aboutsummaryrefslogtreecommitdiffstats
path: root/fs/btrfs/free-space-cache.c
blob: 4eb2964260618d93f9b59bdcbf707f221aea5805 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/math64.h>
#include "ctree.h"
#include "free-space-cache.h"
#include "transaction.h"

#define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
#define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)

static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
					  u64 offset)
{
	BUG_ON(offset < bitmap_start);
	offset -= bitmap_start;
	return (unsigned long)(div64_u64(offset, sectorsize));
}

static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
{
	return (unsigned long)(div64_u64(bytes, sectorsize));
}

static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
				   u64 offset)
{
	u64 bitmap_start;
	u64 bytes_per_bitmap;

	bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
	bitmap_start = offset - block_group->key.objectid;
	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
	bitmap_start *= bytes_per_bitmap;
	bitmap_start += block_group->key.objectid;

	return bitmap_start;
}

static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
		info = rb_entry(parent, struct btrfs_free_space, offset_index);

		if (offset < info->offset) {
			p = &(*p)->rb_left;
		} else if (offset > info->offset) {
			p = &(*p)->rb_right;
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
				WARN_ON(info->bitmap);
				p = &(*p)->rb_right;
			} else {
				WARN_ON(!info->bitmap);
				p = &(*p)->rb_left;
			}
		}
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
 * searches the tree for the given offset.
 *
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
 */
static struct btrfs_free_space *
tree_search_offset(struct btrfs_block_group_cache *block_group,
		   u64 offset, int bitmap_only, int fuzzy)
{
	struct rb_node *n = block_group->free_space_offset.rb_node;
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		prev = entry;

		if (offset < entry->offset)
			n = n->rb_left;
		else if (offset > entry->offset)
			n = n->rb_right;
		else
			break;
	}

	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;

		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;

		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
			/*
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
			 */
			n = &entry->offset_index;
			while (1) {
				n = rb_prev(n);
				if (!n)
					break;
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
				if (!prev->bitmap) {
					if (prev->offset + prev->bytes > offset)
						entry = prev;
					break;
				}
			}
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
			BUG_ON(entry->offset > offset);
		} else {
			if (fuzzy)
				return entry;
			else
				return NULL;
		}
	}

	if (entry->bitmap) {
		n = &entry->offset_index;
		while (1) {
			n = rb_prev(n);
			if (!n)
				break;
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
			if (!prev->bitmap) {
				if (prev->offset + prev->bytes > offset)
					return prev;
				break;
			}
		}
		if (entry->offset + BITS_PER_BITMAP *
		    block_group->sectorsize > offset)
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
			    block_group->sectorsize > offset)
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
}

static void unlink_free_space(struct btrfs_block_group_cache *block_group,
			      struct btrfs_free_space *info)
{
	rb_erase(&info->offset_index, &block_group->free_space_offset);
	block_group->free_extents--;
	block_group->free_space -= info->bytes;
}

static int link_free_space(struct btrfs_block_group_cache *block_group,
			   struct btrfs_free_space *info)
{
	int ret = 0;

	BUG_ON(!info->bitmap && !info->bytes);
	ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
				 &info->offset_index, (info->bitmap != NULL));
	if (ret)
		return ret;

	block_group->free_space += info->bytes;
	block_group->free_extents++;
	return ret;
}

static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
{
	u64 max_bytes, possible_bytes;

	/*
	 * The goal is to keep the total amount of memory used per 1gb of space
	 * at or below 32k, so we need to adjust how much memory we allow to be
	 * used by extent based free space tracking
	 */
	max_bytes = MAX_CACHE_BYTES_PER_GIG *
		(div64_u64(block_group->key.offset, 1024 * 1024 * 1024));

	possible_bytes = (block_group->total_bitmaps * PAGE_CACHE_SIZE) +
		(sizeof(struct btrfs_free_space) *
		 block_group->extents_thresh);

	if (possible_bytes > max_bytes) {
		int extent_bytes = max_bytes -
			(block_group->total_bitmaps * PAGE_CACHE_SIZE);

		if (extent_bytes <= 0) {
			block_group->extents_thresh = 0;
			return;
		}

		block_group->extents_thresh = extent_bytes /
			(sizeof(struct btrfs_free_space));
	}
}

static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	unsigned long start, end;
	unsigned long i;

	start = offset_to_bit(info->offset, block_group->sectorsize, offset);
	end = start + bytes_to_bits(bytes, block_group->sectorsize);
	BUG_ON(end > BITS_PER_BITMAP);

	for (i = start; i < end; i++)
		clear_bit(i, info->bitmap);

	info->bytes -= bytes;
	block_group->free_space -= bytes;
}

static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
{
	unsigned long start, end;
	unsigned long i;

	start = offset_to_bit(info->offset, block_group->sectorsize, offset);
	end = start + bytes_to_bits(bytes, block_group->sectorsize);
	BUG_ON(end > BITS_PER_BITMAP);

	for (i = start; i < end; i++)
		set_bit(i, info->bitmap);

	info->bytes += bytes;
	block_group->free_space += bytes;
}

static int search_bitmap(struct btrfs_block_group_cache *block_group,
			 struct btrfs_free_space *bitmap_info, u64 *offset,
			 u64 *bytes)
{
	unsigned long found_bits = 0;
	unsigned long bits, i;
	unsigned long next_zero;

	i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
			  max_t(u64, *offset, bitmap_info->offset));
	bits = bytes_to_bits(*bytes, block_group->sectorsize);

	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
	     i < BITS_PER_BITMAP;
	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
		if ((next_zero - i) >= bits) {
			found_bits = next_zero - i;
			break;
		}
		i = next_zero;
	}

	if (found_bits) {
		*offset = (u64)(i * block_group->sectorsize) +
			bitmap_info->offset;
		*bytes = (u64)(found_bits) * block_group->sectorsize;
		return 0;
	}

	return -1;
}

static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
						*block_group, u64 *offset,
						u64 *bytes, int debug)
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret;

	if (!block_group->free_space_offset.rb_node)
		return NULL;

	entry = tree_search_offset(block_group,
				   offset_to_bitmap(block_group, *offset),
				   0, 1);
	if (!entry)
		return NULL;

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (entry->bytes < *bytes)
			continue;

		if (entry->bitmap) {
			ret = search_bitmap(block_group, entry, offset, bytes);
			if (!ret)
				return entry;
			continue;
		}

		*offset = entry->offset;
		*bytes = entry->bytes;
		return entry;
	}

	return NULL;
}

static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
			   struct btrfs_free_space *info, u64 offset)
{
	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
	int max_bitmaps = (int)div64_u64(block_group->key.offset +
					 bytes_per_bg - 1, bytes_per_bg);
	BUG_ON(block_group->total_bitmaps >= max_bitmaps);

	info->offset = offset_to_bitmap(block_group, offset);
	info->bytes = 0;
	link_free_space(block_group, info);
	block_group->total_bitmaps++;

	recalculate_thresholds(block_group);
}

static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
	u64 search_start, search_bytes;
	int ret;

again:
	end = bitmap_info->offset +
		(u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;

	/*
	 * XXX - this can go away after a few releases.
	 *
	 * since the only user of btrfs_remove_free_space is the tree logging
	 * stuff, and the only way to test that is under crash conditions, we
	 * want to have this debug stuff here just in case somethings not
	 * working.  Search the bitmap for the space we are trying to use to
	 * make sure its actually there.  If its not there then we need to stop
	 * because something has gone wrong.
	 */
	search_start = *offset;
	search_bytes = *bytes;
	ret = search_bitmap(block_group, bitmap_info, &search_start,
			    &search_bytes);
	BUG_ON(ret < 0 || search_start != *offset);

	if (*offset > bitmap_info->offset && *offset + *bytes > end) {
		bitmap_clear_bits(block_group, bitmap_info, *offset,
				  end - *offset + 1);
		*bytes -= end - *offset + 1;
		*offset = end + 1;
	} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
		bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
		*bytes = 0;
	}

	if (*bytes) {
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
		if (!bitmap_info->bytes) {
			unlink_free_space(block_group, bitmap_info);
			kfree(bitmap_info->bitmap);
			kfree(bitmap_info);
			block_group->total_bitmaps--;
			recalculate_thresholds(block_group);
		}

		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
			return -EINVAL;

		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
		if (!bitmap_info->bitmap)
			return -EAGAIN;

		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
		search_bytes = *bytes;
		ret = search_bitmap(block_group, bitmap_info, &search_start,
				    &search_bytes);
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

		goto again;
	} else if (!bitmap_info->bytes) {
		unlink_free_space(block_group, bitmap_info);
		kfree(bitmap_info->bitmap);
		kfree(bitmap_info);
		block_group->total_bitmaps--;
		recalculate_thresholds(block_group);
	}

	return 0;
}

static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
	int added = 0;
	u64 bytes, offset, end;
	int ret;

	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
	if (block_group->free_extents < block_group->extents_thresh &&
	    info->bytes > block_group->sectorsize * 4)
		return 0;

	/*
	 * some block groups are so tiny they can't be enveloped by a bitmap, so
	 * don't even bother to create a bitmap for this
	 */
	if (BITS_PER_BITMAP * block_group->sectorsize >
	    block_group->key.offset)
		return 0;

	bytes = info->bytes;
	offset = info->offset;

again:
	bitmap_info = tree_search_offset(block_group,
					 offset_to_bitmap(block_group, offset),
					 1, 0);
	if (!bitmap_info) {
		BUG_ON(added);
		goto new_bitmap;
	}

	end = bitmap_info->offset +
		(u64)(BITS_PER_BITMAP * block_group->sectorsize);

	if (offset >= bitmap_info->offset && offset + bytes > end) {
		bitmap_set_bits(block_group, bitmap_info, offset,
				end - offset);
		bytes -= end - offset;
		offset = end;
		added = 0;
	} else if (offset >= bitmap_info->offset && offset + bytes <= end) {
		bitmap_set_bits(block_group, bitmap_info, offset, bytes);
		bytes = 0;
	} else {
		BUG();
	}

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
		add_new_bitmap(block_group, info, offset);
		added = 1;
		info = NULL;
		goto again;
	} else {
		spin_unlock(&block_group->tree_lock);

		/* no pre-allocated info, allocate a new one */
		if (!info) {
			info = kzalloc(sizeof(struct btrfs_free_space),
				       GFP_NOFS);
			if (!info) {
				spin_lock(&block_group->tree_lock);
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
		spin_lock(&block_group->tree_lock);
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
		if (info->bitmap)
			kfree(info->bitmap);
		kfree(info);
	}

	return ret;
}

int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
			 u64 offset, u64 bytes)
{
	struct btrfs_free_space *right_info = NULL;
	struct btrfs_free_space *left_info = NULL;
	struct btrfs_free_space *info = NULL;
	int ret = 0;

	info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;

	spin_lock(&block_group->tree_lock);

	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
	right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
	else
		left_info = tree_search_offset(block_group, offset - 1, 0, 0);

	/*
	 * If there was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
	if ((!left_info || left_info->bitmap) &&
	    (!right_info || right_info->bitmap)) {
		ret = insert_into_bitmap(block_group, info);

		if (ret < 0) {
			goto out;
		} else if (ret) {
			ret = 0;
			goto out;
		}
	}

	if (right_info && !right_info->bitmap) {
		unlink_free_space(block_group, right_info);
		info->bytes += right_info->bytes;
		kfree(right_info);
	}

	if (left_info && !left_info->bitmap &&
	    left_info->offset + left_info->bytes == offset) {
		unlink_free_space(block_group, left_info);
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
		kfree(left_info);
	}

	ret = link_free_space(block_group, info);
	if (ret)
		kfree(info);
out:
	spin_unlock(&block_group->tree_lock);

	if (ret) {
		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
		BUG_ON(ret == -EEXIST);
	}

	return ret;
}

int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
			    u64 offset, u64 bytes)
{
	struct btrfs_free_space *info;
	struct btrfs_free_space *next_info = NULL;
	int ret = 0;

	spin_lock(&block_group->tree_lock);

again:
	info = tree_search_offset(block_group, offset, 0, 0);
	if (!info) {
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
		info = tree_search_offset(block_group,
					  offset_to_bitmap(block_group, offset),
					  1, 0);
		if (!info) {
			WARN_ON(1);
			goto out_lock;
		}
	}

	if (info->bytes < bytes && rb_next(&info->offset_index)) {
		u64 end;
		next_info = rb_entry(rb_next(&info->offset_index),
					     struct btrfs_free_space,
					     offset_index);

		if (next_info->bitmap)
			end = next_info->offset + BITS_PER_BITMAP *
				block_group->sectorsize - 1;
		else
			end = next_info->offset + next_info->bytes;

		if (next_info->bytes < bytes ||
		    next_info->offset > offset || offset > end) {
			printk(KERN_CRIT "Found free space at %llu, size %llu,"
			      " trying to use %llu\n",
			      (unsigned long long)info->offset,
			      (unsigned long long)info->bytes,
			      (unsigned long long)bytes);
			WARN_ON(1);
			ret = -EINVAL;
			goto out_lock;
		}

		info = next_info;
	}

	if (info->bytes == bytes) {
		unlink_free_space(block_group, info);
		if (info->bitmap) {
			kfree(info->bitmap);
			block_group->total_bitmaps--;
		}
		kfree(info);
		goto out_lock;
	}

	if (!info->bitmap && info->offset == offset) {
		unlink_free_space(block_group, info);
		info->offset += bytes;
		info->bytes -= bytes;
		link_free_space(block_group, info);
		goto out_lock;
	}

	if (!info->bitmap && info->offset <= offset &&
	    info->offset + info->bytes >= offset + bytes) {
		u64 old_start = info->offset;
		/*
		 * we're freeing space in the middle of the info,
		 * this can happen during tree log replay
		 *
		 * first unlink the old info and then
		 * insert it again after the hole we're creating
		 */
		unlink_free_space(block_group, info);
		if (offset + bytes < info->offset + info->bytes) {
			u64 old_end = info->offset + info->bytes;

			info->offset = offset + bytes;
			info->bytes = old_end - info->offset;
			ret = link_free_space(block_group, info);
			WARN_ON(ret);
			if (ret)
				goto out_lock;
		} else {
			/* the hole we're creating ends at the end
			 * of the info struct, just free the info
			 */
			kfree(info);
		}
		spin_unlock(&block_group->tree_lock);

		/* step two, insert a new info struct to cover
		 * anything before the hole
		 */
		ret = btrfs_add_free_space(block_group, old_start,
					   offset - old_start);
		WARN_ON(ret);
		goto out;
	}

	ret = remove_from_bitmap(block_group, info, &offset, &bytes);
	if (ret == -EAGAIN)
		goto again;
	BUG_ON(ret);
out_lock:
	spin_unlock(&block_group->tree_lock);
out:
	return ret;
}

void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
			   u64 bytes)
{
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

	for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
		info = rb_entry(n, struct btrfs_free_space, offset_index);
		if (info->bytes >= bytes)
			count++;
		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
		       (unsigned long long)info->offset,
		       (unsigned long long)info->bytes,
		       (info->bitmap) ? "yes" : "no");
	}
	printk(KERN_INFO "block group has cluster?: %s\n",
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
	       "\n", count);
}

u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
{
	struct btrfs_free_space *info;
	struct rb_node *n;
	u64 ret = 0;

	for (n = rb_first(&block_group->free_space_offset); n;
	     n = rb_next(n)) {
		info = rb_entry(n, struct btrfs_free_space, offset_index);
		ret += info->bytes;
	}

	return ret;
}

/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster)
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
	bool bitmap;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

	bitmap = cluster->points_to_bitmap;
	cluster->block_group = NULL;
	cluster->window_start = 0;
	list_del_init(&cluster->block_group_list);
	cluster->points_to_bitmap = false;

	if (bitmap)
		goto out;

	node = rb_first(&cluster->root);
	while (node) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
		BUG_ON(entry->bitmap);
		tree_insert_offset(&block_group->free_space_offset,
				   entry->offset, &entry->offset_index, 0);
	}
	cluster->root.rb_node = NULL;

out:
	spin_unlock(&cluster->lock);
	btrfs_put_block_group(block_group);
	return 0;
}

void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
{
	struct btrfs_free_space *info;
	struct rb_node *node;
	struct btrfs_free_cluster *cluster;
	struct list_head *head;

	spin_lock(&block_group->tree_lock);
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
		if (need_resched()) {
			spin_unlock(&block_group->tree_lock);
			cond_resched();
			spin_lock(&block_group->tree_lock);
		}
	}

	while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
		unlink_free_space(block_group, info);
		if (info->bitmap)
			kfree(info->bitmap);
		kfree(info);
		if (need_resched()) {
			spin_unlock(&block_group->tree_lock);
			cond_resched();
			spin_lock(&block_group->tree_lock);
		}
	}

	spin_unlock(&block_group->tree_lock);
}

u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
			       u64 offset, u64 bytes, u64 empty_size)
{
	struct btrfs_free_space *entry = NULL;
	u64 bytes_search = bytes + empty_size;
	u64 ret = 0;

	spin_lock(&block_group->tree_lock);
	entry = find_free_space(block_group, &offset, &bytes_search, 0);
	if (!entry)
		goto out;

	ret = offset;
	if (entry->bitmap) {
		bitmap_clear_bits(block_group, entry, offset, bytes);
		if (!entry->bytes) {
			unlink_free_space(block_group, entry);
			kfree(entry->bitmap);
			kfree(entry);
			block_group->total_bitmaps--;
			recalculate_thresholds(block_group);
		}
	} else {
		unlink_free_space(block_group, entry);
		entry->offset += bytes;
		entry->bytes -= bytes;
		if (!entry->bytes)
			kfree(entry);
		else
			link_free_space(block_group, entry);
	}

out:
	spin_unlock(&block_group->tree_lock);

	return ret;
}

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
			       struct btrfs_block_group_cache *block_group,
			       struct btrfs_free_cluster *cluster)
{
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

	/* now return any extents the cluster had on it */
	spin_lock(&block_group->tree_lock);
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
	spin_unlock(&block_group->tree_lock);

	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
				   struct btrfs_free_cluster *cluster,
				   u64 bytes, u64 min_start)
{
	struct btrfs_free_space *entry;
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	spin_lock(&block_group->tree_lock);
	spin_lock(&cluster->lock);

	if (!cluster->points_to_bitmap)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	/*
	 * search_start is the beginning of the bitmap, but at some point it may
	 * be a good idea to point to the actual start of the free area in the
	 * bitmap, so do the offset_to_bitmap trick anyway, and set bitmap_only
	 * to 1 to make sure we get the bitmap entry
	 */
	entry = tree_search_offset(block_group,
				   offset_to_bitmap(block_group, search_start),
				   1, 0);
	if (!entry || !entry->bitmap)
		goto out;

	search_start = min_start;
	search_bytes = bytes;

	err = search_bitmap(block_group, entry, &search_start,
			    &search_bytes);
	if (err)
		goto out;

	ret = search_start;
	bitmap_clear_bits(block_group, entry, ret, bytes);
out:
	spin_unlock(&cluster->lock);
	spin_unlock(&block_group->tree_lock);

	return ret;
}

/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster, u64 bytes,
			     u64 min_start)
{
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	if (cluster->points_to_bitmap)
		return btrfs_alloc_from_bitmap(block_group, cluster, bytes,
					       min_start);

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);

	while(1) {
		if (entry->bytes < bytes || entry->offset < min_start) {
			struct rb_node *node;

			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}
		ret = entry->offset;

		entry->offset += bytes;
		entry->bytes -= bytes;

		if (entry->bytes == 0) {
			rb_erase(&entry->offset_index, &cluster->root);
			kfree(entry);
		}
		break;
	}
out:
	spin_unlock(&cluster->lock);

	return ret;
}

static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
				u64 offset, u64 bytes, u64 min_bytes)
{
	unsigned long next_zero;
	unsigned long i;
	unsigned long search_bits;
	unsigned long total_bits;
	unsigned long found_bits;
	unsigned long start = 0;
	unsigned long total_found = 0;
	bool found = false;

	i = offset_to_bit(entry->offset, block_group->sectorsize,
			  max_t(u64, offset, entry->offset));
	search_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
	total_bits = bytes_to_bits(bytes, block_group->sectorsize);

again:
	found_bits = 0;
	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
	     i < BITS_PER_BITMAP;
	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
		if (next_zero - i >= search_bits) {
			found_bits = next_zero - i;
			break;
		}
		i = next_zero;
	}

	if (!found_bits)
		return -1;

	if (!found) {
		start = i;
		found = true;
	}

	total_found += found_bits;

	if (cluster->max_size < found_bits * block_group->sectorsize)
		cluster->max_size = found_bits * block_group->sectorsize;

	if (total_found < total_bits) {
		i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
		if (i - start > total_bits * 2) {
			total_found = 0;
			cluster->max_size = 0;
			found = false;
		}
		goto again;
	}

	cluster->window_start = start * block_group->sectorsize +
		entry->offset;
	cluster->points_to_bitmap = true;

	return 0;
}

/*
 * here we try to find a cluster of blocks in a block group.  The goal
 * is to find at least bytes free and up to empty_size + bytes free.
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
			     struct btrfs_root *root,
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	struct btrfs_free_space *next;
	struct btrfs_free_space *last = NULL;
	u64 min_bytes;
	u64 window_start;
	u64 window_free;
	u64 max_extent = 0;
	bool found_bitmap = false;
	int ret;

	/* for metadata, allow allocates with more holes */
	if (btrfs_test_opt(root, SSD_SPREAD)) {
		min_bytes = bytes + empty_size;
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
		/*
		 * we want to do larger allocations when we are
		 * flushing out the delayed refs, it helps prevent
		 * making more work as we go along.
		 */
		if (trans->transaction->delayed_refs.flushing)
			min_bytes = max(bytes, (bytes + empty_size) >> 1);
		else
			min_bytes = max(bytes, (bytes + empty_size) >> 4);
	} else
		min_bytes = max(bytes, (bytes + empty_size) >> 2);

	spin_lock(&block_group->tree_lock);
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}
again:
	entry = tree_search_offset(block_group, offset, found_bitmap, 1);
	if (!entry) {
		ret = -ENOSPC;
		goto out;
	}

	/*
	 * If found_bitmap is true, we exhausted our search for extent entries,
	 * and we just want to search all of the bitmaps that we can find, and
	 * ignore any extent entries we find.
	 */
	while (entry->bitmap || found_bitmap ||
	       (!entry->bitmap && entry->bytes < min_bytes)) {
		struct rb_node *node = rb_next(&entry->offset_index);

		if (entry->bitmap && entry->bytes > bytes + empty_size) {
			ret = btrfs_bitmap_cluster(block_group, entry, cluster,
						   offset, bytes + empty_size,
						   min_bytes);
			if (!ret)
				goto got_it;
		}

		if (!node) {
			ret = -ENOSPC;
			goto out;
		}
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	/*
	 * We already searched all the extent entries from the passed in offset
	 * to the end and didn't find enough space for the cluster, and we also
	 * didn't find any bitmaps that met our criteria, just go ahead and exit
	 */
	if (found_bitmap) {
		ret = -ENOSPC;
		goto out;
	}

	cluster->points_to_bitmap = false;
	window_start = entry->offset;
	window_free = entry->bytes;
	last = entry;
	max_extent = entry->bytes;

	while (1) {
		/* out window is just right, lets fill it */
		if (window_free >= bytes + empty_size)
			break;

		node = rb_next(&last->offset_index);
		if (!node) {
			if (found_bitmap)
				goto again;
			ret = -ENOSPC;
			goto out;
		}
		next = rb_entry(node, struct btrfs_free_space, offset_index);

		/*
		 * we found a bitmap, so if this search doesn't result in a
		 * cluster, we know to go and search again for the bitmaps and
		 * start looking for space there
		 */
		if (next->bitmap) {
			if (!found_bitmap)
				offset = next->offset;
			found_bitmap = true;
			last = next;
			continue;
		}

		/*
		 * we haven't filled the empty size and the window is
		 * very large.  reset and try again
		 */
		if (next->offset - (last->offset + last->bytes) > 128 * 1024 ||
		    next->offset - window_start > (bytes + empty_size) * 2) {
			entry = next;
			window_start = entry->offset;
			window_free = entry->bytes;
			last = entry;
			max_extent = 0;
		} else {
			last = next;
			window_free += next->bytes;
			if (entry->bytes > max_extent)
				max_extent = entry->bytes;
		}
	}

	cluster->window_start = entry->offset;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 *
	 * The cluster includes an rbtree, but only uses the offset index
	 * of each free space cache entry.
	 */
	while (1) {
		node = rb_next(&entry->offset_index);
		if (entry->bitmap && node) {
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		} else if (entry->bitmap && !node) {
			break;
		}

		rb_erase(&entry->offset_index, &block_group->free_space_offset);
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
		BUG_ON(ret);

		if (!node || entry == last)
			break;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	cluster->max_size = max_extent;
got_it:
	ret = 0;
	atomic_inc(&block_group->count);
	list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
	cluster->block_group = block_group;
out:
	spin_unlock(&cluster->lock);
	spin_unlock(&block_group->tree_lock);

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
	cluster->root.rb_node = NULL;
	cluster->max_size = 0;
	cluster->points_to_bitmap = false;
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}