->degraded) set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); return err; } /* otherwise, add_new_disk is only allowed * for major_version==0 superblocks */ if (mddev->major_version != 0) { printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", mdname(mddev)); return -EINVAL; } if (!(info->state & (1<<MD_DISK_FAULTY))) { int err; rdev = md_import_device(dev, -1, 0); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: error, md_import_device() returned %ld\n", PTR_ERR(rdev)); return PTR_ERR(rdev); } rdev->desc_nr = info->number; if (info->raid_disk < mddev->raid_disks) rdev->raid_disk = info->raid_disk; else rdev->raid_disk = -1; if (rdev->raid_disk < mddev->raid_disks) if (info->state & (1<<MD_DISK_SYNC)) set_bit(In_sync, &rdev->flags); if (info->state & (1<<MD_DISK_WRITEMOSTLY)) set_bit(WriteMostly, &rdev->flags); if (!mddev->persistent) { printk(KERN_INFO "md: nonpersistent superblock ...\n"); rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; } else rdev->sb_start = calc_dev_sboffset(rdev->bdev); rdev->sectors = rdev->sb_start; err = bind_rdev_to_array(rdev, mddev); if (err) { export_rdev(rdev); return err; } } return 0; } static int hot_remove_disk(mddev_t * mddev, dev_t dev) { char b[BDEVNAME_SIZE]; mdk_rdev_t *rdev; rdev = find_rdev(mddev, dev); if (!rdev) return -ENXIO; if (rdev->raid_disk >= 0) goto busy; kick_rdev_from_array(rdev); md_update_sb(mddev, 1); md_new_event(mddev); return 0; busy: printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", bdevname(rdev->bdev,b), mdname(mddev)); return -EBUSY; } static int hot_add_disk(mddev_t * mddev, dev_t dev) { char b[BDEVNAME_SIZE]; int err; mdk_rdev_t *rdev; if (!mddev->pers) return -ENODEV; if (mddev->major_version != 0) { printk(KERN_WARNING "%s: HOT_ADD may only be used with" " version-0 superblocks.\n", mdname(mddev)); return -EINVAL; } if (!mddev->pers->hot_add_disk) { printk(KERN_WARNING "%s: personality does not support diskops!\n", mdname(mddev)); return -EINVAL; } rdev = md_import_device(dev, -1, 0); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: error, md_import_device() returned %ld\n", PTR_ERR(rdev)); return -EINVAL; } if (mddev->persistent) rdev->sb_start = calc_dev_sboffset(rdev->bdev); else rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; rdev->sectors = rdev->sb_start; if (test_bit(Faulty, &rdev->flags)) { printk(KERN_WARNING "md: can not hot-add faulty %s disk to %s!\n", bdevname(rdev->bdev,b), mdname(mddev)); err = -EINVAL; goto abort_export; } clear_bit(In_sync, &rdev->flags); rdev->desc_nr = -1; rdev->saved_raid_disk = -1; err = bind_rdev_to_array(rdev, mddev); if (err) goto abort_export; /* * The rest should better be atomic, we can have disk failures * noticed in interrupt contexts ... */ rdev->raid_disk = -1; md_update_sb(mddev, 1); /* * Kick recovery, maybe this spare has to be added to the * array immediately. */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); md_new_event(mddev); return 0; abort_export: export_rdev(rdev); return err; } static int set_bitmap_file(mddev_t *mddev, int fd) { int err; if (mddev->pers) { if (!mddev->pers->quiesce) return -EBUSY; if (mddev->recovery || mddev->sync_thread) return -EBUSY; /* we should be able to change the bitmap.. */ } if (fd >= 0) { if (mddev->bitmap) return -EEXIST; /* cannot add when bitmap is present */ mddev->bitmap_file = fget(fd); if (mddev->bitmap_file == NULL) { printk(KERN_ERR "%s: error: failed to get bitmap file\n", mdname(mddev)); return -EBADF; } err = deny_bitmap_write_access(mddev->bitmap_file); if (err) { printk(KERN_ERR "%s: error: bitmap file is already in use\n", mdname(mddev)); fput(mddev->bitmap_file); mddev->bitmap_file = NULL; return err; } mddev->bitmap_offset = 0; /* file overrides offset */ } else if (mddev->bitmap == NULL) return -ENOENT; /* cannot remove what isn't there */ err = 0; if (mddev->pers) { mddev->pers->quiesce(mddev, 1); if (fd >= 0) err = bitmap_create(mddev); if (fd < 0 || err) { bitmap_destroy(mddev); fd = -1; /* make sure to put the file */ } mddev->pers->quiesce(mddev, 0); } if (fd < 0) { if (mddev->bitmap_file) { restore_bitmap_write_access(mddev->bitmap_file); fput(mddev->bitmap_file); } mddev->bitmap_file = NULL; } return err; } /* * set_array_info is used two different ways * The original usage is when creating a new array. * In this usage, raid_disks is > 0 and it together with * level, size, not_persistent,layout,chunksize determine the * shape of the array. * This will always create an array with a type-0.90.0 superblock. * The newer usage is when assembling an array. * In this case raid_disks will be 0, and the major_version field is * use to determine which style super-blocks are to be found on the devices. * The minor and patch _version numbers are also kept incase the * super_block handler wishes to interpret them. */ static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) { if (info->raid_disks == 0) { /* just setting version number for superblock loading */ if (info->major_version < 0 || info->major_version >= ARRAY_SIZE(super_types) || super_types[info->major_version].name == NULL) { /* maybe try to auto-load a module? */ printk(KERN_INFO "md: superblock version %d not known\n", info->major_version); return -EINVAL; } mddev->major_version = info->major_version; mddev->minor_version = info->minor_version; mddev->patch_version = info->patch_version; mddev->persistent = !info->not_persistent; return 0; } mddev->major_version = MD_MAJOR_VERSION; mddev->minor_version = MD_MINOR_VERSION; mddev->patch_version = MD_PATCHLEVEL_VERSION; mddev->ctime = get_seconds(); mddev->level = info->level; mddev->clevel[0] = 0; mddev->dev_sectors = 2 * (sector_t)info->size; mddev->raid_disks = info->raid_disks; /* don't set md_minor, it is determined by which /dev/md* was * openned */ if (info->state & (1<<MD_SB_CLEAN)) mddev->recovery_cp = MaxSector; else mddev->recovery_cp = 0; mddev->persistent = ! info->not_persistent; mddev->external = 0; mddev->layout = info->layout; mddev->chunk_sectors = info->chunk_size >> 9; mddev->max_disks = MD_SB_DISKS; if (mddev->persistent) mddev->flags = 0; set_bit(MD_CHANGE_DEVS, &mddev->flags); mddev->default_bitmap_offset = MD_SB_BYTES >> 9; mddev->bitmap_offset = 0; mddev->reshape_position = MaxSector; /* * Generate a 128 bit UUID */ get_random_bytes(mddev->uuid, 16); mddev->new_level = mddev->level; mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->new_layout = mddev->layout; mddev->delta_disks = 0; return 0; } void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) { WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); if (mddev->external_size) return; mddev->array_sectors = array_sectors; } EXPORT_SYMBOL(md_set_array_sectors); static int update_size(mddev_t *mddev, sector_t num_sectors) { mdk_rdev_t *rdev; int rv; int fit = (num_sectors == 0); if (mddev->pers->resize == NULL) return -EINVAL; /* The "num_sectors" is the number of sectors of each device that * is used. This can only make sense for arrays with redundancy. * linear and raid0 always use whatever space is available. We can only * consider changing this number if no resync or reconstruction is * happening, and if the new size is acceptable. It must fit before the * sb_start or, if that is <data_offset, it must fit before the size * of each device. If num_sectors is zero, we find the largest size * that fits. */ if (mddev->sync_thread) return -EBUSY; if (mddev->bitmap) /* Sorry, cannot grow a bitmap yet, just remove it, * grow, and re-add. */ return -EBUSY; list_for_each_entry(rdev, &mddev->disks, same_set) { sector_t avail = rdev->sectors; if (fit && (num_sectors == 0 || num_sectors > avail)) num_sectors = avail; if (avail < num_sectors) return -ENOSPC; } rv = mddev->pers->resize(mddev, num_sectors); if (!rv) { struct block_device *bdev; bdev = bdget_disk(mddev->gendisk, 0); if (bdev) { mutex_lock(&bdev->bd_inode->i_mutex); i_size_write(bdev->bd_inode, (loff_t)mddev->array_sectors << 9); mutex_unlock(&bdev->bd_inode->i_mutex); bdput(bdev); } } return rv; } static int update_raid_disks(mddev_t *mddev, int raid_disks) { int rv; /* change the number of raid disks */ if (mddev->pers->check_reshape == NULL) return -EINVAL; if (raid_disks <= 0 || raid_disks >= mddev->max_disks) return -EINVAL; if (mddev->sync_thread || mddev->reshape_position != MaxSector) return -EBUSY; mddev->delta_disks = raid_disks - mddev->raid_disks; rv = mddev->pers->check_reshape(mddev); return rv; } /* * update_array_info is used to change the configuration of an * on-line array. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size * fields in the info are checked against the array. * Any differences that cannot be handled will cause an error. * Normally, only one change can be managed at a time. */ static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) { int rv = 0; int cnt = 0; int state = 0; /* calculate expected state,ignoring low bits */ if (mddev->bitmap && mddev->bitmap_offset) state |= (1 << MD_SB_BITMAP_PRESENT); if (mddev->major_version != info->major_version || mddev->minor_version != info->minor_version || /* mddev->patch_version != info->patch_version || */ mddev->ctime != info->ctime || mddev->level != info->level || /* mddev->layout != info->layout || */ !mddev->persistent != info->not_persistent|| mddev->chunk_sectors != info->chunk_size >> 9 || /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ ((state^info->state) & 0xfffffe00) ) return -EINVAL; /* Check there is only one change */ if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) cnt++; if (mddev->raid_disks != info->raid_disks) cnt++; if (mddev->layout != info->layout) cnt++; if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; if (cnt == 0) return 0; if (cnt > 1) return -EINVAL; if (mddev->layout != info->layout) { /* Change layout * we don't need to do anything at the md level, the * personality will take care of it all. */ if (mddev->pers->check_reshape == NULL) return -EINVAL; else { mddev->new_layout = info->layout; rv = mddev->pers->check_reshape(mddev); if (rv) mddev->new_layout = mddev->layout; return rv; } } if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) rv = update_size(mddev, (sector_t)info->size * 2); if (mddev->raid_disks != info->raid_disks) rv = update_raid_disks(mddev, info->raid_disks); if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { if (mddev->pers->quiesce == NULL) return -EINVAL; if (mddev->recovery || mddev->sync_thread) return -EBUSY; if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { /* add the bitmap */ if (mddev->bitmap) return -EEXIST; if (mddev->default_bitmap_offset == 0) return -EINVAL; mddev->bitmap_offset = mddev->default_bitmap_offset; mddev->pers->quiesce(mddev, 1); rv = bitmap_create(mddev); if (rv) bitmap_destroy(mddev); mddev->pers->quiesce(mddev, 0); } else { /* remove the bitmap */ if (!mddev->bitmap) return -ENOENT; if (mddev->bitmap->file) return -EINVAL; mddev->pers->quiesce(mddev, 1); bitmap_destroy(mddev); mddev->pers->quiesce(mddev, 0); mddev->bitmap_offset = 0; } } md_update_sb(mddev, 1); return rv; } static int set_disk_faulty(mddev_t *mddev, dev_t dev) { mdk_rdev_t *rdev; if (mddev->pers == NULL) return -ENODEV; rdev = find_rdev(mddev, dev); if (!rdev) return -ENODEV; md_error(mddev, rdev); return 0; } /* * We have a problem here : there is no easy way to give a CHS * virtual geometry. We currently pretend that we have a 2 heads * 4 sectors (with a BIG number of cylinders...). This drives * dosfs just mad... ;-) */ static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) { mddev_t *mddev = bdev->bd_disk->private_data; geo->heads = 2; geo->sectors = 4; geo->cylinders = get_capacity(mddev->gendisk) / 8; return 0; } static int md_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { int err = 0; void __user *argp = (void __user *)arg; mddev_t *mddev = NULL; if (!capable(CAP_SYS_ADMIN)) return -EACCES; /* * Commands dealing with the RAID driver but not any * particular array: */ switch (cmd) { case RAID_VERSION: err = get_version(argp); goto done; case PRINT_RAID_DEBUG: err = 0; md_print_devices(); goto done; #ifndef MODULE case RAID_AUTORUN: err = 0; autostart_arrays(arg); goto done; #endif default:; } /* * Commands creating/starting a new array: */ mddev = bdev->bd_disk->private_data; if (!mddev) { BUG(); goto abort; } err = mddev_lock(mddev); if (err) { printk(KERN_INFO "md: ioctl lock interrupted, reason %d, cmd %d\n", err, cmd); goto abort; } switch (cmd) { case SET_ARRAY_INFO: { mdu_array_info_t info; if (!arg) memset(&info, 0, sizeof(info)); else if (copy_from_user(&info, argp, sizeof(info))) { err = -EFAULT; goto abort_unlock; } if (mddev->pers) { err = update_array_info(mddev, &info); if (err) { printk(KERN_WARNING "md: couldn't update" " array info. %d\n", err); goto abort_unlock; } goto done_unlock; } if (!list_empty(&mddev->disks)) { printk(KERN_WARNING "md: array %s already has disks!\n", mdname(mddev)); err = -EBUSY; goto abort_unlock; } if (mddev->raid_disks) { printk(KERN_WARNING "md: array %s already initialised!\n", mdname(mddev)); err = -EBUSY; goto abort_unlock; } err = set_array_info(mddev, &info); if (err) { printk(KERN_WARNING "md: couldn't set" " array info. %d\n", err); goto abort_unlock; } } goto done_unlock; default:; } /* * Commands querying/configuring an existing array: */ /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ if ((!mddev->raid_disks && !mddev->external) && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE && cmd != GET_BITMAP_FILE) { err = -ENODEV; goto abort_unlock; } /* * Commands even a read-only array can execute: */ switch (cmd) { case GET_ARRAY_INFO: err = get_array_info(mddev, argp); goto done_unlock; case GET_BITMAP_FILE: err = get_bitmap_file(mddev, argp); goto done_unlock; case GET_DISK_INFO: err = get_disk_info(mddev, argp); goto done_unlock; case RESTART_ARRAY_RW: err = restart_array(mddev); goto done_unlock; case STOP_ARRAY: err = do_md_stop(mddev, 0, 1); goto done_unlock; case STOP_ARRAY_RO: err = do_md_stop(mddev, 1, 1); goto done_unlock; } /* * The remaining ioctls are changing the state of the * superblock, so we do not allow them on read-only arrays. * However non-MD ioctls (e.g. get-size) will still come through * here and hit the 'default' below, so only disallow * 'md' ioctls, and switch to rw mode if started auto-readonly. */ if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { if (mddev->ro == 2) { mddev->ro = 0; sysfs_notify_dirent(mddev->sysfs_state); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); } else { err = -EROFS; goto abort_unlock; } } switch (cmd) { case ADD_NEW_DISK: { mdu_disk_info_t info; if (copy_from_user(&info, argp, sizeof(info))) err = -EFAULT; else err = add_new_disk(mddev, &info); goto done_unlock; } case HOT_REMOVE_DISK: err = hot_remove_disk(mddev, new_decode_dev(arg)); goto done_unlock; case HOT_ADD_DISK: err = hot_add_disk(mddev, new_decode_dev(arg)); goto done_unlock; case SET_DISK_FAULTY: err = set_disk_faulty(mddev, new_decode_dev(arg)); goto done_unlock; case RUN_ARRAY: err = do_md_run(mddev); goto done_unlock; case SET_BITMAP_FILE: err = set_bitmap_file(mddev, (int)arg); goto done_unlock; default: err = -EINVAL; goto abort_unlock; } done_unlock: abort_unlock: if (mddev->hold_active == UNTIL_IOCTL && err != -EINVAL) mddev->hold_active = 0; mddev_unlock(mddev); return err; done: if (err) MD_BUG(); abort: return err; } static int md_open(struct block_device *bdev, fmode_t mode) { /* * Succeed if we can lock the mddev, which confirms that * it isn't being stopped right now. */ mddev_t *mddev = mddev_find(bdev->bd_dev); int err; if (mddev->gendisk != bdev->bd_disk) { /* we are racing with mddev_put which is discarding this * bd_disk. */ mddev_put(mddev); /* Wait until bdev->bd_disk is definitely gone */ flush_scheduled_work(); /* Then retry the open from the top */ return -ERESTARTSYS; } BUG_ON(mddev != bdev->bd_disk->private_data); if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) goto out; err = 0; atomic_inc(&mddev->openers); mddev_unlock(mddev); check_disk_change(bdev); out: return err; } static int md_release(struct gendisk *disk, fmode_t mode) { mddev_t *mddev = disk->private_data; BUG_ON(!mddev); atomic_dec(&mddev->openers); mddev_put(mddev); return 0; } static int md_media_changed(struct gendisk *disk) { mddev_t *mddev = disk->private_data; return mddev->changed; } static int md_revalidate(struct gendisk *disk) { mddev_t *mddev = disk->private_data; mddev->changed = 0; return 0; } static struct block_device_operations md_fops = { .owner = THIS_MODULE, .open = md_open, .release = md_release, .ioctl = md_ioctl, .getgeo = md_getgeo, .media_changed = md_media_changed, .revalidate_disk= md_revalidate, }; static int md_thread(void * arg) { mdk_thread_t *thread = arg; /* * md_thread is a 'system-thread', it's priority should be very * high. We avoid resource deadlocks individually in each * raid personality. (RAID5 does preallocation) We also use RR and * the very same RT priority as kswapd, thus we will never get * into a priority inversion deadlock. * * we definitely have to have equal or higher priority than * bdflush, otherwise bdflush will deadlock if there are too * many dirty RAID5 blocks. */ allow_signal(SIGKILL); while (!kthread_should_stop()) { /* We need to wait INTERRUPTIBLE so that * we don't add to the load-average. * That means we need to be sure no signals are * pending */ if (signal_pending(current)) flush_signals(current); wait_event_interruptible_timeout (thread->wqueue, test_bit(THREAD_WAKEUP, &thread->flags) || kthread_should_stop(), thread->timeout); clear_bit(THREAD_WAKEUP, &thread->flags); thread->run(thread->mddev); } return 0; } void md_wakeup_thread(mdk_thread_t *thread) { if (thread) { dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); set_bit(THREAD_WAKEUP, &thread->flags); wake_up(&thread->wqueue); } } mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, const char *name) { mdk_thread_t *thread; thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); if (!thread) return NULL; init_waitqueue_head(&thread->wqueue); thread->run = run; thread->mddev = mddev; thread->timeout = MAX_SCHEDULE_TIMEOUT; thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); if (IS_ERR(thread->tsk)) { kfree(thread); return NULL; } return thread; } void md_unregister_thread(mdk_thread_t *thread) { if (!thread) return; dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); kthread_stop(thread->tsk); kfree(thread); } void md_error(mddev_t *mddev, mdk_rdev_t *rdev) { if (!mddev) { MD_BUG(); return; } if (!rdev || test_bit(Faulty, &rdev->flags)) return; if (mddev->external) set_bit(Blocked, &rdev->flags); /* dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", mdname(mddev), MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), __builtin_return_address(0),__builtin_return_address(1), __builtin_return_address(2),__builtin_return_address(3)); */ if (!mddev->pers) return; if (!mddev->pers->error_handler) return; mddev->pers->error_handler(mddev,rdev); if (mddev->degraded) set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); set_bit(StateChanged, &rdev->flags); set_bit(MD_RECOVERY_INTR, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); md_new_event_inintr(mddev); } /* seq_file implementation /proc/mdstat */ static void status_unused(struct seq_file *seq) { int i = 0; mdk_rdev_t *rdev; seq_printf(seq, "unused devices: "); list_for_each_entry(rdev, &pending_raid_disks, same_set) { char b[BDEVNAME_SIZE]; i++; seq_printf(seq, "%s ", bdevname(rdev->bdev,b)); } if (!i) seq_printf(seq, "<none>"); seq_printf(seq, "\n"); } static void status_resync(struct seq_file *seq, mddev_t * mddev) { sector_t max_sectors, resync, res; unsigned long dt, db; sector_t rt; int scale; unsigned int per_milli; resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) max_sectors = mddev->resync_max_sectors; else max_sectors = mddev->dev_sectors; /* * Should not happen. */ if (!max_sectors) { MD_BUG(); return; } /* Pick 'scale' such that (resync>>scale)*1000 will fit * in a sector_t, and (max_sectors>>scale) will fit in a * u32, as those are the requirements for sector_div. * Thus 'scale' must be at least 10 */ scale = 10; if (sizeof(sector_t) > sizeof(unsigned long)) { while ( max_sectors/2 > (1ULL<<(scale+32))) scale++; } res = (resync>>scale)*1000; sector_div(res, (u32)((max_sectors>>scale)+1)); per_milli = res; { int i, x = per_milli/50, y = 20-x; seq_printf(seq, "["); for (i = 0; i < x; i++) seq_printf(seq, "="); seq_printf(seq, ">"); for (i = 0; i < y; i++) seq_printf(seq, "."); seq_printf(seq, "] "); } seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? "reshape" : (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? "check" : (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"))), per_milli/10, per_milli % 10, (unsigned long long) resync/2, (unsigned long long) max_sectors/2); /* * dt: time from mark until now * db: blocks written from mark until now * rt: remaining time * * rt is a sector_t, so could be 32bit or 64bit. * So we divide before multiply in case it is 32bit and close * to the limit. * We scale the divisor (db) by 32 to avoid loosing precision * near the end of resync when the number of remaining sectors * is close to 'db'. * We then divide rt by 32 after multiplying by db to compensate. * The '+1' avoids division by zero if db is very small. */ dt = ((jiffies - mddev->resync_mark) / HZ); if (!dt) dt++; db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) - mddev->resync_mark_cnt; rt = max_sectors - resync; /* number of remaining sectors */ sector_div(rt, db/32+1); rt *= dt; rt >>= 5; seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, ((unsigned long)rt % 60)/6); seq_printf(seq, " speed=%ldK/sec", db/2/dt); } static void *md_seq_start(struct seq_file *seq, loff_t *pos) { struct list_head *tmp; loff_t l = *pos; mddev_t *mddev; if (l >= 0x10000) return NULL; if (!l--) /* header */ return (void*)1; spin_lock(&all_mddevs_lock); list_for_each(tmp,&all_mddevs) if (!l--) { mddev = list_entry(tmp, mddev_t, all_mddevs); mddev_get(mddev); spin_unlock(&all_mddevs_lock); return mddev; } spin_unlock(&all_mddevs_lock); if (!l--) return (void*)2;/* tail */ return NULL; } static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct list_head *tmp; mddev_t *next_mddev, *mddev = v; ++*pos; if (v == (void*)2) return NULL; spin_lock(&all_mddevs_lock); if (v == (void*)1) tmp = all_mddevs.next; else tmp = mddev->all_mddevs.next; if (tmp != &all_mddevs) next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); else { next_mddev = (void*)2; *pos = 0x10000; } spin_unlock(&all_mddevs_lock); if (v != (void*)1) mddev_put(mddev); return next_mddev; } static void md_seq_stop(struct seq_file *seq, void *v) { mddev_t *mddev = v; if (mddev && v != (void*)1 && v != (void*)2) mddev_put(mddev); } struct mdstat_info { int event; }; static int md_seq_show(struct seq_file *seq, void *v) { mddev_t *mddev = v; sector_t sectors; mdk_rdev_t *rdev; struct mdstat_info *mi = seq->private; struct bitmap *bitmap; if (v == (void*)1) { struct mdk_personality *pers; seq_printf(seq, "Personalities : "); spin_lock(&pers_lock); list_for_each_entry(pers, &pers_list, list) seq_printf(seq, "[%s] ", pers->name); spin_unlock(&pers_lock); seq_printf(seq, "\n"); mi->event = atomic_read(&md_event_count); return 0; } if (v == (void*)2) { status_unused(seq); return 0; } if (mddev_lock(mddev) < 0) return -EINTR; if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { seq_printf(seq, "%s : %sactive", mdname(mddev), mddev->pers ? "" : "in"); if (mddev->pers) { if (mddev->ro==1) seq_printf(seq, " (read-only)"); if (mddev->ro==2) seq_printf(seq, " (auto-read-only)"); seq_printf(seq, " %s", mddev->pers->name); } sectors = 0; list_for_each_entry(rdev, &mddev->disks, same_set) { char b[BDEVNAME_SIZE]; seq_printf(seq, " %s[%d]", bdevname(rdev->bdev,b), rdev->desc_nr); if (test_bit(WriteMostly, &rdev->flags)) seq_printf(seq, "(W)"); if (test_bit(Faulty, &rdev->flags)) { seq_printf(seq, "(F)"); continue; } else if (rdev->raid_disk < 0) seq_printf(seq, "(S)"); /* spare */ sectors += rdev->sectors; } if (!list_empty(&mddev->disks)) { if (mddev->pers) seq_printf(seq, "\n %llu blocks", (unsigned long long) mddev->array_sectors / 2); else seq_printf(seq, "\n %llu blocks", (unsigned long long)sectors / 2); } if (mddev->persistent) { if (mddev->major_version != 0 || mddev->minor_version != 90) { seq_printf(seq," super %d.%d", mddev->major_version, mddev->minor_version); } } else if (mddev->external) seq_printf(seq, " super external:%s", mddev->metadata_type); else seq_printf(seq, " super non-persistent"); if (mddev->pers) { mddev->pers->status(seq, mddev); seq_printf(seq, "\n "); if (mddev->pers->sync_request) { if (mddev->curr_resync > 2) { status_resync(seq, mddev); seq_printf(seq, "\n "); } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) seq_printf(seq, "\tresync=DELAYED\n "); else if (mddev->recovery_cp < MaxSector) seq_printf(seq, "\tresync=PENDING\n "); } } else seq_printf(seq, "\n "); if ((bitmap = mddev->bitmap)) { unsigned long chunk_kb; unsigned long flags; spin_lock_irqsave(&bitmap->lock, flags); chunk_kb = bitmap->chunksize >> 10; seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " "%lu%s chunk", bitmap->pages - bitmap->missing_pages, bitmap->pages, (bitmap->pages - bitmap->missing_pages) << (PAGE_SHIFT - 10), chunk_kb ? chunk_kb : bitmap->chunksize, chunk_kb ? "KB" : "B"); if (bitmap->file) { seq_printf(seq, ", file: "); seq_path(seq, &bitmap->file->f_path, " \t\n"); } seq_printf(seq, "\n"); spin_unlock_irqrestore(&bitmap->lock, flags); } seq_printf(seq, "\n"); } mddev_unlock(mddev); return 0; } static const struct seq_operations md_seq_ops = { .start = md_seq_start, .next = md_seq_next, .stop = md_seq_stop, .show = md_seq_show, }; static int md_seq_open(struct inode *inode, struct file *file) { int error; struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); if (mi == NULL) return -ENOMEM; error = seq_open(file, &md_seq_ops); if (error) kfree(mi); else { struct seq_file *p = file->private_data; p->private = mi; mi->event = atomic_read(&md_event_count); } return error; } static unsigned int mdstat_poll(struct file *filp, poll_table *wait) { struct seq_file *m = filp->private_data; struct mdstat_info *mi = m->private; int mask; poll_wait(filp, &md_event_waiters, wait); /* always allow read */ mask = POLLIN | POLLRDNORM; if (mi->event != atomic_read(&md_event_count)) mask |= POLLERR | POLLPRI; return mask; } static const struct file_operations md_seq_fops = { .owner = THIS_MODULE, .open = md_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, .poll = mdstat_poll, }; int register_md_personality(struct mdk_personality *p) { spin_lock(&pers_lock); list_add_tail(&p->list, &pers_list); printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); spin_unlock(&pers_lock); return 0; } int unregister_md_personality(struct mdk_personality *p) { printk(KERN_INFO "md: %s personality unregistered\n", p->name); spin_lock(&pers_lock); list_del_init(&p->list); spin_unlock(&pers_lock); return 0; } static int is_mddev_idle(mddev_t *mddev, int init) { mdk_rdev_t * rdev; int idle; int curr_events; idle = 1; rcu_read_lock(); rdev_for_each_rcu(rdev, mddev) { struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + (int)part_stat_read(&disk->part0, sectors[1]) - atomic_read(&disk->sync_io); /* sync IO will cause sync_io to increase before the disk_stats * as sync_io is counted when a request starts, and * disk_stats is counted when it completes. * So resync activity will cause curr_events to be smaller than * when there was no such activity. * non-sync IO will cause disk_stat to increase without * increasing sync_io so curr_events will (eventually) * be larger than it was before. Once it becomes * substantially larger, the test below will cause * the array to appear non-idle, and resync will slow * down. * If there is a lot of outstanding resync activity when * we set last_event to curr_events, then all that activity * completing might cause the array to appear non-idle * and resync will be slowed down even though there might * not have been non-resync activity. This will only * happen once though. 'last_events' will soon reflect * the state where there is little or no outstanding * resync requests, and further resync activity will * always make curr_events less than last_events. * */ if (init || curr_events - rdev->last_events > 64) { rdev->last_events = curr_events; idle = 0; } } rcu_read_unlock(); return idle; } void md_done_sync(mddev_t *mddev, int blocks, int ok) { /* another "blocks" (512byte) blocks have been synced */ atomic_sub(blocks, &mddev->recovery_active); wake_up(&mddev->recovery_wait); if (!ok) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_wakeup_thread(mddev->thread); // stop recovery, signal do_sync .... } } /* md_write_start(mddev, bi) * If we need to update some array metadata (e.g. 'active' flag * in superblock) before writing, schedule a superblock update * and wait for it to complete. */ void md_write_start(mddev_t *mddev, struct bio *bi) { int did_change = 0; if (bio_data_dir(bi) != WRITE) return; BUG_ON(mddev->ro == 1); if (mddev->ro == 2) { /* need to switch to read/write */ mddev->ro = 0; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); md_wakeup_thread(mddev->sync_thread); did_change = 1; } atomic_inc(&mddev->writes_pending); if (mddev->safemode == 1) mddev->safemode = 0; if (mddev->in_sync) { spin_lock_irq(&mddev->write_lock); if (mddev->in_sync) { mddev->in_sync = 0; set_bit(MD_CHANGE_CLEAN, &mddev->flags); md_wakeup_thread(mddev->thread); did_change = 1; } spin_unlock_irq(&mddev->write_lock); } if (did_change) sysfs_notify_dirent(mddev->sysfs_state); wait_event(mddev->sb_wait, !test_bit(MD_CHANGE_CLEAN, &mddev->flags) && !test_bit(MD_CHANGE_PENDING, &mddev->flags)); } void md_write_end(mddev_t *mddev) { if (atomic_dec_and_test(&mddev->writes_pending)) { if (mddev->safemode == 2) md_wakeup_thread(mddev->thread); else if (mddev->safemode_delay) mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); } } /* md_allow_write(mddev) * Calling this ensures that the array is marked 'active' so that writes * may proceed without blocking. It is important to call this before * attempting a GFP_KERNEL allocation while holding the mddev lock. * Must be called with mddev_lock held. * * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock * is dropped, so return -EAGAIN after notifying userspace. */ int md_allow_write(mddev_t *mddev) { if (!mddev->pers) return 0; if (mddev->ro) return 0; if (!mddev->pers->sync_request) return 0; spin_lock_irq(&mddev->write_lock); if (mddev->in_sync) { mddev->in_sync = 0; set_bit(MD_CHANGE_CLEAN, &mddev->flags); if (mddev->safemode_delay && mddev->safemode == 0) mddev->safemode = 1; spin_unlock_irq(&mddev->write_lock); md_update_sb(mddev, 0); sysfs_notify_dirent(mddev->sysfs_state); } else spin_unlock_irq(&mddev->write_lock); if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) return -EAGAIN; else return 0; } EXPORT_SYMBOL_GPL(md_allow_write); #define SYNC_MARKS 10 #define SYNC_MARK_STEP (3*HZ) void md_do_sync(mddev_t *mddev) { mddev_t *mddev2; unsigned int currspeed = 0, window; sector_t max_sectors,j, io_sectors; unsigned long mark[SYNC_MARKS]; sector_t mark_cnt[SYNC_MARKS]; int last_mark,m; struct list_head *tmp; sector_t last_check; int skipped = 0; mdk_rdev_t *rdev; char *desc; /* just incase thread restarts... */ if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) return; if (mddev->ro) /* never try to sync a read-only array */ return; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) desc = "data-check"; else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) desc = "requested-resync"; else desc = "resync"; } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) desc = "reshape"; else desc = "recovery"; /* we overload curr_resync somewhat here. * 0 == not engaged in resync at all * 2 == checking that there is no conflict with another sync * 1 == like 2, but have yielded to allow conflicting resync to * commense * other == active in resync - this many blocks * * Before starting a resync we must have set curr_resync to * 2, and then checked that every "conflicting" array has curr_resync * less than ours. When we find one that is the same or higher * we wait on resync_wait. To avoid deadlock, we reduce curr_resync * to 1 if we choose to yield (based arbitrarily on address of mddev structure). * This will mean we have to start checking from the beginning again. * */ do { mddev->curr_resync = 2; try_again: if (kthread_should_stop()) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); goto skip; } for_each_mddev(mddev2, tmp) { if (mddev2 == mddev) continue; if (!mddev->parallel_resync && mddev2->curr_resync && match_mddev_units(mddev, mddev2)) { DEFINE_WAIT(wq); if (mddev < mddev2 && mddev->curr_resync == 2) { /* arbitrarily yield */ mddev->curr_resync = 1; wake_up(&resync_wait); } if (mddev > mddev2 && mddev->curr_resync == 1) /* no need to wait here, we can wait the next * time 'round when curr_resync == 2 */ continue; /* We need to wait 'interruptible' so as not to * contribute to the load average, and not to * be caught by 'softlockup' */ prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); if (!kthread_should_stop() && mddev2->curr_resync >= mddev->curr_resync) { printk(KERN_INFO "md: delaying %s of %s" " until %s has finished (they" " share one or more physical units)\n", desc, mdname(mddev), mdname(mddev2)); mddev_put(mddev2); if (signal_pending(current)) flush_signals(current); schedule(); finish_wait(&resync_wait, &wq); goto try_again; } finish_wait(&resync_wait, &wq); } } } while (mddev->curr_resync < 2); j = 0; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { /* resync follows the size requested by the personality, * which defaults to physical size, but can be virtual size */ max_sectors = mddev->resync_max_sectors; mddev->resync_mismatches = 0; /* we don't use the checkpoint if there's a bitmap */ if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) j = mddev->resync_min; else if (!mddev->bitmap) j = mddev->recovery_cp; } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) max_sectors = mddev->dev_sectors; else { /* recovery follows the physical size of devices */ max_sectors = mddev->dev_sectors; j = MaxSector; list_for_each_entry(rdev, &mddev->disks, same_set) if (rdev->raid_disk >= 0 && !test_bit(Faulty, &rdev->flags) && !test_bit(In_sync, &rdev->flags) && rdev->recovery_offset < j) j = rdev->recovery_offset; } printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); printk(KERN_INFO "md: minimum _guaranteed_ speed:" " %d KB/sec/disk.\n", speed_min(mddev)); printk(KERN_INFO "md: using maximum available idle IO bandwidth " "(but not more than %d KB/sec) for %s.\n", speed_max(mddev), desc); is_mddev_idle(mddev, 1); /* this initializes IO event counters */ io_sectors = 0; for (m = 0; m < SYNC_MARKS; m++) { mark[m] = jiffies; mark_cnt[m] = io_sectors; } last_mark = 0; mddev->resync_mark = mark[last_mark]; mddev->resync_mark_cnt = mark_cnt[last_mark]; /* * Tune reconstruction: */ window = 32*(PAGE_SIZE/512); printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", window/2,(unsigned long long) max_sectors/2); atomic_set(&mddev->recovery_active, 0); last_check = 0; if (j>2) { printk(KERN_INFO "md: resuming %s of %s from checkpoint.\n", desc, mdname(mddev)); mddev->curr_resync = j; } while (j < max_sectors) { sector_t sectors; skipped = 0; if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && ((mddev->curr_resync > mddev->curr_resync_completed && (mddev->curr_resync - mddev->curr_resync_completed) > (max_sectors >> 4)) || (j - mddev->curr_resync_completed)*2 >= mddev->resync_max - mddev->curr_resync_completed )) { /* time to update curr_resync_completed */ blk_unplug(mddev->queue); wait_event(mddev->recovery_wait, atomic_read(&mddev->recovery_active) == 0); mddev->curr_resync_completed = mddev->curr_resync; set_bit(MD_CHANGE_CLEAN, &mddev->flags); sysfs_notify(&mddev->kobj, NULL, "sync_completed"); } while (j >= mddev->resync_max && !kthread_should_stop()) { /* As this condition is controlled by user-space, * we can block indefinitely, so use '_interruptible' * to avoid triggering warnings. */ flush_signals(current); /* just in case */ wait_event_interruptible(mddev->recovery_wait, mddev->resync_max > j || kthread_should_stop()); } if (kthread_should_stop()) goto interrupted; sectors = mddev->pers->sync_request(mddev, j, &skipped, currspeed < speed_min(mddev)); if (sectors == 0) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); goto out; } if (!skipped) { /* actual IO requested */ io_sectors += sectors; atomic_add(sectors, &mddev->recovery_active); } j += sectors; if (j>1) mddev->curr_resync = j; mddev->curr_mark_cnt = io_sectors; if (last_check == 0) /* this is the earliers that rebuilt will be * visible in /proc/mdstat */ md_new_event(mddev); if (last_check + window > io_sectors || j == max_sectors) continue; last_check = io_sectors; if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) break; repeat: if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { /* step marks */ int next = (last_mark+1) % SYNC_MARKS; mddev->resync_mark = mark[next]; mddev->resync_mark_cnt = mark_cnt[next]; mark[next] = jiffies; mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); last_mark = next; } if (kthread_should_stop()) goto interrupted; /* * this loop exits only if either when we are slower than * the 'hard' speed limit, or the system was IO-idle for * a jiffy. * the system might be non-idle CPU-wise, but we only care * about not overloading the IO subsystem. (things like an * e2fsck being done on the RAID array should execute fast) */ blk_unplug(mddev->queue); cond_resched(); currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 /((jiffies-mddev->resync_mark)/HZ +1) +1; if (currspeed > speed_min(mddev)) { if ((currspeed > speed_max(mddev)) || !is_mddev_idle(mddev, 0)) { msleep(500); goto repeat; } } } printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); /* * this also signals 'finished resyncing' to md_stop */ out: blk_unplug(mddev->queue); wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); /* tell personality that we are finished */ mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && mddev->curr_resync > 2) { if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { if (mddev->curr_resync >= mddev->recovery_cp) { printk(KERN_INFO "md: checkpointing %s of %s.\n", desc, mdname(mddev)); mddev->recovery_cp = mddev->curr_resync; } } else mddev->recovery_cp = MaxSector; } else { if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) mddev->curr_resync = MaxSector; list_for_each_entry(rdev, &mddev->disks, same_set) if (rdev->raid_disk >= 0 && !test_bit(Faulty, &rdev->flags) && !test_bit(In_sync, &rdev->flags) && rdev->recovery_offset < mddev->curr_resync) rdev->recovery_offset = mddev->curr_resync; } } set_bit(MD_CHANGE_DEVS, &mddev->flags); skip: mddev->curr_resync = 0; mddev->curr_resync_completed = 0; mddev->resync_min = 0; mddev->resync_max = MaxSector; sysfs_notify(&mddev->kobj, NULL, "sync_completed"); wake_up(&resync_wait); set_bit(MD_RECOVERY_DONE, &mddev->recovery); md_wakeup_thread(mddev->thread); return; interrupted: /* * got a signal, exit. */ printk(KERN_INFO "md: md_do_sync() got signal ... exiting\n"); set_bit(MD_RECOVERY_INTR, &mddev->recovery); goto out; } EXPORT_SYMBOL_GPL(md_do_sync); static int remove_and_add_spares(mddev_t *mddev) { mdk_rdev_t *rdev; int spares = 0; mddev->curr_resync_completed = 0; list_for_each_entry(rdev, &mddev->disks, same_set) if (rdev->raid_disk >= 0 && !test_bit(Blocked, &rdev->flags) && (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) && atomic_read(&rdev->nr_pending)==0) { if (mddev->pers->hot_remove_disk( mddev, rdev->raid_disk)==0) { char nm[20]; sprintf(nm,"rd%d", rdev->raid_disk); sysfs_remove_link(&mddev->kobj, nm); rdev->raid_disk = -1; } } if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { list_for_each_entry(rdev, &mddev->disks, same_set) { if (rdev->raid_disk >= 0 && !test_bit(In_sync, &rdev->flags) && !test_bit(Blocked, &rdev->flags)) spares++; if (rdev->raid_disk < 0 && !test_bit(Faulty, &rdev->flags)) { rdev->recovery_offset = 0; if (mddev->pers-> hot_add_disk(mddev, rdev) == 0) { char nm[20]; sprintf(nm, "rd%d", rdev->raid_disk); if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) printk(KERN_WARNING "md: cannot register " "%s for %s\n", nm, mdname(mddev)); spares++; md_new_event(mddev); } else break; } } } return spares; } /* * This routine is regularly called by all per-raid-array threads to * deal with generic issues like resync and super-block update. * Raid personalities that don't have a thread (linear/raid0) do not * need this as they never do any recovery or update the superblock. * * It does not do any resync itself, but rather "forks" off other threads * to do that as needed. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in * "->recovery" and create a thread at ->sync_thread. * When the thread finishes it sets MD_RECOVERY_DONE * and wakeups up this thread which will reap the thread and finish up. * This thread also removes any faulty devices (with nr_pending == 0). * * The overall approach is: * 1/ if the superblock needs updating, update it. * 2/ If a recovery thread is running, don't do anything else. * 3/ If recovery has finished, clean up, possibly marking spares active. * 4/ If there are any faulty devices, remove them. * 5/ If array is degraded, try to add spares devices * 6/ If array has spares or is not in-sync, start a resync thread. */ void md_check_recovery(mddev_t *mddev) { mdk_rdev_t *rdev; if (mddev->bitmap) bitmap_daemon_work(mddev->bitmap); if (mddev->ro) return; if (signal_pending(current)) { if (mddev->pers->sync_request && !mddev->external) { printk(KERN_INFO "md: %s in immediate safe mode\n", mdname(mddev)); mddev->safemode = 2; } flush_signals(current); } if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return; if ( ! ( (mddev->flags && !mddev->external) || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || test_bit(MD_RECOVERY_DONE, &mddev->recovery) || (mddev->external == 0 && mddev->safemode == 1) || (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) && !mddev->in_sync && mddev->recovery_cp == MaxSector) )) return; if (mddev_trylock(mddev)) { int spares = 0; if (mddev->ro) { /* Only thing we do on a ro array is remove * failed devices. */ remove_and_add_spares(mddev); clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); goto unlock; } if (!mddev->external) { int did_change = 0; spin_lock_irq(&mddev->write_lock); if (mddev->safemode && !atomic_read(&mddev->writes_pending) && !mddev->in_sync && mddev->recovery_cp == MaxSector) { mddev->in_sync = 1; did_change = 1; if (mddev->persistent) set_bit(MD_CHANGE_CLEAN, &mddev->flags); } if (mddev->safemode == 1) mddev->safemode = 0; spin_unlock_irq(&mddev->write_lock); if (did_change) sysfs_notify_dirent(mddev->sysfs_state); } if (mddev->flags) md_update_sb(mddev, 0); list_for_each_entry(rdev, &mddev->disks, same_set) if (test_and_clear_bit(StateChanged, &rdev->flags)) sysfs_notify_dirent(rdev->sysfs_state); if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { /* resync/recovery still happening */ clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); goto unlock; } if (mddev->sync_thread) { /* resync has finished, collect result */ md_unregister_thread(mddev->sync_thread); mddev->sync_thread = NULL; if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { /* success...*/ /* activate any spares */ if (mddev->pers->spare_active(mddev)) sysfs_notify(&mddev->kobj, NULL, "degraded"); } if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && mddev->pers->finish_reshape) mddev->pers->finish_reshape(mddev); md_update_sb(mddev, 1); /* if array is no-longer degraded, then any saved_raid_disk * information must be scrapped */ if (!mddev->degraded) list_for_each_entry(rdev, &mddev->disks, same_set) rdev->saved_raid_disk = -1; mddev->recovery = 0; /* flag recovery needed just to double check */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); sysfs_notify_dirent(mddev->sysfs_action); md_new_event(mddev); goto unlock; } /* Set RUNNING before clearing NEEDED to avoid * any transients in the value of "sync_action". */ set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); /* Clear some bits that don't mean anything, but * might be left set */ clear_bit(MD_RECOVERY_INTR, &mddev->recovery); clear_bit(MD_RECOVERY_DONE, &mddev->recovery); if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) goto unlock; /* no recovery is running. * remove any failed drives, then * add spares if possible. * Spare are also removed and re-added, to allow * the personality to fail the re-add. */ if (mddev->reshape_position != MaxSector) { if (mddev->pers->check_reshape == NULL || mddev->pers->check_reshape(mddev) != 0) /* Cannot proceed */ goto unlock; set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); } else if ((spares = remove_and_add_spares(mddev))) { clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); } else if (mddev->recovery_cp < MaxSector) { set_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) /* nothing to be done ... */ goto unlock; if (mddev->pers->sync_request) { if (spares && mddev->bitmap && ! mddev->bitmap->file) { /* We are adding a device or devices to an array * which has the bitmap stored on all devices. * So make sure all bitmap pages get written */ bitmap_write_all(mddev->bitmap); } mddev->sync_thread = md_register_thread(md_do_sync, mddev, "%s_resync"); if (!mddev->sync_thread) { printk(KERN_ERR "%s: could not start resync" " thread...\n", mdname(mddev)); /* leave the spares where they are, it shouldn't hurt */ mddev->recovery = 0; } else md_wakeup_thread(mddev->sync_thread); sysfs_notify_dirent(mddev->sysfs_action); md_new_event(mddev); } unlock: if (!mddev->sync_thread) { clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); if (test_and_clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) if (mddev->sysfs_action) sysfs_notify_dirent(mddev->sysfs_action); } mddev_unlock(mddev); } } void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) { sysfs_notify_dirent(rdev->sysfs_state); wait_event_timeout(rdev->blocked_wait, !test_bit(Blocked, &rdev->flags), msecs_to_jiffies(5000)); rdev_dec_pending(rdev, mddev); } EXPORT_SYMBOL(md_wait_for_blocked_rdev); static int md_notify_reboot(struct notifier_block *this, unsigned long code, void *x) { struct list_head *tmp; mddev_t *mddev; if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { printk(KERN_INFO "md: stopping all md devices.\n"); for_each_mddev(mddev, tmp) if (mddev_trylock(mddev)) { /* Force a switch to readonly even array * appears to still be in use. Hence * the '100'. */ do_md_stop(mddev, 1, 100); mddev_unlock(mddev); } /* * certain more exotic SCSI devices are known to be * volatile wrt too early system reboots. While the * right place to handle this issue is the given * driver, we do want to have a safe RAID driver ... */ mdelay(1000*1); } return NOTIFY_DONE; } static struct notifier_block md_notifier = { .notifier_call = md_notify_reboot, .next = NULL, .priority = INT_MAX, /* before any real devices */ }; static void md_geninit(void) { dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); } static int __init md_init(void) { if (register_blkdev(MD_MAJOR, "md")) return -1; if ((mdp_major=register_blkdev(0, "mdp"))<=0) { unregister_blkdev(MD_MAJOR, "md"); return -1; } blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, md_probe, NULL, NULL); blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, md_probe, NULL, NULL); register_reboot_notifier(&md_notifier); raid_table_header = register_sysctl_table(raid_root_table); md_geninit(); return 0; } #ifndef MODULE /* * Searches all registered partitions for autorun RAID arrays * at boot time. */ static LIST_HEAD(all_detected_devices); struct detected_devices_node { struct list_head list; dev_t dev; }; void md_autodetect_dev(dev_t dev) { struct detected_devices_node *node_detected_dev; node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); if (node_detected_dev) { node_detected_dev->dev = dev; list_add_tail(&node_detected_dev->list, &all_detected_devices); } else { printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); } } static void autostart_arrays(int part) { mdk_rdev_t *rdev; struct detected_devices_node *node_detected_dev; dev_t dev; int i_scanned, i_passed; i_scanned = 0; i_passed = 0; printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { i_scanned++; node_detected_dev = list_entry(all_detected_devices.next, struct detected_devices_node, list); list_del(&node_detected_dev->list); dev = node_detected_dev->dev; kfree(node_detected_dev); rdev = md_import_device(dev,0, 90); if (IS_ERR(rdev)) continue; if (test_bit(Faulty, &rdev->flags)) { MD_BUG(); continue; } set_bit(AutoDetected, &rdev->flags); list_add(&rdev->same_set, &pending_raid_disks); i_passed++; } printk(KERN_INFO "md: Scanned %d and added %d devices.\n", i_scanned, i_passed); autorun_devices(part); } #endif /* !MODULE */ static __exit void md_exit(void) { mddev_t *mddev; struct list_head *tmp; blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); unregister_blkdev(MD_MAJOR,"md"); unregister_blkdev(mdp_major, "mdp"); unregister_reboot_notifier(&md_notifier); unregister_sysctl_table(raid_table_header); remove_proc_entry("mdstat", NULL); for_each_mddev(mddev, tmp) { export_array(mddev); mddev->hold_active = 0; } } subsys_initcall(md_init); module_exit(md_exit) static int get_ro(char *buffer, struct kernel_param *kp) { return sprintf(buffer, "%d", start_readonly); } static int set_ro(const char *val, struct kernel_param *kp) { char *e; int num = simple_strtoul(val, &e, 10); if (*val && (*e == '\0' || *e == '\n')) { start_readonly = num; return 0; } return -EINVAL; } module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); EXPORT_SYMBOL(register_md_personality); EXPORT_SYMBOL(unregister_md_personality); EXPORT_SYMBOL(md_error); EXPORT_SYMBOL(md_done_sync); EXPORT_SYMBOL(md_write_start); EXPORT_SYMBOL(md_write_end); EXPORT_SYMBOL(md_register_thread); EXPORT_SYMBOL(md_unregister_thread); EXPORT_SYMBOL(md_wakeup_thread); EXPORT_SYMBOL(md_check_recovery); MODULE_LICENSE("GPL"); MODULE_ALIAS("md"); MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);