1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
|
/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright © 2001-2007 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
*/
#include <linux/kernel.h>
#include <linux/mtd/mtd.h>
#include <linux/compiler.h>
#include <linux/sched.h> /* For cond_resched() */
#include "nodelist.h"
#include "debug.h"
/**
* jffs2_reserve_space - request physical space to write nodes to flash
* @c: superblock info
* @minsize: Minimum acceptable size of allocation
* @len: Returned value of allocation length
* @prio: Allocation type - ALLOC_{NORMAL,DELETION}
*
* Requests a block of physical space on the flash. Returns zero for success
* and puts 'len' into the appropriate place, or returns -ENOSPC or other
* error if appropriate. Doesn't return len since that's
*
* If it returns zero, jffs2_reserve_space() also downs the per-filesystem
* allocation semaphore, to prevent more than one allocation from being
* active at any time. The semaphore is later released by jffs2_commit_allocation()
*
* jffs2_reserve_space() may trigger garbage collection in order to make room
* for the requested allocation.
*/
static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
uint32_t *len, uint32_t sumsize);
int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
uint32_t *len, int prio, uint32_t sumsize)
{
int ret = -EAGAIN;
int blocksneeded = c->resv_blocks_write;
/* align it */
minsize = PAD(minsize);
D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
mutex_lock(&c->alloc_sem);
D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
spin_lock(&c->erase_completion_lock);
/* this needs a little more thought (true <tglx> :)) */
while(ret == -EAGAIN) {
while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
uint32_t dirty, avail;
/* calculate real dirty size
* dirty_size contains blocks on erase_pending_list
* those blocks are counted in c->nr_erasing_blocks.
* If one block is actually erased, it is not longer counted as dirty_space
* but it is counted in c->nr_erasing_blocks, so we add it and subtract it
* with c->nr_erasing_blocks * c->sector_size again.
* Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
* This helps us to force gc and pick eventually a clean block to spread the load.
* We add unchecked_size here, as we hopefully will find some space to use.
* This will affect the sum only once, as gc first finishes checking
* of nodes.
*/
dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
if (dirty < c->nospc_dirty_size) {
if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
break;
}
D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
dirty, c->unchecked_size, c->sector_size));
spin_unlock(&c->erase_completion_lock);
mutex_unlock(&c->alloc_sem);
return -ENOSPC;
}
/* Calc possibly available space. Possibly available means that we
* don't know, if unchecked size contains obsoleted nodes, which could give us some
* more usable space. This will affect the sum only once, as gc first finishes checking
* of nodes.
+ Return -ENOSPC, if the maximum possibly available space is less or equal than
* blocksneeded * sector_size.
* This blocks endless gc looping on a filesystem, which is nearly full, even if
* the check above passes.
*/
avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
if ( (avail / c->sector_size) <= blocksneeded) {
if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
break;
}
D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
avail, blocksneeded * c->sector_size));
spin_unlock(&c->erase_completion_lock);
mutex_unlock(&c->alloc_sem);
return -ENOSPC;
}
mutex_unlock(&c->alloc_sem);
D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
spin_unlock(&c->erase_completion_lock);
ret = jffs2_garbage_collect_pass(c);
if (ret == -EAGAIN)
jffs2_erase_pending_blocks(c, 1);
else if (ret)
return ret;
cond_resched();
if (signal_pending(current))
return -EINTR;
mutex_lock(&c->alloc_sem);
spin_lock(&c->erase_completion_lock);
}
ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
if (ret) {
D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
}
}
spin_unlock(&c->erase_completion_lock);
if (!ret)
ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
if (ret)
mutex_unlock(&c->alloc_sem);
return ret;
}
int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
uint32_t *len, uint32_t sumsize)
{
int ret = -EAGAIN;
minsize = PAD(minsize);
D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
spin_lock(&c->erase_completion_lock);
while(ret == -EAGAIN) {
ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
if (ret) {
D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
}
}
spin_unlock(&c->erase_completion_lock);
if (!ret)
ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
return ret;
}
/* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
{
if (c->nextblock == NULL) {
D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
jeb->offset));
return;
}
/* Check, if we have a dirty block now, or if it was dirty already */
if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
c->dirty_size += jeb->wasted_size;
c->wasted_size -= jeb->wasted_size;
jeb->dirty_size += jeb->wasted_size;
jeb->wasted_size = 0;
if (VERYDIRTY(c, jeb->dirty_size)) {
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
list_add_tail(&jeb->list, &c->very_dirty_list);
} else {
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
list_add_tail(&jeb->list, &c->dirty_list);
}
} else {
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
list_add_tail(&jeb->list, &c->clean_list);
}
c->nextblock = NULL;
}
/* Select a new jeb for nextblock */
static int jffs2_find_nextblock(struct jffs2_sb_info *c)
{
struct list_head *next;
/* Take the next block off the 'free' list */
if (list_empty(&c->free_list)) {
if (!c->nr_erasing_blocks &&
!list_empty(&c->erasable_list)) {
struct jffs2_eraseblock *ejeb;
ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
list_move_tail(&ejeb->list, &c->erase_pending_list);
c->nr_erasing_blocks++;
jffs2_erase_pending_trigger(c);
D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
ejeb->offset));
}
if (!c->nr_erasing_blocks &&
!list_empty(&c->erasable_pending_wbuf_list)) {
D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
/* c->nextblock is NULL, no update to c->nextblock allowed */
spin_unlock(&c->erase_completion_lock);
jffs2_flush_wbuf_pad(c);
spin_lock(&c->erase_completion_lock);
/* Have another go. It'll be on the erasable_list now */
return -EAGAIN;
}
if (!c->nr_erasing_blocks) {
/* Ouch. We're in GC, or we wouldn't have got here.
And there's no space left. At all. */
printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
return -ENOSPC;
}
spin_unlock(&c->erase_completion_lock);
/* Don't wait for it; just erase one right now */
jffs2_erase_pending_blocks(c, 1);
spin_lock(&c->erase_completion_lock);
/* An erase may have failed, decreasing the
amount of free space available. So we must
restart from the beginning */
return -EAGAIN;
}
next = c->free_list.next;
list_del(next);
c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
c->nr_free_blocks--;
jffs2_sum_reset_collected(c->summary); /* reset collected summary */
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
/* adjust write buffer offset, else we get a non contiguous write bug */
if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
c->wbuf_ofs = 0xffffffff;
#endif
D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
return 0;
}
/* Called with alloc sem _and_ erase_completion_lock */
static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
uint32_t *len, uint32_t sumsize)
{
struct jffs2_eraseblock *jeb = c->nextblock;
uint32_t reserved_size; /* for summary information at the end of the jeb */
int ret;
restart:
reserved_size = 0;
if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
/* NOSUM_SIZE means not to generate summary */
if (jeb) {
reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
dbg_summary("minsize=%d , jeb->free=%d ,"
"summary->size=%d , sumsize=%d\n",
minsize, jeb->free_size,
c->summary->sum_size, sumsize);
}
/* Is there enough space for writing out the current node, or we have to
write out summary information now, close this jeb and select new nextblock? */
if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
/* Has summary been disabled for this jeb? */
if (jffs2_sum_is_disabled(c->summary)) {
sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
goto restart;
}
/* Writing out the collected summary information */
dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
ret = jffs2_sum_write_sumnode(c);
if (ret)
return ret;
if (jffs2_sum_is_disabled(c->summary)) {
/* jffs2_write_sumnode() couldn't write out the summary information
diabling summary for this jeb and free the collected information
*/
sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
goto restart;
}
jffs2_close_nextblock(c, jeb);
jeb = NULL;
/* keep always valid value in reserved_size */
reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
}
} else {
if (jeb && minsize > jeb->free_size) {
uint32_t waste;
/* Skip the end of this block and file it as having some dirty space */
/* If there's a pending write to it, flush now */
if (jffs2_wbuf_dirty(c)) {
spin_unlock(&c->erase_completion_lock);
D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
jffs2_flush_wbuf_pad(c);
spin_lock(&c->erase_completion_lock);
jeb = c->nextblock;
goto restart;
}
spin_unlock(&c->erase_completion_lock);
ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
if (ret)
return ret;
/* Just lock it again and continue. Nothing much can change because
we hold c->alloc_sem anyway. In fact, it's not entirely clear why
we hold c->erase_completion_lock in the majority of this function...
but that's a question for another (more caffeine-rich) day. */
spin_lock(&c->erase_completion_lock);
waste = jeb->free_size;
jffs2_link_node_ref(c, jeb,
(jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
waste, NULL);
/* FIXME: that made it count as dirty. Convert to wasted */
jeb->dirty_size -= waste;
c->dirty_size -= waste;
jeb->wasted_size += waste;
c->wasted_size += waste;
jffs2_close_nextblock(c, jeb);
jeb = NULL;
}
}
if (!jeb) {
ret = jffs2_find_nextblock(c);
if (ret)
return ret;
jeb = c->nextblock;
if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
goto restart;
}
}
/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
enough space */
*len = jeb->free_size - reserved_size;
if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
!jeb->first_node->next_in_ino) {
/* Only node in it beforehand was a CLEANMARKER node (we think).
So mark it obsolete now that there's going to be another node
in the block. This will reduce used_size to zero but We've
already set c->nextblock so that jffs2_mark_node_obsolete()
won't try to refile it to the dirty_list.
*/
spin_unlock(&c->erase_completion_lock);
jffs2_mark_node_obsolete(c, jeb->first_node);
spin_lock(&c->erase_completion_lock);
}
D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
*len, jeb->offset + (c->sector_size - jeb->free_size)));
return 0;
}
/**
* jffs2_add_physical_node_ref - add a physical node reference to the list
* @c: superblock info
* @new: new node reference to add
* @len: length of this physical node
*
* Should only be used to report nodes for which space has been allocated
* by jffs2_reserve_space.
*
* Must be called with the alloc_sem held.
*/
struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
uint32_t ofs, uint32_t len,
struct jffs2_inode_cache *ic)
{
struct jffs2_eraseblock *jeb;
struct jffs2_raw_node_ref *new;
jeb = &c->blocks[ofs / c->sector_size];
D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
ofs & ~3, ofs & 3, len));
#if 1
/* Allow non-obsolete nodes only to be added at the end of c->nextblock,
if c->nextblock is set. Note that wbuf.c will file obsolete nodes
even after refiling c->nextblock */
if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
&& (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
if (c->nextblock)
printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
else
printk(KERN_WARNING "No nextblock");
printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
return ERR_PTR(-EINVAL);
}
#endif
spin_lock(&c->erase_completion_lock);
new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
if (jffs2_wbuf_dirty(c)) {
/* Flush the last write in the block if it's outstanding */
spin_unlock(&c->erase_completion_lock);
jffs2_flush_wbuf_pad(c);
spin_lock(&c->erase_completion_lock);
}
list_add_tail(&jeb->list, &c->clean_list);
c->nextblock = NULL;
}
jffs2_dbg_acct_sanity_check_nolock(c,jeb);
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
spin_unlock(&c->erase_completion_lock);
return new;
}
void jffs2_complete_reservation(struct jffs2_sb_info *c)
{
D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
jffs2_garbage_collect_trigger(c);
mutex_unlock(&c->alloc_sem);
}
static inline int on_list(struct list_head *obj, struct list_head *head)
{
struct list_head *this;
list_for_each(this, head) {
if (this == obj) {
D1(printk("%p is on list at %p\n", obj, head));
return 1;
}
}
return 0;
}
void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
{
struct jffs2_eraseblock *jeb;
int blocknr;
struct jffs2_unknown_node n;
int ret, addedsize;
size_t retlen;
uint32_t freed_len;
if(unlikely(!ref)) {
printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
return;
}
if (ref_obsolete(ref)) {
D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
return;
}
blocknr = ref->flash_offset / c->sector_size;
if (blocknr >= c->nr_blocks) {
printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
BUG();
}
jeb = &c->blocks[blocknr];
if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
!(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
/* Hm. This may confuse static lock analysis. If any of the above
three conditions is false, we're going to return from this
function without actually obliterating any nodes or freeing
any jffs2_raw_node_refs. So we don't need to stop erases from
happening, or protect against people holding an obsolete
jffs2_raw_node_ref without the erase_completion_lock. */
mutex_lock(&c->erase_free_sem);
}
spin_lock(&c->erase_completion_lock);
freed_len = ref_totlen(c, jeb, ref);
if (ref_flags(ref) == REF_UNCHECKED) {
D1(if (unlikely(jeb->unchecked_size < freed_len)) {
printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
freed_len, blocknr, ref->flash_offset, jeb->used_size);
BUG();
})
D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
jeb->unchecked_size -= freed_len;
c->unchecked_size -= freed_len;
} else {
D1(if (unlikely(jeb->used_size < freed_len)) {
printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
freed_len, blocknr, ref->flash_offset, jeb->used_size);
BUG();
})
D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
jeb->used_size -= freed_len;
c->used_size -= freed_len;
}
// Take care, that wasted size is taken into concern
if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
D1(printk("Dirtying\n"));
addedsize = freed_len;
jeb->dirty_size += freed_len;
c->dirty_size += freed_len;
/* Convert wasted space to dirty, if not a bad block */
if (jeb->wasted_size) {
if (on_list(&jeb->list, &c->bad_used_list)) {
D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
jeb->offset));
addedsize = 0; /* To fool the refiling code later */
} else {
D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
jeb->wasted_size, jeb->offset));
addedsize += jeb->wasted_size;
jeb->dirty_size += jeb->wasted_size;
c->dirty_size += jeb->wasted_size;
c->wasted_size -= jeb->wasted_size;
jeb->wasted_size = 0;
}
}
} else {
D1(printk("Wasting\n"));
addedsize = 0;
jeb->wasted_size += freed_len;
c->wasted_size += freed_len;
}
ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
jffs2_dbg_acct_sanity_check_nolock(c, jeb);
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
if (c->flags & JFFS2_SB_FLAG_SCANNING) {
/* Flash scanning is in progress. Don't muck about with the block
lists because they're not ready yet, and don't actually
obliterate nodes that look obsolete. If they weren't
marked obsolete on the flash at the time they _became_
obsolete, there was probably a reason for that. */
spin_unlock(&c->erase_completion_lock);
/* We didn't lock the erase_free_sem */
return;
}
if (jeb == c->nextblock) {
D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
} else if (!jeb->used_size && !jeb->unchecked_size) {
if (jeb == c->gcblock) {
D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
c->gcblock = NULL;
} else {
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
list_del(&jeb->list);
}
if (jffs2_wbuf_dirty(c)) {
D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
} else {
if (jiffies & 127) {
/* Most of the time, we just erase it immediately. Otherwise we
spend ages scanning it on mount, etc. */
D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
list_add_tail(&jeb->list, &c->erase_pending_list);
c->nr_erasing_blocks++;
jffs2_erase_pending_trigger(c);
} else {
/* Sometimes, however, we leave it elsewhere so it doesn't get
immediately reused, and we spread the load a bit. */
D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
list_add_tail(&jeb->list, &c->erasable_list);
}
}
D1(printk(KERN_DEBUG "Done OK\n"));
} else if (jeb == c->gcblock) {
D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
list_del(&jeb->list);
D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
list_add_tail(&jeb->list, &c->dirty_list);
} else if (VERYDIRTY(c, jeb->dirty_size) &&
!VERYDIRTY(c, jeb->dirty_size - addedsize)) {
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
list_del(&jeb->list);
D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
list_add_tail(&jeb->list, &c->very_dirty_list);
} else {
D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
}
spin_unlock(&c->erase_completion_lock);
if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
(c->flags & JFFS2_SB_FLAG_BUILDING)) {
/* We didn't lock the erase_free_sem */
return;
}
/* The erase_free_sem is locked, and has been since before we marked the node obsolete
and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
if (ret) {
printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
goto out_erase_sem;
}
if (retlen != sizeof(n)) {
printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
goto out_erase_sem;
}
if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
goto out_erase_sem;
}
if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
goto out_erase_sem;
}
/* XXX FIXME: This is ugly now */
n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
if (ret) {
printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
goto out_erase_sem;
}
if (retlen != sizeof(n)) {
printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
goto out_erase_sem;
}
/* Nodes which have been marked obsolete no longer need to be
associated with any inode. Remove them from the per-inode list.
Note we can't do this for NAND at the moment because we need
obsolete dirent nodes to stay on the lists, because of the
horridness in jffs2_garbage_collect_deletion_dirent(). Also
because we delete the inocache, and on NAND we need that to
stay around until all the nodes are actually erased, in order
to stop us from giving the same inode number to another newly
created inode. */
if (ref->next_in_ino) {
struct jffs2_inode_cache *ic;
struct jffs2_raw_node_ref **p;
spin_lock(&c->erase_completion_lock);
ic = jffs2_raw_ref_to_ic(ref);
for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
;
*p = ref->next_in_ino;
ref->next_in_ino = NULL;
switch (ic->class) {
#ifdef CONFIG_JFFS2_FS_XATTR
case RAWNODE_CLASS_XATTR_DATUM:
jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
break;
case RAWNODE_CLASS_XATTR_REF:
jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
break;
#endif
default:
if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
jffs2_del_ino_cache(c, ic);
break;
}
spin_unlock(&c->erase_completion_lock);
}
out_erase_sem:
mutex_unlock(&c->erase_free_sem);
}
int jffs2_thread_should_wake(struct jffs2_sb_info *c)
{
int ret = 0;
uint32_t dirty;
int nr_very_dirty = 0;
struct jffs2_eraseblock *jeb;
if (c->unchecked_size) {
D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
c->unchecked_size, c->checked_ino));
return 1;
}
/* dirty_size contains blocks on erase_pending_list
* those blocks are counted in c->nr_erasing_blocks.
* If one block is actually erased, it is not longer counted as dirty_space
* but it is counted in c->nr_erasing_blocks, so we add it and subtract it
* with c->nr_erasing_blocks * c->sector_size again.
* Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
* This helps us to force gc and pick eventually a clean block to spread the load.
*/
dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
(dirty > c->nospc_dirty_size))
ret = 1;
list_for_each_entry(jeb, &c->very_dirty_list, list) {
nr_very_dirty++;
if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
ret = 1;
/* In debug mode, actually go through and count them all */
D1(continue);
break;
}
}
D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
return ret;
}
|