aboutsummaryrefslogtreecommitdiffstats
path: root/fs/nfsd/nfs4callback.c
blob: 4bc22c763de7b433b4a37f2affdf75cc560d3908 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
/*
 *  Copyright (c) 2001 The Regents of the University of Michigan.
 *  All rights reserved.
 *
 *  Kendrick Smith <kmsmith@umich.edu>
 *  Andy Adamson <andros@umich.edu>
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *  1. Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *  3. Neither the name of the University nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <linux/sunrpc/clnt.h>
#include "nfsd.h"
#include "state.h"

#define NFSDDBG_FACILITY                NFSDDBG_PROC

#define NFSPROC4_CB_NULL 0
#define NFSPROC4_CB_COMPOUND 1
#define NFS4_STATEID_SIZE 16

/* Index of predefined Linux callback client operations */

enum {
	NFSPROC4_CLNT_CB_NULL = 0,
	NFSPROC4_CLNT_CB_RECALL,
	NFSPROC4_CLNT_CB_SEQUENCE,
};

enum nfs_cb_opnum4 {
	OP_CB_RECALL            = 4,
	OP_CB_SEQUENCE          = 11,
};

#define NFS4_MAXTAGLEN		20

#define NFS4_enc_cb_null_sz		0
#define NFS4_dec_cb_null_sz		0
#define cb_compound_enc_hdr_sz		4
#define cb_compound_dec_hdr_sz		(3 + (NFS4_MAXTAGLEN >> 2))
#define sessionid_sz			(NFS4_MAX_SESSIONID_LEN >> 2)
#define cb_sequence_enc_sz		(sessionid_sz + 4 +             \
					1 /* no referring calls list yet */)
#define cb_sequence_dec_sz		(op_dec_sz + sessionid_sz + 4)

#define op_enc_sz			1
#define op_dec_sz			2
#define enc_nfs4_fh_sz			(1 + (NFS4_FHSIZE >> 2))
#define enc_stateid_sz			(NFS4_STATEID_SIZE >> 2)
#define NFS4_enc_cb_recall_sz		(cb_compound_enc_hdr_sz +       \
					cb_sequence_enc_sz +            \
					1 + enc_stateid_sz +            \
					enc_nfs4_fh_sz)

#define NFS4_dec_cb_recall_sz		(cb_compound_dec_hdr_sz  +      \
					cb_sequence_dec_sz +            \
					op_dec_sz)

struct nfs4_rpc_args {
	void				*args_op;
	struct nfsd4_cb_sequence	args_seq;
};

/*
* Generic encode routines from fs/nfs/nfs4xdr.c
*/
static inline __be32 *
xdr_writemem(__be32 *p, const void *ptr, int nbytes)
{
	int tmp = XDR_QUADLEN(nbytes);
	if (!tmp)
		return p;
	p[tmp-1] = 0;
	memcpy(p, ptr, nbytes);
	return p + tmp;
}

#define WRITE32(n)               *p++ = htonl(n)
#define WRITEMEM(ptr,nbytes)     do {                           \
	p = xdr_writemem(p, ptr, nbytes);                       \
} while (0)
#define RESERVE_SPACE(nbytes)   do {                            \
	p = xdr_reserve_space(xdr, nbytes);                     \
	if (!p) dprintk("NFSD: RESERVE_SPACE(%d) failed in function %s\n", (int) (nbytes), __func__); \
	BUG_ON(!p);                                             \
} while (0)

/*
 * Generic decode routines from fs/nfs/nfs4xdr.c
 */
#define DECODE_TAIL                             \
	status = 0;                             \
out:                                            \
	return status;                          \
xdr_error:                                      \
	dprintk("NFSD: xdr error! (%s:%d)\n", __FILE__, __LINE__); \
	status = -EIO;                          \
	goto out

#define READ32(x)         (x) = ntohl(*p++)
#define READ64(x)         do {                  \
	(x) = (u64)ntohl(*p++) << 32;           \
	(x) |= ntohl(*p++);                     \
} while (0)
#define READTIME(x)       do {                  \
	p++;                                    \
	(x.tv_sec) = ntohl(*p++);               \
	(x.tv_nsec) = ntohl(*p++);              \
} while (0)
#define READ_BUF(nbytes)  do { \
	p = xdr_inline_decode(xdr, nbytes); \
	if (!p) { \
		dprintk("NFSD: %s: reply buffer overflowed in line %d.\n", \
			__func__, __LINE__); \
		return -EIO; \
	} \
} while (0)

struct nfs4_cb_compound_hdr {
	/* args */
	u32		ident;	/* minorversion 0 only */
	u32		nops;
	__be32		*nops_p;
	u32		minorversion;
	/* res */
	int		status;
	u32		taglen;
	char		*tag;
};

static struct {
int stat;
int errno;
} nfs_cb_errtbl[] = {
	{ NFS4_OK,		0               },
	{ NFS4ERR_PERM,		EPERM           },
	{ NFS4ERR_NOENT,	ENOENT          },
	{ NFS4ERR_IO,		EIO             },
	{ NFS4ERR_NXIO,		ENXIO           },
	{ NFS4ERR_ACCESS,	EACCES          },
	{ NFS4ERR_EXIST,	EEXIST          },
	{ NFS4ERR_XDEV,		EXDEV           },
	{ NFS4ERR_NOTDIR,	ENOTDIR         },
	{ NFS4ERR_ISDIR,	EISDIR          },
	{ NFS4ERR_INVAL,	EINVAL          },
	{ NFS4ERR_FBIG,		EFBIG           },
	{ NFS4ERR_NOSPC,	ENOSPC          },
	{ NFS4ERR_ROFS,		EROFS           },
	{ NFS4ERR_MLINK,	EMLINK          },
	{ NFS4ERR_NAMETOOLONG,	ENAMETOOLONG    },
	{ NFS4ERR_NOTEMPTY,	ENOTEMPTY       },
	{ NFS4ERR_DQUOT,	EDQUOT          },
	{ NFS4ERR_STALE,	ESTALE          },
	{ NFS4ERR_BADHANDLE,	EBADHANDLE      },
	{ NFS4ERR_BAD_COOKIE,	EBADCOOKIE      },
	{ NFS4ERR_NOTSUPP,	ENOTSUPP        },
	{ NFS4ERR_TOOSMALL,	ETOOSMALL       },
	{ NFS4ERR_SERVERFAULT,	ESERVERFAULT    },
	{ NFS4ERR_BADTYPE,	EBADTYPE        },
	{ NFS4ERR_LOCKED,	EAGAIN          },
	{ NFS4ERR_RESOURCE,	EREMOTEIO       },
	{ NFS4ERR_SYMLINK,	ELOOP           },
	{ NFS4ERR_OP_ILLEGAL,	EOPNOTSUPP      },
	{ NFS4ERR_DEADLOCK,	EDEADLK         },
	{ -1,                   EIO             }
};

static int
nfs_cb_stat_to_errno(int stat)
{
	int i;
	for (i = 0; nfs_cb_errtbl[i].stat != -1; i++) {
		if (nfs_cb_errtbl[i].stat == stat)
			return nfs_cb_errtbl[i].errno;
	}
	/* If we cannot translate the error, the recovery routines should
	* handle it.
	* Note: remaining NFSv4 error codes have values > 10000, so should
	* not conflict with native Linux error codes.
	*/
	return stat;
}

/*
 * XDR encode
 */

static void
encode_cb_compound_hdr(struct xdr_stream *xdr, struct nfs4_cb_compound_hdr *hdr)
{
	__be32 * p;

	RESERVE_SPACE(16);
	WRITE32(0);            /* tag length is always 0 */
	WRITE32(hdr->minorversion);
	WRITE32(hdr->ident);
	hdr->nops_p = p;
	WRITE32(hdr->nops);
}

static void encode_cb_nops(struct nfs4_cb_compound_hdr *hdr)
{
	*hdr->nops_p = htonl(hdr->nops);
}

static void
encode_cb_recall(struct xdr_stream *xdr, struct nfs4_delegation *dp,
		struct nfs4_cb_compound_hdr *hdr)
{
	__be32 *p;
	int len = dp->dl_fh.fh_size;

	RESERVE_SPACE(12+sizeof(dp->dl_stateid) + len);
	WRITE32(OP_CB_RECALL);
	WRITE32(dp->dl_stateid.si_generation);
	WRITEMEM(&dp->dl_stateid.si_opaque, sizeof(stateid_opaque_t));
	WRITE32(0); /* truncate optimization not implemented */
	WRITE32(len);
	WRITEMEM(&dp->dl_fh.fh_base, len);
	hdr->nops++;
}

static void
encode_cb_sequence(struct xdr_stream *xdr, struct nfsd4_cb_sequence *args,
		   struct nfs4_cb_compound_hdr *hdr)
{
	__be32 *p;

	if (hdr->minorversion == 0)
		return;

	RESERVE_SPACE(1 + NFS4_MAX_SESSIONID_LEN + 20);

	WRITE32(OP_CB_SEQUENCE);
	WRITEMEM(args->cbs_clp->cl_sessionid.data, NFS4_MAX_SESSIONID_LEN);
	WRITE32(args->cbs_clp->cl_cb_seq_nr);
	WRITE32(0);		/* slotid, always 0 */
	WRITE32(0);		/* highest slotid always 0 */
	WRITE32(0);		/* cachethis always 0 */
	WRITE32(0); /* FIXME: support referring_call_lists */
	hdr->nops++;
}

static int
nfs4_xdr_enc_cb_null(struct rpc_rqst *req, __be32 *p)
{
	struct xdr_stream xdrs, *xdr = &xdrs;

	xdr_init_encode(&xdrs, &req->rq_snd_buf, p);
        RESERVE_SPACE(0);
	return 0;
}

static int
nfs4_xdr_enc_cb_recall(struct rpc_rqst *req, __be32 *p,
		struct nfs4_rpc_args *rpc_args)
{
	struct xdr_stream xdr;
	struct nfs4_delegation *args = rpc_args->args_op;
	struct nfs4_cb_compound_hdr hdr = {
		.ident = args->dl_ident,
		.minorversion = rpc_args->args_seq.cbs_minorversion,
	};

	xdr_init_encode(&xdr, &req->rq_snd_buf, p);
	encode_cb_compound_hdr(&xdr, &hdr);
	encode_cb_sequence(&xdr, &rpc_args->args_seq, &hdr);
	encode_cb_recall(&xdr, args, &hdr);
	encode_cb_nops(&hdr);
	return 0;
}


static int
decode_cb_compound_hdr(struct xdr_stream *xdr, struct nfs4_cb_compound_hdr *hdr){
        __be32 *p;

        READ_BUF(8);
        READ32(hdr->status);
        READ32(hdr->taglen);
        READ_BUF(hdr->taglen + 4);
        hdr->tag = (char *)p;
        p += XDR_QUADLEN(hdr->taglen);
        READ32(hdr->nops);
        return 0;
}

static int
decode_cb_op_hdr(struct xdr_stream *xdr, enum nfs_opnum4 expected)
{
	__be32 *p;
	u32 op;
	int32_t nfserr;

	READ_BUF(8);
	READ32(op);
	if (op != expected) {
		dprintk("NFSD: decode_cb_op_hdr: Callback server returned "
		         " operation %d but we issued a request for %d\n",
		         op, expected);
		return -EIO;
	}
	READ32(nfserr);
	if (nfserr != NFS_OK)
		return -nfs_cb_stat_to_errno(nfserr);
	return 0;
}

/*
 * Our current back channel implmentation supports a single backchannel
 * with a single slot.
 */
static int
decode_cb_sequence(struct xdr_stream *xdr, struct nfsd4_cb_sequence *res,
		   struct rpc_rqst *rqstp)
{
	struct nfs4_sessionid id;
	int status;
	u32 dummy;
	__be32 *p;

	if (res->cbs_minorversion == 0)
		return 0;

	status = decode_cb_op_hdr(xdr, OP_CB_SEQUENCE);
	if (status)
		return status;

	/*
	 * If the server returns different values for sessionID, slotID or
	 * sequence number, the server is looney tunes.
	 */
	status = -ESERVERFAULT;

	READ_BUF(NFS4_MAX_SESSIONID_LEN + 16);
	memcpy(id.data, p, NFS4_MAX_SESSIONID_LEN);
	p += XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN);
	if (memcmp(id.data, res->cbs_clp->cl_sessionid.data,
		   NFS4_MAX_SESSIONID_LEN)) {
		dprintk("%s Invalid session id\n", __func__);
		goto out;
	}
	READ32(dummy);
	if (dummy != res->cbs_clp->cl_cb_seq_nr) {
		dprintk("%s Invalid sequence number\n", __func__);
		goto out;
	}
	READ32(dummy); 	/* slotid must be 0 */
	if (dummy != 0) {
		dprintk("%s Invalid slotid\n", __func__);
		goto out;
	}
	/* FIXME: process highest slotid and target highest slotid */
	status = 0;
out:
	return status;
}


static int
nfs4_xdr_dec_cb_null(struct rpc_rqst *req, __be32 *p)
{
	return 0;
}

static int
nfs4_xdr_dec_cb_recall(struct rpc_rqst *rqstp, __be32 *p,
		struct nfsd4_cb_sequence *seq)
{
	struct xdr_stream xdr;
	struct nfs4_cb_compound_hdr hdr;
	int status;

	xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p);
	status = decode_cb_compound_hdr(&xdr, &hdr);
	if (status)
		goto out;
	if (seq) {
		status = decode_cb_sequence(&xdr, seq, rqstp);
		if (status)
			goto out;
	}
	status = decode_cb_op_hdr(&xdr, OP_CB_RECALL);
out:
	return status;
}

/*
 * RPC procedure tables
 */
#define PROC(proc, call, argtype, restype)                              \
[NFSPROC4_CLNT_##proc] = {                                      	\
        .p_proc   = NFSPROC4_CB_##call,					\
        .p_encode = (kxdrproc_t) nfs4_xdr_##argtype,                    \
        .p_decode = (kxdrproc_t) nfs4_xdr_##restype,                    \
        .p_arglen = NFS4_##argtype##_sz,                                \
        .p_replen = NFS4_##restype##_sz,                                \
        .p_statidx = NFSPROC4_CB_##call,				\
	.p_name   = #proc,                                              \
}

static struct rpc_procinfo     nfs4_cb_procedures[] = {
    PROC(CB_NULL,      NULL,     enc_cb_null,     dec_cb_null),
    PROC(CB_RECALL,    COMPOUND,   enc_cb_recall,      dec_cb_recall),
};

static struct rpc_version       nfs_cb_version4 = {
        .number                 = 1,
        .nrprocs                = ARRAY_SIZE(nfs4_cb_procedures),
        .procs                  = nfs4_cb_procedures
};

static struct rpc_version *	nfs_cb_version[] = {
	NULL,
	&nfs_cb_version4,
};

static struct rpc_program cb_program;

static struct rpc_stat cb_stats = {
		.program	= &cb_program
};

#define NFS4_CALLBACK 0x40000000
static struct rpc_program cb_program = {
		.name 		= "nfs4_cb",
		.number		= NFS4_CALLBACK,
		.nrvers		= ARRAY_SIZE(nfs_cb_version),
		.version	= nfs_cb_version,
		.stats		= &cb_stats,
		.pipe_dir_name  = "/nfsd4_cb",
};

static int max_cb_time(void)
{
	return max(NFSD_LEASE_TIME/10, (time_t)1) * HZ;
}

/* Reference counting, callback cleanup, etc., all look racy as heck.
 * And why is cb_set an atomic? */

int setup_callback_client(struct nfs4_client *clp)
{
	struct nfs4_cb_conn *cb = &clp->cl_cb_conn;
	struct rpc_timeout	timeparms = {
		.to_initval	= max_cb_time(),
		.to_retries	= 0,
	};
	struct rpc_create_args args = {
		.protocol	= XPRT_TRANSPORT_TCP,
		.address	= (struct sockaddr *) &cb->cb_addr,
		.addrsize	= cb->cb_addrlen,
		.timeout	= &timeparms,
		.program	= &cb_program,
		.prognumber	= cb->cb_prog,
		.version	= nfs_cb_version[1]->number,
		.authflavor	= clp->cl_flavor,
		.flags		= (RPC_CLNT_CREATE_NOPING | RPC_CLNT_CREATE_QUIET),
		.client_name    = clp->cl_principal,
	};
	struct rpc_clnt *client;

	if (!clp->cl_principal && (clp->cl_flavor >= RPC_AUTH_GSS_KRB5))
		return -EINVAL;
	if (cb->cb_minorversion) {
		args.bc_xprt = clp->cl_cb_xprt;
		args.protocol = XPRT_TRANSPORT_BC_TCP;
	}
	/* Create RPC client */
	client = rpc_create(&args);
	if (IS_ERR(client)) {
		dprintk("NFSD: couldn't create callback client: %ld\n",
			PTR_ERR(client));
		return PTR_ERR(client);
	}
	cb->cb_client = client;
	return 0;

}

static void warn_no_callback_path(struct nfs4_client *clp, int reason)
{
	dprintk("NFSD: warning: no callback path to client %.*s: error %d\n",
		(int)clp->cl_name.len, clp->cl_name.data, reason);
}

static void nfsd4_cb_probe_done(struct rpc_task *task, void *calldata)
{
	struct nfs4_client *clp = calldata;

	if (task->tk_status)
		warn_no_callback_path(clp, task->tk_status);
	else
		atomic_set(&clp->cl_cb_conn.cb_set, 1);
	put_nfs4_client(clp);
}

static const struct rpc_call_ops nfsd4_cb_probe_ops = {
	.rpc_call_done = nfsd4_cb_probe_done,
};

static struct rpc_cred *callback_cred;

int set_callback_cred(void)
{
	if (callback_cred)
		return 0;
	callback_cred = rpc_lookup_machine_cred();
	if (!callback_cred)
		return -ENOMEM;
	return 0;
}


void do_probe_callback(struct nfs4_client *clp)
{
	struct nfs4_cb_conn *cb = &clp->cl_cb_conn;
	struct rpc_message msg = {
		.rpc_proc       = &nfs4_cb_procedures[NFSPROC4_CLNT_CB_NULL],
		.rpc_argp       = clp,
		.rpc_cred	= callback_cred
	};
	int status;

	status = rpc_call_async(cb->cb_client, &msg,
				RPC_TASK_SOFT | RPC_TASK_SOFTCONN,
				&nfsd4_cb_probe_ops, (void *)clp);
	if (status) {
		warn_no_callback_path(clp, status);
		put_nfs4_client(clp);
	}
}

/*
 * Set up the callback client and put a NFSPROC4_CB_NULL on the wire...
 */
void
nfsd4_probe_callback(struct nfs4_client *clp)
{
	int status;

	BUG_ON(atomic_read(&clp->cl_cb_conn.cb_set));

	status = setup_callback_client(clp);
	if (status) {
		warn_no_callback_path(clp, status);
		return;
	}

	/* the task holds a reference to the nfs4_client struct */
	atomic_inc(&clp->cl_count);

	do_probe_callback(clp);
}

/*
 * There's currently a single callback channel slot.
 * If the slot is available, then mark it busy.  Otherwise, set the
 * thread for sleeping on the callback RPC wait queue.
 */
static int nfsd41_cb_setup_sequence(struct nfs4_client *clp,
		struct rpc_task *task)
{
	struct nfs4_rpc_args *args = task->tk_msg.rpc_argp;
	u32 *ptr = (u32 *)clp->cl_sessionid.data;
	int status = 0;

	dprintk("%s: %u:%u:%u:%u\n", __func__,
		ptr[0], ptr[1], ptr[2], ptr[3]);

	if (test_and_set_bit(0, &clp->cl_cb_slot_busy) != 0) {
		rpc_sleep_on(&clp->cl_cb_waitq, task, NULL);
		dprintk("%s slot is busy\n", __func__);
		status = -EAGAIN;
		goto out;
	}

	/*
	 * We'll need the clp during XDR encoding and decoding,
	 * and the sequence during decoding to verify the reply
	 */
	args->args_seq.cbs_clp = clp;
	task->tk_msg.rpc_resp = &args->args_seq;

out:
	dprintk("%s status=%d\n", __func__, status);
	return status;
}

/*
 * TODO: cb_sequence should support referring call lists, cachethis, multiple
 * slots, and mark callback channel down on communication errors.
 */
static void nfsd4_cb_prepare(struct rpc_task *task, void *calldata)
{
	struct nfs4_delegation *dp = calldata;
	struct nfs4_client *clp = dp->dl_client;
	struct nfs4_rpc_args *args = task->tk_msg.rpc_argp;
	u32 minorversion = clp->cl_cb_conn.cb_minorversion;
	int status = 0;

	args->args_seq.cbs_minorversion = minorversion;
	if (minorversion) {
		status = nfsd41_cb_setup_sequence(clp, task);
		if (status) {
			if (status != -EAGAIN) {
				/* terminate rpc task */
				task->tk_status = status;
				task->tk_action = NULL;
			}
			return;
		}
	}
	rpc_call_start(task);
}

static void nfsd4_cb_done(struct rpc_task *task, void *calldata)
{
	struct nfs4_delegation *dp = calldata;
	struct nfs4_client *clp = dp->dl_client;

	dprintk("%s: minorversion=%d\n", __func__,
		clp->cl_cb_conn.cb_minorversion);

	if (clp->cl_cb_conn.cb_minorversion) {
		/* No need for lock, access serialized in nfsd4_cb_prepare */
		++clp->cl_cb_seq_nr;
		clear_bit(0, &clp->cl_cb_slot_busy);
		rpc_wake_up_next(&clp->cl_cb_waitq);
		dprintk("%s: freed slot, new seqid=%d\n", __func__,
			clp->cl_cb_seq_nr);

		/* We're done looking into the sequence information */
		task->tk_msg.rpc_resp = NULL;
	}
}

static void nfsd4_cb_recall_done(struct rpc_task *task, void *calldata)
{
	struct nfs4_delegation *dp = calldata;
	struct nfs4_client *clp = dp->dl_client;

	nfsd4_cb_done(task, calldata);

	switch (task->tk_status) {
	case -EIO:
		/* Network partition? */
		atomic_set(&clp->cl_cb_conn.cb_set, 0);
		warn_no_callback_path(clp, task->tk_status);
	case -EBADHANDLE:
	case -NFS4ERR_BAD_STATEID:
		/* Race: client probably got cb_recall
		 * before open reply granting delegation */
		break;
	default:
		/* success, or error we can't handle */
		goto done;
	}
	if (dp->dl_retries--) {
		rpc_delay(task, 2*HZ);
		task->tk_status = 0;
		rpc_restart_call(task);
		return;
	} else {
		atomic_set(&clp->cl_cb_conn.cb_set, 0);
		warn_no_callback_path(clp, task->tk_status);
	}
done:
	kfree(task->tk_msg.rpc_argp);
}

static void nfsd4_cb_recall_release(void *calldata)
{
	struct nfs4_delegation *dp = calldata;
	struct nfs4_client *clp = dp->dl_client;

	nfs4_put_delegation(dp);
	put_nfs4_client(clp);
}

static const struct rpc_call_ops nfsd4_cb_recall_ops = {
	.rpc_call_prepare = nfsd4_cb_prepare,
	.rpc_call_done = nfsd4_cb_recall_done,
	.rpc_release = nfsd4_cb_recall_release,
};

/*
 * called with dp->dl_count inc'ed.
 */
void
nfsd4_cb_recall(struct nfs4_delegation *dp)
{
	struct nfs4_client *clp = dp->dl_client;
	struct rpc_clnt *clnt = clp->cl_cb_conn.cb_client;
	struct nfs4_rpc_args *args;
	struct rpc_message msg = {
		.rpc_proc = &nfs4_cb_procedures[NFSPROC4_CLNT_CB_RECALL],
		.rpc_cred = callback_cred
	};
	int status = -ENOMEM;

	args = kzalloc(sizeof(*args), GFP_KERNEL);
	if (!args)
		goto out;
	args->args_op = dp;
	msg.rpc_argp = args;
	dp->dl_retries = 1;
	status = rpc_call_async(clnt, &msg, RPC_TASK_SOFT,
				&nfsd4_cb_recall_ops, dp);
out:
	if (status) {
		kfree(args);
		put_nfs4_client(clp);
		nfs4_put_delegation(dp);
	}
}
2670'>2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
/**
 * drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
 *
 * Copyright (c) 2009-2010 Micrel, Inc.
 * 	Tristram Ha <Tristram.Ha@micrel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/mii.h>
#include <linux/platform_device.h>
#include <linux/ethtool.h>
#include <linux/etherdevice.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/sched.h>
#include <linux/slab.h>


/* DMA Registers */

#define KS_DMA_TX_CTRL			0x0000
#define DMA_TX_ENABLE			0x00000001
#define DMA_TX_CRC_ENABLE		0x00000002
#define DMA_TX_PAD_ENABLE		0x00000004
#define DMA_TX_LOOPBACK			0x00000100
#define DMA_TX_FLOW_ENABLE		0x00000200
#define DMA_TX_CSUM_IP			0x00010000
#define DMA_TX_CSUM_TCP			0x00020000
#define DMA_TX_CSUM_UDP			0x00040000
#define DMA_TX_BURST_SIZE		0x3F000000

#define KS_DMA_RX_CTRL			0x0004
#define DMA_RX_ENABLE			0x00000001
#define KS884X_DMA_RX_MULTICAST		0x00000002
#define DMA_RX_PROMISCUOUS		0x00000004
#define DMA_RX_ERROR			0x00000008
#define DMA_RX_UNICAST			0x00000010
#define DMA_RX_ALL_MULTICAST		0x00000020
#define DMA_RX_BROADCAST		0x00000040
#define DMA_RX_FLOW_ENABLE		0x00000200
#define DMA_RX_CSUM_IP			0x00010000
#define DMA_RX_CSUM_TCP			0x00020000
#define DMA_RX_CSUM_UDP			0x00040000
#define DMA_RX_BURST_SIZE		0x3F000000

#define DMA_BURST_SHIFT			24
#define DMA_BURST_DEFAULT		8

#define KS_DMA_TX_START			0x0008
#define KS_DMA_RX_START			0x000C
#define DMA_START			0x00000001

#define KS_DMA_TX_ADDR			0x0010
#define KS_DMA_RX_ADDR			0x0014

#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
#define DMA_ADDR_LIST_SHIFT		2

/* MTR0 */
#define KS884X_MULTICAST_0_OFFSET	0x0020
#define KS884X_MULTICAST_1_OFFSET	0x0021
#define KS884X_MULTICAST_2_OFFSET	0x0022
#define KS884x_MULTICAST_3_OFFSET	0x0023
/* MTR1 */
#define KS884X_MULTICAST_4_OFFSET	0x0024
#define KS884X_MULTICAST_5_OFFSET	0x0025
#define KS884X_MULTICAST_6_OFFSET	0x0026
#define KS884X_MULTICAST_7_OFFSET	0x0027

/* Interrupt Registers */

/* INTEN */
#define KS884X_INTERRUPTS_ENABLE	0x0028
/* INTST */
#define KS884X_INTERRUPTS_STATUS	0x002C

#define KS884X_INT_RX_STOPPED		0x02000000
#define KS884X_INT_TX_STOPPED		0x04000000
#define KS884X_INT_RX_OVERRUN		0x08000000
#define KS884X_INT_TX_EMPTY		0x10000000
#define KS884X_INT_RX			0x20000000
#define KS884X_INT_TX			0x40000000
#define KS884X_INT_PHY			0x80000000

#define KS884X_INT_RX_MASK		\
	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
#define KS884X_INT_TX_MASK		\
	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)

/* MAC Additional Station Address */

/* MAAL0 */
#define KS_ADD_ADDR_0_LO		0x0080
/* MAAH0 */
#define KS_ADD_ADDR_0_HI		0x0084
/* MAAL1 */
#define KS_ADD_ADDR_1_LO		0x0088
/* MAAH1 */
#define KS_ADD_ADDR_1_HI		0x008C
/* MAAL2 */
#define KS_ADD_ADDR_2_LO		0x0090
/* MAAH2 */
#define KS_ADD_ADDR_2_HI		0x0094
/* MAAL3 */
#define KS_ADD_ADDR_3_LO		0x0098
/* MAAH3 */
#define KS_ADD_ADDR_3_HI		0x009C
/* MAAL4 */
#define KS_ADD_ADDR_4_LO		0x00A0
/* MAAH4 */
#define KS_ADD_ADDR_4_HI		0x00A4
/* MAAL5 */
#define KS_ADD_ADDR_5_LO		0x00A8
/* MAAH5 */
#define KS_ADD_ADDR_5_HI		0x00AC
/* MAAL6 */
#define KS_ADD_ADDR_6_LO		0x00B0
/* MAAH6 */
#define KS_ADD_ADDR_6_HI		0x00B4
/* MAAL7 */
#define KS_ADD_ADDR_7_LO		0x00B8
/* MAAH7 */
#define KS_ADD_ADDR_7_HI		0x00BC
/* MAAL8 */
#define KS_ADD_ADDR_8_LO		0x00C0
/* MAAH8 */
#define KS_ADD_ADDR_8_HI		0x00C4
/* MAAL9 */
#define KS_ADD_ADDR_9_LO		0x00C8
/* MAAH9 */
#define KS_ADD_ADDR_9_HI		0x00CC
/* MAAL10 */
#define KS_ADD_ADDR_A_LO		0x00D0
/* MAAH10 */
#define KS_ADD_ADDR_A_HI		0x00D4
/* MAAL11 */
#define KS_ADD_ADDR_B_LO		0x00D8
/* MAAH11 */
#define KS_ADD_ADDR_B_HI		0x00DC
/* MAAL12 */
#define KS_ADD_ADDR_C_LO		0x00E0
/* MAAH12 */
#define KS_ADD_ADDR_C_HI		0x00E4
/* MAAL13 */
#define KS_ADD_ADDR_D_LO		0x00E8
/* MAAH13 */
#define KS_ADD_ADDR_D_HI		0x00EC
/* MAAL14 */
#define KS_ADD_ADDR_E_LO		0x00F0
/* MAAH14 */
#define KS_ADD_ADDR_E_HI		0x00F4
/* MAAL15 */
#define KS_ADD_ADDR_F_LO		0x00F8
/* MAAH15 */
#define KS_ADD_ADDR_F_HI		0x00FC

#define ADD_ADDR_HI_MASK		0x0000FFFF
#define ADD_ADDR_ENABLE			0x80000000
#define ADD_ADDR_INCR			8

/* Miscellaneous Registers */

/* MARL */
#define KS884X_ADDR_0_OFFSET		0x0200
#define KS884X_ADDR_1_OFFSET		0x0201
/* MARM */
#define KS884X_ADDR_2_OFFSET		0x0202
#define KS884X_ADDR_3_OFFSET		0x0203
/* MARH */
#define KS884X_ADDR_4_OFFSET		0x0204
#define KS884X_ADDR_5_OFFSET		0x0205

/* OBCR */
#define KS884X_BUS_CTRL_OFFSET		0x0210

#define BUS_SPEED_125_MHZ		0x0000
#define BUS_SPEED_62_5_MHZ		0x0001
#define BUS_SPEED_41_66_MHZ		0x0002
#define BUS_SPEED_25_MHZ		0x0003

/* EEPCR */
#define KS884X_EEPROM_CTRL_OFFSET	0x0212

#define EEPROM_CHIP_SELECT		0x0001
#define EEPROM_SERIAL_CLOCK		0x0002
#define EEPROM_DATA_OUT			0x0004
#define EEPROM_DATA_IN			0x0008
#define EEPROM_ACCESS_ENABLE		0x0010

/* MBIR */
#define KS884X_MEM_INFO_OFFSET		0x0214

#define RX_MEM_TEST_FAILED		0x0008
#define RX_MEM_TEST_FINISHED		0x0010
#define TX_MEM_TEST_FAILED		0x0800
#define TX_MEM_TEST_FINISHED		0x1000

/* GCR */
#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
#define GLOBAL_SOFTWARE_RESET		0x0001

#define KS8841_POWER_MANAGE_OFFSET	0x0218

/* WFCR */
#define KS8841_WOL_CTRL_OFFSET		0x021A
#define KS8841_WOL_MAGIC_ENABLE		0x0080
#define KS8841_WOL_FRAME3_ENABLE	0x0008
#define KS8841_WOL_FRAME2_ENABLE	0x0004
#define KS8841_WOL_FRAME1_ENABLE	0x0002
#define KS8841_WOL_FRAME0_ENABLE	0x0001

/* WF0 */
#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228

/* IACR */
#define KS884X_IACR_P			0x04A0
#define KS884X_IACR_OFFSET		KS884X_IACR_P

/* IADR1 */
#define KS884X_IADR1_P			0x04A2
#define KS884X_IADR2_P			0x04A4
#define KS884X_IADR3_P			0x04A6
#define KS884X_IADR4_P			0x04A8
#define KS884X_IADR5_P			0x04AA

#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)

#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P

/* P1MBCR */
#define KS884X_P1MBCR_P			0x04D0
#define KS884X_P1MBSR_P			0x04D2
#define KS884X_PHY1ILR_P		0x04D4
#define KS884X_PHY1IHR_P		0x04D6
#define KS884X_P1ANAR_P			0x04D8
#define KS884X_P1ANLPR_P		0x04DA

/* P2MBCR */
#define KS884X_P2MBCR_P			0x04E0
#define KS884X_P2MBSR_P			0x04E2
#define KS884X_PHY2ILR_P		0x04E4
#define KS884X_PHY2IHR_P		0x04E6
#define KS884X_P2ANAR_P			0x04E8
#define KS884X_P2ANLPR_P		0x04EA

#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)

#define KS884X_PHY_CTRL_OFFSET		0x00

/* Mode Control Register */
#define PHY_REG_CTRL			0

#define PHY_RESET			0x8000
#define PHY_LOOPBACK			0x4000
#define PHY_SPEED_100MBIT		0x2000
#define PHY_AUTO_NEG_ENABLE		0x1000
#define PHY_POWER_DOWN			0x0800
#define PHY_MII_DISABLE			0x0400
#define PHY_AUTO_NEG_RESTART		0x0200
#define PHY_FULL_DUPLEX			0x0100
#define PHY_COLLISION_TEST		0x0080
#define PHY_HP_MDIX			0x0020
#define PHY_FORCE_MDIX			0x0010
#define PHY_AUTO_MDIX_DISABLE		0x0008
#define PHY_REMOTE_FAULT_DISABLE	0x0004
#define PHY_TRANSMIT_DISABLE		0x0002
#define PHY_LED_DISABLE			0x0001

#define KS884X_PHY_STATUS_OFFSET	0x02

/* Mode Status Register */
#define PHY_REG_STATUS			1

#define PHY_100BT4_CAPABLE		0x8000
#define PHY_100BTX_FD_CAPABLE		0x4000
#define PHY_100BTX_CAPABLE		0x2000
#define PHY_10BT_FD_CAPABLE		0x1000
#define PHY_10BT_CAPABLE		0x0800
#define PHY_MII_SUPPRESS_CAPABLE	0x0040
#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
#define PHY_REMOTE_FAULT		0x0010
#define PHY_AUTO_NEG_CAPABLE		0x0008
#define PHY_LINK_STATUS			0x0004
#define PHY_JABBER_DETECT		0x0002
#define PHY_EXTENDED_CAPABILITY		0x0001

#define KS884X_PHY_ID_1_OFFSET		0x04
#define KS884X_PHY_ID_2_OFFSET		0x06

/* PHY Identifier Registers */
#define PHY_REG_ID_1			2
#define PHY_REG_ID_2			3

#define KS884X_PHY_AUTO_NEG_OFFSET	0x08

/* Auto-Negotiation Advertisement Register */
#define PHY_REG_AUTO_NEGOTIATION	4

#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
/* Not supported. */
#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
#define PHY_AUTO_NEG_100BT4		0x0200
#define PHY_AUTO_NEG_100BTX_FD		0x0100
#define PHY_AUTO_NEG_100BTX		0x0080
#define PHY_AUTO_NEG_10BT_FD		0x0040
#define PHY_AUTO_NEG_10BT		0x0020
#define PHY_AUTO_NEG_SELECTOR		0x001F
#define PHY_AUTO_NEG_802_3		0x0001

#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)

#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A

/* Auto-Negotiation Link Partner Ability Register */
#define PHY_REG_REMOTE_CAPABILITY	5

#define PHY_REMOTE_NEXT_PAGE		0x8000
#define PHY_REMOTE_ACKNOWLEDGE		0x4000
#define PHY_REMOTE_REMOTE_FAULT		0x2000
#define PHY_REMOTE_SYM_PAUSE		0x0400
#define PHY_REMOTE_100BTX_FD		0x0100
#define PHY_REMOTE_100BTX		0x0080
#define PHY_REMOTE_10BT_FD		0x0040
#define PHY_REMOTE_10BT			0x0020

/* P1VCT */
#define KS884X_P1VCT_P			0x04F0
#define KS884X_P1PHYCTRL_P		0x04F2

/* P2VCT */
#define KS884X_P2VCT_P			0x04F4
#define KS884X_P2PHYCTRL_P		0x04F6

#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)

#define KS884X_PHY_LINK_MD_OFFSET	0x00

#define PHY_START_CABLE_DIAG		0x8000
#define PHY_CABLE_DIAG_RESULT		0x6000
#define PHY_CABLE_STAT_NORMAL		0x0000
#define PHY_CABLE_STAT_OPEN		0x2000
#define PHY_CABLE_STAT_SHORT		0x4000
#define PHY_CABLE_STAT_FAILED		0x6000
#define PHY_CABLE_10M_SHORT		0x1000
#define PHY_CABLE_FAULT_COUNTER		0x01FF

#define KS884X_PHY_PHY_CTRL_OFFSET	0x02

#define PHY_STAT_REVERSED_POLARITY	0x0020
#define PHY_STAT_MDIX			0x0010
#define PHY_FORCE_LINK			0x0008
#define PHY_POWER_SAVING_DISABLE	0x0004
#define PHY_REMOTE_LOOPBACK		0x0002

/* SIDER */
#define KS884X_SIDER_P			0x0400
#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)

#define REG_FAMILY_ID			0x88

#define REG_CHIP_ID_41			0x8810
#define REG_CHIP_ID_42			0x8800

#define KS884X_CHIP_ID_MASK_41		0xFF10
#define KS884X_CHIP_ID_MASK		0xFFF0
#define KS884X_CHIP_ID_SHIFT		4
#define KS884X_REVISION_MASK		0x000E
#define KS884X_REVISION_SHIFT		1
#define KS8842_START			0x0001

#define CHIP_IP_41_M			0x8810
#define CHIP_IP_42_M			0x8800
#define CHIP_IP_61_M			0x8890
#define CHIP_IP_62_M			0x8880

#define CHIP_IP_41_P			0x8850
#define CHIP_IP_42_P			0x8840
#define CHIP_IP_61_P			0x88D0
#define CHIP_IP_62_P			0x88C0

/* SGCR1 */
#define KS8842_SGCR1_P			0x0402
#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P

#define SWITCH_PASS_ALL			0x8000
#define SWITCH_TX_FLOW_CTRL		0x2000
#define SWITCH_RX_FLOW_CTRL		0x1000
#define SWITCH_CHECK_LENGTH		0x0800
#define SWITCH_AGING_ENABLE		0x0400
#define SWITCH_FAST_AGING		0x0200
#define SWITCH_AGGR_BACKOFF		0x0100
#define SWITCH_PASS_PAUSE		0x0008
#define SWITCH_LINK_AUTO_AGING		0x0001

/* SGCR2 */
#define KS8842_SGCR2_P			0x0404
#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P

#define SWITCH_VLAN_ENABLE		0x8000
#define SWITCH_IGMP_SNOOP		0x4000
#define IPV6_MLD_SNOOP_ENABLE		0x2000
#define IPV6_MLD_SNOOP_OPTION		0x1000
#define PRIORITY_SCHEME_SELECT		0x0800
#define SWITCH_MIRROR_RX_TX		0x0100
#define UNICAST_VLAN_BOUNDARY		0x0080
#define MULTICAST_STORM_DISABLE		0x0040
#define SWITCH_BACK_PRESSURE		0x0020
#define FAIR_FLOW_CTRL			0x0010
#define NO_EXC_COLLISION_DROP		0x0008
#define SWITCH_HUGE_PACKET		0x0004
#define SWITCH_LEGAL_PACKET		0x0002
#define SWITCH_BUF_RESERVE		0x0001

/* SGCR3 */
#define KS8842_SGCR3_P			0x0406
#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P

#define BROADCAST_STORM_RATE_LO		0xFF00
#define SWITCH_REPEATER			0x0080
#define SWITCH_HALF_DUPLEX		0x0040
#define SWITCH_FLOW_CTRL		0x0020
#define SWITCH_10_MBIT			0x0010
#define SWITCH_REPLACE_NULL_VID		0x0008
#define BROADCAST_STORM_RATE_HI		0x0007

#define BROADCAST_STORM_RATE		0x07FF

/* SGCR4 */
#define KS8842_SGCR4_P			0x0408

/* SGCR5 */
#define KS8842_SGCR5_P			0x040A
#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P

#define LED_MODE			0x8200
#define LED_SPEED_DUPLEX_ACT		0x0000
#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
#define LED_DUPLEX_10_100		0x0200

/* SGCR6 */
#define KS8842_SGCR6_P			0x0410
#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P

#define KS8842_PRIORITY_MASK		3
#define KS8842_PRIORITY_SHIFT		2

/* SGCR7 */
#define KS8842_SGCR7_P			0x0412
#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P

#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
#define SWITCH_UNK_DEF_PORT_3		0x0004
#define SWITCH_UNK_DEF_PORT_2		0x0002
#define SWITCH_UNK_DEF_PORT_1		0x0001

/* MACAR1 */
#define KS8842_MACAR1_P			0x0470
#define KS8842_MACAR2_P			0x0472
#define KS8842_MACAR3_P			0x0474
#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)

/* TOSR1 */
#define KS8842_TOSR1_P			0x0480
#define KS8842_TOSR2_P			0x0482
#define KS8842_TOSR3_P			0x0484
#define KS8842_TOSR4_P			0x0486
#define KS8842_TOSR5_P			0x0488
#define KS8842_TOSR6_P			0x048A
#define KS8842_TOSR7_P			0x0490
#define KS8842_TOSR8_P			0x0492
#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P

#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P

/* P1CR1 */
#define KS8842_P1CR1_P			0x0500
#define KS8842_P1CR2_P			0x0502
#define KS8842_P1VIDR_P			0x0504
#define KS8842_P1CR3_P			0x0506
#define KS8842_P1IRCR_P			0x0508
#define KS8842_P1ERCR_P			0x050A
#define KS884X_P1SCSLMD_P		0x0510
#define KS884X_P1CR4_P			0x0512
#define KS884X_P1SR_P			0x0514

/* P2CR1 */
#define KS8842_P2CR1_P			0x0520
#define KS8842_P2CR2_P			0x0522
#define KS8842_P2VIDR_P			0x0524
#define KS8842_P2CR3_P			0x0526
#define KS8842_P2IRCR_P			0x0528
#define KS8842_P2ERCR_P			0x052A
#define KS884X_P2SCSLMD_P		0x0530
#define KS884X_P2CR4_P			0x0532
#define KS884X_P2SR_P			0x0534

/* P3CR1 */
#define KS8842_P3CR1_P			0x0540
#define KS8842_P3CR2_P			0x0542
#define KS8842_P3VIDR_P			0x0544
#define KS8842_P3CR3_P			0x0546
#define KS8842_P3IRCR_P			0x0548
#define KS8842_P3ERCR_P			0x054A

#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P

#define PORT_CTRL_ADDR(port, addr)		\
	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))

#define KS8842_PORT_CTRL_1_OFFSET	0x00

#define PORT_BROADCAST_STORM		0x0080
#define PORT_DIFFSERV_ENABLE		0x0040
#define PORT_802_1P_ENABLE		0x0020
#define PORT_BASED_PRIORITY_MASK	0x0018
#define PORT_BASED_PRIORITY_BASE	0x0003
#define PORT_BASED_PRIORITY_SHIFT	3
#define PORT_BASED_PRIORITY_0		0x0000
#define PORT_BASED_PRIORITY_1		0x0008
#define PORT_BASED_PRIORITY_2		0x0010
#define PORT_BASED_PRIORITY_3		0x0018
#define PORT_INSERT_TAG			0x0004
#define PORT_REMOVE_TAG			0x0002
#define PORT_PRIO_QUEUE_ENABLE		0x0001

#define KS8842_PORT_CTRL_2_OFFSET	0x02

#define PORT_INGRESS_VLAN_FILTER	0x4000
#define PORT_DISCARD_NON_VID		0x2000
#define PORT_FORCE_FLOW_CTRL		0x1000
#define PORT_BACK_PRESSURE		0x0800
#define PORT_TX_ENABLE			0x0400
#define PORT_RX_ENABLE			0x0200
#define PORT_LEARN_DISABLE		0x0100
#define PORT_MIRROR_SNIFFER		0x0080
#define PORT_MIRROR_RX			0x0040
#define PORT_MIRROR_TX			0x0020
#define PORT_USER_PRIORITY_CEILING	0x0008
#define PORT_VLAN_MEMBERSHIP		0x0007

#define KS8842_PORT_CTRL_VID_OFFSET	0x04

#define PORT_DEFAULT_VID		0x0001

#define KS8842_PORT_CTRL_3_OFFSET	0x06

#define PORT_INGRESS_LIMIT_MODE		0x000C
#define PORT_INGRESS_ALL		0x0000
#define PORT_INGRESS_UNICAST		0x0004
#define PORT_INGRESS_MULTICAST		0x0008
#define PORT_INGRESS_BROADCAST		0x000C
#define PORT_COUNT_IFG			0x0002
#define PORT_COUNT_PREAMBLE		0x0001

#define KS8842_PORT_IN_RATE_OFFSET	0x08
#define KS8842_PORT_OUT_RATE_OFFSET	0x0A

#define PORT_PRIORITY_RATE		0x0F
#define PORT_PRIORITY_RATE_SHIFT	4

#define KS884X_PORT_LINK_MD		0x10

#define PORT_CABLE_10M_SHORT		0x8000
#define PORT_CABLE_DIAG_RESULT		0x6000
#define PORT_CABLE_STAT_NORMAL		0x0000
#define PORT_CABLE_STAT_OPEN		0x2000
#define PORT_CABLE_STAT_SHORT		0x4000
#define PORT_CABLE_STAT_FAILED		0x6000
#define PORT_START_CABLE_DIAG		0x1000
#define PORT_FORCE_LINK			0x0800
#define PORT_POWER_SAVING_DISABLE	0x0400
#define PORT_PHY_REMOTE_LOOPBACK	0x0200
#define PORT_CABLE_FAULT_COUNTER	0x01FF

#define KS884X_PORT_CTRL_4_OFFSET	0x12

#define PORT_LED_OFF			0x8000
#define PORT_TX_DISABLE			0x4000
#define PORT_AUTO_NEG_RESTART		0x2000
#define PORT_REMOTE_FAULT_DISABLE	0x1000
#define PORT_POWER_DOWN			0x0800
#define PORT_AUTO_MDIX_DISABLE		0x0400
#define PORT_FORCE_MDIX			0x0200
#define PORT_LOOPBACK			0x0100
#define PORT_AUTO_NEG_ENABLE		0x0080
#define PORT_FORCE_100_MBIT		0x0040
#define PORT_FORCE_FULL_DUPLEX		0x0020
#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
#define PORT_AUTO_NEG_100BTX_FD		0x0008
#define PORT_AUTO_NEG_100BTX		0x0004
#define PORT_AUTO_NEG_10BT_FD		0x0002
#define PORT_AUTO_NEG_10BT		0x0001

#define KS884X_PORT_STATUS_OFFSET	0x14

#define PORT_HP_MDIX			0x8000
#define PORT_REVERSED_POLARITY		0x2000
#define PORT_RX_FLOW_CTRL		0x0800
#define PORT_TX_FLOW_CTRL		0x1000
#define PORT_STATUS_SPEED_100MBIT	0x0400
#define PORT_STATUS_FULL_DUPLEX		0x0200
#define PORT_REMOTE_FAULT		0x0100
#define PORT_MDIX_STATUS		0x0080
#define PORT_AUTO_NEG_COMPLETE		0x0040
#define PORT_STATUS_LINK_GOOD		0x0020
#define PORT_REMOTE_SYM_PAUSE		0x0010
#define PORT_REMOTE_100BTX_FD		0x0008
#define PORT_REMOTE_100BTX		0x0004
#define PORT_REMOTE_10BT_FD		0x0002
#define PORT_REMOTE_10BT		0x0001

/*
#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
*/

#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
#define STATIC_MAC_TABLE_VALID		0x00080000
#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
#define STATIC_MAC_TABLE_USE_FID	0x00200000
#define STATIC_MAC_TABLE_FID		0x03C00000

#define STATIC_MAC_FWD_PORTS_SHIFT	16
#define STATIC_MAC_FID_SHIFT		22

/*
#define VLAN_TABLE_VID			00-00000000-00000FFF
#define VLAN_TABLE_FID			00-00000000-0000F000
#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
#define VLAN_TABLE_VALID		00-00000000-00080000
*/

#define VLAN_TABLE_VID			0x00000FFF
#define VLAN_TABLE_FID			0x0000F000
#define VLAN_TABLE_MEMBERSHIP		0x00070000
#define VLAN_TABLE_VALID		0x00080000

#define VLAN_TABLE_FID_SHIFT		12
#define VLAN_TABLE_MEMBERSHIP_SHIFT	16

/*
#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
*/

#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
#define DYNAMIC_MAC_TABLE_FID		0x000F0000
#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000

#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
#define DYNAMIC_MAC_TABLE_RESERVED	0x78
#define DYNAMIC_MAC_TABLE_NOT_READY	0x80

#define DYNAMIC_MAC_FID_SHIFT		16
#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
#define DYNAMIC_MAC_ENTRIES_SHIFT	24
#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8

/*
#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
#define MIB_COUNTER_VALID		00-00000000-40000000
#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
*/

#define MIB_COUNTER_VALUE		0x3FFFFFFF
#define MIB_COUNTER_VALID		0x40000000
#define MIB_COUNTER_OVERFLOW		0x80000000

#define MIB_PACKET_DROPPED		0x0000FFFF

#define KS_MIB_PACKET_DROPPED_TX_0	0x100
#define KS_MIB_PACKET_DROPPED_TX_1	0x101
#define KS_MIB_PACKET_DROPPED_TX	0x102
#define KS_MIB_PACKET_DROPPED_RX_0	0x103
#define KS_MIB_PACKET_DROPPED_RX_1	0x104
#define KS_MIB_PACKET_DROPPED_RX	0x105

/* Change default LED mode. */
#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT

#define MAC_ADDR_LEN			6
#define MAC_ADDR_ORDER(i)		(MAC_ADDR_LEN - 1 - (i))

#define MAX_ETHERNET_BODY_SIZE		1500
#define ETHERNET_HEADER_SIZE		14

#define MAX_ETHERNET_PACKET_SIZE	\
	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)

#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
#define MAX_RX_BUF_SIZE			(1912 + 4)

#define ADDITIONAL_ENTRIES		16
#define MAX_MULTICAST_LIST		32

#define HW_MULTICAST_SIZE		8

#define HW_TO_DEV_PORT(port)		(port - 1)

enum {
	media_connected,
	media_disconnected
};

enum {
	OID_COUNTER_UNKOWN,

	OID_COUNTER_FIRST,

	/* total transmit errors */
	OID_COUNTER_XMIT_ERROR,

	/* total receive errors */
	OID_COUNTER_RCV_ERROR,

	OID_COUNTER_LAST
};

/*
 * Hardware descriptor definitions
 */

#define DESC_ALIGNMENT			16
#define BUFFER_ALIGNMENT		8

#define NUM_OF_RX_DESC			64
#define NUM_OF_TX_DESC			64

#define KS_DESC_RX_FRAME_LEN		0x000007FF
#define KS_DESC_RX_FRAME_TYPE		0x00008000
#define KS_DESC_RX_ERROR_CRC		0x00010000
#define KS_DESC_RX_ERROR_RUNT		0x00020000
#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
#define KS_DESC_RX_ERROR_PHY		0x00080000
#define KS884X_DESC_RX_PORT_MASK	0x00300000
#define KS_DESC_RX_MULTICAST		0x01000000
#define KS_DESC_RX_ERROR		0x02000000
#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
#define KS_DESC_RX_LAST			0x20000000
#define KS_DESC_RX_FIRST		0x40000000
#define KS_DESC_RX_ERROR_COND		\
	(KS_DESC_RX_ERROR_CRC |		\
	KS_DESC_RX_ERROR_RUNT |		\
	KS_DESC_RX_ERROR_PHY |		\
	KS_DESC_RX_ERROR_TOO_LONG)

#define KS_DESC_HW_OWNED		0x80000000

#define KS_DESC_BUF_SIZE		0x000007FF
#define KS884X_DESC_TX_PORT_MASK	0x00300000
#define KS_DESC_END_OF_RING		0x02000000
#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
#define KS_DESC_TX_LAST			0x20000000
#define KS_DESC_TX_FIRST		0x40000000
#define KS_DESC_TX_INTERRUPT		0x80000000

#define KS_DESC_PORT_SHIFT		20

#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)

#define KS_DESC_TX_MASK			\
	(KS_DESC_TX_INTERRUPT |		\
	KS_DESC_TX_FIRST |		\
	KS_DESC_TX_LAST |		\
	KS_DESC_TX_CSUM_GEN_IP |	\
	KS_DESC_TX_CSUM_GEN_TCP |	\
	KS_DESC_TX_CSUM_GEN_UDP |	\
	KS_DESC_BUF_SIZE)

struct ksz_desc_rx_stat {
#ifdef __BIG_ENDIAN_BITFIELD
	u32 hw_owned:1;
	u32 first_desc:1;
	u32 last_desc:1;
	u32 csum_err_ip:1;
	u32 csum_err_tcp:1;
	u32 csum_err_udp:1;
	u32 error:1;
	u32 multicast:1;
	u32 src_port:4;
	u32 err_phy:1;
	u32 err_too_long:1;
	u32 err_runt:1;
	u32 err_crc:1;
	u32 frame_type:1;
	u32 reserved1:4;
	u32 frame_len:11;
#else
	u32 frame_len:11;
	u32 reserved1:4;
	u32 frame_type:1;
	u32 err_crc:1;
	u32 err_runt:1;
	u32 err_too_long:1;
	u32 err_phy:1;
	u32 src_port:4;
	u32 multicast:1;
	u32 error:1;
	u32 csum_err_udp:1;
	u32 csum_err_tcp:1;
	u32 csum_err_ip:1;
	u32 last_desc:1;
	u32 first_desc:1;
	u32 hw_owned:1;
#endif
};

struct ksz_desc_tx_stat {
#ifdef __BIG_ENDIAN_BITFIELD
	u32 hw_owned:1;
	u32 reserved1:31;
#else
	u32 reserved1:31;
	u32 hw_owned:1;
#endif
};

struct ksz_desc_rx_buf {
#ifdef __BIG_ENDIAN_BITFIELD
	u32 reserved4:6;
	u32 end_of_ring:1;
	u32 reserved3:14;
	u32 buf_size:11;
#else
	u32 buf_size:11;
	u32 reserved3:14;
	u32 end_of_ring:1;
	u32 reserved4:6;
#endif
};

struct ksz_desc_tx_buf {
#ifdef __BIG_ENDIAN_BITFIELD
	u32 intr:1;
	u32 first_seg:1;
	u32 last_seg:1;
	u32 csum_gen_ip:1;
	u32 csum_gen_tcp:1;
	u32 csum_gen_udp:1;
	u32 end_of_ring:1;
	u32 reserved4:1;
	u32 dest_port:4;
	u32 reserved3:9;
	u32 buf_size:11;
#else
	u32 buf_size:11;
	u32 reserved3:9;
	u32 dest_port:4;
	u32 reserved4:1;
	u32 end_of_ring:1;
	u32 csum_gen_udp:1;
	u32 csum_gen_tcp:1;
	u32 csum_gen_ip:1;
	u32 last_seg:1;
	u32 first_seg:1;
	u32 intr:1;
#endif
};

union desc_stat {
	struct ksz_desc_rx_stat rx;
	struct ksz_desc_tx_stat tx;
	u32 data;
};

union desc_buf {
	struct ksz_desc_rx_buf rx;
	struct ksz_desc_tx_buf tx;
	u32 data;
};

/**
 * struct ksz_hw_desc - Hardware descriptor data structure
 * @ctrl:	Descriptor control value.
 * @buf:	Descriptor buffer value.
 * @addr:	Physical address of memory buffer.
 * @next:	Pointer to next hardware descriptor.
 */
struct ksz_hw_desc {
	union desc_stat ctrl;
	union desc_buf buf;
	u32 addr;
	u32 next;
};

/**
 * struct ksz_sw_desc - Software descriptor data structure
 * @ctrl:	Descriptor control value.
 * @buf:	Descriptor buffer value.
 * @buf_size:	Current buffers size value in hardware descriptor.
 */
struct ksz_sw_desc {
	union desc_stat ctrl;
	union desc_buf buf;
	u32 buf_size;
};

/**
 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 * @skb:	Associated socket buffer.
 * @dma:	Associated physical DMA address.
 * len:		Actual len used.
 */
struct ksz_dma_buf {
	struct sk_buff *skb;
	dma_addr_t dma;
	int len;
};

/**
 * struct ksz_desc - Descriptor structure
 * @phw:	Hardware descriptor pointer to uncached physical memory.
 * @sw:		Cached memory to hold hardware descriptor values for
 * 		manipulation.
 * @dma_buf:	Operating system dependent data structure to hold physical
 * 		memory buffer allocation information.
 */
struct ksz_desc {
	struct ksz_hw_desc *phw;
	struct ksz_sw_desc sw;
	struct ksz_dma_buf dma_buf;
};

#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))

/**
 * struct ksz_desc_info - Descriptor information data structure
 * @ring:	First descriptor in the ring.
 * @cur:	Current descriptor being manipulated.
 * @ring_virt:	First hardware descriptor in the ring.
 * @ring_phys:	The physical address of the first descriptor of the ring.
 * @size:	Size of hardware descriptor.
 * @alloc:	Number of descriptors allocated.
 * @avail:	Number of descriptors available for use.
 * @last:	Index for last descriptor released to hardware.
 * @next:	Index for next descriptor available for use.
 * @mask:	Mask for index wrapping.
 */
struct ksz_desc_info {
	struct ksz_desc *ring;
	struct ksz_desc *cur;
	struct ksz_hw_desc *ring_virt;
	u32 ring_phys;
	int size;
	int alloc;
	int avail;
	int last;
	int next;
	int mask;
};

/*
 * KSZ8842 switch definitions
 */

enum {
	TABLE_STATIC_MAC = 0,
	TABLE_VLAN,
	TABLE_DYNAMIC_MAC,
	TABLE_MIB
};

#define LEARNED_MAC_TABLE_ENTRIES	1024
#define STATIC_MAC_TABLE_ENTRIES	8

/**
 * struct ksz_mac_table - Static MAC table data structure
 * @mac_addr:	MAC address to filter.
 * @vid:	VID value.
 * @fid:	FID value.
 * @ports:	Port membership.
 * @override:	Override setting.
 * @use_fid:	FID use setting.
 * @valid:	Valid setting indicating the entry is being used.
 */
struct ksz_mac_table {
	u8 mac_addr[MAC_ADDR_LEN];
	u16 vid;
	u8 fid;
	u8 ports;
	u8 override:1;
	u8 use_fid:1;
	u8 valid:1;
};

#define VLAN_TABLE_ENTRIES		16

/**
 * struct ksz_vlan_table - VLAN table data structure
 * @vid:	VID value.
 * @fid:	FID value.
 * @member:	Port membership.
 */
struct ksz_vlan_table {
	u16 vid;
	u8 fid;
	u8 member;
};

#define DIFFSERV_ENTRIES		64
#define PRIO_802_1P_ENTRIES		8
#define PRIO_QUEUES			4

#define SWITCH_PORT_NUM			2
#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
#define HOST_MASK			(1 << SWITCH_PORT_NUM)
#define PORT_MASK			7

#define MAIN_PORT			0
#define OTHER_PORT			1
#define HOST_PORT			SWITCH_PORT_NUM

#define PORT_COUNTER_NUM		0x20
#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)

#define MIB_COUNTER_RX_LO_PRIORITY	0x00
#define MIB_COUNTER_RX_HI_PRIORITY	0x01
#define MIB_COUNTER_RX_UNDERSIZE	0x02
#define MIB_COUNTER_RX_FRAGMENT		0x03
#define MIB_COUNTER_RX_OVERSIZE		0x04
#define MIB_COUNTER_RX_JABBER		0x05
#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
#define MIB_COUNTER_RX_CRC_ERR		0x07
#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
#define MIB_COUNTER_RX_CTRL_8808	0x09
#define MIB_COUNTER_RX_PAUSE		0x0A
#define MIB_COUNTER_RX_BROADCAST	0x0B
#define MIB_COUNTER_RX_MULTICAST	0x0C
#define MIB_COUNTER_RX_UNICAST		0x0D
#define MIB_COUNTER_RX_OCTET_64		0x0E
#define MIB_COUNTER_RX_OCTET_65_127	0x0F
#define MIB_COUNTER_RX_OCTET_128_255	0x10
#define MIB_COUNTER_RX_OCTET_256_511	0x11
#define MIB_COUNTER_RX_OCTET_512_1023	0x12
#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
#define MIB_COUNTER_TX_LO_PRIORITY	0x14
#define MIB_COUNTER_TX_HI_PRIORITY	0x15
#define MIB_COUNTER_TX_LATE_COLLISION	0x16
#define MIB_COUNTER_TX_PAUSE		0x17
#define MIB_COUNTER_TX_BROADCAST	0x18
#define MIB_COUNTER_TX_MULTICAST	0x19
#define MIB_COUNTER_TX_UNICAST		0x1A
#define MIB_COUNTER_TX_DEFERRED		0x1B
#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F

#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
#define MIB_COUNTER_TX_DROPPED_PACKET	0x21

/**
 * struct ksz_port_mib - Port MIB data structure
 * @cnt_ptr:	Current pointer to MIB counter index.
 * @link_down:	Indication the link has just gone down.
 * @state:	Connection status of the port.
 * @mib_start:	The starting counter index.  Some ports do not start at 0.
 * @counter:	64-bit MIB counter value.
 * @dropped:	Temporary buffer to remember last read packet dropped values.
 *
 * MIB counters needs to be read periodically so that counters do not get
 * overflowed and give incorrect values.  A right balance is needed to
 * satisfy this condition and not waste too much CPU time.
 *
 * It is pointless to read MIB counters when the port is disconnected.  The
 * @state provides the connection status so that MIB counters are read only
 * when the port is connected.  The @link_down indicates the port is just
 * disconnected so that all MIB counters are read one last time to update the
 * information.
 */
struct ksz_port_mib {
	u8 cnt_ptr;
	u8 link_down;
	u8 state;
	u8 mib_start;

	u64 counter[TOTAL_PORT_COUNTER_NUM];
	u32 dropped[2];
};

/**
 * struct ksz_port_cfg - Port configuration data structure
 * @vid:	VID value.
 * @member:	Port membership.
 * @port_prio:	Port priority.
 * @rx_rate:	Receive priority rate.
 * @tx_rate:	Transmit priority rate.
 * @stp_state:	Current Spanning Tree Protocol state.
 */
struct ksz_port_cfg {
	u16 vid;
	u8 member;
	u8 port_prio;
	u32 rx_rate[PRIO_QUEUES];
	u32 tx_rate[PRIO_QUEUES];
	int stp_state;
};

/**
 * struct ksz_switch - KSZ8842 switch data structure
 * @mac_table:	MAC table entries information.
 * @vlan_table:	VLAN table entries information.
 * @port_cfg:	Port configuration information.
 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
 * 		(bit7 ~ bit2) field.
 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
 * 		Tag priority field.
 * @br_addr:	Bridge address.  Used for STP.
 * @other_addr:	Other MAC address.  Used for multiple network device mode.
 * @broad_per:	Broadcast storm percentage.
 * @member:	Current port membership.  Used for STP.
 */
struct ksz_switch {
	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];

	u8 diffserv[DIFFSERV_ENTRIES];
	u8 p_802_1p[PRIO_802_1P_ENTRIES];

	u8 br_addr[MAC_ADDR_LEN];
	u8 other_addr[MAC_ADDR_LEN];

	u8 broad_per;
	u8 member;
};

#define TX_RATE_UNIT			10000

/**
 * struct ksz_port_info - Port information data structure
 * @state:	Connection status of the port.
 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
 * @duplex:	Duplex mode.
 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
 * @partner:	Auto-negotiation partner setting.  Used to determine link.
 * @port_id:	Port index to access actual hardware register.
 * @pdev:	Pointer to OS dependent network device.
 */
struct ksz_port_info {
	uint state;
	uint tx_rate;
	u8 duplex;
	u8 advertised;
	u8 partner;
	u8 port_id;
	void *pdev;
};

#define MAX_TX_HELD_SIZE		52000

/* Hardware features and bug fixes. */
#define LINK_INT_WORKING		(1 << 0)
#define SMALL_PACKET_TX_BUG		(1 << 1)
#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
#define IPV6_CSUM_GEN_HACK		(1 << 3)
#define RX_HUGE_FRAME			(1 << 4)
#define STP_SUPPORT			(1 << 8)

/* Software overrides. */
#define PAUSE_FLOW_CTRL			(1 << 0)
#define FAST_AGING			(1 << 1)

/**
 * struct ksz_hw - KSZ884X hardware data structure
 * @io:			Virtual address assigned.
 * @ksz_switch:		Pointer to KSZ8842 switch.
 * @port_info:		Port information.
 * @port_mib:		Port MIB information.
 * @dev_count:		Number of network devices this hardware supports.
 * @dst_ports:		Destination ports in switch for transmission.
 * @id:			Hardware ID.  Used for display only.
 * @mib_cnt:		Number of MIB counters this hardware has.
 * @mib_port_cnt:	Number of ports with MIB counters.
 * @tx_cfg:		Cached transmit control settings.
 * @rx_cfg:		Cached receive control settings.
 * @intr_mask:		Current interrupt mask.
 * @intr_set:		Current interrup set.
 * @intr_blocked:	Interrupt blocked.
 * @rx_desc_info:	Receive descriptor information.
 * @tx_desc_info:	Transmit descriptor information.
 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
 * @tx_size:		Transmit data size.  Used for TX optimization.
 * 			The maximum is defined by MAX_TX_HELD_SIZE.
 * @perm_addr:		Permanent MAC address.
 * @override_addr:	Overrided MAC address.
 * @address:		Additional MAC address entries.
 * @addr_list_size:	Additional MAC address list size.
 * @mac_override:	Indication of MAC address overrided.
 * @promiscuous:	Counter to keep track of promiscuous mode set.
 * @all_multi:		Counter to keep track of all multicast mode set.
 * @multi_list:		Multicast address entries.
 * @multi_bits:		Cached multicast hash table settings.
 * @multi_list_size:	Multicast address list size.
 * @enabled:		Indication of hardware enabled.
 * @rx_stop:		Indication of receive process stop.
 * @features:		Hardware features to enable.
 * @overrides:		Hardware features to override.
 * @parent:		Pointer to parent, network device private structure.
 */
struct ksz_hw {
	void __iomem *io;

	struct ksz_switch *ksz_switch;
	struct ksz_port_info port_info[SWITCH_PORT_NUM];
	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
	int dev_count;
	int dst_ports;
	int id;
	int mib_cnt;
	int mib_port_cnt;

	u32 tx_cfg;
	u32 rx_cfg;
	u32 intr_mask;
	u32 intr_set;
	uint intr_blocked;

	struct ksz_desc_info rx_desc_info;
	struct ksz_desc_info tx_desc_info;

	int tx_int_cnt;
	int tx_int_mask;
	int tx_size;

	u8 perm_addr[MAC_ADDR_LEN];
	u8 override_addr[MAC_ADDR_LEN];
	u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
	u8 addr_list_size;
	u8 mac_override;
	u8 promiscuous;
	u8 all_multi;
	u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
	u8 multi_bits[HW_MULTICAST_SIZE];
	u8 multi_list_size;

	u8 enabled;
	u8 rx_stop;
	u8 reserved2[1];

	uint features;
	uint overrides;

	void *parent;
};

enum {
	PHY_NO_FLOW_CTRL,
	PHY_FLOW_CTRL,
	PHY_TX_ONLY,
	PHY_RX_ONLY
};

/**
 * struct ksz_port - Virtual port data structure
 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
 * 			duplex, and 0 for auto, which normally results in full
 * 			duplex.
 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
 * 			0 for auto, which normally results in 100 Mbit.
 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
 * 			force.
 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
 * 			control, and PHY_FLOW_CTRL for flow control.
 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
 * 			Mbit PHY.
 * @first_port:		Index of first port this port supports.
 * @mib_port_cnt:	Number of ports with MIB counters.
 * @port_cnt:		Number of ports this port supports.
 * @counter:		Port statistics counter.
 * @hw:			Pointer to hardware structure.
 * @linked:		Pointer to port information linked to this port.
 */
struct ksz_port {
	u8 duplex;
	u8 speed;
	u8 force_link;
	u8 flow_ctrl;

	int first_port;
	int mib_port_cnt;
	int port_cnt;
	u64 counter[OID_COUNTER_LAST];

	struct ksz_hw *hw;
	struct ksz_port_info *linked;
};

/**
 * struct ksz_timer_info - Timer information data structure
 * @timer:	Kernel timer.
 * @cnt:	Running timer counter.
 * @max:	Number of times to run timer; -1 for infinity.
 * @period:	Timer period in jiffies.
 */
struct ksz_timer_info {
	struct timer_list timer;
	int cnt;
	int max;
	int period;
};

/**
 * struct ksz_shared_mem - OS dependent shared memory data structure
 * @dma_addr:	Physical DMA address allocated.
 * @alloc_size:	Allocation size.
 * @phys:	Actual physical address used.
 * @alloc_virt:	Virtual address allocated.
 * @virt:	Actual virtual address used.
 */
struct ksz_shared_mem {
	dma_addr_t dma_addr;
	uint alloc_size;
	uint phys;
	u8 *alloc_virt;
	u8 *virt;
};

/**
 * struct ksz_counter_info - OS dependent counter information data structure
 * @counter:	Wait queue to wakeup after counters are read.
 * @time:	Next time in jiffies to read counter.
 * @read:	Indication of counters read in full or not.
 */
struct ksz_counter_info {
	wait_queue_head_t counter;
	unsigned long time;
	int read;
};

/**
 * struct dev_info - Network device information data structure
 * @dev:		Pointer to network device.
 * @pdev:		Pointer to PCI device.
 * @hw:			Hardware structure.
 * @desc_pool:		Physical memory used for descriptor pool.
 * @hwlock:		Spinlock to prevent hardware from accessing.
 * @lock:		Mutex lock to prevent device from accessing.
 * @dev_rcv:		Receive process function used.
 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
 * @skb_index:		Buffer index for receiving fragments.
 * @skb_len:		Buffer length for receiving fragments.
 * @mib_read:		Workqueue to read MIB counters.
 * @mib_timer_info:	Timer to read MIB counters.
 * @counter:		Used for MIB reading.
 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
 * 			the maximum is MAX_RX_BUF_SIZE.
 * @opened:		Counter to keep track of device open.
 * @rx_tasklet:		Receive processing tasklet.
 * @tx_tasklet:		Transmit processing tasklet.
 * @wol_enable:		Wake-on-LAN enable set by ethtool.
 * @wol_support:	Wake-on-LAN support used by ethtool.
 * @pme_wait:		Used for KSZ8841 power management.
 */
struct dev_info {
	struct net_device *dev;
	struct pci_dev *pdev;

	struct ksz_hw hw;
	struct ksz_shared_mem desc_pool;

	spinlock_t hwlock;
	struct mutex lock;

	int (*dev_rcv)(struct dev_info *);

	struct sk_buff *last_skb;
	int skb_index;
	int skb_len;

	struct work_struct mib_read;
	struct ksz_timer_info mib_timer_info;
	struct ksz_counter_info counter[TOTAL_PORT_NUM];

	int mtu;
	int opened;

	struct tasklet_struct rx_tasklet;
	struct tasklet_struct tx_tasklet;

	int wol_enable;
	int wol_support;
	unsigned long pme_wait;
};

/**
 * struct dev_priv - Network device private data structure
 * @adapter:		Adapter device information.
 * @port:		Port information.
 * @monitor_time_info:	Timer to monitor ports.
 * @stats:		Network statistics.
 * @proc_sem:		Semaphore for proc accessing.
 * @id:			Device ID.
 * @mii_if:		MII interface information.
 * @advertising:	Temporary variable to store advertised settings.
 * @msg_enable:		The message flags controlling driver output.
 * @media_state:	The connection status of the device.
 * @multicast:		The all multicast state of the device.
 * @promiscuous:	The promiscuous state of the device.
 */
struct dev_priv {
	struct dev_info *adapter;
	struct ksz_port port;
	struct ksz_timer_info monitor_timer_info;
	struct net_device_stats stats;

	struct semaphore proc_sem;
	int id;

	struct mii_if_info mii_if;
	u32 advertising;

	u32 msg_enable;
	int media_state;
	int multicast;
	int promiscuous;
};

#define ks_info(_ks, _msg...) dev_info(&(_ks)->pdev->dev, _msg)
#define ks_warn(_ks, _msg...) dev_warn(&(_ks)->pdev->dev, _msg)
#define ks_dbg(_ks, _msg...) dev_dbg(&(_ks)->pdev->dev, _msg)
#define ks_err(_ks, _msg...) dev_err(&(_ks)->pdev->dev, _msg)

#define DRV_NAME		"KSZ884X PCI"
#define DEVICE_NAME		"KSZ884x PCI"
#define DRV_VERSION		"1.0.0"
#define DRV_RELDATE		"Feb 8, 2010"

static char version[] __devinitdata =
	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";

static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };

/*
 * Interrupt processing primary routines
 */

static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
{
	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
}

static inline void hw_dis_intr(struct ksz_hw *hw)
{
	hw->intr_blocked = hw->intr_mask;
	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
}

static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
{
	hw->intr_set = interrupt;
	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
}

static inline void hw_ena_intr(struct ksz_hw *hw)
{
	hw->intr_blocked = 0;
	hw_set_intr(hw, hw->intr_mask);
}

static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
{
	hw->intr_mask &= ~(bit);
}

static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
{
	u32 read_intr;

	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
	hw->intr_set = read_intr & ~interrupt;
	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
	hw_dis_intr_bit(hw, interrupt);
}

/**
 * hw_turn_on_intr - turn on specified interrupts
 * @hw: 	The hardware instance.
 * @bit:	The interrupt bits to be on.
 *
 * This routine turns on the specified interrupts in the interrupt mask so that
 * those interrupts will be enabled.
 */
static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
{
	hw->intr_mask |= bit;

	if (!hw->intr_blocked)
		hw_set_intr(hw, hw->intr_mask);
}

static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
{
	u32 read_intr;

	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
	hw->intr_set = read_intr | interrupt;
	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
}

static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
{
	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
	*status = *status & hw->intr_set;
}

static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
{
	if (interrupt)
		hw_ena_intr(hw);
}

/**
 * hw_block_intr - block hardware interrupts
 *
 * This function blocks all interrupts of the hardware and returns the current
 * interrupt enable mask so that interrupts can be restored later.
 *
 * Return the current interrupt enable mask.
 */
static uint hw_block_intr(struct ksz_hw *hw)
{
	uint interrupt = 0;

	if (!hw->intr_blocked) {
		hw_dis_intr(hw);
		interrupt = hw->intr_blocked;
	}
	return interrupt;
}

/*
 * Hardware descriptor routines
 */

static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
{
	status.rx.hw_owned = 0;
	desc->phw->ctrl.data = cpu_to_le32(status.data);
}

static inline void release_desc(struct ksz_desc *desc)
{
	desc->sw.ctrl.tx.hw_owned = 1;
	if (desc->sw.buf_size != desc->sw.buf.data) {
		desc->sw.buf_size = desc->sw.buf.data;
		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
	}
	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
}

static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
{
	*desc = &info->ring[info->last];
	info->last++;
	info->last &= info->mask;
	info->avail--;
	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
}

static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
{
	desc->phw->addr = cpu_to_le32(addr);
}

static inline void set_rx_len(struct ksz_desc *desc, u32 len)
{
	desc->sw.buf.rx.buf_size = len;
}

static inline void get_tx_pkt(struct ksz_desc_info *info,
	struct ksz_desc **desc)
{
	*desc = &info->ring[info->next];
	info->next++;
	info->next &= info->mask;
	info->avail--;
	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
}

static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
{
	desc->phw->addr = cpu_to_le32(addr);
}

static inline void set_tx_len(struct ksz_desc *desc, u32 len)
{
	desc->sw.buf.tx.buf_size = len;
}

/* Switch functions */

#define TABLE_READ			0x10
#define TABLE_SEL_SHIFT			2

#define HW_DELAY(hw, reg)			\
	do {					\
		u16 dummy;			\
		dummy = readw(hw->io + reg);	\
	} while (0)

/**
 * sw_r_table - read 4 bytes of data from switch table
 * @hw:		The hardware instance.
 * @table:	The table selector.
 * @addr:	The address of the table entry.
 * @data:	Buffer to store the read data.
 *
 * This routine reads 4 bytes of data from the table of the switch.
 * Hardware interrupts are disabled to minimize corruption of read data.
 */
static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
{
	u16 ctrl_addr;
	uint interrupt;

	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;

	interrupt = hw_block_intr(hw);

	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
	HW_DELAY(hw, KS884X_IACR_OFFSET);
	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);

	hw_restore_intr(hw, interrupt);
}

/**
 * sw_w_table_64 - write 8 bytes of data to the switch table
 * @hw:		The hardware instance.
 * @table:	The table selector.
 * @addr:	The address of the table entry.
 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
 *
 * This routine writes 8 bytes of data to the table of the switch.
 * Hardware interrupts are disabled to minimize corruption of written data.
 */
static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
	u32 data_lo)
{
	u16 ctrl_addr;
	uint interrupt;

	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;

	interrupt = hw_block_intr(hw);

	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);

	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
	HW_DELAY(hw, KS884X_IACR_OFFSET);

	hw_restore_intr(hw, interrupt);
}

/**
 * sw_w_sta_mac_table - write to the static MAC table
 * @hw: 	The hardware instance.
 * @addr:	The address of the table entry.
 * @mac_addr:	The MAC address.
 * @ports:	The port members.
 * @override:	The flag to override the port receive/transmit settings.
 * @valid:	The flag to indicate entry is valid.
 * @use_fid:	The flag to indicate the FID is valid.
 * @fid:	The FID value.
 *
 * This routine writes an entry of the static MAC table of the switch.  It
 * calls sw_w_table_64() to write the data.
 */
static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
	u8 ports, int override, int valid, int use_fid, u8 fid)
{
	u32 data_hi;
	u32 data_lo;

	data_lo = ((u32) mac_addr[2] << 24) |
		((u32) mac_addr[3] << 16) |
		((u32) mac_addr[4] << 8) | mac_addr[5];
	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;

	if (override)
		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
	if (use_fid) {
		data_hi |= STATIC_MAC_TABLE_USE_FID;
		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
	}
	if (valid)
		data_hi |= STATIC_MAC_TABLE_VALID;

	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
}

/**
 * sw_r_vlan_table - read from the VLAN table
 * @hw: 	The hardware instance.
 * @addr:	The address of the table entry.
 * @vid:	Buffer to store the VID.
 * @fid:	Buffer to store the VID.
 * @member:	Buffer to store the port membership.
 *
 * This function reads an entry of the VLAN table of the switch.  It calls
 * sw_r_table() to get the data.
 *
 * Return 0 if the entry is valid; otherwise -1.
 */
static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
	u8 *member)
{
	u32 data;

	sw_r_table(hw, TABLE_VLAN, addr, &data);
	if (data & VLAN_TABLE_VALID) {
		*vid = (u16)(data & VLAN_TABLE_VID);
		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
			VLAN_TABLE_MEMBERSHIP_SHIFT);
		return 0;
	}
	return -1;
}

/**
 * port_r_mib_cnt - read MIB counter
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @addr:	The address of the counter.
 * @cnt:	Buffer to store the counter.
 *
 * This routine reads a MIB counter of the port.
 * Hardware interrupts are disabled to minimize corruption of read data.
 */
static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
{
	u32 data;
	u16 ctrl_addr;
	uint interrupt;
	int timeout;

	ctrl_addr = addr + PORT_COUNTER_NUM * port;

	interrupt = hw_block_intr(hw);

	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
	HW_DELAY(hw, KS884X_IACR_OFFSET);

	for (timeout = 100; timeout > 0; timeout--) {
		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);

		if (data & MIB_COUNTER_VALID) {
			if (data & MIB_COUNTER_OVERFLOW)
				*cnt += MIB_COUNTER_VALUE + 1;
			*cnt += data & MIB_COUNTER_VALUE;
			break;
		}
	}

	hw_restore_intr(hw, interrupt);
}

/**
 * port_r_mib_pkt - read dropped packet counts
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
 *
 * This routine reads the dropped packet counts of the port.
 * Hardware interrupts are disabled to minimize corruption of read data.
 */
static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
{
	u32 cur;
	u32 data;
	u16 ctrl_addr;
	uint interrupt;
	int index;

	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
	do {
		interrupt = hw_block_intr(hw);

		ctrl_addr = (u16) index;
		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
			<< 8);
		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
		HW_DELAY(hw, KS884X_IACR_OFFSET);
		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);

		hw_restore_intr(hw, interrupt);

		data &= MIB_PACKET_DROPPED;
		cur = *last;
		if (data != cur) {
			*last = data;
			if (data < cur)
				data += MIB_PACKET_DROPPED + 1;
			data -= cur;
			*cnt += data;
		}
		++last;
		++cnt;
		index -= KS_MIB_PACKET_DROPPED_TX -
			KS_MIB_PACKET_DROPPED_TX_0 + 1;
	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
}

/**
 * port_r_cnt - read MIB counters periodically
 * @hw: 	The hardware instance.
 * @port:	The port index.
 *
 * This routine is used to read the counters of the port periodically to avoid
 * counter overflow.  The hardware should be acquired first before calling this
 * routine.
 *
 * Return non-zero when not all counters not read.
 */
static int port_r_cnt(struct ksz_hw *hw, int port)
{
	struct ksz_port_mib *mib = &hw->port_mib[port];

	if (mib->mib_start < PORT_COUNTER_NUM)
		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
			port_r_mib_cnt(hw, port, mib->cnt_ptr,
				&mib->counter[mib->cnt_ptr]);
			++mib->cnt_ptr;
		}
	if (hw->mib_cnt > PORT_COUNTER_NUM)
		port_r_mib_pkt(hw, port, mib->dropped,
			&mib->counter[PORT_COUNTER_NUM]);
	mib->cnt_ptr = 0;
	return 0;
}

/**
 * port_init_cnt - initialize MIB counter values
 * @hw: 	The hardware instance.
 * @port:	The port index.
 *
 * This routine is used to initialize all counters to zero if the hardware
 * cannot do it after reset.
 */
static void port_init_cnt(struct ksz_hw *hw, int port)
{
	struct ksz_port_mib *mib = &hw->port_mib[port];

	mib->cnt_ptr = 0;
	if (mib->mib_start < PORT_COUNTER_NUM)
		do {
			port_r_mib_cnt(hw, port, mib->cnt_ptr,
				&mib->counter[mib->cnt_ptr]);
			++mib->cnt_ptr;
		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
	if (hw->mib_cnt > PORT_COUNTER_NUM)
		port_r_mib_pkt(hw, port, mib->dropped,
			&mib->counter[PORT_COUNTER_NUM]);
	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
	mib->cnt_ptr = 0;
}

/*
 * Port functions
 */

/**
 * port_chk - check port register bits
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @offset:	The offset of the port register.
 * @bits:	The data bits to check.
 *
 * This function checks whether the specified bits of the port register are set
 * or not.
 *
 * Return 0 if the bits are not set.
 */
static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
{
	u32 addr;
	u16 data;

	PORT_CTRL_ADDR(port, addr);
	addr += offset;
	data = readw(hw->io + addr);
	return (data & bits) == bits;
}

/**
 * port_cfg - set port register bits
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @offset:	The offset of the port register.
 * @bits:	The data bits to set.
 * @set:	The flag indicating whether the bits are to be set or not.
 *
 * This routine sets or resets the specified bits of the port register.
 */
static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
	int set)
{
	u32 addr;
	u16 data;

	PORT_CTRL_ADDR(port, addr);
	addr += offset;
	data = readw(hw->io + addr);
	if (set)
		data |= bits;
	else
		data &= ~bits;
	writew(data, hw->io + addr);
}

/**
 * port_chk_shift - check port bit
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @offset:	The offset of the register.
 * @shift:	Number of bits to shift.
 *
 * This function checks whether the specified port is set in the register or
 * not.
 *
 * Return 0 if the port is not set.
 */
static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
{
	u16 data;
	u16 bit = 1 << port;

	data = readw(hw->io + addr);
	data >>= shift;
	return (data & bit) == bit;
}

/**
 * port_cfg_shift - set port bit
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @offset:	The offset of the register.
 * @shift:	Number of bits to shift.
 * @set:	The flag indicating whether the port is to be set or not.
 *
 * This routine sets or resets the specified port in the register.
 */
static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
	int set)
{
	u16 data;
	u16 bits = 1 << port;

	data = readw(hw->io + addr);
	bits <<= shift;
	if (set)
		data |= bits;
	else
		data &= ~bits;
	writew(data, hw->io + addr);
}

/**
 * port_r8 - read byte from port register
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @offset:	The offset of the port register.
 * @data:	Buffer to store the data.
 *
 * This routine reads a byte from the port register.
 */
static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
{
	u32 addr;

	PORT_CTRL_ADDR(port, addr);
	addr += offset;
	*data = readb(hw->io + addr);
}

/**
 * port_r16 - read word from port register.
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @offset:	The offset of the port register.
 * @data:	Buffer to store the data.
 *
 * This routine reads a word from the port register.
 */
static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
{
	u32 addr;

	PORT_CTRL_ADDR(port, addr);
	addr += offset;
	*data = readw(hw->io + addr);
}

/**
 * port_w16 - write word to port register.
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @offset:	The offset of the port register.
 * @data:	Data to write.
 *
 * This routine writes a word to the port register.
 */
static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
{
	u32 addr;

	PORT_CTRL_ADDR(port, addr);
	addr += offset;
	writew(data, hw->io + addr);
}

/**
 * sw_chk - check switch register bits
 * @hw: 	The hardware instance.
 * @addr:	The address of the switch register.
 * @bits:	The data bits to check.
 *
 * This function checks whether the specified bits of the switch register are
 * set or not.
 *
 * Return 0 if the bits are not set.
 */
static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
{
	u16 data;

	data = readw(hw->io + addr);
	return (data & bits) == bits;
}

/**
 * sw_cfg - set switch register bits
 * @hw: 	The hardware instance.
 * @addr:	The address of the switch register.
 * @bits:	The data bits to set.
 * @set:	The flag indicating whether the bits are to be set or not.
 *
 * This function sets or resets the specified bits of the switch register.
 */
static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
{
	u16 data;

	data = readw(hw->io + addr);
	if (set)
		data |= bits;
	else
		data &= ~bits;
	writew(data, hw->io + addr);
}

/* Bandwidth */

static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
}

static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
}

/* Driver set switch broadcast storm protection at 10% rate. */
#define BROADCAST_STORM_PROTECTION_RATE	10

/* 148,800 frames * 67 ms / 100 */
#define BROADCAST_STORM_VALUE		9969

/**
 * sw_cfg_broad_storm - configure broadcast storm threshold
 * @hw: 	The hardware instance.
 * @percent:	Broadcast storm threshold in percent of transmit rate.
 *
 * This routine configures the broadcast storm threshold of the switch.
 */
static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
{
	u16 data;
	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);

	if (value > BROADCAST_STORM_RATE)
		value = BROADCAST_STORM_RATE;

	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
}

/**
 * sw_get_board_storm - get broadcast storm threshold
 * @hw: 	The hardware instance.
 * @percent:	Buffer to store the broadcast storm threshold percentage.
 *
 * This routine retrieves the broadcast storm threshold of the switch.
 */
static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
{
	int num;
	u16 data;

	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
	num = (data & BROADCAST_STORM_RATE_HI);
	num <<= 8;
	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
	*percent = (u8) num;
}

/**
 * sw_dis_broad_storm - disable broadstorm
 * @hw: 	The hardware instance.
 * @port:	The port index.
 *
 * This routine disables the broadcast storm limit function of the switch.
 */
static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
{
	port_cfg_broad_storm(hw, port, 0);
}

/**
 * sw_ena_broad_storm - enable broadcast storm
 * @hw: 	The hardware instance.
 * @port:	The port index.
 *
 * This routine enables the broadcast storm limit function of the switch.
 */
static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
{
	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
	port_cfg_broad_storm(hw, port, 1);
}

/**
 * sw_init_broad_storm - initialize broadcast storm
 * @hw: 	The hardware instance.
 *
 * This routine initializes the broadcast storm limit function of the switch.
 */
static void sw_init_broad_storm(struct ksz_hw *hw)
{
	int port;

	hw->ksz_switch->broad_per = 1;
	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
	for (port = 0; port < TOTAL_PORT_NUM; port++)
		sw_dis_broad_storm(hw, port);
	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
}

/**
 * hw_cfg_broad_storm - configure broadcast storm
 * @hw: 	The hardware instance.
 * @percent:	Broadcast storm threshold in percent of transmit rate.
 *
 * This routine configures the broadcast storm threshold of the switch.
 * It is called by user functions.  The hardware should be acquired first.
 */
static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
{
	if (percent > 100)
		percent = 100;

	sw_cfg_broad_storm(hw, percent);
	sw_get_broad_storm(hw, &percent);
	hw->ksz_switch->broad_per = percent;
}

/**
 * sw_dis_prio_rate - disable switch priority rate
 * @hw: 	The hardware instance.
 * @port:	The port index.
 *
 * This routine disables the priority rate function of the switch.
 */
static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
{
	u32 addr;

	PORT_CTRL_ADDR(port, addr);
	addr += KS8842_PORT_IN_RATE_OFFSET;
	writel(0, hw->io + addr);
}

/**
 * sw_init_prio_rate - initialize switch prioirty rate
 * @hw: 	The hardware instance.
 *
 * This routine initializes the priority rate function of the switch.
 */
static void sw_init_prio_rate(struct ksz_hw *hw)
{
	int port;
	int prio;
	struct ksz_switch *sw = hw->ksz_switch;

	for (port = 0; port < TOTAL_PORT_NUM; port++) {
		for (prio = 0; prio < PRIO_QUEUES; prio++) {
			sw->port_cfg[port].rx_rate[prio] =
			sw->port_cfg[port].tx_rate[prio] = 0;
		}
		sw_dis_prio_rate(hw, port);
	}
}

/* Communication */

static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
}

static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
}

static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
}

static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
}

/* Spanning Tree */

static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
}

static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
}

static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
}

static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
{
	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
}

static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
{
	if (!(hw->overrides & FAST_AGING)) {
		sw_cfg_fast_aging(hw, 1);
		mdelay(1);
		sw_cfg_fast_aging(hw, 0);
	}
}

/* VLAN */

static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
}

static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
}

static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
}

static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
}

static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
}

static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
}

static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
}

static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
}

/* Mirroring */

static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
}

static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
}

static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
}

static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
{
	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
}

static void sw_init_mirror(struct ksz_hw *hw)
{
	int port;

	for (port = 0; port < TOTAL_PORT_NUM; port++) {
		port_cfg_mirror_sniffer(hw, port, 0);
		port_cfg_mirror_rx(hw, port, 0);
		port_cfg_mirror_tx(hw, port, 0);
	}
	sw_cfg_mirror_rx_tx(hw, 0);
}

static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
{
	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
		SWITCH_UNK_DEF_PORT_ENABLE, set);
}

static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
{
	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
		SWITCH_UNK_DEF_PORT_ENABLE);
}

static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
{
	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
}

static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
{
	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
}

/* Priority */

static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
}

static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
}

static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
}

static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
{
	port_cfg(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
}

static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
}

static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
}

static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
}

static inline int port_chk_prio(struct ksz_hw *hw, int p)
{
	return port_chk(hw, p,
		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
}

/**
 * sw_dis_diffserv - disable switch DiffServ priority
 * @hw: 	The hardware instance.
 * @port:	The port index.
 *
 * This routine disables the DiffServ priority function of the switch.
 */
static void sw_dis_diffserv(struct ksz_hw *hw, int port)
{
	port_cfg_diffserv(hw, port, 0);
}

/**
 * sw_dis_802_1p - disable switch 802.1p priority
 * @hw: 	The hardware instance.
 * @port:	The port index.
 *
 * This routine disables the 802.1p priority function of the switch.
 */
static void sw_dis_802_1p(struct ksz_hw *hw, int port)
{
	port_cfg_802_1p(hw, port, 0);
}

/**
 * sw_cfg_replace_null_vid -
 * @hw: 	The hardware instance.
 * @set:	The flag to disable or enable.
 *
 */
static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
{
	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
}

/**
 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @set:	The flag to disable or enable.
 *
 * This routine enables the 802.1p priority re-mapping function of the switch.
 * That allows 802.1p priority field to be replaced with the port's default
 * tag's priority value if the ingress packet's 802.1p priority has a higher
 * priority than port's default tag's priority.
 */
static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
{
	port_cfg_replace_vid(hw, port, set);
}

/**
 * sw_cfg_port_based - configure switch port based priority
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @prio:	The priority to set.
 *
 * This routine configures the port based priority of the switch.
 */
static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
{
	u16 data;

	if (prio > PORT_BASED_PRIORITY_BASE)
		prio = PORT_BASED_PRIORITY_BASE;

	hw->ksz_switch->port_cfg[port].port_prio = prio;

	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
	data &= ~PORT_BASED_PRIORITY_MASK;
	data |= prio << PORT_BASED_PRIORITY_SHIFT;
	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
}

/**
 * sw_dis_multi_queue - disable transmit multiple queues
 * @hw: 	The hardware instance.
 * @port:	The port index.
 *
 * This routine disables the transmit multiple queues selection of the switch
 * port.  Only single transmit queue on the port.
 */
static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
{
	port_cfg_prio(hw, port, 0);
}

/**
 * sw_init_prio - initialize switch priority
 * @hw: 	The hardware instance.
 *
 * This routine initializes the switch QoS priority functions.
 */
static void sw_init_prio(struct ksz_hw *hw)
{
	int port;
	int tos;
	struct ksz_switch *sw = hw->ksz_switch;

	/*
	 * Init all the 802.1p tag priority value to be assigned to different
	 * priority queue.
	 */
	sw->p_802_1p[0] = 0;
	sw->p_802_1p[1] = 0;
	sw->p_802_1p[2] = 1;
	sw->p_802_1p[3] = 1;
	sw->p_802_1p[4] = 2;
	sw->p_802_1p[5] = 2;
	sw->p_802_1p[6] = 3;
	sw->p_802_1p[7] = 3;

	/*
	 * Init all the DiffServ priority value to be assigned to priority
	 * queue 0.
	 */
	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
		sw->diffserv[tos] = 0;

	/* All QoS functions disabled. */
	for (port = 0; port < TOTAL_PORT_NUM; port++) {
		sw_dis_multi_queue(hw, port);
		sw_dis_diffserv(hw, port);
		sw_dis_802_1p(hw, port);
		sw_cfg_replace_vid(hw, port, 0);

		sw->port_cfg[port].port_prio = 0;
		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
	}
	sw_cfg_replace_null_vid(hw, 0);
}

/**
 * port_get_def_vid - get port default VID.
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @vid:	Buffer to store the VID.
 *
 * This routine retrieves the default VID of the port.
 */
static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
{
	u32 addr;

	PORT_CTRL_ADDR(port, addr);
	addr += KS8842_PORT_CTRL_VID_OFFSET;
	*vid = readw(hw->io + addr);
}

/**
 * sw_init_vlan - initialize switch VLAN
 * @hw: 	The hardware instance.
 *
 * This routine initializes the VLAN function of the switch.
 */
static void sw_init_vlan(struct ksz_hw *hw)
{
	int port;
	int entry;
	struct ksz_switch *sw = hw->ksz_switch;

	/* Read 16 VLAN entries from device's VLAN table. */
	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
		sw_r_vlan_table(hw, entry,
			&sw->vlan_table[entry].vid,
			&sw->vlan_table[entry].fid,
			&sw->vlan_table[entry].member);
	}

	for (port = 0; port < TOTAL_PORT_NUM; port++) {
		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
		sw->port_cfg[port].member = PORT_MASK;
	}
}

/**
 * sw_cfg_port_base_vlan - configure port-based VLAN membership
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @member:	The port-based VLAN membership.
 *
 * This routine configures the port-based VLAN membership of the port.
 */
static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
{
	u32 addr;
	u8 data;

	PORT_CTRL_ADDR(port, addr);
	addr += KS8842_PORT_CTRL_2_OFFSET;

	data = readb(hw->io + addr);
	data &= ~PORT_VLAN_MEMBERSHIP;
	data |= (member & PORT_MASK);
	writeb(data, hw->io + addr);

	hw->ksz_switch->port_cfg[port].member = member;
}

/**
 * sw_get_addr - get the switch MAC address.
 * @hw: 	The hardware instance.
 * @mac_addr:	Buffer to store the MAC address.
 *
 * This function retrieves the MAC address of the switch.
 */
static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
{
	int i;

	for (i = 0; i < 6; i += 2) {
		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
	}
}

/**
 * sw_set_addr - configure switch MAC address
 * @hw: 	The hardware instance.
 * @mac_addr:	The MAC address.
 *
 * This function configures the MAC address of the switch.
 */
static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
{
	int i;

	for (i = 0; i < 6; i += 2) {
		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
	}
}

/**
 * sw_set_global_ctrl - set switch global control
 * @hw: 	The hardware instance.
 *
 * This routine sets the global control of the switch function.
 */
static void sw_set_global_ctrl(struct ksz_hw *hw)
{
	u16 data;

	/* Enable switch MII flow control. */
	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
	data |= SWITCH_FLOW_CTRL;
	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);

	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);

	/* Enable aggressive back off algorithm in half duplex mode. */
	data |= SWITCH_AGGR_BACKOFF;

	/* Enable automatic fast aging when link changed detected. */
	data |= SWITCH_AGING_ENABLE;
	data |= SWITCH_LINK_AUTO_AGING;

	if (hw->overrides & FAST_AGING)
		data |= SWITCH_FAST_AGING;
	else
		data &= ~SWITCH_FAST_AGING;
	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);

	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);

	/* Enable no excessive collision drop. */
	data |= NO_EXC_COLLISION_DROP;
	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
}

enum {
	STP_STATE_DISABLED = 0,
	STP_STATE_LISTENING,
	STP_STATE_LEARNING,
	STP_STATE_FORWARDING,
	STP_STATE_BLOCKED,
	STP_STATE_SIMPLE
};

/**
 * port_set_stp_state - configure port spanning tree state
 * @hw: 	The hardware instance.
 * @port:	The port index.
 * @state:	The spanning tree state.
 *
 * This routine configures the spanning tree state of the port.
 */
static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
{
	u16 data;

	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
	switch (state) {
	case STP_STATE_DISABLED:
		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
		data |= PORT_LEARN_DISABLE;
		break;
	case STP_STATE_LISTENING:
/*
 * No need to turn on transmit because of port direct mode.
 * Turning on receive is required if static MAC table is not setup.
 */
		data &= ~PORT_TX_ENABLE;
		data |= PORT_RX_ENABLE;
		data |= PORT_LEARN_DISABLE;
		break;
	case STP_STATE_LEARNING:
		data &= ~PORT_TX_ENABLE;
		data |= PORT_RX_ENABLE;
		data &= ~PORT_LEARN_DISABLE;
		break;
	case STP_STATE_FORWARDING:
		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
		data &= ~PORT_LEARN_DISABLE;
		break;
	case STP_STATE_BLOCKED:
/*
 * Need to setup static MAC table with override to keep receiving BPDU
 * messages.  See sw_init_stp routine.
 */
		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
		data |= PORT_LEARN_DISABLE;
		break;
	case STP_STATE_SIMPLE:
		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
		data |= PORT_LEARN_DISABLE;
		break;
	}
	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
	hw->ksz_switch->port_cfg[port].stp_state = state;
}

#define STP_ENTRY			0
#define BROADCAST_ENTRY			1
#define BRIDGE_ADDR_ENTRY		2
#define IPV6_ADDR_ENTRY			3

/**
 * sw_clr_sta_mac_table - clear static MAC table
 * @hw: 	The hardware instance.
 *
 * This routine clears the static MAC table.
 */
static void sw_clr_sta_mac_table(struct ksz_hw *hw)
{
	struct ksz_mac_table *entry;
	int i;

	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
		entry = &hw->ksz_switch->mac_table[i];
		sw_w_sta_mac_table(hw, i,
			entry->mac_addr, entry->ports,
			entry->override, 0,
			entry->use_fid, entry->fid);
	}
}

/**
 * sw_init_stp - initialize switch spanning tree support
 * @hw: 	The hardware instance.
 *
 * This routine initializes the spanning tree support of the switch.
 */
static void sw_init_stp(struct ksz_hw *hw)
{
	struct ksz_mac_table *entry;

	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
	entry->mac_addr[0] = 0x01;
	entry->mac_addr[1] = 0x80;
	entry->mac_addr[2] = 0xC2;
	entry->mac_addr[3] = 0x00;
	entry->mac_addr[4] = 0x00;
	entry->mac_addr[5] = 0x00;
	entry->ports = HOST_MASK;
	entry->override = 1;
	entry->valid = 1;
	sw_w_sta_mac_table(hw, STP_ENTRY,
		entry->mac_addr, entry->ports,
		entry->override, entry->valid,
		entry->use_fid, entry->fid);
}

/**
 * sw_block_addr - block certain packets from the host port
 * @hw: 	The hardware instance.
 *
 * This routine blocks certain packets from reaching to the host port.
 */
static void sw_block_addr(struct ksz_hw *hw)
{
	struct ksz_mac_table *entry;
	int i;

	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
		entry = &hw->ksz_switch->mac_table[i];
		entry->valid = 0;
		sw_w_sta_mac_table(hw, i,
			entry->mac_addr, entry->ports,
			entry->override, entry->valid,
			entry->use_fid, entry->fid);
	}
}

#define PHY_LINK_SUPPORT		\
	(PHY_AUTO_NEG_ASYM_PAUSE |	\
	PHY_AUTO_NEG_SYM_PAUSE |	\
	PHY_AUTO_NEG_100BT4 |		\
	PHY_AUTO_NEG_100BTX_FD |	\
	PHY_AUTO_NEG_100BTX |		\
	PHY_AUTO_NEG_10BT_FD |		\
	PHY_AUTO_NEG_10BT)

static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
{
	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
}

static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
{
	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
}

static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
{
	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
}

static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
{
	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
}

static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
{
	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
}

static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
{
	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
}

static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
{
	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
}

static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
{
	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
}

static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
{
	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
}

static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
{
	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
}

static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
{
	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
}

static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
{
	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
}

/**
 * hw_r_phy - read data from PHY register
 * @hw: 	The hardware instance.
 * @port:	Port to read.
 * @reg:	PHY register to read.
 * @val:	Buffer to store the read data.
 *
 * This routine reads data from the PHY register.
 */
static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
{
	int phy;

	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
	*val = readw(hw->io + phy);
}

/**
 * port_w_phy - write data to PHY register
 * @hw: 	The hardware instance.
 * @port:	Port to write.
 * @reg:	PHY register to write.
 * @val:	Word data to write.
 *
 * This routine writes data to the PHY register.
 */
static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
{
	int phy;

	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
	writew(val, hw->io + phy);
}

/*
 * EEPROM access functions
 */

#define AT93C_CODE			0
#define AT93C_WR_OFF			0x00
#define AT93C_WR_ALL			0x10
#define AT93C_ER_ALL			0x20
#define AT93C_WR_ON			0x30

#define AT93C_WRITE			1
#define AT93C_READ			2
#define AT93C_ERASE			3

#define EEPROM_DELAY			4

static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
{
	u16 data;

	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
	data &= ~gpio;
	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
}

static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
{
	u16 data;

	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
	data |= gpio;
	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
}

static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
{
	u16 data;

	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
	return (u8)(data & gpio);
}

static void eeprom_clk(struct ksz_hw *hw)
{
	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
	udelay(EEPROM_DELAY);
	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
	udelay(EEPROM_DELAY);
}

static u16 spi_r(struct ksz_hw *hw)
{
	int i;
	u16 temp = 0;

	for (i = 15; i >= 0; i--) {
		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
		udelay(EEPROM_DELAY);

		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;

		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
		udelay(EEPROM_DELAY);
	}
	return temp;
}

static void spi_w(struct ksz_hw *hw, u16 data)
{
	int i;

	for (i = 15; i >= 0; i--) {
		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
			drop_gpio(hw, EEPROM_DATA_OUT);
		eeprom_clk(hw);
	}
}

static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
{
	int i;

	/* Initial start bit */
	raise_gpio(hw, EEPROM_DATA_OUT);
	eeprom_clk(hw);

	/* AT93C operation */
	for (i = 1; i >= 0; i--) {
		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
			drop_gpio(hw, EEPROM_DATA_OUT);
		eeprom_clk(hw);
	}

	/* Address location */
	for (i = 5; i >= 0; i--) {
		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
			drop_gpio(hw, EEPROM_DATA_OUT);
		eeprom_clk(hw);
	}
}

#define EEPROM_DATA_RESERVED		0
#define EEPROM_DATA_MAC_ADDR_0		1
#define EEPROM_DATA_MAC_ADDR_1		2
#define EEPROM_DATA_MAC_ADDR_2		3
#define EEPROM_DATA_SUBSYS_ID		4
#define EEPROM_DATA_SUBSYS_VEN_ID	5
#define EEPROM_DATA_PM_CAP		6

/* User defined EEPROM data */
#define EEPROM_DATA_OTHER_MAC_ADDR	9

/**
 * eeprom_read - read from AT93C46 EEPROM
 * @hw: 	The hardware instance.
 * @reg:	The register offset.
 *
 * This function reads a word from the AT93C46 EEPROM.
 *
 * Return the data value.
 */
static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
{
	u16 data;

	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);

	spi_reg(hw, AT93C_READ, reg);
	data = spi_r(hw);

	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);

	return data;
}

/**
 * eeprom_write - write to AT93C46 EEPROM
 * @hw: 	The hardware instance.
 * @reg:	The register offset.
 * @data:	The data value.
 *
 * This procedure writes a word to the AT93C46 EEPROM.
 */
static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
{
	int timeout;

	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);

	/* Enable write. */
	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
	drop_gpio(hw, EEPROM_CHIP_SELECT);
	udelay(1);

	/* Erase the register. */
	raise_gpio(hw, EEPROM_CHIP_SELECT);
	spi_reg(hw, AT93C_ERASE, reg);
	drop_gpio(hw, EEPROM_CHIP_SELECT);
	udelay(1);

	/* Check operation complete. */
	raise_gpio(hw, EEPROM_CHIP_SELECT);
	timeout = 8;
	mdelay(2);
	do {
		mdelay(1);
	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
	drop_gpio(hw, EEPROM_CHIP_SELECT);
	udelay(1);

	/* Write the register. */
	raise_gpio(hw, EEPROM_CHIP_SELECT);
	spi_reg(hw, AT93C_WRITE, reg);
	spi_w(hw, data);
	drop_gpio(hw, EEPROM_CHIP_SELECT);
	udelay(1);

	/* Check operation complete. */
	raise_gpio(hw, EEPROM_CHIP_SELECT);
	timeout = 8;
	mdelay(2);
	do {
		mdelay(1);
	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
	drop_gpio(hw, EEPROM_CHIP_SELECT);
	udelay(1);

	/* Disable write. */
	raise_gpio(hw, EEPROM_CHIP_SELECT);
	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);

	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
}

/*
 * Link detection routines
 */

static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
{
	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
	switch (port->flow_ctrl) {
	case PHY_FLOW_CTRL:
		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
		break;
	/* Not supported. */
	case PHY_TX_ONLY:
	case PHY_RX_ONLY:
	default:
		break;
	}
	return ctrl;
}

static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
{
	u32 rx_cfg;
	u32 tx_cfg;

	rx_cfg = hw->rx_cfg;
	tx_cfg = hw->tx_cfg;
	if (rx)
		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
	else
		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
	if (tx)
		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
	else
		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
	if (hw->enabled) {
		if (rx_cfg != hw->rx_cfg)
			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
		if (tx_cfg != hw->tx_cfg)
			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
	}
}

static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
	u16 local, u16 remote)
{
	int rx;
	int tx;

	if (hw->overrides & PAUSE_FLOW_CTRL)
		return;

	rx = tx = 0;
	if (port->force_link)
		rx = tx = 1;
	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
			rx = tx = 1;
		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
				(local & PHY_AUTO_NEG_PAUSE) ==
				PHY_AUTO_NEG_ASYM_PAUSE) {
			tx = 1;
		}
	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
			rx = 1;
	}
	if (!hw->ksz_switch)
		set_flow_ctrl(hw, rx, tx);
}

static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
	struct ksz_port_info *info, u16 link_status)
{
	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
			!(hw->overrides & PAUSE_FLOW_CTRL)) {
		u32 cfg = hw->tx_cfg;

		/* Disable flow control in the half duplex mode. */
		if (1 == info->duplex)
			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
		if (hw->enabled && cfg != hw->tx_cfg)
			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
	}
}

/**
 * port_get_link_speed - get current link status
 * @port: 	The port instance.
 *
 * This routine reads PHY registers to determine the current link status of the
 * switch ports.
 */
static void port_get_link_speed(struct ksz_port *port)
{
	uint interrupt;
	struct ksz_port_info *info;
	struct ksz_port_info *linked = NULL;
	struct ksz_hw *hw = port->hw;
	u16 data;
	u16 status;
	u8 local;
	u8 remote;
	int i;
	int p;
	int change = 0;

	interrupt = hw_block_intr(hw);

	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
		info = &hw->port_info[p];
		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);

		/*
		 * Link status is changing all the time even when there is no
		 * cable connection!
		 */
		remote = status & (PORT_AUTO_NEG_COMPLETE |
			PORT_STATUS_LINK_GOOD);
		local = (u8) data;

		/* No change to status. */
		if (local == info->advertised && remote == info->partner)
			continue;

		info->advertised = local;
		info->partner = remote;
		if (status & PORT_STATUS_LINK_GOOD) {

			/* Remember the first linked port. */
			if (!linked)
				linked = info;

			info->tx_rate = 10 * TX_RATE_UNIT;
			if (status & PORT_STATUS_SPEED_100MBIT)
				info->tx_rate = 100 * TX_RATE_UNIT;

			info->duplex = 1;
			if (status & PORT_STATUS_FULL_DUPLEX)
				info->duplex = 2;

			if (media_connected != info->state) {
				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
					&data);
				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
					&status);
				determine_flow_ctrl(hw, port, data, status);
				if (hw->ksz_switch) {
					port_cfg_back_pressure(hw, p,
						(1 == info->duplex));
				}
				change |= 1 << i;
				port_cfg_change(hw, port, info, status);
			}
			info->state = media_connected;
		} else {
			if (media_disconnected != info->state) {
				change |= 1 << i;

				/* Indicate the link just goes down. */
				hw->port_mib[p].link_down = 1;
			}
			info->state = media_disconnected;
		}
		hw->port_mib[p].state = (u8) info->state;
	}

	if (linked && media_disconnected == port->linked->state)
		port->linked = linked;

	hw_restore_intr(hw, interrupt);
}

#define PHY_RESET_TIMEOUT		10

/**
 * port_set_link_speed - set port speed
 * @port: 	The port instance.
 *
 * This routine sets the link speed of the switch ports.
 */
static void port_set_link_speed(struct ksz_port *port)
{
	struct ksz_port_info *info;
	struct ksz_hw *hw = port->hw;
	u16 data;
	u16 cfg;
	u8 status;
	int i;
	int p;

	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
		info = &hw->port_info[p];

		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);

		cfg = 0;
		if (status & PORT_STATUS_LINK_GOOD)
			cfg = data;

		data |= PORT_AUTO_NEG_ENABLE;
		data = advertised_flow_ctrl(port, data);

		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;

		/* Check if manual configuration is specified by the user. */
		if (port->speed || port->duplex) {
			if (10 == port->speed)
				data &= ~(PORT_AUTO_NEG_100BTX_FD |
					PORT_AUTO_NEG_100BTX);
			else if (100 == port->speed)
				data &= ~(PORT_AUTO_NEG_10BT_FD |
					PORT_AUTO_NEG_10BT);
			if (1 == port->duplex)
				data &= ~(PORT_AUTO_NEG_100BTX_FD |
					PORT_AUTO_NEG_10BT_FD);
			else if (2 == port->duplex)
				data &= ~(PORT_AUTO_NEG_100BTX |
					PORT_AUTO_NEG_10BT);
		}
		if (data != cfg) {
			data |= PORT_AUTO_NEG_RESTART;
			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
		}
	}
}

/**
 * port_force_link_speed - force port speed
 * @port: 	The port instance.
 *
 * This routine forces the link speed of the switch ports.
 */
static void port_force_link_speed(struct ksz_port *port)
{
	struct ksz_hw *hw = port->hw;
	u16 data;
	int i;
	int phy;
	int p;

	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
		hw_r_phy_ctrl(hw, phy, &data);

		data &= ~PHY_AUTO_NEG_ENABLE;

		if (10 == port->speed)
			data &= ~PHY_SPEED_100MBIT;
		else if (100 == port->speed)
			data |= PHY_SPEED_100MBIT;
		if (1 == port->duplex)
			data &= ~PHY_FULL_DUPLEX;
		else if (2 == port->duplex)
			data |= PHY_FULL_DUPLEX;
		hw_w_phy_ctrl(hw, phy, data);
	}
}

static void port_set_power_saving(struct ksz_port *port, int enable)
{
	struct ksz_hw *hw = port->hw;
	int i;
	int p;

	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
		port_cfg(hw, p,
			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
}

/*
 * KSZ8841 power management functions
 */

/**
 * hw_chk_wol_pme_status - check PMEN pin
 * @hw: 	The hardware instance.
 *
 * This function is used to check PMEN pin is asserted.
 *
 * Return 1 if PMEN pin is asserted; otherwise, 0.
 */
static int hw_chk_wol_pme_status(struct ksz_hw *hw)
{
	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
	struct pci_dev *pdev = hw_priv->pdev;
	u16 data;

	if (!pdev->pm_cap)
		return 0;
	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
}

/**
 * hw_clr_wol_pme_status - clear PMEN pin
 * @hw: 	The hardware instance.
 *
 * This routine is used to clear PME_Status to deassert PMEN pin.
 */
static void hw_clr_wol_pme_status(struct ksz_hw *hw)
{
	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
	struct pci_dev *pdev = hw_priv->pdev;
	u16 data;

	if (!pdev->pm_cap)
		return;

	/* Clear PME_Status to deassert PMEN pin. */
	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
	data |= PCI_PM_CTRL_PME_STATUS;
	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
}

/**
 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
 * @hw: 	The hardware instance.
 * @set:	The flag indicating whether to enable or disable.
 *
 * This routine is used to enable or disable Wake-on-LAN.
 */
static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
{
	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
	struct pci_dev *pdev = hw_priv->pdev;
	u16 data;

	if (!pdev->pm_cap)
		return;
	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
	data &= ~PCI_PM_CTRL_STATE_MASK;
	if (set)
		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
	else
		data &= ~PCI_PM_CTRL_PME_ENABLE;
	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
}

/**
 * hw_cfg_wol - configure Wake-on-LAN features
 * @hw: 	The hardware instance.
 * @frame:	The pattern frame bit.
 * @set:	The flag indicating whether to enable or disable.
 *
 * This routine is used to enable or disable certain Wake-on-LAN features.
 */
static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
{
	u16 data;

	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
	if (set)
		data |= frame;
	else
		data &= ~frame;
	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
}

/**
 * hw_set_wol_frame - program Wake-on-LAN pattern
 * @hw: 	The hardware instance.
 * @i:		The frame index.
 * @mask_size:	The size of the mask.
 * @mask:	Mask to ignore certain bytes in the pattern.
 * @frame_size:	The size of the frame.
 * @pattern:	The frame data.
 *
 * This routine is used to program Wake-on-LAN pattern.
 */
static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
	u8 *mask, uint frame_size, u8 *pattern)
{
	int bits;
	int from;
	int len;
	int to;
	u32 crc;
	u8 data[64];
	u8 val = 0;

	if (frame_size > mask_size * 8)
		frame_size = mask_size * 8;
	if (frame_size > 64)
		frame_size = 64;

	i *= 0x10;
	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);

	bits = len = from = to = 0;
	do {
		if (bits) {
			if ((val & 1))
				data[to++] = pattern[from];
			val >>= 1;
			++from;
			--bits;
		} else {
			val = mask[len];
			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
				+ len);
			++len;
			if (val)
				bits = 8;
			else
				from += 8;
		}
	} while (from < (int) frame_size);
	if (val) {
		bits = mask[len - 1];
		val <<= (from % 8);
		bits &= ~val;
		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
			1);
	}
	crc = ether_crc(to, data);
	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
}

/**
 * hw_add_wol_arp - add ARP pattern
 * @hw: 	The hardware instance.
 * @ip_addr:	The IPv4 address assigned to the device.
 *
 * This routine is used to add ARP pattern for waking up the host.
 */
static void hw_add_wol_arp(struct ksz_hw *hw, u8 *ip_addr)
{
	u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
	u8 pattern[42] = {
		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x08, 0x06,
		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00 };

	memcpy(&pattern[38], ip_addr, 4);
	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
}

/**
 * hw_add_wol_bcast - add broadcast pattern
 * @hw: 	The hardware instance.
 *
 * This routine is used to add broadcast pattern for waking up the host.
 */
static void hw_add_wol_bcast(struct ksz_hw *hw)
{
	u8 mask[] = { 0x3F };
	u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };

	hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
}

/**
 * hw_add_wol_mcast - add multicast pattern
 * @hw: 	The hardware instance.
 *
 * This routine is used to add multicast pattern for waking up the host.
 *
 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
 * by IPv6 ping command.  Note that multicast packets are filtred through the
 * multicast hash table, so not all multicast packets can wake up the host.
 */
static void hw_add_wol_mcast(struct ksz_hw *hw)
{
	u8 mask[] = { 0x3F };
	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };

	memcpy(&pattern[3], &hw->override_addr[3], 3);
	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
}

/**
 * hw_add_wol_ucast - add unicast pattern
 * @hw: 	The hardware instance.
 *
 * This routine is used to add unicast pattern to wakeup the host.
 *
 * It is assumed the unicast packet is directed to the device, as the hardware
 * can only receive them in normal case.
 */
static void hw_add_wol_ucast(struct ksz_hw *hw)
{
	u8 mask[] = { 0x3F };

	hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
}

/**
 * hw_enable_wol - enable Wake-on-LAN
 * @hw: 	The hardware instance.
 * @wol_enable:	The Wake-on-LAN settings.
 * @net_addr:	The IPv4 address assigned to the device.
 *
 * This routine is used to enable Wake-on-LAN depending on driver settings.
 */
static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, u8 *net_addr)
{
	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
	hw_add_wol_ucast(hw);
	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
	hw_add_wol_mcast(hw);
	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
	hw_add_wol_arp(hw, net_addr);
}

/**
 * hw_init - check driver is correct for the hardware
 * @hw: 	The hardware instance.
 *
 * This function checks the hardware is correct for this driver and sets the
 * hardware up for proper initialization.
 *
 * Return number of ports or 0 if not right.
 */
static int hw_init(struct ksz_hw *hw)
{
	int rc = 0;
	u16 data;
	u16 revision;

	/* Set bus speed to 125MHz. */
	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);

	/* Check KSZ884x chip ID. */
	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);

	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
	data &= KS884X_CHIP_ID_MASK_41;
	if (REG_CHIP_ID_41 == data)
		rc = 1;
	else if (REG_CHIP_ID_42 == data)
		rc = 2;
	else
		return 0;

	/* Setup hardware features or bug workarounds. */
	if (revision <= 1) {
		hw->features |= SMALL_PACKET_TX_BUG;
		if (1 == rc)
			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
	}
	hw->features |= IPV6_CSUM_GEN_HACK;
	return rc;
}

/**
 * hw_reset - reset the hardware
 * @hw: 	The hardware instance.
 *
 * This routine resets the hardware.
 */
static void hw_reset(struct ksz_hw *hw)
{
	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);

	/* Wait for device to reset. */
	mdelay(10);

	/* Write 0 to clear device reset. */
	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
}

/**
 * hw_setup - setup the hardware
 * @hw: 	The hardware instance.
 *
 * This routine setup the hardware for proper operation.
 */
static void hw_setup(struct ksz_hw *hw)
{
#if SET_DEFAULT_LED
	u16 data;

	/* Change default LED mode. */
	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
	data &= ~LED_MODE;
	data |= SET_DEFAULT_LED;
	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
#endif

	/* Setup transmit control. */
	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);

	/* Setup receive control. */
	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;

	/* Hardware cannot handle UDP packet in IP fragments. */
	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);

	if (hw->all_multi)
		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
	if (hw->promiscuous)
		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
}

/**
 * hw_setup_intr - setup interrupt mask
 * @hw: 	The hardware instance.
 *
 * This routine setup the interrupt mask for proper operation.
 */
static void hw_setup_intr(struct ksz_hw *hw)
{
	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
}

static void ksz_check_desc_num(struct ksz_desc_info *info)
{
#define MIN_DESC_SHIFT  2

	int alloc = info->alloc;
	int shift;

	shift = 0;
	while (!(alloc & 1)) {
		shift++;
		alloc >>= 1;
	}
	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
		printk(KERN_ALERT "Hardware descriptor numbers not right!\n");
		while (alloc) {
			shift++;
			alloc >>= 1;
		}
		if (shift < MIN_DESC_SHIFT)
			shift = MIN_DESC_SHIFT;
		alloc = 1 << shift;
		info->alloc = alloc;
	}
	info->mask = info->alloc - 1;
}

static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
{
	int i;
	u32 phys = desc_info->ring_phys;
	struct ksz_hw_desc *desc = desc_info->ring_virt;
	struct ksz_desc *cur = desc_info->ring;
	struct ksz_desc *previous = NULL;

	for (i = 0; i < desc_info->alloc; i++) {
		cur->phw = desc++;
		phys += desc_info->size;
		previous = cur++;
		previous->phw->next = cpu_to_le32(phys);
	}
	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
	previous->sw.buf.rx.end_of_ring = 1;
	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);

	desc_info->avail = desc_info->alloc;
	desc_info->last = desc_info->next = 0;

	desc_info->cur = desc_info->ring;
}

/**
 * hw_set_desc_base - set descriptor base addresses
 * @hw: 	The hardware instance.
 * @tx_addr:	The transmit descriptor base.
 * @rx_addr:	The receive descriptor base.
 *
 * This routine programs the descriptor base addresses after reset.
 */
static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
{
	/* Set base address of Tx/Rx descriptors. */
	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
}

static void hw_reset_pkts(struct ksz_desc_info *info)
{
	info->cur = info->ring;
	info->avail = info->alloc;
	info->last = info->next = 0;
}

static inline void hw_resume_rx(struct ksz_hw *hw)
{
	writel(DMA_START, hw->io + KS_DMA_RX_START);
}

/**
 * hw_start_rx - start receiving
 * @hw: 	The hardware instance.
 *
 * This routine starts the receive function of the hardware.
 */
static void hw_start_rx(struct ksz_hw *hw)
{
	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);

	/* Notify when the receive stops. */
	hw->intr_mask |= KS884X_INT_RX_STOPPED;

	writel(DMA_START, hw->io + KS_DMA_RX_START);
	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
	hw->rx_stop++;

	/* Variable overflows. */
	if (0 == hw->rx_stop)
		hw->rx_stop = 2;
}

/*
 * hw_stop_rx - stop receiving
 * @hw: 	The hardware instance.
 *
 * This routine stops the receive function of the hardware.
 */
static void hw_stop_rx(struct ksz_hw *hw)
{
	hw->rx_stop = 0;
	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
}

/**
 * hw_start_tx - start transmitting
 * @hw: 	The hardware instance.
 *
 * This routine starts the transmit function of the hardware.
 */
static void hw_start_tx(struct ksz_hw *hw)
{
	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
}

/**
 * hw_stop_tx - stop transmitting
 * @hw: 	The hardware instance.
 *
 * This routine stops the transmit function of the hardware.
 */
static void hw_stop_tx(struct ksz_hw *hw)
{
	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
}

/**
 * hw_disable - disable hardware
 * @hw: 	The hardware instance.
 *
 * This routine disables the hardware.
 */
static void hw_disable(struct ksz_hw *hw)
{
	hw_stop_rx(hw);
	hw_stop_tx(hw);
	hw->enabled = 0;
}

/**
 * hw_enable - enable hardware
 * @hw: 	The hardware instance.
 *
 * This routine enables the hardware.
 */
static void hw_enable(struct ksz_hw *hw)
{
	hw_start_tx(hw);
	hw_start_rx(hw);
	hw->enabled = 1;
}

/**
 * hw_alloc_pkt - allocate enough descriptors for transmission
 * @hw: 	The hardware instance.
 * @length:	The length of the packet.
 * @physical:	Number of descriptors required.
 *
 * This function allocates descriptors for transmission.
 *
 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
 */
static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
{
	/* Always leave one descriptor free. */
	if (hw->tx_desc_info.avail <= 1)
		return 0;

	/* Allocate a descriptor for transmission and mark it current. */
	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;

	/* Keep track of number of transmit descriptors used so far. */
	++hw->tx_int_cnt;
	hw->tx_size += length;

	/* Cannot hold on too much data. */
	if (hw->tx_size >= MAX_TX_HELD_SIZE)
		hw->tx_int_cnt = hw->tx_int_mask + 1;

	if (physical > hw->tx_desc_info.avail)
		return 1;

	return hw->tx_desc_info.avail;
}

/**
 * hw_send_pkt - mark packet for transmission
 * @hw: 	The hardware instance.
 *
 * This routine marks the packet for transmission in PCI version.
 */
static void hw_send_pkt(struct ksz_hw *hw)
{
	struct ksz_desc *cur = hw->tx_desc_info.cur;

	cur->sw.buf.tx.last_seg = 1;

	/* Interrupt only after specified number of descriptors used. */
	if (hw->tx_int_cnt > hw->tx_int_mask) {
		cur->sw.buf.tx.intr = 1;
		hw->tx_int_cnt = 0;
		hw->tx_size = 0;
	}

	/* KSZ8842 supports port directed transmission. */
	cur->sw.buf.tx.dest_port = hw->dst_ports;

	release_desc(cur);

	writel(0, hw->io + KS_DMA_TX_START);
}

static int empty_addr(u8 *addr)
{
	u32 *addr1 = (u32 *) addr;
	u16 *addr2 = (u16 *) &addr[4];

	return 0 == *addr1 && 0 == *addr2;
}

/**
 * hw_set_addr - set MAC address
 * @hw: 	The hardware instance.
 *
 * This routine programs the MAC address of the hardware when the address is
 * overrided.
 */
static void hw_set_addr(struct ksz_hw *hw)
{
	int i;

	for (i = 0; i < MAC_ADDR_LEN; i++)
		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
			hw->io + KS884X_ADDR_0_OFFSET + i);

	sw_set_addr(hw, hw->override_addr);
}

/**
 * hw_read_addr - read MAC address
 * @hw: 	The hardware instance.
 *
 * This routine retrieves the MAC address of the hardware.
 */
static void hw_read_addr(struct ksz_hw *hw)
{
	int i;

	for (i = 0; i < MAC_ADDR_LEN; i++)
		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
			KS884X_ADDR_0_OFFSET + i);

	if (!hw->mac_override) {
		memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
		if (empty_addr(hw->override_addr)) {
			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
				MAC_ADDR_LEN);
			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
				MAC_ADDR_LEN);
			hw->override_addr[5] += hw->id;
			hw_set_addr(hw);
		}
	}
}

static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
{
	int i;
	u32 mac_addr_lo;
	u32 mac_addr_hi;

	mac_addr_hi = 0;
	for (i = 0; i < 2; i++) {
		mac_addr_hi <<= 8;
		mac_addr_hi |= mac_addr[i];
	}
	mac_addr_hi |= ADD_ADDR_ENABLE;
	mac_addr_lo = 0;
	for (i = 2; i < 6; i++) {
		mac_addr_lo <<= 8;
		mac_addr_lo |= mac_addr[i];
	}
	index *= ADD_ADDR_INCR;

	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
}

static void hw_set_add_addr(struct ksz_hw *hw)
{
	int i;

	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
		if (empty_addr(hw->address[i]))
			writel(0, hw->io + ADD_ADDR_INCR * i +
				KS_ADD_ADDR_0_HI);
		else
			hw_ena_add_addr(hw, i, hw->address[i]);
	}
}

static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
{
	int i;
	int j = ADDITIONAL_ENTRIES;

	if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
		return 0;
	for (i = 0; i < hw->addr_list_size; i++) {
		if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
			return 0;
		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
			j = i;
	}
	if (j < ADDITIONAL_ENTRIES) {
		memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
		hw_ena_add_addr(hw, j, hw->address[j]);
		return 0;
	}
	return -1;
}

static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
{
	int i;

	for (i = 0; i < hw->addr_list_size; i++) {
		if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
			memset(hw->address[i], 0, MAC_ADDR_LEN);
			writel(0, hw->io + ADD_ADDR_INCR * i +
				KS_ADD_ADDR_0_HI);
			return 0;
		}
	}
	return -1;
}

/**
 * hw_clr_multicast - clear multicast addresses
 * @hw: 	The hardware instance.
 *
 * This routine removes all multicast addresses set in the hardware.
 */
static void hw_clr_multicast(struct ksz_hw *hw)
{
	int i;

	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
		hw->multi_bits[i] = 0;

		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
	}
}

/**
 * hw_set_grp_addr - set multicast addresses
 * @hw: 	The hardware instance.
 *
 * This routine programs multicast addresses for the hardware to accept those
 * addresses.
 */
static void hw_set_grp_addr(struct ksz_hw *hw)
{
	int i;
	int index;
	int position;
	int value;

	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);

	for (i = 0; i < hw->multi_list_size; i++) {
		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
		index = position >> 3;
		value = 1 << (position & 7);
		hw->multi_bits[index] |= (u8) value;
	}

	for (i = 0; i < HW_MULTICAST_SIZE; i++)
		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
			i);
}

/**
 * hw_set_multicast - enable or disable all multicast receiving
 * @hw: 	The hardware instance.
 * @multicast:	To turn on or off the all multicast feature.
 *
 * This routine enables/disables the hardware to accept all multicast packets.
 */
static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
{
	/* Stop receiving for reconfiguration. */
	hw_stop_rx(hw);

	if (multicast)
		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
	else
		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;

	if (hw->enabled)
		hw_start_rx(hw);
}

/**
 * hw_set_promiscuous - enable or disable promiscuous receiving
 * @hw: 	The hardware instance.
 * @prom:	To turn on or off the promiscuous feature.
 *
 * This routine enables/disables the hardware to accept all packets.
 */
static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
{
	/* Stop receiving for reconfiguration. */
	hw_stop_rx(hw);

	if (prom)
		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
	else
		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;

	if (hw->enabled)
		hw_start_rx(hw);
}

/**
 * sw_enable - enable the switch
 * @hw: 	The hardware instance.
 * @enable:	The flag to enable or disable the switch
 *
 * This routine is used to enable/disable the switch in KSZ8842.
 */
static void sw_enable(struct ksz_hw *hw, int enable)
{
	int port;

	for (port = 0; port < SWITCH_PORT_NUM; port++) {
		if (hw->dev_count > 1) {
			/* Set port-base vlan membership with host port. */
			sw_cfg_port_base_vlan(hw, port,
				HOST_MASK | (1 << port));
			port_set_stp_state(hw, port, STP_STATE_DISABLED);
		} else {
			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
		}
	}
	if (hw->dev_count > 1)
		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
	else
		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);

	if (enable)
		enable = KS8842_START;
	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
}

/**
 * sw_setup - setup the switch
 * @hw: 	The hardware instance.
 *
 * This routine setup the hardware switch engine for default operation.
 */
static void sw_setup(struct ksz_hw *hw)
{
	int port;

	sw_set_global_ctrl(hw);

	/* Enable switch broadcast storm protection at 10% percent rate. */
	sw_init_broad_storm(hw);
	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
	for (port = 0; port < SWITCH_PORT_NUM; port++)
		sw_ena_broad_storm(hw, port);

	sw_init_prio(hw);

	sw_init_mirror(hw);

	sw_init_prio_rate(hw);

	sw_init_vlan(hw);

	if (hw->features & STP_SUPPORT)
		sw_init_stp(hw);
	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
		hw->overrides |= PAUSE_FLOW_CTRL;
	sw_enable(hw, 1);
}

/**
 * ksz_start_timer - start kernel timer
 * @info:	Kernel timer information.
 * @time:	The time tick.
 *
 * This routine starts the kernel timer after the specified time tick.
 */
static void ksz_start_timer(struct ksz_timer_info *info, int time)
{
	info->cnt = 0;
	info->timer.expires = jiffies + time;
	add_timer(&info->timer);

	/* infinity */
	info->max = -1;
}

/**
 * ksz_stop_timer - stop kernel timer
 * @info:	Kernel timer information.
 *
 * This routine stops the kernel timer.
 */
static void ksz_stop_timer(struct ksz_timer_info *info)
{
	if (info->max) {
		info->max = 0;
		del_timer_sync(&info->timer);
	}
}

static void ksz_init_timer(struct ksz_timer_info *info, int period,
	void (*function)(unsigned long), void *data)
{
	info->max = 0;
	info->period = period;
	init_timer(&info->timer);
	info->timer.function = function;
	info->timer.data = (unsigned long) data;
}

static void ksz_update_timer(struct ksz_timer_info *info)
{
	++info->cnt;
	if (info->max > 0) {
		if (info->cnt < info->max) {
			info->timer.expires = jiffies + info->period;
			add_timer(&info->timer);
		} else
			info->max = 0;
	} else if (info->max < 0) {
		info->timer.expires = jiffies + info->period;
		add_timer(&info->timer);
	}
}

/**
 * ksz_alloc_soft_desc - allocate software descriptors
 * @desc_info:	Descriptor information structure.
 * @transmit:	Indication that descriptors are for transmit.
 *
 * This local function allocates software descriptors for manipulation in
 * memory.
 *
 * Return 0 if successful.
 */
static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
{
	desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
		GFP_KERNEL);
	if (!desc_info->ring)
		return 1;
	memset((void *) desc_info->ring, 0,
		sizeof(struct ksz_desc) * desc_info->alloc);
	hw_init_desc(desc_info, transmit);
	return 0;
}

/**
 * ksz_alloc_desc - allocate hardware descriptors
 * @adapter:	Adapter information structure.
 *
 * This local function allocates hardware descriptors for receiving and
 * transmitting.
 *
 * Return 0 if successful.
 */
static int ksz_alloc_desc(struct dev_info *adapter)
{
	struct ksz_hw *hw = &adapter->hw;
	int offset;

	/* Allocate memory for RX & TX descriptors. */
	adapter->desc_pool.alloc_size =
		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
		DESC_ALIGNMENT;

	adapter->desc_pool.alloc_virt =
		pci_alloc_consistent(
			adapter->pdev, adapter->desc_pool.alloc_size,
			&adapter->desc_pool.dma_addr);
	if (adapter->desc_pool.alloc_virt == NULL) {
		adapter->desc_pool.alloc_size = 0;
		return 1;
	}
	memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);

	/* Align to the next cache line boundary. */
	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
		(DESC_ALIGNMENT -
		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;

	/* Allocate receive/transmit descriptors. */
	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
		adapter->desc_pool.virt;
	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
		(adapter->desc_pool.virt + offset);
	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;

	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
		return 1;
	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
		return 1;

	return 0;
}

/**
 * free_dma_buf - release DMA buffer resources
 * @adapter:	Adapter information structure.
 *
 * This routine is just a helper function to release the DMA buffer resources.
 */
static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
	int direction)
{
	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
	dev_kfree_skb(dma_buf->skb);
	dma_buf->skb = NULL;
	dma_buf->dma = 0;
}

/**
 * ksz_init_rx_buffers - initialize receive descriptors
 * @adapter:	Adapter information structure.
 *
 * This routine initializes DMA buffers for receiving.
 */
static void ksz_init_rx_buffers(struct dev_info *adapter)
{
	int i;
	struct ksz_desc *desc;
	struct ksz_dma_buf *dma_buf;
	struct ksz_hw *hw = &adapter->hw;
	struct ksz_desc_info *info = &hw->rx_desc_info;

	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
		get_rx_pkt(info, &desc);

		dma_buf = DMA_BUFFER(desc);
		if (dma_buf->skb && dma_buf->len != adapter->mtu)
			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
		dma_buf->len = adapter->mtu;
		if (!dma_buf->skb)
			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
		if (dma_buf->skb && !dma_buf->dma) {
			dma_buf->skb->dev = adapter->dev;
			dma_buf->dma = pci_map_single(
				adapter->pdev,
				skb_tail_pointer(dma_buf->skb),
				dma_buf->len,
				PCI_DMA_FROMDEVICE);
		}

		/* Set descriptor. */
		set_rx_buf(desc, dma_buf->dma);
		set_rx_len(desc, dma_buf->len);
		release_desc(desc);
	}
}

/**
 * ksz_alloc_mem - allocate memory for hardware descriptors
 * @adapter:	Adapter information structure.
 *
 * This function allocates memory for use by hardware descriptors for receiving
 * and transmitting.
 *
 * Return 0 if successful.
 */
static int ksz_alloc_mem(struct dev_info *adapter)
{
	struct ksz_hw *hw = &adapter->hw;

	/* Determine the number of receive and transmit descriptors. */
	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;

	/* Determine how many descriptors to skip transmit interrupt. */
	hw->tx_int_cnt = 0;
	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
	if (hw->tx_int_mask > 8)
		hw->tx_int_mask = 8;
	while (hw->tx_int_mask) {
		hw->tx_int_cnt++;
		hw->tx_int_mask >>= 1;
	}
	if (hw->tx_int_cnt) {
		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
		hw->tx_int_cnt = 0;
	}

	/* Determine the descriptor size. */
	hw->rx_desc_info.size =
		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
		DESC_ALIGNMENT) * DESC_ALIGNMENT);
	hw->tx_desc_info.size =
		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
		DESC_ALIGNMENT) * DESC_ALIGNMENT);
	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
		printk(KERN_ALERT
			"Hardware descriptor size not right!\n");
	ksz_check_desc_num(&hw->rx_desc_info);
	ksz_check_desc_num(&hw->tx_desc_info);

	/* Allocate descriptors. */
	if (ksz_alloc_desc(adapter))
		return 1;

	return 0;
}

/**
 * ksz_free_desc - free software and hardware descriptors
 * @adapter:	Adapter information structure.
 *
 * This local routine frees the software and hardware descriptors allocated by
 * ksz_alloc_desc().
 */
static void ksz_free_desc(struct dev_info *adapter)
{
	struct ksz_hw *hw = &adapter->hw;

	/* Reset descriptor. */
	hw->rx_desc_info.ring_virt = NULL;
	hw->tx_desc_info.ring_virt = NULL;
	hw->rx_desc_info.ring_phys = 0;
	hw->tx_desc_info.ring_phys = 0;

	/* Free memory. */
	if (adapter->desc_pool.alloc_virt)
		pci_free_consistent(
			adapter->pdev,
			adapter->desc_pool.alloc_size,
			adapter->desc_pool.alloc_virt,
			adapter->desc_pool.dma_addr);

	/* Reset resource pool. */
	adapter->desc_pool.alloc_size = 0;
	adapter->desc_pool.alloc_virt = NULL;

	kfree(hw->rx_desc_info.ring);
	hw->rx_desc_info.ring = NULL;
	kfree(hw->tx_desc_info.ring);
	hw->tx_desc_info.ring = NULL;
}

/**
 * ksz_free_buffers - free buffers used in the descriptors
 * @adapter:	Adapter information structure.
 * @desc_info:	Descriptor information structure.
 *
 * This local routine frees buffers used in the DMA buffers.
 */
static void ksz_free_buffers(struct dev_info *adapter,
	struct ksz_desc_info *desc_info, int direction)
{
	int i;
	struct ksz_dma_buf *dma_buf;
	struct ksz_desc *desc = desc_info->ring;

	for (i = 0; i < desc_info->alloc; i++) {
		dma_buf = DMA_BUFFER(desc);
		if (dma_buf->skb)
			free_dma_buf(adapter, dma_buf, direction);
		desc++;
	}
}

/**
 * ksz_free_mem - free all resources used by descriptors
 * @adapter:	Adapter information structure.
 *
 * This local routine frees all the resources allocated by ksz_alloc_mem().
 */
static void ksz_free_mem(struct dev_info *adapter)
{
	/* Free transmit buffers. */
	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
		PCI_DMA_TODEVICE);

	/* Free receive buffers. */
	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
		PCI_DMA_FROMDEVICE);

	/* Free descriptors. */
	ksz_free_desc(adapter);
}

static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
	u64 *counter)
{
	int i;
	int mib;
	int port;
	struct ksz_port_mib *port_mib;

	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
	for (i = 0, port = first; i < cnt; i++, port++) {
		port_mib = &hw->port_mib[port];
		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
			counter[mib] += port_mib->counter[mib];
	}
}

/**
 * send_packet - send packet
 * @skb:	Socket buffer.
 * @dev:	Network device.
 *
 * This routine is used to send a packet out to the network.
 */
static void send_packet(struct sk_buff *skb, struct net_device *dev)
{
	struct ksz_desc *desc;
	struct ksz_desc *first;
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	struct ksz_desc_info *info = &hw->tx_desc_info;
	struct ksz_dma_buf *dma_buf;
	int len;
	int last_frag = skb_shinfo(skb)->nr_frags;

	/*
	 * KSZ8842 with multiple device interfaces needs to be told which port
	 * to send.
	 */
	if (hw->dev_count > 1)
		hw->dst_ports = 1 << priv->port.first_port;

	/* Hardware will pad the length to 60. */
	len = skb->len;

	/* Remember the very first descriptor. */
	first = info->cur;
	desc = first;

	dma_buf = DMA_BUFFER(desc);
	if (last_frag) {
		int frag;
		skb_frag_t *this_frag;

		dma_buf->len = skb->len - skb->data_len;

		dma_buf->dma = pci_map_single(
			hw_priv->pdev, skb->data, dma_buf->len,
			PCI_DMA_TODEVICE);
		set_tx_buf(desc, dma_buf->dma);
		set_tx_len(desc, dma_buf->len);

		frag = 0;
		do {
			this_frag = &skb_shinfo(skb)->frags[frag];

			/* Get a new descriptor. */
			get_tx_pkt(info, &desc);

			/* Keep track of descriptors used so far. */
			++hw->tx_int_cnt;

			dma_buf = DMA_BUFFER(desc);
			dma_buf->len = this_frag->size;

			dma_buf->dma = pci_map_single(
				hw_priv->pdev,
				page_address(this_frag->page) +
				this_frag->page_offset,
				dma_buf->len,
				PCI_DMA_TODEVICE);
			set_tx_buf(desc, dma_buf->dma);
			set_tx_len(desc, dma_buf->len);

			frag++;
			if (frag == last_frag)
				break;

			/* Do not release the last descriptor here. */
			release_desc(desc);
		} while (1);

		/* current points to the last descriptor. */
		info->cur = desc;

		/* Release the first descriptor. */
		release_desc(first);
	} else {
		dma_buf->len = len;

		dma_buf->dma = pci_map_single(
			hw_priv->pdev, skb->data, dma_buf->len,
			PCI_DMA_TODEVICE);
		set_tx_buf(desc, dma_buf->dma);
		set_tx_len(desc, dma_buf->len);
	}

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		(desc)->sw.buf.tx.csum_gen_tcp = 1;
		(desc)->sw.buf.tx.csum_gen_udp = 1;
	}

	/*
	 * The last descriptor holds the packet so that it can be returned to
	 * network subsystem after all descriptors are transmitted.
	 */
	dma_buf->skb = skb;

	hw_send_pkt(hw);

	/* Update transmit statistics. */
	priv->stats.tx_packets++;
	priv->stats.tx_bytes += len;
}

/**
 * transmit_cleanup - clean up transmit descriptors
 * @dev:	Network device.
 *
 * This routine is called to clean up the transmitted buffers.
 */
static void transmit_cleanup(struct dev_info *hw_priv, int normal)
{
	int last;
	union desc_stat status;
	struct ksz_hw *hw = &hw_priv->hw;
	struct ksz_desc_info *info = &hw->tx_desc_info;
	struct ksz_desc *desc;
	struct ksz_dma_buf *dma_buf;
	struct net_device *dev = NULL;

	spin_lock(&hw_priv->hwlock);
	last = info->last;

	while (info->avail < info->alloc) {
		/* Get next descriptor which is not hardware owned. */
		desc = &info->ring[last];
		status.data = le32_to_cpu(desc->phw->ctrl.data);
		if (status.tx.hw_owned) {
			if (normal)
				break;
			else
				reset_desc(desc, status);
		}

		dma_buf = DMA_BUFFER(desc);
		pci_unmap_single(
			hw_priv->pdev, dma_buf->dma, dma_buf->len,
			PCI_DMA_TODEVICE);

		/* This descriptor contains the last buffer in the packet. */
		if (dma_buf->skb) {
			dev = dma_buf->skb->dev;

			/* Release the packet back to network subsystem. */
			dev_kfree_skb_irq(dma_buf->skb);
			dma_buf->skb = NULL;
		}

		/* Free the transmitted descriptor. */
		last++;
		last &= info->mask;
		info->avail++;
	}
	info->last = last;
	spin_unlock(&hw_priv->hwlock);

	/* Notify the network subsystem that the packet has been sent. */
	if (dev)
		dev->trans_start = jiffies;
}

/**
 * transmit_done - transmit done processing
 * @dev:	Network device.
 *
 * This routine is called when the transmit interrupt is triggered, indicating
 * either a packet is sent successfully or there are transmit errors.
 */
static void tx_done(struct dev_info *hw_priv)
{
	struct ksz_hw *hw = &hw_priv->hw;
	int port;

	transmit_cleanup(hw_priv, 1);

	for (port = 0; port < hw->dev_count; port++) {
		struct net_device *dev = hw->port_info[port].pdev;

		if (netif_running(dev) && netif_queue_stopped(dev))
			netif_wake_queue(dev);
	}
}

static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
{
	skb->dev = old->dev;
	skb->protocol = old->protocol;
	skb->ip_summed = old->ip_summed;
	skb->csum = old->csum;
	skb_set_network_header(skb, ETH_HLEN);

	dev_kfree_skb(old);
}

/**
 * netdev_tx - send out packet
 * @skb:	Socket buffer.
 * @dev:	Network device.
 *
 * This function is used by the upper network layer to send out a packet.
 *
 * Return 0 if successful; otherwise an error code indicating failure.
 */
static int netdev_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	int left;
	int num = 1;
	int rc = 0;

	if (hw->features & SMALL_PACKET_TX_BUG) {
		struct sk_buff *org_skb = skb;

		if (skb->len <= 48) {
			if (skb_end_pointer(skb) - skb->data >= 50) {
				memset(&skb->data[skb->len], 0, 50 - skb->len);
				skb->len = 50;
			} else {
				skb = dev_alloc_skb(50);
				if (!skb)
					return NETDEV_TX_BUSY;
				memcpy(skb->data, org_skb->data, org_skb->len);
				memset(&skb->data[org_skb->len], 0,
					50 - org_skb->len);
				skb->len = 50;
				copy_old_skb(org_skb, skb);
			}
		}
	}

	spin_lock_irq(&hw_priv->hwlock);

	num = skb_shinfo(skb)->nr_frags + 1;
	left = hw_alloc_pkt(hw, skb->len, num);
	if (left) {
		if (left < num ||
				((hw->features & IPV6_CSUM_GEN_HACK) &&
				(CHECKSUM_PARTIAL == skb->ip_summed) &&
				(ETH_P_IPV6 == htons(skb->protocol)))) {
			struct sk_buff *org_skb = skb;

			skb = dev_alloc_skb(org_skb->len);
			if (!skb) {
				rc = NETDEV_TX_BUSY;
				goto unlock;
			}
			skb_copy_and_csum_dev(org_skb, skb->data);
			org_skb->ip_summed = 0;
			skb->len = org_skb->len;
			copy_old_skb(org_skb, skb);
		}
		send_packet(skb, dev);
		if (left <= num)
			netif_stop_queue(dev);
	} else {
		/* Stop the transmit queue until packet is allocated. */
		netif_stop_queue(dev);
		rc = NETDEV_TX_BUSY;
	}
unlock:
	spin_unlock_irq(&hw_priv->hwlock);

	return rc;
}

/**
 * netdev_tx_timeout - transmit timeout processing
 * @dev:	Network device.
 *
 * This routine is called when the transmit timer expires.  That indicates the
 * hardware is not running correctly because transmit interrupts are not
 * triggered to free up resources so that the transmit routine can continue
 * sending out packets.  The hardware is reset to correct the problem.
 */
static void netdev_tx_timeout(struct net_device *dev)
{
	static unsigned long last_reset;

	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	int port;

	if (hw->dev_count > 1) {
		/*
		 * Only reset the hardware if time between calls is long
		 * enough.
		 */
		if (jiffies - last_reset <= dev->watchdog_timeo)
			hw_priv = NULL;
	}

	last_reset = jiffies;
	if (hw_priv) {
		hw_dis_intr(hw);
		hw_disable(hw);

		transmit_cleanup(hw_priv, 0);
		hw_reset_pkts(&hw->rx_desc_info);
		hw_reset_pkts(&hw->tx_desc_info);
		ksz_init_rx_buffers(hw_priv);

		hw_reset(hw);

		hw_set_desc_base(hw,
			hw->tx_desc_info.ring_phys,
			hw->rx_desc_info.ring_phys);
		hw_set_addr(hw);
		if (hw->all_multi)
			hw_set_multicast(hw, hw->all_multi);
		else if (hw->multi_list_size)
			hw_set_grp_addr(hw);

		if (hw->dev_count > 1) {
			hw_set_add_addr(hw);
			for (port = 0; port < SWITCH_PORT_NUM; port++) {
				struct net_device *port_dev;

				port_set_stp_state(hw, port,
					STP_STATE_DISABLED);

				port_dev = hw->port_info[port].pdev;
				if (netif_running(port_dev))
					port_set_stp_state(hw, port,
						STP_STATE_SIMPLE);
			}
		}

		hw_enable(hw);
		hw_ena_intr(hw);
	}

	dev->trans_start = jiffies;
	netif_wake_queue(dev);
}

static inline void csum_verified(struct sk_buff *skb)
{
	unsigned short protocol;
	struct iphdr *iph;

	protocol = skb->protocol;
	skb_reset_network_header(skb);
	iph = (struct iphdr *) skb_network_header(skb);
	if (protocol == htons(ETH_P_8021Q)) {
		protocol = iph->tot_len;
		skb_set_network_header(skb, VLAN_HLEN);
		iph = (struct iphdr *) skb_network_header(skb);
	}
	if (protocol == htons(ETH_P_IP)) {
		if (iph->protocol == IPPROTO_TCP)
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}
}

static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
	struct ksz_desc *desc, union desc_stat status)
{
	int packet_len;
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_dma_buf *dma_buf;
	struct sk_buff *skb;
	int rx_status;

	/* Received length includes 4-byte CRC. */
	packet_len = status.rx.frame_len - 4;

	dma_buf = DMA_BUFFER(desc);
	pci_dma_sync_single_for_cpu(
		hw_priv->pdev, dma_buf->dma, packet_len + 4,
		PCI_DMA_FROMDEVICE);

	do {
		/* skb->data != skb->head */
		skb = dev_alloc_skb(packet_len + 2);
		if (!skb) {
			priv->stats.rx_dropped++;
			return -ENOMEM;
		}

		/*
		 * Align socket buffer in 4-byte boundary for better
		 * performance.
		 */
		skb_reserve(skb, 2);

		memcpy(skb_put(skb, packet_len),
			dma_buf->skb->data, packet_len);
	} while (0);

	skb->dev = dev;

	skb->protocol = eth_type_trans(skb, dev);

	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
		csum_verified(skb);

	/* Update receive statistics. */
	priv->stats.rx_packets++;
	priv->stats.rx_bytes += packet_len;

	/* Notify upper layer for received packet. */
	dev->last_rx = jiffies;

	rx_status = netif_rx(skb);

	return 0;
}

static int dev_rcv_packets(struct dev_info *hw_priv)
{
	int next;
	union desc_stat status;
	struct ksz_hw *hw = &hw_priv->hw;
	struct net_device *dev = hw->port_info[0].pdev;
	struct ksz_desc_info *info = &hw->rx_desc_info;
	int left = info->alloc;
	struct ksz_desc *desc;
	int received = 0;

	next = info->next;
	while (left--) {
		/* Get next descriptor which is not hardware owned. */
		desc = &info->ring[next];
		status.data = le32_to_cpu(desc->phw->ctrl.data);
		if (status.rx.hw_owned)
			break;

		/* Status valid only when last descriptor bit is set. */
		if (status.rx.last_desc && status.rx.first_desc) {
			if (rx_proc(dev, hw, desc, status))
				goto release_packet;
			received++;
		}

release_packet:
		release_desc(desc);
		next++;
		next &= info->mask;
	}
	info->next = next;

	return received;
}

static int port_rcv_packets(struct dev_info *hw_priv)
{
	int next;
	union desc_stat status;
	struct ksz_hw *hw = &hw_priv->hw;
	struct net_device *dev = hw->port_info[0].pdev;
	struct ksz_desc_info *info = &hw->rx_desc_info;
	int left = info->alloc;
	struct ksz_desc *desc;
	int received = 0;

	next = info->next;
	while (left--) {
		/* Get next descriptor which is not hardware owned. */
		desc = &info->ring[next];
		status.data = le32_to_cpu(desc->phw->ctrl.data);
		if (status.rx.hw_owned)
			break;

		if (hw->dev_count > 1) {
			/* Get received port number. */
			int p = HW_TO_DEV_PORT(status.rx.src_port);

			dev = hw->port_info[p].pdev;
			if (!netif_running(dev))
				goto release_packet;
		}

		/* Status valid only when last descriptor bit is set. */
		if (status.rx.last_desc && status.rx.first_desc) {
			if (rx_proc(dev, hw, desc, status))
				goto release_packet;
			received++;
		}

release_packet:
		release_desc(desc);
		next++;
		next &= info->mask;
	}
	info->next = next;

	return received;
}

static int dev_rcv_special(struct dev_info *hw_priv)
{
	int next;
	union desc_stat status;
	struct ksz_hw *hw = &hw_priv->hw;
	struct net_device *dev = hw->port_info[0].pdev;
	struct ksz_desc_info *info = &hw->rx_desc_info;
	int left = info->alloc;
	struct ksz_desc *desc;
	int received = 0;

	next = info->next;
	while (left--) {
		/* Get next descriptor which is not hardware owned. */
		desc = &info->ring[next];
		status.data = le32_to_cpu(desc->phw->ctrl.data);
		if (status.rx.hw_owned)
			break;

		if (hw->dev_count > 1) {
			/* Get received port number. */
			int p = HW_TO_DEV_PORT(status.rx.src_port);

			dev = hw->port_info[p].pdev;
			if (!netif_running(dev))
				goto release_packet;
		}

		/* Status valid only when last descriptor bit is set. */
		if (status.rx.last_desc && status.rx.first_desc) {
			/*
			 * Receive without error.  With receive errors
			 * disabled, packets with receive errors will be
			 * dropped, so no need to check the error bit.
			 */
			if (!status.rx.error || (status.data &
					KS_DESC_RX_ERROR_COND) ==
					KS_DESC_RX_ERROR_TOO_LONG) {
				if (rx_proc(dev, hw, desc, status))
					goto release_packet;
				received++;
			} else {
				struct dev_priv *priv = netdev_priv(dev);

				/* Update receive error statistics. */
				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
			}
		}

release_packet:
		release_desc(desc);
		next++;
		next &= info->mask;
	}
	info->next = next;

	return received;
}

static void rx_proc_task(unsigned long data)
{
	struct dev_info *hw_priv = (struct dev_info *) data;
	struct ksz_hw *hw = &hw_priv->hw;

	if (!hw->enabled)
		return;
	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {

		/* In case receive process is suspended because of overrun. */
		hw_resume_rx(hw);

		/* tasklets are interruptible. */
		spin_lock_irq(&hw_priv->hwlock);
		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
		spin_unlock_irq(&hw_priv->hwlock);
	} else {
		hw_ack_intr(hw, KS884X_INT_RX);
		tasklet_schedule(&hw_priv->rx_tasklet);
	}
}

static void tx_proc_task(unsigned long data)
{
	struct dev_info *hw_priv = (struct dev_info *) data;
	struct ksz_hw *hw = &hw_priv->hw;

	hw_ack_intr(hw, KS884X_INT_TX_MASK);

	tx_done(hw_priv);

	/* tasklets are interruptible. */
	spin_lock_irq(&hw_priv->hwlock);
	hw_turn_on_intr(hw, KS884X_INT_TX);
	spin_unlock_irq(&hw_priv->hwlock);
}

static inline void handle_rx_stop(struct ksz_hw *hw)
{
	/* Receive just has been stopped. */
	if (0 == hw->rx_stop)
		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
	else if (hw->rx_stop > 1) {
		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
			hw_start_rx(hw);
		} else {
			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
			hw->rx_stop = 0;
		}
	} else
		/* Receive just has been started. */
		hw->rx_stop++;
}

/**
 * netdev_intr - interrupt handling
 * @irq:	Interrupt number.
 * @dev_id:	Network device.
 *
 * This function is called by upper network layer to signal interrupt.
 *
 * Return IRQ_HANDLED if interrupt is handled.
 */
static irqreturn_t netdev_intr(int irq, void *dev_id)
{
	uint int_enable = 0;
	struct net_device *dev = (struct net_device *) dev_id;
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;

	hw_read_intr(hw, &int_enable);

	/* Not our interrupt! */
	if (!int_enable)
		return IRQ_NONE;

	do {
		hw_ack_intr(hw, int_enable);
		int_enable &= hw->intr_mask;

		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
			tasklet_schedule(&hw_priv->tx_tasklet);
		}

		if (likely(int_enable & KS884X_INT_RX)) {
			hw_dis_intr_bit(hw, KS884X_INT_RX);
			tasklet_schedule(&hw_priv->rx_tasklet);
		}

		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
			priv->stats.rx_fifo_errors++;
			hw_resume_rx(hw);
		}

		if (unlikely(int_enable & KS884X_INT_PHY)) {
			struct ksz_port *port = &priv->port;

			hw->features |= LINK_INT_WORKING;
			port_get_link_speed(port);
		}

		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
			handle_rx_stop(hw);
			break;
		}

		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
			u32 data;

			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
			printk(KERN_INFO "Tx stopped\n");
			data = readl(hw->io + KS_DMA_TX_CTRL);
			if (!(data & DMA_TX_ENABLE))
				printk(KERN_INFO "Tx disabled\n");
			break;
		}
	} while (0);

	hw_ena_intr(hw);

	return IRQ_HANDLED;
}

/*
 * Linux network device functions
 */

static unsigned long next_jiffies;

#ifdef CONFIG_NET_POLL_CONTROLLER
static void netdev_netpoll(struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;

	hw_dis_intr(&hw_priv->hw);
	netdev_intr(dev->irq, dev);
}
#endif

static void bridge_change(struct ksz_hw *hw)
{
	int port;
	u8  member;
	struct ksz_switch *sw = hw->ksz_switch;

	/* No ports in forwarding state. */
	if (!sw->member) {
		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
		sw_block_addr(hw);
	}
	for (port = 0; port < SWITCH_PORT_NUM; port++) {
		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
			member = HOST_MASK | sw->member;
		else
			member = HOST_MASK | (1 << port);
		if (member != sw->port_cfg[port].member)
			sw_cfg_port_base_vlan(hw, port, member);
	}
}

/**
 * netdev_close - close network device
 * @dev:	Network device.
 *
 * This function process the close operation of network device.  This is caused
 * by the user command "ifconfig ethX down."
 *
 * Return 0 if successful; otherwise an error code indicating failure.
 */
static int netdev_close(struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_port *port = &priv->port;
	struct ksz_hw *hw = &hw_priv->hw;
	int pi;

	netif_stop_queue(dev);

	ksz_stop_timer(&priv->monitor_timer_info);

	/* Need to shut the port manually in multiple device interfaces mode. */
	if (hw->dev_count > 1) {
		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);

		/* Port is closed.  Need to change bridge setting. */
		if (hw->features & STP_SUPPORT) {
			pi = 1 << port->first_port;
			if (hw->ksz_switch->member & pi) {
				hw->ksz_switch->member &= ~pi;
				bridge_change(hw);
			}
		}
	}
	if (port->first_port > 0)
		hw_del_addr(hw, dev->dev_addr);
	if (!hw_priv->wol_enable)
		port_set_power_saving(port, true);

	if (priv->multicast)
		--hw->all_multi;
	if (priv->promiscuous)
		--hw->promiscuous;

	hw_priv->opened--;
	if (!(hw_priv->opened)) {
		ksz_stop_timer(&hw_priv->mib_timer_info);
		flush_work(&hw_priv->mib_read);

		hw_dis_intr(hw);
		hw_disable(hw);
		hw_clr_multicast(hw);

		/* Delay for receive task to stop scheduling itself. */
		msleep(2000 / HZ);

		tasklet_disable(&hw_priv->rx_tasklet);
		tasklet_disable(&hw_priv->tx_tasklet);
		free_irq(dev->irq, hw_priv->dev);

		transmit_cleanup(hw_priv, 0);
		hw_reset_pkts(&hw->rx_desc_info);
		hw_reset_pkts(&hw->tx_desc_info);

		/* Clean out static MAC table when the switch is shutdown. */
		if (hw->features & STP_SUPPORT)
			sw_clr_sta_mac_table(hw);
	}

	return 0;
}

static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
{
	if (hw->ksz_switch) {
		u32 data;

		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
		if (hw->features & RX_HUGE_FRAME)
			data |= SWITCH_HUGE_PACKET;
		else
			data &= ~SWITCH_HUGE_PACKET;
		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
	}
	if (hw->features & RX_HUGE_FRAME) {
		hw->rx_cfg |= DMA_RX_ERROR;
		hw_priv->dev_rcv = dev_rcv_special;
	} else {
		hw->rx_cfg &= ~DMA_RX_ERROR;
		if (hw->dev_count > 1)
			hw_priv->dev_rcv = port_rcv_packets;
		else
			hw_priv->dev_rcv = dev_rcv_packets;
	}
}

static int prepare_hardware(struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	int rc = 0;

	/* Remember the network device that requests interrupts. */
	hw_priv->dev = dev;
	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
	if (rc)
		return rc;
	tasklet_enable(&hw_priv->rx_tasklet);
	tasklet_enable(&hw_priv->tx_tasklet);

	hw->promiscuous = 0;
	hw->all_multi = 0;
	hw->multi_list_size = 0;

	hw_reset(hw);

	hw_set_desc_base(hw,
		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
	hw_set_addr(hw);
	hw_cfg_huge_frame(hw_priv, hw);
	ksz_init_rx_buffers(hw_priv);
	return 0;
}

/**
 * netdev_open - open network device
 * @dev:	Network device.
 *
 * This function process the open operation of network device.  This is caused
 * by the user command "ifconfig ethX up."
 *
 * Return 0 if successful; otherwise an error code indicating failure.
 */
static int netdev_open(struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	struct ksz_port *port = &priv->port;
	int i;
	int p;
	int rc = 0;

	priv->multicast = 0;
	priv->promiscuous = 0;

	/* Reset device statistics. */
	memset(&priv->stats, 0, sizeof(struct net_device_stats));
	memset((void *) port->counter, 0,
		(sizeof(u64) * OID_COUNTER_LAST));

	if (!(hw_priv->opened)) {
		rc = prepare_hardware(dev);
		if (rc)
			return rc;
		for (i = 0; i < hw->mib_port_cnt; i++) {
			if (next_jiffies < jiffies)
				next_jiffies = jiffies + HZ * 2;
			else
				next_jiffies += HZ * 1;
			hw_priv->counter[i].time = next_jiffies;
			hw->port_mib[i].state = media_disconnected;
			port_init_cnt(hw, i);
		}
		if (hw->ksz_switch)
			hw->port_mib[HOST_PORT].state = media_connected;
		else {
			hw_add_wol_bcast(hw);
			hw_cfg_wol_pme(hw, 0);
			hw_clr_wol_pme_status(&hw_priv->hw);
		}
	}
	port_set_power_saving(port, false);

	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
		/*
		 * Initialize to invalid value so that link detection
		 * is done.
		 */
		hw->port_info[p].partner = 0xFF;
		hw->port_info[p].state = media_disconnected;
	}

	/* Need to open the port in multiple device interfaces mode. */
	if (hw->dev_count > 1) {
		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
		if (port->first_port > 0)
			hw_add_addr(hw, dev->dev_addr);
	}

	port_get_link_speed(port);
	if (port->force_link)
		port_force_link_speed(port);
	else
		port_set_link_speed(port);

	if (!(hw_priv->opened)) {
		hw_setup_intr(hw);
		hw_enable(hw);
		hw_ena_intr(hw);

		if (hw->mib_port_cnt)
			ksz_start_timer(&hw_priv->mib_timer_info,
				hw_priv->mib_timer_info.period);
	}

	hw_priv->opened++;

	ksz_start_timer(&priv->monitor_timer_info,
		priv->monitor_timer_info.period);

	priv->media_state = port->linked->state;

	if (media_connected == priv->media_state)
		netif_carrier_on(dev);
	else
		netif_carrier_off(dev);
	if (netif_msg_link(priv))
		printk(KERN_INFO "%s link %s\n", dev->name,
			(media_connected == priv->media_state ?
			"on" : "off"));

	netif_start_queue(dev);

	return 0;
}

/* RX errors = rx_errors */
/* RX dropped = rx_dropped */
/* RX overruns = rx_fifo_errors */
/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
/* TX errors = tx_errors */
/* TX dropped = tx_dropped */
/* TX overruns = tx_fifo_errors */
/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
/* collisions = collisions */

/**
 * netdev_query_statistics - query network device statistics
 * @dev:	Network device.
 *
 * This function returns the statistics of the network device.  The device
 * needs not be opened.
 *
 * Return network device statistics.
 */
static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct ksz_port *port = &priv->port;
	struct ksz_hw *hw = &priv->adapter->hw;
	struct ksz_port_mib *mib;
	int i;
	int p;

	priv->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
	priv->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];

	/* Reset to zero to add count later. */
	priv->stats.multicast = 0;
	priv->stats.collisions = 0;
	priv->stats.rx_length_errors = 0;
	priv->stats.rx_crc_errors = 0;
	priv->stats.rx_frame_errors = 0;
	priv->stats.tx_window_errors = 0;

	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
		mib = &hw->port_mib[p];

		priv->stats.multicast += (unsigned long)
			mib->counter[MIB_COUNTER_RX_MULTICAST];

		priv->stats.collisions += (unsigned long)
			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];

		priv->stats.rx_length_errors += (unsigned long)(
			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
			mib->counter[MIB_COUNTER_RX_JABBER]);
		priv->stats.rx_crc_errors += (unsigned long)
			mib->counter[MIB_COUNTER_RX_CRC_ERR];
		priv->stats.rx_frame_errors += (unsigned long)(
			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);

		priv->stats.tx_window_errors += (unsigned long)
			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
	}

	return &priv->stats;
}

/**
 * netdev_set_mac_address - set network device MAC address
 * @dev:	Network device.
 * @addr:	Buffer of MAC address.
 *
 * This function is used to set the MAC address of the network device.
 *
 * Return 0 to indicate success.
 */
static int netdev_set_mac_address(struct net_device *dev, void *addr)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	struct sockaddr *mac = addr;
	uint interrupt;

	if (priv->port.first_port > 0)
		hw_del_addr(hw, dev->dev_addr);
	else {
		hw->mac_override = 1;
		memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
	}

	memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);

	interrupt = hw_block_intr(hw);

	if (priv->port.first_port > 0)
		hw_add_addr(hw, dev->dev_addr);
	else
		hw_set_addr(hw);
	hw_restore_intr(hw, interrupt);

	return 0;
}

static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
	struct ksz_hw *hw, int promiscuous)
{
	if (promiscuous != priv->promiscuous) {
		u8 prev_state = hw->promiscuous;

		if (promiscuous)
			++hw->promiscuous;
		else
			--hw->promiscuous;
		priv->promiscuous = promiscuous;

		/* Turn on/off promiscuous mode. */
		if (hw->promiscuous <= 1 && prev_state <= 1)
			hw_set_promiscuous(hw, hw->promiscuous);

		/*
		 * Port is not in promiscuous mode, meaning it is released
		 * from the bridge.
		 */
		if ((hw->features & STP_SUPPORT) && !promiscuous &&
				dev->br_port) {
			struct ksz_switch *sw = hw->ksz_switch;
			int port = priv->port.first_port;

			port_set_stp_state(hw, port, STP_STATE_DISABLED);
			port = 1 << port;
			if (sw->member & port) {
				sw->member &= ~port;
				bridge_change(hw);
			}
		}
	}
}

static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
	int multicast)
{
	if (multicast != priv->multicast) {
		u8 all_multi = hw->all_multi;

		if (multicast)
			++hw->all_multi;
		else
			--hw->all_multi;
		priv->multicast = multicast;

		/* Turn on/off all multicast mode. */
		if (hw->all_multi <= 1 && all_multi <= 1)
			hw_set_multicast(hw, hw->all_multi);
	}
}

/**
 * netdev_set_rx_mode
 * @dev:	Network device.
 *
 * This routine is used to set multicast addresses or put the network device
 * into promiscuous mode.
 */
static void netdev_set_rx_mode(struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	struct dev_mc_list *mc_ptr;
	int multicast = (dev->flags & IFF_ALLMULTI);

	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));

	if (hw_priv->hw.dev_count > 1)
		multicast |= (dev->flags & IFF_MULTICAST);
	dev_set_multicast(priv, hw, multicast);

	/* Cannot use different hashes in multiple device interfaces mode. */
	if (hw_priv->hw.dev_count > 1)
		return;

	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
		int i = 0;

		/* List too big to support so turn on all multicast mode. */
		if (dev->mc_count > MAX_MULTICAST_LIST) {
			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
				hw->multi_list_size = MAX_MULTICAST_LIST;
				++hw->all_multi;
				hw_set_multicast(hw, hw->all_multi);
			}
			return;
		}

		netdev_for_each_mc_addr(mc_ptr, dev) {
			if (!(*mc_ptr->dmi_addr & 1))
				continue;
			if (i >= MAX_MULTICAST_LIST)
				break;
			memcpy(hw->multi_list[i++], mc_ptr->dmi_addr,
				MAC_ADDR_LEN);
		}
		hw->multi_list_size = (u8) i;
		hw_set_grp_addr(hw);
	} else {
		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
			--hw->all_multi;
			hw_set_multicast(hw, hw->all_multi);
		}
		hw->multi_list_size = 0;
		hw_clr_multicast(hw);
	}
}

static int netdev_change_mtu(struct net_device *dev, int new_mtu)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	int hw_mtu;

	if (netif_running(dev))
		return -EBUSY;

	/* Cannot use different MTU in multiple device interfaces mode. */
	if (hw->dev_count > 1)
		if (dev != hw_priv->dev)
			return 0;
	if (new_mtu < 60)
		return -EINVAL;

	if (dev->mtu != new_mtu) {
		hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
		if (hw_mtu > MAX_RX_BUF_SIZE)
			return -EINVAL;
		if (hw_mtu > REGULAR_RX_BUF_SIZE) {
			hw->features |= RX_HUGE_FRAME;
			hw_mtu = MAX_RX_BUF_SIZE;
		} else {
			hw->features &= ~RX_HUGE_FRAME;
			hw_mtu = REGULAR_RX_BUF_SIZE;
		}
		hw_mtu = (hw_mtu + 3) & ~3;
		hw_priv->mtu = hw_mtu;
		dev->mtu = new_mtu;
	}
	return 0;
}

/**
 * netdev_ioctl - I/O control processing
 * @dev:	Network device.
 * @ifr:	Interface request structure.
 * @cmd:	I/O control code.
 *
 * This function is used to process I/O control calls.
 *
 * Return 0 to indicate success.
 */
static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	struct ksz_port *port = &priv->port;
	int rc;
	int result = 0;
	struct mii_ioctl_data *data = if_mii(ifr);

	if (down_interruptible(&priv->proc_sem))
		return -ERESTARTSYS;

	/* assume success */
	rc = 0;
	switch (cmd) {
	/* Get address of MII PHY in use. */
	case SIOCGMIIPHY:
		data->phy_id = priv->id;

		/* Fallthrough... */

	/* Read MII PHY register. */
	case SIOCGMIIREG:
		if (data->phy_id != priv->id || data->reg_num >= 6)
			result = -EIO;
		else
			hw_r_phy(hw, port->linked->port_id, data->reg_num,
				&data->val_out);
		break;

	/* Write MII PHY register. */
	case SIOCSMIIREG:
		if (!capable(CAP_NET_ADMIN))
			result = -EPERM;
		else if (data->phy_id != priv->id || data->reg_num >= 6)
			result = -EIO;
		else
			hw_w_phy(hw, port->linked->port_id, data->reg_num,
				data->val_in);
		break;

	default:
		result = -EOPNOTSUPP;
	}

	up(&priv->proc_sem);

	return result;
}

/*
 * MII support
 */

/**
 * mdio_read - read PHY register
 * @dev:	Network device.
 * @phy_id:	The PHY id.
 * @reg_num:	The register number.
 *
 * This function returns the PHY register value.
 *
 * Return the register value.
 */
static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct ksz_port *port = &priv->port;
	struct ksz_hw *hw = port->hw;
	u16 val_out;

	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
	return val_out;
}

/**
 * mdio_write - set PHY register
 * @dev:	Network device.
 * @phy_id:	The PHY id.
 * @reg_num:	The register number.
 * @val:	The register value.
 *
 * This procedure sets the PHY register value.
 */
static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct ksz_port *port = &priv->port;
	struct ksz_hw *hw = port->hw;
	int i;
	int pi;

	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
		hw_w_phy(hw, pi, reg_num << 1, val);
}

/*
 * ethtool support
 */

#define EEPROM_SIZE			0x40

static u16 eeprom_data[EEPROM_SIZE] = { 0 };

#define ADVERTISED_ALL			\
	(ADVERTISED_10baseT_Half |	\
	ADVERTISED_10baseT_Full |	\
	ADVERTISED_100baseT_Half |	\
	ADVERTISED_100baseT_Full)

/* These functions use the MII functions in mii.c. */

/**
 * netdev_get_settings - get network device settings
 * @dev:	Network device.
 * @cmd:	Ethtool command.
 *
 * This function queries the PHY and returns its state in the ethtool command.
 *
 * Return 0 if successful; otherwise an error code.
 */
static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;

	mutex_lock(&hw_priv->lock);
	mii_ethtool_gset(&priv->mii_if, cmd);
	cmd->advertising |= SUPPORTED_TP;
	mutex_unlock(&hw_priv->lock);

	/* Save advertised settings for workaround in next function. */
	priv->advertising = cmd->advertising;
	return 0;
}

/**
 * netdev_set_settings - set network device settings
 * @dev:	Network device.
 * @cmd:	Ethtool command.
 *
 * This function sets the PHY according to the ethtool command.
 *
 * Return 0 if successful; otherwise an error code.
 */
static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_port *port = &priv->port;
	int rc;

	/*
	 * ethtool utility does not change advertised setting if auto
	 * negotiation is not specified explicitly.
	 */
	if (cmd->autoneg && priv->advertising == cmd->advertising) {
		cmd->advertising |= ADVERTISED_ALL;
		if (10 == cmd->speed)
			cmd->advertising &=
				~(ADVERTISED_100baseT_Full |
				ADVERTISED_100baseT_Half);
		else if (100 == cmd->speed)
			cmd->advertising &=
				~(ADVERTISED_10baseT_Full |
				ADVERTISED_10baseT_Half);
		if (0 == cmd->duplex)
			cmd->advertising &=
				~(ADVERTISED_100baseT_Full |
				ADVERTISED_10baseT_Full);
		else if (1 == cmd->duplex)
			cmd->advertising &=
				~(ADVERTISED_100baseT_Half |
				ADVERTISED_10baseT_Half);
	}
	mutex_lock(&hw_priv->lock);
	if (cmd->autoneg &&
			(cmd->advertising & ADVERTISED_ALL) ==
			ADVERTISED_ALL) {
		port->duplex = 0;
		port->speed = 0;
		port->force_link = 0;
	} else {
		port->duplex = cmd->duplex + 1;
		if (cmd->speed != 1000)
			port->speed = cmd->speed;
		if (cmd->autoneg)
			port->force_link = 0;
		else
			port->force_link = 1;
	}
	rc = mii_ethtool_sset(&priv->mii_if, cmd);
	mutex_unlock(&hw_priv->lock);
	return rc;
}

/**
 * netdev_nway_reset - restart auto-negotiation
 * @dev:	Network device.
 *
 * This function restarts the PHY for auto-negotiation.
 *
 * Return 0 if successful; otherwise an error code.
 */
static int netdev_nway_reset(struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	int rc;

	mutex_lock(&hw_priv->lock);
	rc = mii_nway_restart(&priv->mii_if);
	mutex_unlock(&hw_priv->lock);
	return rc;
}

/**
 * netdev_get_link - get network device link status
 * @dev:	Network device.
 *
 * This function gets the link status from the PHY.
 *
 * Return true if PHY is linked and false otherwise.
 */
static u32 netdev_get_link(struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);
	int rc;

	rc = mii_link_ok(&priv->mii_if);
	return rc;
}

/**
 * netdev_get_drvinfo - get network driver information
 * @dev:	Network device.
 * @info:	Ethtool driver info data structure.
 *
 * This procedure returns the driver information.
 */
static void netdev_get_drvinfo(struct net_device *dev,
	struct ethtool_drvinfo *info)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->bus_info, pci_name(hw_priv->pdev));
}

/**
 * netdev_get_regs_len - get length of register dump
 * @dev:	Network device.
 *
 * This function returns the length of the register dump.
 *
 * Return length of the register dump.
 */
static struct hw_regs {
	int start;
	int end;
} hw_regs_range[] = {
	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
	{ 0, 0 }
};

static int netdev_get_regs_len(struct net_device *dev)
{
	struct hw_regs *range = hw_regs_range;
	int regs_len = 0x10 * sizeof(u32);

	while (range->end > range->start) {
		regs_len += (range->end - range->start + 3) / 4 * 4;
		range++;
	}
	return regs_len;
}

/**
 * netdev_get_regs - get register dump
 * @dev:	Network device.
 * @regs:	Ethtool registers data structure.
 * @ptr:	Buffer to store the register values.
 *
 * This procedure dumps the register values in the provided buffer.
 */
static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
	void *ptr)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	int *buf = (int *) ptr;
	struct hw_regs *range = hw_regs_range;
	int len;

	mutex_lock(&hw_priv->lock);
	regs->version = 0;
	for (len = 0; len < 0x40; len += 4) {
		pci_read_config_dword(hw_priv->pdev, len, buf);
		buf++;
	}
	while (range->end > range->start) {
		for (len = range->start; len < range->end; len += 4) {
			*buf = readl(hw->io + len);
			buf++;
		}
		range++;
	}
	mutex_unlock(&hw_priv->lock);
}

#define WOL_SUPPORT			\
	(WAKE_PHY | WAKE_MAGIC |	\
	WAKE_UCAST | WAKE_MCAST |	\
	WAKE_BCAST | WAKE_ARP)

/**
 * netdev_get_wol - get Wake-on-LAN support
 * @dev:	Network device.
 * @wol:	Ethtool Wake-on-LAN data structure.
 *
 * This procedure returns Wake-on-LAN support.
 */
static void netdev_get_wol(struct net_device *dev,
	struct ethtool_wolinfo *wol)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;

	wol->supported = hw_priv->wol_support;
	wol->wolopts = hw_priv->wol_enable;
	memset(&wol->sopass, 0, sizeof(wol->sopass));
}

/**
 * netdev_set_wol - set Wake-on-LAN support
 * @dev:	Network device.
 * @wol:	Ethtool Wake-on-LAN data structure.
 *
 * This function sets Wake-on-LAN support.
 *
 * Return 0 if successful; otherwise an error code.
 */
static int netdev_set_wol(struct net_device *dev,
	struct ethtool_wolinfo *wol)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;

	/* Need to find a way to retrieve the device IP address. */
	u8 net_addr[] = { 192, 168, 1, 1 };

	if (wol->wolopts & ~hw_priv->wol_support)
		return -EINVAL;

	hw_priv->wol_enable = wol->wolopts;

	/* Link wakeup cannot really be disabled. */
	if (wol->wolopts)
		hw_priv->wol_enable |= WAKE_PHY;
	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
	return 0;
}

/**
 * netdev_get_msglevel - get debug message level
 * @dev:	Network device.
 *
 * This function returns current debug message level.
 *
 * Return current debug message flags.
 */
static u32 netdev_get_msglevel(struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);

	return priv->msg_enable;
}

/**
 * netdev_set_msglevel - set debug message level
 * @dev:	Network device.
 * @value:	Debug message flags.
 *
 * This procedure sets debug message level.
 */
static void netdev_set_msglevel(struct net_device *dev, u32 value)
{
	struct dev_priv *priv = netdev_priv(dev);

	priv->msg_enable = value;
}

/**
 * netdev_get_eeprom_len - get EEPROM length
 * @dev:	Network device.
 *
 * This function returns the length of the EEPROM.
 *
 * Return length of the EEPROM.
 */
static int netdev_get_eeprom_len(struct net_device *dev)
{
	return EEPROM_SIZE * 2;
}

/**
 * netdev_get_eeprom - get EEPROM data
 * @dev:	Network device.
 * @eeprom:	Ethtool EEPROM data structure.
 * @data:	Buffer to store the EEPROM data.
 *
 * This function dumps the EEPROM data in the provided buffer.
 *
 * Return 0 if successful; otherwise an error code.
 */
#define EEPROM_MAGIC			0x10A18842

static int netdev_get_eeprom(struct net_device *dev,
	struct ethtool_eeprom *eeprom, u8 *data)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	u8 *eeprom_byte = (u8 *) eeprom_data;
	int i;
	int len;

	len = (eeprom->offset + eeprom->len + 1) / 2;
	for (i = eeprom->offset / 2; i < len; i++)
		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
	eeprom->magic = EEPROM_MAGIC;
	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);

	return 0;
}

/**
 * netdev_set_eeprom - write EEPROM data
 * @dev:	Network device.
 * @eeprom:	Ethtool EEPROM data structure.
 * @data:	Data buffer.
 *
 * This function modifies the EEPROM data one byte at a time.
 *
 * Return 0 if successful; otherwise an error code.
 */
static int netdev_set_eeprom(struct net_device *dev,
	struct ethtool_eeprom *eeprom, u8 *data)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	u16 eeprom_word[EEPROM_SIZE];
	u8 *eeprom_byte = (u8 *) eeprom_word;
	int i;
	int len;

	if (eeprom->magic != EEPROM_MAGIC)
		return -EINVAL;

	len = (eeprom->offset + eeprom->len + 1) / 2;
	for (i = eeprom->offset / 2; i < len; i++)
		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
	for (i = 0; i < EEPROM_SIZE; i++)
		if (eeprom_word[i] != eeprom_data[i]) {
			eeprom_data[i] = eeprom_word[i];
			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
	}

	return 0;
}

/**
 * netdev_get_pauseparam - get flow control parameters
 * @dev:	Network device.
 * @pause:	Ethtool PAUSE settings data structure.
 *
 * This procedure returns the PAUSE control flow settings.
 */
static void netdev_get_pauseparam(struct net_device *dev,
	struct ethtool_pauseparam *pause)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;

	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
	if (!hw->ksz_switch) {
		pause->rx_pause =
			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
		pause->tx_pause =
			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
	} else {
		pause->rx_pause =
			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
		pause->tx_pause =
			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
	}
}

/**
 * netdev_set_pauseparam - set flow control parameters
 * @dev:	Network device.
 * @pause:	Ethtool PAUSE settings data structure.
 *
 * This function sets the PAUSE control flow settings.
 * Not implemented yet.
 *
 * Return 0 if successful; otherwise an error code.
 */
static int netdev_set_pauseparam(struct net_device *dev,
	struct ethtool_pauseparam *pause)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	struct ksz_port *port = &priv->port;

	mutex_lock(&hw_priv->lock);
	if (pause->autoneg) {
		if (!pause->rx_pause && !pause->tx_pause)
			port->flow_ctrl = PHY_NO_FLOW_CTRL;
		else
			port->flow_ctrl = PHY_FLOW_CTRL;
		hw->overrides &= ~PAUSE_FLOW_CTRL;
		port->force_link = 0;
		if (hw->ksz_switch) {
			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
				SWITCH_RX_FLOW_CTRL, 1);
			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
				SWITCH_TX_FLOW_CTRL, 1);
		}
		port_set_link_speed(port);
	} else {
		hw->overrides |= PAUSE_FLOW_CTRL;
		if (hw->ksz_switch) {
			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
		} else
			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
	}
	mutex_unlock(&hw_priv->lock);

	return 0;
}

/**
 * netdev_get_ringparam - get tx/rx ring parameters
 * @dev:	Network device.
 * @pause:	Ethtool RING settings data structure.
 *
 * This procedure returns the TX/RX ring settings.
 */
static void netdev_get_ringparam(struct net_device *dev,
	struct ethtool_ringparam *ring)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;

	ring->tx_max_pending = (1 << 9);
	ring->tx_pending = hw->tx_desc_info.alloc;
	ring->rx_max_pending = (1 << 9);
	ring->rx_pending = hw->rx_desc_info.alloc;
}

#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)

static struct {
	char string[ETH_GSTRING_LEN];
} ethtool_stats_keys[STATS_LEN] = {
	{ "rx_lo_priority_octets" },
	{ "rx_hi_priority_octets" },
	{ "rx_undersize_packets" },
	{ "rx_fragments" },
	{ "rx_oversize_packets" },
	{ "rx_jabbers" },
	{ "rx_symbol_errors" },
	{ "rx_crc_errors" },
	{ "rx_align_errors" },
	{ "rx_mac_ctrl_packets" },
	{ "rx_pause_packets" },
	{ "rx_bcast_packets" },
	{ "rx_mcast_packets" },
	{ "rx_ucast_packets" },
	{ "rx_64_or_less_octet_packets" },
	{ "rx_65_to_127_octet_packets" },
	{ "rx_128_to_255_octet_packets" },
	{ "rx_256_to_511_octet_packets" },
	{ "rx_512_to_1023_octet_packets" },
	{ "rx_1024_to_1522_octet_packets" },

	{ "tx_lo_priority_octets" },
	{ "tx_hi_priority_octets" },
	{ "tx_late_collisions" },
	{ "tx_pause_packets" },
	{ "tx_bcast_packets" },
	{ "tx_mcast_packets" },
	{ "tx_ucast_packets" },
	{ "tx_deferred" },
	{ "tx_total_collisions" },
	{ "tx_excessive_collisions" },
	{ "tx_single_collisions" },
	{ "tx_mult_collisions" },

	{ "rx_discards" },
	{ "tx_discards" },
};

/**
 * netdev_get_strings - get statistics identity strings
 * @dev:	Network device.
 * @stringset:	String set identifier.
 * @buf:	Buffer to store the strings.
 *
 * This procedure returns the strings used to identify the statistics.
 */
static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;

	if (ETH_SS_STATS == stringset)
		memcpy(buf, &ethtool_stats_keys,
			ETH_GSTRING_LEN * hw->mib_cnt);
}

/**
 * netdev_get_sset_count - get statistics size
 * @dev:	Network device.
 * @sset:	The statistics set number.
 *
 * This function returns the size of the statistics to be reported.
 *
 * Return size of the statistics to be reported.
 */
static int netdev_get_sset_count(struct net_device *dev, int sset)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;

	switch (sset) {
	case ETH_SS_STATS:
		return hw->mib_cnt;
	default:
		return -EOPNOTSUPP;
	}
}

/**
 * netdev_get_ethtool_stats - get network device statistics
 * @dev:	Network device.
 * @stats:	Ethtool statistics data structure.
 * @data:	Buffer to store the statistics.
 *
 * This procedure returns the statistics.
 */
static void netdev_get_ethtool_stats(struct net_device *dev,
	struct ethtool_stats *stats, u64 *data)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	struct ksz_port *port = &priv->port;
	int n_stats = stats->n_stats;
	int i;
	int n;
	int p;
	int rc;
	u64 counter[TOTAL_PORT_COUNTER_NUM];

	mutex_lock(&hw_priv->lock);
	n = SWITCH_PORT_NUM;
	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
		if (media_connected == hw->port_mib[p].state) {
			hw_priv->counter[p].read = 1;

			/* Remember first port that requests read. */
			if (n == SWITCH_PORT_NUM)
				n = p;
		}
	}
	mutex_unlock(&hw_priv->lock);

	if (n < SWITCH_PORT_NUM)
		schedule_work(&hw_priv->mib_read);

	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
		p = n;
		rc = wait_event_interruptible_timeout(
			hw_priv->counter[p].counter,
			2 == hw_priv->counter[p].read,
			HZ * 1);
	} else
		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
			if (0 == i) {
				rc = wait_event_interruptible_timeout(
					hw_priv->counter[p].counter,
					2 == hw_priv->counter[p].read,
					HZ * 2);
			} else if (hw->port_mib[p].cnt_ptr) {
				rc = wait_event_interruptible_timeout(
					hw_priv->counter[p].counter,
					2 == hw_priv->counter[p].read,
					HZ * 1);
			}
		}

	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
	n = hw->mib_cnt;
	if (n > n_stats)
		n = n_stats;
	n_stats -= n;
	for (i = 0; i < n; i++)
		*data++ = counter[i];
}

/**
 * netdev_get_rx_csum - get receive checksum support
 * @dev:	Network device.
 *
 * This function gets receive checksum support setting.
 *
 * Return true if receive checksum is enabled; false otherwise.
 */
static u32 netdev_get_rx_csum(struct net_device *dev)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;

	return hw->rx_cfg &
		(DMA_RX_CSUM_UDP |
		DMA_RX_CSUM_TCP |
		DMA_RX_CSUM_IP);
}

/**
 * netdev_set_rx_csum - set receive checksum support
 * @dev:	Network device.
 * @data:	Zero to disable receive checksum support.
 *
 * This function sets receive checksum support setting.
 *
 * Return 0 if successful; otherwise an error code.
 */
static int netdev_set_rx_csum(struct net_device *dev, u32 data)
{
	struct dev_priv *priv = netdev_priv(dev);
	struct dev_info *hw_priv = priv->adapter;
	struct ksz_hw *hw = &hw_priv->hw;
	u32 new_setting = hw->rx_cfg;

	if (data)
		new_setting |=
			(DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
			DMA_RX_CSUM_IP);
	else
		new_setting &=
			~(DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
			DMA_RX_CSUM_IP);
	new_setting &= ~DMA_RX_CSUM_UDP;
	mutex_lock(&hw_priv->lock);
	if (new_setting != hw->rx_cfg) {
		hw->rx_cfg = new_setting;
		if (hw->enabled)
			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
	}
	mutex_unlock(&hw_priv->lock);
	return 0;
}

static struct ethtool_ops netdev_ethtool_ops = {
	.get_settings		= netdev_get_settings,
	.set_settings		= netdev_set_settings,
	.nway_reset		= netdev_nway_reset,
	.get_link		= netdev_get_link,
	.get_drvinfo		= netdev_get_drvinfo,
	.get_regs_len		= netdev_get_regs_len,
	.get_regs		= netdev_get_regs,
	.get_wol		= netdev_get_wol,
	.set_wol		= netdev_set_wol,