aboutsummaryrefslogtreecommitdiffstats
path: root/fs/jffs2/wbuf.c
blob: 86860dbc670c6ca3c0076e14eef16d8b8c1177a9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
/*
 * JFFS2 -- Journalling Flash File System, Version 2.
 *
 * Copyright (C) 2001-2003 Red Hat, Inc.
 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
 *
 * Created by David Woodhouse <dwmw2@infradead.org>
 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
 *
 * For licensing information, see the file 'LICENCE' in this directory.
 *
 * $Id: wbuf.c,v 1.98 2005/09/07 08:34:55 havasi Exp $
 *
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/crc32.h>
#include <linux/mtd/nand.h>
#include <linux/jiffies.h>

#include "nodelist.h"

/* For testing write failures */
#undef BREAKME
#undef BREAKMEHEADER

#ifdef BREAKME
static unsigned char *brokenbuf;
#endif

/* max. erase failures before we mark a block bad */
#define MAX_ERASE_FAILURES 	2

/* two seconds timeout for timed wbuf-flushing */
#define WBUF_FLUSH_TIMEOUT	2 * HZ

struct jffs2_inodirty {
	uint32_t ino;
	struct jffs2_inodirty *next;
};

static struct jffs2_inodirty inodirty_nomem;

static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
{
	struct jffs2_inodirty *this = c->wbuf_inodes;

	/* If a malloc failed, consider _everything_ dirty */
	if (this == &inodirty_nomem)
		return 1;

	/* If ino == 0, _any_ non-GC writes mean 'yes' */
	if (this && !ino)
		return 1;

	/* Look to see if the inode in question is pending in the wbuf */
	while (this) {
		if (this->ino == ino)
			return 1;
		this = this->next;
	}
	return 0;
}

static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
{
	struct jffs2_inodirty *this;

	this = c->wbuf_inodes;

	if (this != &inodirty_nomem) {
		while (this) {
			struct jffs2_inodirty *next = this->next;
			kfree(this);
			this = next;
		}
	}
	c->wbuf_inodes = NULL;
}

static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
{
	struct jffs2_inodirty *new;

	/* Mark the superblock dirty so that kupdated will flush... */
	jffs2_erase_pending_trigger(c);

	if (jffs2_wbuf_pending_for_ino(c, ino))
		return;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new) {
		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
		jffs2_clear_wbuf_ino_list(c);
		c->wbuf_inodes = &inodirty_nomem;
		return;
	}
	new->ino = ino;
	new->next = c->wbuf_inodes;
	c->wbuf_inodes = new;
	return;
}

static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
{
	struct list_head *this, *next;
	static int n;

	if (list_empty(&c->erasable_pending_wbuf_list))
		return;

	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);

		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
		list_del(this);
		if ((jiffies + (n++)) & 127) {
			/* Most of the time, we just erase it immediately. Otherwise we
			   spend ages scanning it on mount, etc. */
			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
			list_add_tail(&jeb->list, &c->erase_pending_list);
			c->nr_erasing_blocks++;
			jffs2_erase_pending_trigger(c);
		} else {
			/* Sometimes, however, we leave it elsewhere so it doesn't get
			   immediately reused, and we spread the load a bit. */
			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
			list_add_tail(&jeb->list, &c->erasable_list);
		}
	}
}

#define REFILE_NOTEMPTY 0
#define REFILE_ANYWAY   1

static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
{
	D1(printk("About to refile bad block at %08x\n", jeb->offset));

	/* File the existing block on the bad_used_list.... */
	if (c->nextblock == jeb)
		c->nextblock = NULL;
	else /* Not sure this should ever happen... need more coffee */
		list_del(&jeb->list);
	if (jeb->first_node) {
		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
		list_add(&jeb->list, &c->bad_used_list);
	} else {
		BUG_ON(allow_empty == REFILE_NOTEMPTY);
		/* It has to have had some nodes or we couldn't be here */
		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
		list_add(&jeb->list, &c->erase_pending_list);
		c->nr_erasing_blocks++;
		jffs2_erase_pending_trigger(c);
	}

	/* Adjust its size counts accordingly */
	c->wasted_size += jeb->free_size;
	c->free_size -= jeb->free_size;
	jeb->wasted_size += jeb->free_size;
	jeb->free_size = 0;

	jffs2_dbg_dump_block_lists_nolock(c);
	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
}

/* Recover from failure to write wbuf. Recover the nodes up to the
 * wbuf, not the one which we were starting to try to write. */

static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
{
	struct jffs2_eraseblock *jeb, *new_jeb;
	struct jffs2_raw_node_ref **first_raw, **raw;
	size_t retlen;
	int ret;
	unsigned char *buf;
	uint32_t start, end, ofs, len;

	spin_lock(&c->erase_completion_lock);

	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];

	jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);

	/* Find the first node to be recovered, by skipping over every
	   node which ends before the wbuf starts, or which is obsolete. */
	first_raw = &jeb->first_node;
	while (*first_raw && 
	       (ref_obsolete(*first_raw) ||
		(ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
		D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
			  ref_offset(*first_raw), ref_flags(*first_raw),
			  (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
			  c->wbuf_ofs));
		first_raw = &(*first_raw)->next_phys;
	}

	if (!*first_raw) {
		/* All nodes were obsolete. Nothing to recover. */
		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
		spin_unlock(&c->erase_completion_lock);
		return;
	}

	start = ref_offset(*first_raw);
	end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);

	/* Find the last node to be recovered */
	raw = first_raw;
	while ((*raw)) {
		if (!ref_obsolete(*raw))
			end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);

		raw = &(*raw)->next_phys;
	}
	spin_unlock(&c->erase_completion_lock);

	D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));

	buf = NULL;
	if (start < c->wbuf_ofs) {
		/* First affected node was already partially written.
		 * Attempt to reread the old data into our buffer. */

		buf = kmalloc(end - start, GFP_KERNEL);
		if (!buf) {
			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");

			goto read_failed;
		}

		/* Do the read... */
		if (jffs2_cleanmarker_oob(c))
			ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
		else
			ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
		
		if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
			/* ECC recovered */
			ret = 0;
		}
		if (ret || retlen != c->wbuf_ofs - start) {
			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");

			kfree(buf);
			buf = NULL;
		read_failed:
			first_raw = &(*first_raw)->next_phys;
			/* If this was the only node to be recovered, give up */
			if (!(*first_raw))
				return;

			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
			start = ref_offset(*first_raw);
		} else {
			/* Read succeeded. Copy the remaining data from the wbuf */
			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
		}
	}
	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
	   Either 'buf' contains the data, or we find it in the wbuf */


	/* ... and get an allocation of space from a shiny new block instead */
	ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len, JFFS2_SUMMARY_NOSUM_SIZE);
	if (ret) {
		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
		kfree(buf);
		return;
	}
	if (end-start >= c->wbuf_pagesize) {
		/* Need to do another write immediately, but it's possible
		   that this is just because the wbuf itself is completely
		   full, and there's nothing earlier read back from the 
		   flash. Hence 'buf' isn't necessarily what we're writing 
		   from. */
		unsigned char *rewrite_buf = buf?:c->wbuf;
		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);

		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
			  towrite, ofs));
	  
#ifdef BREAKMEHEADER
		static int breakme;
		if (breakme++ == 20) {
			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
			breakme = 0;
			c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
					  brokenbuf, NULL, c->oobinfo);
			ret = -EIO;
		} else
#endif
		if (jffs2_cleanmarker_oob(c))
			ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
						rewrite_buf, NULL, c->oobinfo);
		else
			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf);

		if (ret || retlen != towrite) {
			/* Argh. We tried. Really we did. */
			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
			kfree(buf);

			if (retlen) {
				struct jffs2_raw_node_ref *raw2;

				raw2 = jffs2_alloc_raw_node_ref();
				if (!raw2)
					return;

				raw2->flash_offset = ofs | REF_OBSOLETE;
				raw2->__totlen = ref_totlen(c, jeb, *first_raw);
				raw2->next_phys = NULL;
				raw2->next_in_ino = NULL;

				jffs2_add_physical_node_ref(c, raw2);
			}
			return;
		}
		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);

		c->wbuf_len = (end - start) - towrite;
		c->wbuf_ofs = ofs + towrite;
		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
		if (buf)
			kfree(buf);
	} else {
		/* OK, now we're left with the dregs in whichever buffer we're using */
		if (buf) {
			memcpy(c->wbuf, buf, end-start);
			kfree(buf);
		} else {
			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
		}
		c->wbuf_ofs = ofs;
		c->wbuf_len = end - start;
	}

	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
	new_jeb = &c->blocks[ofs / c->sector_size];

	spin_lock(&c->erase_completion_lock);
	if (new_jeb->first_node) {
		/* Odd, but possible with ST flash later maybe */
		new_jeb->last_node->next_phys = *first_raw;
	} else {
		new_jeb->first_node = *first_raw;
	}

	raw = first_raw;
	while (*raw) {
		uint32_t rawlen = ref_totlen(c, jeb, *raw);

		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
			  rawlen, ref_offset(*raw), ref_flags(*raw), ofs));

		if (ref_obsolete(*raw)) {
			/* Shouldn't really happen much */
			new_jeb->dirty_size += rawlen;
			new_jeb->free_size -= rawlen;
			c->dirty_size += rawlen;
		} else {
			new_jeb->used_size += rawlen;
			new_jeb->free_size -= rawlen;
			jeb->dirty_size += rawlen;
			jeb->used_size  -= rawlen;
			c->dirty_size += rawlen;
		}
		c->free_size -= rawlen;
		(*raw)->flash_offset = ofs | ref_flags(*raw);
		ofs += rawlen;
		new_jeb->last_node = *raw;

		raw = &(*raw)->next_phys;
	}

	/* Fix up the original jeb now it's on the bad_list */
	*first_raw = NULL;
	if (first_raw == &jeb->first_node) {
		jeb->last_node = NULL;
		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
		list_del(&jeb->list);
		list_add(&jeb->list, &c->erase_pending_list);
		c->nr_erasing_blocks++;
		jffs2_erase_pending_trigger(c);
	}
	else
		jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);

	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
        jffs2_dbg_acct_paranoia_check_nolock(c, jeb);

	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
        jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);

	spin_unlock(&c->erase_completion_lock);

	D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
}

/* Meaning of pad argument:
   0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
   1: Pad, do not adjust nextblock free_size
   2: Pad, adjust nextblock free_size
*/
#define NOPAD		0
#define PAD_NOACCOUNT	1
#define PAD_ACCOUNTING	2

static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
{
	int ret;
	size_t retlen;

	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
	   del_timer() the timer we never initialised. */
	if (!jffs2_is_writebuffered(c))
		return 0;

	if (!down_trylock(&c->alloc_sem)) {
		up(&c->alloc_sem);
		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
		BUG();
	}

	if (!c->wbuf_len)	/* already checked c->wbuf above */
		return 0;

	/* claim remaining space on the page
	   this happens, if we have a change to a new block,
	   or if fsync forces us to flush the writebuffer.
	   if we have a switch to next page, we will not have
	   enough remaining space for this. 
	*/
	if (pad && !jffs2_dataflash(c)) {
		c->wbuf_len = PAD(c->wbuf_len);

		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
		   with 8 byte page size */
		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
		
		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
		}
	}
	/* else jffs2_flash_writev has actually filled in the rest of the
	   buffer for us, and will deal with the node refs etc. later. */
	
#ifdef BREAKME
	static int breakme;
	if (breakme++ == 20) {
		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
		breakme = 0;
		c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
					&retlen, brokenbuf, NULL, c->oobinfo);
		ret = -EIO;
	} else 
#endif
	
	if (jffs2_cleanmarker_oob(c))
		ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
	else
		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);

	if (ret || retlen != c->wbuf_pagesize) {
		if (ret)
			printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
		else {
			printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
				retlen, c->wbuf_pagesize);
			ret = -EIO;
		}

		jffs2_wbuf_recover(c);

		return ret;
	}

	spin_lock(&c->erase_completion_lock);

	/* Adjust free size of the block if we padded. */
	if (pad && !jffs2_dataflash(c)) {
		struct jffs2_eraseblock *jeb;

		jeb = &c->blocks[c->wbuf_ofs / c->sector_size];

		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
			  (jeb==c->nextblock)?"next":"", jeb->offset));

		/* wbuf_pagesize - wbuf_len is the amount of space that's to be 
		   padded. If there is less free space in the block than that,
		   something screwed up */
		if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
			       c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
			       jeb->offset, jeb->free_size);
			BUG();
		}
		jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
		c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
		jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
		c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
	}

	/* Stick any now-obsoleted blocks on the erase_pending_list */
	jffs2_refile_wbuf_blocks(c);
	jffs2_clear_wbuf_ino_list(c);
	spin_unlock(&c->erase_completion_lock);

	memset(c->wbuf,0xff,c->wbuf_pagesize);
	/* adjust write buffer offset, else we get a non contiguous write bug */
	c->wbuf_ofs += c->wbuf_pagesize;
	c->wbuf_len = 0;
	return 0;
}

/* Trigger garbage collection to flush the write-buffer. 
   If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
   outstanding. If ino arg non-zero, do it only if a write for the 
   given inode is outstanding. */
int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
{
	uint32_t old_wbuf_ofs;
	uint32_t old_wbuf_len;
	int ret = 0;

	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));

	if (!c->wbuf)
		return 0;

	down(&c->alloc_sem);
	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
		up(&c->alloc_sem);
		return 0;
	}

	old_wbuf_ofs = c->wbuf_ofs;
	old_wbuf_len = c->wbuf_len;

	if (c->unchecked_size) {
		/* GC won't make any progress for a while */
		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
		down_write(&c->wbuf_sem);
		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
		/* retry flushing wbuf in case jffs2_wbuf_recover
		   left some data in the wbuf */
		if (ret)
			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
		up_write(&c->wbuf_sem);
	} else while (old_wbuf_len &&
		      old_wbuf_ofs == c->wbuf_ofs) {

		up(&c->alloc_sem);

		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));

		ret = jffs2_garbage_collect_pass(c);
		if (ret) {
			/* GC failed. Flush it with padding instead */
			down(&c->alloc_sem);
			down_write(&c->wbuf_sem);
			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
			/* retry flushing wbuf in case jffs2_wbuf_recover
			   left some data in the wbuf */
			if (ret)
				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
			up_write(&c->wbuf_sem);
			break;
		}
		down(&c->alloc_sem);
	}

	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));

	up(&c->alloc_sem);
	return ret;
}

/* Pad write-buffer to end and write it, wasting space. */
int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
{
	int ret;

	if (!c->wbuf)
		return 0;

	down_write(&c->wbuf_sem);
	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
	/* retry - maybe wbuf recover left some data in wbuf. */
	if (ret)
		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
	up_write(&c->wbuf_sem);

	return ret;
}

#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
#else
#define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) )
#define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) )
#endif

int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
{
	struct kvec outvecs[3];
	uint32_t totlen = 0;
	uint32_t split_ofs = 0;
	uint32_t old_totlen;
	int ret, splitvec = -1;
	int invec, outvec;
	size_t wbuf_retlen;
	unsigned char *wbuf_ptr;
	size_t donelen = 0;
	uint32_t outvec_to = to;

	/* If not NAND flash, don't bother */
	if (!jffs2_is_writebuffered(c))
		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
	
	down_write(&c->wbuf_sem);

	/* If wbuf_ofs is not initialized, set it to target address */
	if (c->wbuf_ofs == 0xFFFFFFFF) {
		c->wbuf_ofs = PAGE_DIV(to);
		c->wbuf_len = PAGE_MOD(to);			
		memset(c->wbuf,0xff,c->wbuf_pagesize);
	}

	/* Fixup the wbuf if we are moving to a new eraseblock.  The checks below
	   fail for ECC'd NOR because cleanmarker == 16, so a block starts at
	   xxx0010.  */
	if (jffs2_nor_ecc(c)) {
		if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
			c->wbuf_ofs = PAGE_DIV(to);
			c->wbuf_len = PAGE_MOD(to);
			memset(c->wbuf,0xff,c->wbuf_pagesize);
		}
	}
	
	/* Sanity checks on target address. 
	   It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs), 
	   and it's permitted to write at the beginning of a new 
	   erase block. Anything else, and you die.
	   New block starts at xxx000c (0-b = block header)
	*/
	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
		/* It's a write to a new block */
		if (c->wbuf_len) {
			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
			if (ret) {
				/* the underlying layer has to check wbuf_len to do the cleanup */
				D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
				*retlen = 0;
				goto exit;
			}
		}
		/* set pointer to new block */
		c->wbuf_ofs = PAGE_DIV(to);
		c->wbuf_len = PAGE_MOD(to);			
	} 

	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
		/* We're not writing immediately after the writebuffer. Bad. */
		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
		if (c->wbuf_len)
			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
					  c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
		BUG();
	}

	/* Note outvecs[3] above. We know count is never greater than 2 */
	if (count > 2) {
		printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
		BUG();
	}

	invec = 0;
	outvec = 0;

	/* Fill writebuffer first, if already in use */	
	if (c->wbuf_len) {
		uint32_t invec_ofs = 0;

		/* adjust alignment offset */ 
		if (c->wbuf_len != PAGE_MOD(to)) {
			c->wbuf_len = PAGE_MOD(to);
			/* take care of alignment to next page */
			if (!c->wbuf_len)
				c->wbuf_len = c->wbuf_pagesize;
		}
		
		while(c->wbuf_len < c->wbuf_pagesize) {
			uint32_t thislen;
			
			if (invec == count)
				goto alldone;

			thislen = c->wbuf_pagesize - c->wbuf_len;

			if (thislen >= invecs[invec].iov_len)
				thislen = invecs[invec].iov_len;
	
			invec_ofs = thislen;

			memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
			c->wbuf_len += thislen;
			donelen += thislen;
			/* Get next invec, if actual did not fill the buffer */
			if (c->wbuf_len < c->wbuf_pagesize) 
				invec++;
		}			
		
		/* write buffer is full, flush buffer */
		ret = __jffs2_flush_wbuf(c, NOPAD);
		if (ret) {
			/* the underlying layer has to check wbuf_len to do the cleanup */
			D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
			/* Retlen zero to make sure our caller doesn't mark the space dirty.
			   We've already done everything that's necessary */
			*retlen = 0;
			goto exit;
		}
		outvec_to += donelen;
		c->wbuf_ofs = outvec_to;

		/* All invecs done ? */
		if (invec == count)
			goto alldone;

		/* Set up the first outvec, containing the remainder of the
		   invec we partially used */
		if (invecs[invec].iov_len > invec_ofs) {
			outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
			totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
			if (totlen > c->wbuf_pagesize) {
				splitvec = outvec;
				split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
			}
			outvec++;
		}
		invec++;
	}

	/* OK, now we've flushed the wbuf and the start of the bits
	   we have been asked to write, now to write the rest.... */

	/* totlen holds the amount of data still to be written */
	old_totlen = totlen;
	for ( ; invec < count; invec++,outvec++ ) {
		outvecs[outvec].iov_base = invecs[invec].iov_base;
		totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
		if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
			splitvec = outvec;
			split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
			old_totlen = totlen;
		}
	}

	/* Now the outvecs array holds all the remaining data to write */
	/* Up to splitvec,split_ofs is to be written immediately. The rest
	   goes into the (now-empty) wbuf */

	if (splitvec != -1) {
		uint32_t remainder;

		remainder = outvecs[splitvec].iov_len - split_ofs;
		outvecs[splitvec].iov_len = split_ofs;

		/* We did cross a page boundary, so we write some now */
		if (jffs2_cleanmarker_oob(c))
			ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo); 
		else
			ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
		
		if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
			/* At this point we have no problem,
			   c->wbuf is empty. However refile nextblock to avoid
			   writing again to same address.
			*/
			struct jffs2_eraseblock *jeb;

			spin_lock(&c->erase_completion_lock);

			jeb = &c->blocks[outvec_to / c->sector_size];
			jffs2_block_refile(c, jeb, REFILE_ANYWAY);

			*retlen = 0;
			spin_unlock(&c->erase_completion_lock);
			goto exit;
		}
		
		donelen += wbuf_retlen;
		c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);

		if (remainder) {
			outvecs[splitvec].iov_base += split_ofs;
			outvecs[splitvec].iov_len = remainder;
		} else {
			splitvec++;
		}

	} else {
		splitvec = 0;
	}

	/* Now splitvec points to the start of the bits we have to copy
	   into the wbuf */
	wbuf_ptr = c->wbuf;

	for ( ; splitvec < outvec; splitvec++) {
		/* Don't copy the wbuf into itself */
		if (outvecs[splitvec].iov_base == c->wbuf)
			continue;
		memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
		wbuf_ptr += outvecs[splitvec].iov_len;
		donelen += outvecs[splitvec].iov_len;
	}
	c->wbuf_len = wbuf_ptr - c->wbuf;

	/* If there's a remainder in the wbuf and it's a non-GC write,
	   remember that the wbuf affects this ino */
alldone:
	*retlen = donelen;

	if (jffs2_sum_active()) {
		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
		if (res)
			return res;
	}

	if (c->wbuf_len && ino)
		jffs2_wbuf_dirties_inode(c, ino);

	ret = 0;
	
exit:
	up_write(&c->wbuf_sem);
	return ret;
}

/*
 *	This is the entry for flash write.
 *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
*/
int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
{
	struct kvec vecs[1];

	if (!jffs2_is_writebuffered(c))
		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);

	vecs[0].iov_base = (unsigned char *) buf;
	vecs[0].iov_len = len;
	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
}

/*
	Handle readback from writebuffer and ECC failure return
*/
int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
{
	loff_t	orbf = 0, owbf = 0, lwbf = 0;
	int	ret;

	if (!jffs2_is_writebuffered(c))
		return c->mtd->read(c->mtd, ofs, len, retlen, buf);

	/* Read flash */
	down_read(&c->wbuf_sem);
	if (jffs2_cleanmarker_oob(c))
		ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
	else
		ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);

	if ( (ret == -EBADMSG) && (*retlen == len) ) {
		printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
		       len, ofs);
		/* 
		 * We have the raw data without ECC correction in the buffer, maybe 
		 * we are lucky and all data or parts are correct. We check the node.
		 * If data are corrupted node check will sort it out.
		 * We keep this block, it will fail on write or erase and the we
		 * mark it bad. Or should we do that now? But we should give him a chance.
		 * Maybe we had a system crash or power loss before the ecc write or  
		 * a erase was completed.
		 * So we return success. :)
		 */
	 	ret = 0;
	}	

	/* if no writebuffer available or write buffer empty, return */
	if (!c->wbuf_pagesize || !c->wbuf_len)
		goto exit;

	/* if we read in a different block, return */
	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
		goto exit;

	if (ofs >= c->wbuf_ofs) {
		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
			goto exit;
		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
		if (lwbf > len)	
			lwbf = len;
	} else {	
		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
		if (orbf > len)			/* is write beyond write buffer ? */
			goto exit;
		lwbf = len - orbf; 		/* number of bytes to copy */
		if (lwbf > c->wbuf_len)	
			lwbf = c->wbuf_len;
	}	
	if (lwbf > 0)
		memcpy(buf+orbf,c->wbuf+owbf,lwbf);

exit:
	up_read(&c->wbuf_sem);
	return ret;
}

/*
 *	Check, if the out of band area is empty
 */
int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
{
	unsigned char *buf;
	int 	ret = 0;
	int	i,len,page;
	size_t  retlen;
	int	oob_size;

	/* allocate a buffer for all oob data in this sector */
	oob_size = c->mtd->oobsize;
	len = 4 * oob_size;
	buf = kmalloc(len, GFP_KERNEL);
	if (!buf) {
		printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
		return -ENOMEM;
	}
	/* 
	 * if mode = 0, we scan for a total empty oob area, else we have
	 * to take care of the cleanmarker in the first page of the block
	*/
	ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
	if (ret) {
		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
		goto out;
	}
	
	if (retlen < len) {
		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
			  "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
		ret = -EIO;
		goto out;
	}
	
	/* Special check for first page */
	for(i = 0; i < oob_size ; i++) {
		/* Yeah, we know about the cleanmarker. */
		if (mode && i >= c->fsdata_pos && 
		    i < c->fsdata_pos + c->fsdata_len)
			continue;

		if (buf[i] != 0xFF) {
			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
				  buf[i], i, jeb->offset));
			ret = 1; 
			goto out;
		}
	}

	/* we know, we are aligned :) */	
	for (page = oob_size; page < len; page += sizeof(long)) {
		unsigned long dat = *(unsigned long *)(&buf[page]);
		if(dat != -1) {
			ret = 1; 
			goto out;
		}
	}

out:
	kfree(buf);	
	
	return ret;
}

/*
*	Scan for a valid cleanmarker and for bad blocks
*	For virtual blocks (concatenated physical blocks) check the cleanmarker
*	only in the first page of the first physical block, but scan for bad blocks in all
*	physical blocks
*/
int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
{
	struct jffs2_unknown_node n;
	unsigned char buf[2 * NAND_MAX_OOBSIZE];
	unsigned char *p;
	int ret, i, cnt, retval = 0;
	size_t retlen, offset;
	int oob_size;

	offset = jeb->offset;
	oob_size = c->mtd->oobsize;

	/* Loop through the physical blocks */
	for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
		/* Check first if the block is bad. */
		if (c->mtd->block_isbad (c->mtd, offset)) {
			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
			return 2;
		}
		/*
		   *    We read oob data from page 0 and 1 of the block.
		   *    page 0 contains cleanmarker and badblock info
		   *    page 1 contains failure count of this block
		 */
		ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);

		if (ret) {
			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
			return ret;
		}
		if (retlen < (oob_size << 1)) {
			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
			return -EIO;
		}

		/* Check cleanmarker only on the first physical block */
		if (!cnt) {
			n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
			n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
			n.totlen = cpu_to_je32 (8);
			p = (unsigned char *) &n;

			for (i = 0; i < c->fsdata_len; i++) {
				if (buf[c->fsdata_pos + i] != p[i]) {
					retval = 1;
				}
			}
			D1(if (retval == 1) {
				printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
				printk(KERN_WARNING "OOB at %08x was ", offset);
				for (i=0; i < oob_size; i++) {
					printk("%02x ", buf[i]);
				}
				printk("\n");
			})
		}
		offset += c->mtd->erasesize;
	}
	return retval;
}

int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
{
	struct 	jffs2_unknown_node n;
	int 	ret;
	size_t 	retlen;

	n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
	n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
	n.totlen = cpu_to_je32(8);

	ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
	
	if (ret) {
		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
		return ret;
	}
	if (retlen != c->fsdata_len) {
		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
		return ret;
	}
	return 0;
}

/* 
 * On NAND we try to mark this block bad. If the block was erased more
 * than MAX_ERASE_FAILURES we mark it finaly bad.
 * Don't care about failures. This block remains on the erase-pending
 * or badblock list as long as nobody manipulates the flash with
 * a bootloader or something like that.
 */

int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
{
	int 	ret;

	/* if the count is < max, we try to write the counter to the 2nd page oob area */
	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
		return 0;

	if (!c->mtd->block_markbad)
		return 1; // What else can we do?

	D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
	ret = c->mtd->block_markbad(c->mtd, bad_offset);
	
	if (ret) {
		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
		return ret;
	}
	return 1;
}

#define NAND_JFFS2_OOB16_FSDALEN	8

static struct nand_oobinfo jffs2_oobinfo_docecc = {
	.useecc = MTD_NANDECC_PLACE,
	.eccbytes = 6,
	.eccpos = {0,1,2,3,4,5}
};


static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
{
	struct nand_oobinfo *oinfo = &c->mtd->oobinfo;

	/* Do this only, if we have an oob buffer */
	if (!c->mtd->oobsize)
		return 0;
	
	/* Cleanmarker is out-of-band, so inline size zero */
	c->cleanmarker_size = 0;

	/* Should we use autoplacement ? */
	if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
		D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
		/* Get the position of the free bytes */
		if (!oinfo->oobfree[0][1]) {
			printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
			return -ENOSPC;
		}
		c->fsdata_pos = oinfo->oobfree[0][0];
		c->fsdata_len = oinfo->oobfree[0][1];
		if (c->fsdata_len > 8)
			c->fsdata_len = 8;
	} else {
		/* This is just a legacy fallback and should go away soon */
		switch(c->mtd->ecctype) {
		case MTD_ECC_RS_DiskOnChip:
			printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
			c->oobinfo = &jffs2_oobinfo_docecc;
			c->fsdata_pos = 6;
			c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
			c->badblock_pos = 15;
			break;
	
		default:
			D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
			return -EINVAL;
		}
	}
	return 0;
}

int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
{
	int res;

	/* Initialise write buffer */
	init_rwsem(&c->wbuf_sem);
	c->wbuf_pagesize = c->mtd->oobblock;
	c->wbuf_ofs = 0xFFFFFFFF;
	
	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf)
		return -ENOMEM;

	res = jffs2_nand_set_oobinfo(c);

#ifdef BREAKME
	if (!brokenbuf)
		brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!brokenbuf) {
		kfree(c->wbuf);
		return -ENOMEM;
	}
	memset(brokenbuf, 0xdb, c->wbuf_pagesize);
#endif
	return res;
}

void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
{
	kfree(c->wbuf);
}

int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
	
	/* Initialize write buffer */
	init_rwsem(&c->wbuf_sem);
	c->wbuf_pagesize = c->sector_size;
	c->wbuf_ofs = 0xFFFFFFFF;

	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf)
		return -ENOMEM;

	printk(KERN_INFO "JFFS2 write-buffering enabled (%i)\n", c->wbuf_pagesize);

	return 0;
}

void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
	kfree(c->wbuf);
}

int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
	/* Cleanmarker is actually larger on the flashes */
	c->cleanmarker_size = 16;

	/* Initialize write buffer */
	init_rwsem(&c->wbuf_sem);
	c->wbuf_pagesize = c->mtd->eccsize;
	c->wbuf_ofs = 0xFFFFFFFF;

	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf)
		return -ENOMEM;

	return 0;
}

void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
	kfree(c->wbuf);
}

int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
	/* Cleanmarker currently occupies a whole programming region */
	c->cleanmarker_size = MTD_PROGREGION_SIZE(c->mtd);

	/* Initialize write buffer */
	init_rwsem(&c->wbuf_sem);
	c->wbuf_pagesize = MTD_PROGREGION_SIZE(c->mtd);
	c->wbuf_ofs = 0xFFFFFFFF;

	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf)
		return -ENOMEM;

	return 0;
}

void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
	kfree(c->wbuf);
}