aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/pnp/manager.c
blob: 65ecef7385373248708d3dc001d442d5965ae0c1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/*
 * manager.c - Resource Management, Conflict Resolution, Activation and Disabling of Devices
 *
 * based on isapnp.c resource management (c) Jaroslav Kysela <perex@suse.cz>
 * Copyright 2003 Adam Belay <ambx1@neo.rr.com>
 *
 */

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>

#ifdef CONFIG_PNP_DEBUG
	#define DEBUG
#else
	#undef DEBUG
#endif

#include <linux/pnp.h>
#include "base.h"

DECLARE_MUTEX(pnp_res_mutex);

static int pnp_assign_port(struct pnp_dev *dev, struct pnp_port *rule, int idx)
{
	unsigned long *start, *end, *flags;

	if (!dev || !rule)
		return -EINVAL;

	if (idx >= PNP_MAX_PORT) {
		pnp_err("More than 4 ports is incompatible with pnp specifications.");
		/* pretend we were successful so at least the manager won't try again */
		return 1;
	}

	/* check if this resource has been manually set, if so skip */
	if (!(dev->res.port_resource[idx].flags & IORESOURCE_AUTO))
		return 1;

	start = &dev->res.port_resource[idx].start;
	end = &dev->res.port_resource[idx].end;
	flags = &dev->res.port_resource[idx].flags;

	/* set the initial values */
	*flags |= rule->flags | IORESOURCE_IO;
	*flags &=  ~IORESOURCE_UNSET;

	if (!rule->size) {
		*flags |= IORESOURCE_DISABLED;
		return 1; /* skip disabled resource requests */
	}

	*start = rule->min;
	*end = *start + rule->size - 1;

	/* run through until pnp_check_port is happy */
	while (!pnp_check_port(dev, idx)) {
		*start += rule->align;
		*end = *start + rule->size - 1;
		if (*start > rule->max || !rule->align)
			return 0;
	}
	return 1;
}

static int pnp_assign_mem(struct pnp_dev *dev, struct pnp_mem *rule, int idx)
{
	unsigned long *start, *end, *flags;

	if (!dev || !rule)
		return -EINVAL;

	if (idx >= PNP_MAX_MEM) {
		pnp_err("More than 8 mems is incompatible with pnp specifications.");
		/* pretend we were successful so at least the manager won't try again */
		return 1;
	}

	/* check if this resource has been manually set, if so skip */
	if (!(dev->res.mem_resource[idx].flags & IORESOURCE_AUTO))
		return 1;

	start = &dev->res.mem_resource[idx].start;
	end = &dev->res.mem_resource[idx].end;
	flags = &dev->res.mem_resource[idx].flags;

	/* set the initial values */
	*flags |= rule->flags | IORESOURCE_MEM;
	*flags &=  ~IORESOURCE_UNSET;

	/* convert pnp flags to standard Linux flags */
	if (!(rule->flags & IORESOURCE_MEM_WRITEABLE))
		*flags |= IORESOURCE_READONLY;
	if (rule->flags & IORESOURCE_MEM_CACHEABLE)
		*flags |= IORESOURCE_CACHEABLE;
	if (rule->flags & IORESOURCE_MEM_RANGELENGTH)
		*flags |= IORESOURCE_RANGELENGTH;
	if (rule->flags & IORESOURCE_MEM_SHADOWABLE)
		*flags |= IORESOURCE_SHADOWABLE;

	if (!rule->size) {
		*flags |= IORESOURCE_DISABLED;
		return 1; /* skip disabled resource requests */
	}

	*start = rule->min;
	*end = *start + rule->size -1;

	/* run through until pnp_check_mem is happy */
	while (!pnp_check_mem(dev, idx)) {
		*start += rule->align;
		*end = *start + rule->size - 1;
		if (*start > rule->max || !rule->align)
			return 0;
	}
	return 1;
}

static int pnp_assign_irq(struct pnp_dev * dev, struct pnp_irq *rule, int idx)
{
	unsigned long *start, *end, *flags;
	int i;

	/* IRQ priority: this table is good for i386 */
	static unsigned short xtab[16] = {
		5, 10, 11, 12, 9, 14, 15, 7, 3, 4, 13, 0, 1, 6, 8, 2
	};

	if (!dev || !rule)
		return -EINVAL;

	if (idx >= PNP_MAX_IRQ) {
		pnp_err("More than 2 irqs is incompatible with pnp specifications.");
		/* pretend we were successful so at least the manager won't try again */
		return 1;
	}

	/* check if this resource has been manually set, if so skip */
	if (!(dev->res.irq_resource[idx].flags & IORESOURCE_AUTO))
		return 1;

	start = &dev->res.irq_resource[idx].start;
	end = &dev->res.irq_resource[idx].end;
	flags = &dev->res.irq_resource[idx].flags;

	/* set the initial values */
	*flags |= rule->flags | IORESOURCE_IRQ;
	*flags &=  ~IORESOURCE_UNSET;

	if (bitmap_empty(rule->map, PNP_IRQ_NR)) {
		*flags |= IORESOURCE_DISABLED;
		return 1; /* skip disabled resource requests */
	}

	/* TBD: need check for >16 IRQ */
	*start = find_next_bit(rule->map, PNP_IRQ_NR, 16);
	if (*start < PNP_IRQ_NR) {
		*end = *start;
		return 1;
	}
	for (i = 0; i < 16; i++) {
		if(test_bit(xtab[i], rule->map)) {
			*start = *end = xtab[i];
			if(pnp_check_irq(dev, idx))
				return 1;
		}
	}
	return 0;
}

static int pnp_assign_dma(struct pnp_dev *dev, struct pnp_dma *rule, int idx)
{
	unsigned long *start, *end, *flags;
	int i;

	/* DMA priority: this table is good for i386 */
	static unsigned short xtab[8] = {
		1, 3, 5, 6, 7, 0, 2, 4
	};

	if (!dev || !rule)
		return -EINVAL;

	if (idx >= PNP_MAX_DMA) {
		pnp_err("More than 2 dmas is incompatible with pnp specifications.");
		/* pretend we were successful so at least the manager won't try again */
		return 1;
	}

	/* check if this resource has been manually set, if so skip */
	if (!(dev->res.dma_resource[idx].flags & IORESOURCE_AUTO))
		return 1;

	start = &dev->res.dma_resource[idx].start;
	end = &dev->res.dma_resource[idx].end;
	flags = &dev->res.dma_resource[idx].flags;

	/* set the initial values */
	*flags |= rule->flags | IORESOURCE_DMA;
	*flags &=  ~IORESOURCE_UNSET;

	if (!rule->map) {
		*flags |= IORESOURCE_DISABLED;
		return 1; /* skip disabled resource requests */
	}

	for (i = 0; i < 8; i++) {
		if(rule->map & (1<<xtab[i])) {
			*start = *end = xtab[i];
			if(pnp_check_dma(dev, idx))
				return 1;
		}
	}
	return 0;
}

/**
 * pnp_init_resources - Resets a resource table to default values.
 * @table: pointer to the desired resource table
 *
 */
void pnp_init_resource_table(struct pnp_resource_table *table)
{
	int idx;
	for (idx = 0; idx < PNP_MAX_IRQ; idx++) {
		table->irq_resource[idx].name = NULL;
		table->irq_resource[idx].start = -1;
		table->irq_resource[idx].end = -1;
		table->irq_resource[idx].flags = IORESOURCE_IRQ | IORESOURCE_AUTO | IORESOURCE_UNSET;
	}
	for (idx = 0; idx < PNP_MAX_DMA; idx++) {
		table->dma_resource[idx].name = NULL;
		table->dma_resource[idx].start = -1;
		table->dma_resource[idx].end = -1;
		table->dma_resource[idx].flags = IORESOURCE_DMA | IORESOURCE_AUTO | IORESOURCE_UNSET;
	}
	for (idx = 0; idx < PNP_MAX_PORT; idx++) {
		table->port_resource[idx].name = NULL;
		table->port_resource[idx].start = 0;
		table->port_resource[idx].end = 0;
		table->port_resource[idx].flags = IORESOURCE_IO | IORESOURCE_AUTO | IORESOURCE_UNSET;
	}
	for (idx = 0; idx < PNP_MAX_MEM; idx++) {
		table->mem_resource[idx].name = NULL;
		table->mem_resource[idx].start = 0;
		table->mem_resource[idx].end = 0;
		table->mem_resource[idx].flags = IORESOURCE_MEM | IORESOURCE_AUTO | IORESOURCE_UNSET;
	}
}

/**
 * pnp_clean_resources - clears resources that were not manually set
 * @res: the resources to clean
 *
 */
static void pnp_clean_resource_table(struct pnp_resource_table * res)
{
	int idx;
	for (idx = 0; idx < PNP_MAX_IRQ; idx++) {
		if (!(res->irq_resource[idx].flags & IORESOURCE_AUTO))
			continue;
		res->irq_resource[idx].start = -1;
		res->irq_resource[idx].end = -1;
		res->irq_resource[idx].flags = IORESOURCE_IRQ | IORESOURCE_AUTO | IORESOURCE_UNSET;
	}
	for (idx = 0; idx < PNP_MAX_DMA; idx++) {
		if (!(res->dma_resource[idx].flags & IORESOURCE_AUTO))
			continue;
		res->dma_resource[idx].start = -1;
		res->dma_resource[idx].end = -1;
		res->dma_resource[idx].flags = IORESOURCE_DMA | IORESOURCE_AUTO | IORESOURCE_UNSET;
	}
	for (idx = 0; idx < PNP_MAX_PORT; idx++) {
		if (!(res->port_resource[idx].flags & IORESOURCE_AUTO))
			continue;
		res->port_resource[idx].start = 0;
		res->port_resource[idx].end = 0;
		res->port_resource[idx].flags = IORESOURCE_IO | IORESOURCE_AUTO | IORESOURCE_UNSET;
	}
	for (idx = 0; idx < PNP_MAX_MEM; idx++) {
		if (!(res->mem_resource[idx].flags & IORESOURCE_AUTO))
			continue;
		res->mem_resource[idx].start = 0;
		res->mem_resource[idx].end = 0;
		res->mem_resource[idx].flags = IORESOURCE_MEM | IORESOURCE_AUTO | IORESOURCE_UNSET;
	}
}

/**
 * pnp_assign_resources - assigns resources to the device based on the specified dependent number
 * @dev: pointer to the desired device
 * @depnum: the dependent function number
 *
 * Only set depnum to 0 if the device does not have dependent options.
 */
static int pnp_assign_resources(struct pnp_dev *dev, int depnum)
{
	struct pnp_port *port;
	struct pnp_mem *mem;
	struct pnp_irq *irq;
	struct pnp_dma *dma;
	int nport = 0, nmem = 0, nirq = 0, ndma = 0;

	if (!pnp_can_configure(dev))
		return -ENODEV;

	down(&pnp_res_mutex);
	pnp_clean_resource_table(&dev->res); /* start with a fresh slate */
	if (dev->independent) {
		port = dev->independent->port;
		mem = dev->independent->mem;
		irq = dev->independent->irq;
		dma = dev->independent->dma;
		while (port) {
			if (!pnp_assign_port(dev, port, nport))
				goto fail;
			nport++;
			port = port->next;
		}
		while (mem) {
			if (!pnp_assign_mem(dev, mem, nmem))
				goto fail;
			nmem++;
			mem = mem->next;
		}
		while (irq) {
			if (!pnp_assign_irq(dev, irq, nirq))
				goto fail;
			nirq++;
			irq = irq->next;
		}
		while (dma) {
			if (!pnp_assign_dma(dev, dma, ndma))
				goto fail;
			ndma++;
			dma = dma->next;
		}
	}

	if (depnum) {
		struct pnp_option *dep;
		int i;
		for (i=1,dep=dev->dependent; i<depnum; i++, dep=dep->next)
			if(!dep)
				goto fail;
		port =dep->port;
		mem = dep->mem;
		irq = dep->irq;
		dma = dep->dma;
		while (port) {
			if (!pnp_assign_port(dev, port, nport))
				goto fail;
			nport++;
			port = port->next;
		}
		while (mem) {
			if (!pnp_assign_mem(dev, mem, nmem))
				goto fail;
			nmem++;
			mem = mem->next;
		}
		while (irq) {
			if (!pnp_assign_irq(dev, irq, nirq))
				goto fail;
			nirq++;
			irq = irq->next;
		}
		while (dma) {
			if (!pnp_assign_dma(dev, dma, ndma))
				goto fail;
			ndma++;
			dma = dma->next;
		}
	} else if (dev->dependent)
		goto fail;

	up(&pnp_res_mutex);
	return 1;

fail:
	pnp_clean_resource_table(&dev->res);
	up(&pnp_res_mutex);
	return 0;
}

/**
 * pnp_manual_config_dev - Disables Auto Config and Manually sets the resource table
 * @dev: pointer to the desired device
 * @res: pointer to the new resource config
 *
 * This function can be used by drivers that want to manually set thier resources.
 */
int pnp_manual_config_dev(struct pnp_dev *dev, struct pnp_resource_table * res, int mode)
{
	int i;
	struct pnp_resource_table * bak;
	if (!dev || !res)
		return -EINVAL;
	if (!pnp_can_configure(dev))
		return -ENODEV;
	bak = pnp_alloc(sizeof(struct pnp_resource_table));
	if (!bak)
		return -ENOMEM;
	*bak = dev->res;

	down(&pnp_res_mutex);
	dev->res = *res;
	if (!(mode & PNP_CONFIG_FORCE)) {
		for (i = 0; i < PNP_MAX_PORT; i++) {
			if(!pnp_check_port(dev,i))
				goto fail;
		}
		for (i = 0; i < PNP_MAX_MEM; i++) {
			if(!pnp_check_mem(dev,i))
				goto fail;
		}
		for (i = 0; i < PNP_MAX_IRQ; i++) {
			if(!pnp_check_irq(dev,i))
				goto fail;
		}
		for (i = 0; i < PNP_MAX_DMA; i++) {
			if(!pnp_check_dma(dev,i))
				goto fail;
		}
	}
	up(&pnp_res_mutex);

	kfree(bak);
	return 0;

fail:
	dev->res = *bak;
	up(&pnp_res_mutex);
	kfree(bak);
	return -EINVAL;
}

/**
 * pnp_auto_config_dev - automatically assigns resources to a device
 * @dev: pointer to the desired device
 *
 */
int pnp_auto_config_dev(struct pnp_dev *dev)
{
	struct pnp_option *dep;
	int i = 1;

	if(!dev)
		return -EINVAL;

	if(!pnp_can_configure(dev)) {
		pnp_info("Device %s does not support resource configuration.", dev->dev.bus_id);
		return -ENODEV;
	}

	if (!dev->dependent) {
		if (pnp_assign_resources(dev, 0))
			return 0;
	} else {
		dep = dev->dependent;
		do {
			if (pnp_assign_resources(dev, i))
				return 0;
			dep = dep->next;
			i++;
		} while (dep);
	}

	pnp_err("Unable to assign resources to device %s.", dev->dev.bus_id);
	return -EBUSY;
}

/**
 * pnp_activate_dev - activates a PnP device for use
 * @dev: pointer to the desired device
 *
 * does not validate or set resources so be careful.
 */
int pnp_activate_dev(struct pnp_dev *dev)
{
	if (!dev)
		return -EINVAL;
	if (dev->active) {
		return 0; /* the device is already active */
	}

	/* ensure resources are allocated */
	if (pnp_auto_config_dev(dev))
		return -EBUSY;

	if (!pnp_can_write(dev)) {
		pnp_info("Device %s does not supported activation.", dev->dev.bus_id);
		return -EINVAL;
	}

	if (dev->protocol->set(dev, &dev->res)<0) {
		pnp_err("Failed to activate device %s.", dev->dev.bus_id);
		return -EIO;
	}

	dev->active = 1;
	pnp_info("Device %s activated.", dev->dev.bus_id);

	return 1;
}

/**
 * pnp_disable_dev - disables device
 * @dev: pointer to the desired device
 *
 * inform the correct pnp protocol so that resources can be used by other devices
 */
int pnp_disable_dev(struct pnp_dev *dev)
{
        if (!dev)
                return -EINVAL;
	if (!dev->active) {
		return 0; /* the device is already disabled */
	}

	if (!pnp_can_disable(dev)) {
		pnp_info("Device %s does not supported disabling.", dev->dev.bus_id);
		return -EINVAL;
	}
	if (dev->protocol->disable(dev)<0) {
		pnp_err("Failed to disable device %s.", dev->dev.bus_id);
		return -EIO;
	}

	dev->active = 0;
	pnp_info("Device %s disabled.", dev->dev.bus_id);

	/* release the resources so that other devices can use them */
	down(&pnp_res_mutex);
	pnp_clean_resource_table(&dev->res);
	up(&pnp_res_mutex);

	return 1;
}

/**
 * pnp_resource_change - change one resource
 * @resource: pointer to resource to be changed
 * @start: start of region
 * @size: size of region
 *
 */
void pnp_resource_change(struct resource *resource, unsigned long start, unsigned long size)
{
	if (resource == NULL)
		return;
	resource->flags &= ~(IORESOURCE_AUTO | IORESOURCE_UNSET);
	resource->start = start;
	resource->end = start + size - 1;
}


EXPORT_SYMBOL(pnp_manual_config_dev);
EXPORT_SYMBOL(pnp_auto_config_dev);
EXPORT_SYMBOL(pnp_activate_dev);
EXPORT_SYMBOL(pnp_disable_dev);
EXPORT_SYMBOL(pnp_resource_change);
EXPORT_SYMBOL(pnp_init_resource_table);
class="hl pps">"$Revision: 5.51 $" /* START OF USER DEFINABLE OPTIONS */ #define DEBUG 0 /* Enable debugging output */ #define ENABLE_PARITY 1 /* Enable SCSI Parity */ #define FIFO_COUNT 2 /* Number of 512 byte blocks before INTR */ /* END OF USER DEFINABLE OPTIONS */ #if DEBUG #define EVERY_ACCESS 0 /* Write a line on every scsi access */ #define ERRORS_ONLY 1 /* Only write a line if there is an error */ #define DEBUG_DETECT 0 /* Debug fdomain_16x0_detect() */ #define DEBUG_MESSAGES 1 /* Debug MESSAGE IN phase */ #define DEBUG_ABORT 1 /* Debug abort() routine */ #define DEBUG_RESET 1 /* Debug reset() routine */ #define DEBUG_RACE 1 /* Debug interrupt-driven race condition */ #else #define EVERY_ACCESS 0 /* LEAVE THESE ALONE--CHANGE THE ONES ABOVE */ #define ERRORS_ONLY 0 #define DEBUG_DETECT 0 #define DEBUG_MESSAGES 0 #define DEBUG_ABORT 0 #define DEBUG_RESET 0 #define DEBUG_RACE 0 #endif /* Errors are reported on the line, so we don't need to report them again */ #if EVERY_ACCESS #undef ERRORS_ONLY #define ERRORS_ONLY 0 #endif #if ENABLE_PARITY #define PARITY_MASK 0x08 #else #define PARITY_MASK 0x00 #endif enum chip_type { unknown = 0x00, tmc1800 = 0x01, tmc18c50 = 0x02, tmc18c30 = 0x03, }; enum { in_arbitration = 0x02, in_selection = 0x04, in_other = 0x08, disconnect = 0x10, aborted = 0x20, sent_ident = 0x40, }; enum in_port_type { Read_SCSI_Data = 0, SCSI_Status = 1, TMC_Status = 2, FIFO_Status = 3, /* tmc18c50/tmc18c30 only */ Interrupt_Cond = 4, /* tmc18c50/tmc18c30 only */ LSB_ID_Code = 5, MSB_ID_Code = 6, Read_Loopback = 7, SCSI_Data_NoACK = 8, Interrupt_Status = 9, Configuration1 = 10, Configuration2 = 11, /* tmc18c50/tmc18c30 only */ Read_FIFO = 12, FIFO_Data_Count = 14 }; enum out_port_type { Write_SCSI_Data = 0, SCSI_Cntl = 1, Interrupt_Cntl = 2, SCSI_Mode_Cntl = 3, TMC_Cntl = 4, Memory_Cntl = 5, /* tmc18c50/tmc18c30 only */ Write_Loopback = 7, IO_Control = 11, /* tmc18c30 only */ Write_FIFO = 12 }; /* .bss will zero all the static variables below */ static int port_base; static unsigned long bios_base; static void __iomem * bios_mem; static int bios_major; static int bios_minor; static int PCI_bus; static int Quantum; /* Quantum board variant */ static int interrupt_level; static volatile int in_command; static struct scsi_cmnd *current_SC; static enum chip_type chip = unknown; static int adapter_mask; static int this_id; static int setup_called; #if DEBUG_RACE static volatile int in_interrupt_flag; #endif static int FIFO_Size = 0x2000; /* 8k FIFO for pre-tmc18c30 chips */ static irqreturn_t do_fdomain_16x0_intr( int irq, void *dev_id, struct pt_regs * regs ); /* Allow insmod parameters to be like LILO parameters. For example: insmod fdomain fdomain=0x140,11 */ static char * fdomain = NULL; module_param(fdomain, charp, 0); static unsigned long addresses[] = { 0xc8000, 0xca000, 0xce000, 0xde000, 0xcc000, /* Extra addresses for PCI boards */ 0xd0000, 0xe0000, }; #define ADDRESS_COUNT (sizeof( addresses ) / sizeof( unsigned )) static unsigned short ports[] = { 0x140, 0x150, 0x160, 0x170 }; #define PORT_COUNT (sizeof( ports ) / sizeof( unsigned short )) static unsigned short ints[] = { 3, 5, 10, 11, 12, 14, 15, 0 }; /* READ THIS BEFORE YOU ADD A SIGNATURE! READING THIS SHORT NOTE CAN SAVE YOU LOTS OF TIME! READ EVERY WORD, ESPECIALLY THE WORD *NOT* This driver works *ONLY* for Future Domain cards using the TMC-1800, TMC-18C50, or TMC-18C30 chip. This includes models TMC-1650, 1660, 1670, and 1680. These are all 16-bit cards. The following BIOS signature signatures are for boards which do *NOT* work with this driver (these TMC-8xx and TMC-9xx boards may work with the Seagate driver): FUTURE DOMAIN CORP. (C) 1986-1988 V4.0I 03/16/88 FUTURE DOMAIN CORP. (C) 1986-1989 V5.0C2/14/89 FUTURE DOMAIN CORP. (C) 1986-1989 V6.0A7/28/89 FUTURE DOMAIN CORP. (C) 1986-1990 V6.0105/31/90 FUTURE DOMAIN CORP. (C) 1986-1990 V6.0209/18/90 FUTURE DOMAIN CORP. (C) 1986-1990 V7.009/18/90 FUTURE DOMAIN CORP. (C) 1992 V8.00.004/02/92 (The cards which do *NOT* work are all 8-bit cards -- although some of them have a 16-bit form-factor, the upper 8-bits are used only for IRQs and are *NOT* used for data. You can tell the difference by following the tracings on the circuit board -- if only the IRQ lines are involved, you have a "8-bit" card, and should *NOT* use this driver.) */ static struct signature { const char *signature; int sig_offset; int sig_length; int major_bios_version; int minor_bios_version; int flag; /* 1 == PCI_bus, 2 == ISA_200S, 3 == ISA_250MG, 4 == ISA_200S */ } signatures[] = { /* 1 2 3 4 5 6 */ /* 123456789012345678901234567890123456789012345678901234567890 */ { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 5, 50, 2, 0, 0 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V1.07/28/89", 5, 50, 2, 0, 0 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 72, 50, 2, 0, 2 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.0", 73, 43, 2, 0, 3 }, { "FUTURE DOMAIN CORP. (C) 1991 1800-V2.0.", 72, 39, 2, 0, 4 }, { "FUTURE DOMAIN CORP. (C) 1992 V3.00.004/02/92", 5, 44, 3, 0, 0 }, { "FUTURE DOMAIN TMC-18XX (C) 1993 V3.203/12/93", 5, 44, 3, 2, 0 }, { "IBM F1 P2 BIOS v1.0104/29/93", 5, 28, 3, -1, 0 }, { "Future Domain Corp. V1.0008/18/93", 5, 33, 3, 4, 0 }, { "Future Domain Corp. V1.0008/18/93", 26, 33, 3, 4, 1 }, { "Adaptec AHA-2920 PCI-SCSI Card", 42, 31, 3, -1, 1 }, { "IBM F1 P264/32", 5, 14, 3, -1, 1 }, /* This next signature may not be a 3.5 bios */ { "Future Domain Corp. V2.0108/18/93", 5, 33, 3, 5, 0 }, { "FUTURE DOMAIN CORP. V3.5008/18/93", 5, 34, 3, 5, 0 }, { "FUTURE DOMAIN 18c30/18c50/1800 (C) 1994 V3.5", 5, 44, 3, 5, 0 }, { "FUTURE DOMAIN CORP. V3.6008/18/93", 5, 34, 3, 6, 0 }, { "FUTURE DOMAIN CORP. V3.6108/18/93", 5, 34, 3, 6, 0 }, { "FUTURE DOMAIN TMC-18XX", 5, 22, -1, -1, 0 }, /* READ NOTICE ABOVE *BEFORE* YOU WASTE YOUR TIME ADDING A SIGNATURE Also, fix the disk geometry code for your signature and send your changes for faith@cs.unc.edu. Above all, do *NOT* change any old signatures! Note that the last line will match a "generic" 18XX bios. Because Future Domain has changed the host SCSI ID and/or the location of the geometry information in the on-board RAM area for each of the first three BIOS's, it is still important to enter a fully qualified signature in the table for any new BIOS's (after the host SCSI ID and geometry location are verified). */ }; #define SIGNATURE_COUNT (sizeof( signatures ) / sizeof( struct signature )) static void print_banner( struct Scsi_Host *shpnt ) { if (!shpnt) return; /* This won't ever happen */ if (bios_major < 0 && bios_minor < 0) { printk(KERN_INFO "scsi%d: <fdomain> No BIOS; using scsi id %d\n", shpnt->host_no, shpnt->this_id); } else { printk(KERN_INFO "scsi%d: <fdomain> BIOS version ", shpnt->host_no); if (bios_major >= 0) printk("%d.", bios_major); else printk("?."); if (bios_minor >= 0) printk("%d", bios_minor); else printk("?."); printk( " at 0x%lx using scsi id %d\n", bios_base, shpnt->this_id ); } /* If this driver works for later FD PCI boards, we will have to modify banner for additional PCI cards, but for now if it's PCI it's a TMC-3260 - JTM */ printk(KERN_INFO "scsi%d: <fdomain> %s chip at 0x%x irq ", shpnt->host_no, chip == tmc1800 ? "TMC-1800" : (chip == tmc18c50 ? "TMC-18C50" : (chip == tmc18c30 ? (PCI_bus ? "TMC-36C70 (PCI bus)" : "TMC-18C30") : "Unknown")), port_base); if (interrupt_level) printk("%d", interrupt_level); else printk("<none>"); printk( "\n" ); } int fdomain_setup(char *str) { int ints[4]; (void)get_options(str, ARRAY_SIZE(ints), ints); if (setup_called++ || ints[0] < 2 || ints[0] > 3) { printk(KERN_INFO "scsi: <fdomain> Usage: fdomain=<PORT_BASE>,<IRQ>[,<ADAPTER_ID>]\n"); printk(KERN_ERR "scsi: <fdomain> Bad LILO/INSMOD parameters?\n"); return 0; } port_base = ints[0] >= 1 ? ints[1] : 0; interrupt_level = ints[0] >= 2 ? ints[2] : 0; this_id = ints[0] >= 3 ? ints[3] : 0; bios_major = bios_minor = -1; /* Use geometry for BIOS version >= 3.4 */ ++setup_called; return 1; } __setup("fdomain=", fdomain_setup); static void do_pause(unsigned amount) /* Pause for amount*10 milliseconds */ { mdelay(10*amount); } static inline void fdomain_make_bus_idle( void ) { outb(0, port_base + SCSI_Cntl); outb(0, port_base + SCSI_Mode_Cntl); if (chip == tmc18c50 || chip == tmc18c30) outb(0x21 | PARITY_MASK, port_base + TMC_Cntl); /* Clear forced intr. */ else outb(0x01 | PARITY_MASK, port_base + TMC_Cntl); } static int fdomain_is_valid_port( int port ) { #if DEBUG_DETECT printk( " (%x%x),", inb( port + MSB_ID_Code ), inb( port + LSB_ID_Code ) ); #endif /* The MCA ID is a unique id for each MCA compatible board. We are using ISA boards, but Future Domain provides the MCA ID anyway. We can use this ID to ensure that this is a Future Domain TMC-1660/TMC-1680. */ if (inb( port + LSB_ID_Code ) != 0xe9) { /* test for 0x6127 id */ if (inb( port + LSB_ID_Code ) != 0x27) return 0; if (inb( port + MSB_ID_Code ) != 0x61) return 0; chip = tmc1800; } else { /* test for 0xe960 id */ if (inb( port + MSB_ID_Code ) != 0x60) return 0; chip = tmc18c50; /* Try to toggle 32-bit mode. This only works on an 18c30 chip. (User reports say this works, so we should switch to it in the near future.) */ outb( 0x80, port + IO_Control ); if ((inb( port + Configuration2 ) & 0x80) == 0x80) { outb( 0x00, port + IO_Control ); if ((inb( port + Configuration2 ) & 0x80) == 0x00) { chip = tmc18c30; FIFO_Size = 0x800; /* 2k FIFO */ } } /* If that failed, we are an 18c50. */ } return 1; } static int fdomain_test_loopback( void ) { int i; int result; for (i = 0; i < 255; i++) { outb( i, port_base + Write_Loopback ); result = inb( port_base + Read_Loopback ); if (i != result) return 1; } return 0; } /* fdomain_get_irq assumes that we have a valid MCA ID for a TMC-1660/TMC-1680 Future Domain board. Now, check to be sure the bios_base matches these ports. If someone was unlucky enough to have purchased more than one Future Domain board, then they will have to modify this code, as we only detect one board here. [The one with the lowest bios_base.] Note that this routine is only used for systems without a PCI BIOS32 (e.g., ISA bus). For PCI bus systems, this routine will likely fail unless one of the IRQs listed in the ints array is used by the board. Sometimes it is possible to use the computer's BIOS setup screen to configure a PCI system so that one of these IRQs will be used by the Future Domain card. */ static int fdomain_get_irq( int base ) { int options = inb(base + Configuration1); #if DEBUG_DETECT printk("scsi: <fdomain> Options = %x\n", options); #endif /* Check for board with lowest bios_base -- this isn't valid for the 18c30 or for boards on the PCI bus, so just assume we have the right board. */ if (chip != tmc18c30 && !PCI_bus && addresses[(options & 0xc0) >> 6 ] != bios_base) return 0; return ints[(options & 0x0e) >> 1]; } static int fdomain_isa_detect( int *irq, int *iobase ) { #ifndef PCMCIA int i, j; int base = 0xdeadbeef; int flag = 0; #if DEBUG_DETECT printk( "scsi: <fdomain> fdomain_isa_detect:" ); #endif for (i = 0; i < ADDRESS_COUNT; i++) { void __iomem *p = ioremap(addresses[i], 0x2000); if (!p) continue; #if DEBUG_DETECT printk( " %lx(%lx),", addresses[i], bios_base ); #endif for (j = 0; j < SIGNATURE_COUNT; j++) { if (check_signature(p + signatures[j].sig_offset, signatures[j].signature, signatures[j].sig_length )) { bios_major = signatures[j].major_bios_version; bios_minor = signatures[j].minor_bios_version; PCI_bus = (signatures[j].flag == 1); Quantum = (signatures[j].flag > 1) ? signatures[j].flag : 0; bios_base = addresses[i]; bios_mem = p; goto found; } } iounmap(p); } found: if (bios_major == 2) { /* The TMC-1660/TMC-1680 has a RAM area just after the BIOS ROM. Assuming the ROM is enabled (otherwise we wouldn't have been able to read the ROM signature :-), then the ROM sets up the RAM area with some magic numbers, such as a list of port base addresses and a list of the disk "geometry" reported to DOS (this geometry has nothing to do with physical geometry). */ switch (Quantum) { case 2: /* ISA_200S */ case 3: /* ISA_250MG */ base = readb(bios_mem + 0x1fa2) + (readb(bios_mem + 0x1fa3) << 8); break; case 4: /* ISA_200S (another one) */ base = readb(bios_mem + 0x1fa3) + (readb(bios_mem + 0x1fa4) << 8); break; default: base = readb(bios_mem + 0x1fcc) + (readb(bios_mem + 0x1fcd) << 8); break; } #if DEBUG_DETECT printk( " %x,", base ); #endif for (i = 0; i < PORT_COUNT; i++) { if (base == ports[i]) { if (!request_region(base, 0x10, "fdomain")) break; if (!fdomain_is_valid_port(base)) { release_region(base, 0x10); break; } *irq = fdomain_get_irq( base ); *iobase = base; return 1; } } /* This is a bad sign. It usually means that someone patched the BIOS signature list (the signatures variable) to contain a BIOS signature for a board *OTHER THAN* the TMC-1660/TMC-1680. */ #if DEBUG_DETECT printk( " RAM FAILED, " ); #endif } /* Anyway, the alternative to finding the address in the RAM is to just search through every possible port address for one that is attached to the Future Domain card. Don't panic, though, about reading all these random port addresses -- there are rumors that the Future Domain BIOS does something very similar. Do not, however, check ports which the kernel knows are being used by another driver. */ for (i = 0; i < PORT_COUNT; i++) { base = ports[i]; if (!request_region(base, 0x10, "fdomain")) { #if DEBUG_DETECT printk( " (%x inuse),", base ); #endif continue; } #if DEBUG_DETECT printk( " %x,", base ); #endif flag = fdomain_is_valid_port(base); if (flag) break; release_region(base, 0x10); } #if DEBUG_DETECT if (flag) printk( " SUCCESS\n" ); else printk( " FAILURE\n" ); #endif if (!flag) return 0; /* iobase not found */ *irq = fdomain_get_irq( base ); *iobase = base; return 1; /* success */ #else return 0; #endif } /* PCI detection function: int fdomain_pci_bios_detect(int* irq, int* iobase) This function gets the Interrupt Level and I/O base address from the PCI configuration registers. */ #ifdef CONFIG_PCI static int fdomain_pci_bios_detect( int *irq, int *iobase, struct pci_dev **ret_pdev ) { unsigned int pci_irq; /* PCI interrupt line */ unsigned long pci_base; /* PCI I/O base address */ struct pci_dev *pdev = NULL; #if DEBUG_DETECT /* Tell how to print a list of the known PCI devices from bios32 and list vendor and device IDs being used if in debug mode. */ printk( "scsi: <fdomain> INFO: use lspci -v to see list of PCI devices\n" ); printk( "scsi: <fdomain> TMC-3260 detect:" " Using Vendor ID: 0x%x and Device ID: 0x%x\n", PCI_VENDOR_ID_FD, PCI_DEVICE_ID_FD_36C70 ); #endif if ((pdev = pci_find_device(PCI_VENDOR_ID_FD, PCI_DEVICE_ID_FD_36C70, pdev)) == NULL) return 0; if (pci_enable_device(pdev)) return 0; #if DEBUG_DETECT printk( "scsi: <fdomain> TMC-3260 detect:" " PCI bus %u, device %u, function %u\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); #endif /* We now have the appropriate device function for the FD board so we just read the PCI config info from the registers. */ pci_base = pci_resource_start(pdev, 0); pci_irq = pdev->irq; if (!request_region( pci_base, 0x10, "fdomain" )) return 0; /* Now we have the I/O base address and interrupt from the PCI configuration registers. */ *irq = pci_irq; *iobase = pci_base; *ret_pdev = pdev; #if DEBUG_DETECT printk( "scsi: <fdomain> TMC-3260 detect:" " IRQ = %d, I/O base = 0x%x [0x%lx]\n", *irq, *iobase, pci_base ); #endif if (!fdomain_is_valid_port(pci_base)) { printk(KERN_ERR "scsi: <fdomain> PCI card detected, but driver not loaded (invalid port)\n" ); release_region(pci_base, 0x10); return 0; } /* Fill in a few global variables. Ugh. */ bios_major = bios_minor = -1; PCI_bus = 1; Quantum = 0; bios_base = 0; return 1; } #endif struct Scsi_Host *__fdomain_16x0_detect(struct scsi_host_template *tpnt ) { int retcode; struct Scsi_Host *shpnt; struct pci_dev *pdev = NULL; if (setup_called) { #if DEBUG_DETECT printk( "scsi: <fdomain> No BIOS, using port_base = 0x%x, irq = %d\n", port_base, interrupt_level ); #endif if (!request_region(port_base, 0x10, "fdomain")) { printk( "scsi: <fdomain> port 0x%x is busy\n", port_base ); printk( "scsi: <fdomain> Bad LILO/INSMOD parameters?\n" ); return NULL; } if (!fdomain_is_valid_port( port_base )) { printk( "scsi: <fdomain> Cannot locate chip at port base 0x%x\n", port_base ); printk( "scsi: <fdomain> Bad LILO/INSMOD parameters?\n" ); release_region(port_base, 0x10); return NULL; } } else { int flag = 0; #ifdef CONFIG_PCI /* Try PCI detection first */ flag = fdomain_pci_bios_detect( &interrupt_level, &port_base, &pdev ); #endif if (!flag) { /* Then try ISA bus detection */ flag = fdomain_isa_detect( &interrupt_level, &port_base ); if (!flag) { printk( "scsi: <fdomain> Detection failed (no card)\n" ); return NULL; } } } fdomain_16x0_bus_reset(NULL); if (fdomain_test_loopback()) { printk(KERN_ERR "scsi: <fdomain> Detection failed (loopback test failed at port base 0x%x)\n", port_base); if (setup_called) { printk(KERN_ERR "scsi: <fdomain> Bad LILO/INSMOD parameters?\n"); } release_region(port_base, 0x10); return NULL; } if (this_id) { tpnt->this_id = (this_id & 0x07); adapter_mask = (1 << tpnt->this_id); } else { if (PCI_bus || (bios_major == 3 && bios_minor >= 2) || bios_major < 0) { tpnt->this_id = 7; adapter_mask = 0x80; } else { tpnt->this_id = 6; adapter_mask = 0x40; } } /* Print out a banner here in case we can't get resources. */ shpnt = scsi_register( tpnt, 0 ); if(shpnt == NULL) { release_region(port_base, 0x10); return NULL; } shpnt->irq = interrupt_level; shpnt->io_port = port_base; shpnt->n_io_port = 0x10; print_banner( shpnt ); /* Log IRQ with kernel */ if (!interrupt_level) { printk(KERN_ERR "scsi: <fdomain> Card Detected, but driver not loaded (no IRQ)\n" ); release_region(port_base, 0x10); return NULL; } else { /* Register the IRQ with the kernel */ retcode = request_irq( interrupt_level, do_fdomain_16x0_intr, pdev?SA_SHIRQ:0, "fdomain", shpnt); if (retcode < 0) { if (retcode == -EINVAL) { printk(KERN_ERR "scsi: <fdomain> IRQ %d is bad!\n", interrupt_level ); printk(KERN_ERR " This shouldn't happen!\n" ); printk(KERN_ERR " Send mail to faith@acm.org\n" ); } else if (retcode == -EBUSY) { printk(KERN_ERR "scsi: <fdomain> IRQ %d is already in use!\n", interrupt_level ); printk(KERN_ERR " Please use another IRQ!\n" ); } else { printk(KERN_ERR "scsi: <fdomain> Error getting IRQ %d\n", interrupt_level ); printk(KERN_ERR " This shouldn't happen!\n" ); printk(KERN_ERR " Send mail to faith@acm.org\n" ); } printk(KERN_ERR "scsi: <fdomain> Detected, but driver not loaded (IRQ)\n" ); release_region(port_base, 0x10); return NULL; } } return shpnt; } static int fdomain_16x0_detect(struct scsi_host_template *tpnt) { if (fdomain) fdomain_setup(fdomain); return (__fdomain_16x0_detect(tpnt) != NULL); } static const char *fdomain_16x0_info( struct Scsi_Host *ignore ) { static char buffer[128]; char *pt; strcpy( buffer, "Future Domain 16-bit SCSI Driver Version" ); if (strchr( VERSION, ':')) { /* Assume VERSION is an RCS Revision string */ strcat( buffer, strchr( VERSION, ':' ) + 1 ); pt = strrchr( buffer, '$') - 1; if (!pt) /* Stripped RCS Revision string? */ pt = buffer + strlen( buffer ) - 1; if (*pt != ' ') ++pt; *pt = '\0'; } else { /* Assume VERSION is a number */ strcat( buffer, " " VERSION ); } return buffer; } #if 0 static int fdomain_arbitrate( void ) { int status = 0; unsigned long timeout; #if EVERY_ACCESS printk( "fdomain_arbitrate()\n" ); #endif outb(0x00, port_base + SCSI_Cntl); /* Disable data drivers */ outb(adapter_mask, port_base + SCSI_Data_NoACK); /* Set our id bit */ outb(0x04 | PARITY_MASK, port_base + TMC_Cntl); /* Start arbitration */ timeout = 500; do { status = inb(port_base + TMC_Status); /* Read adapter status */ if (status & 0x02) /* Arbitration complete */ return 0; mdelay(1); /* Wait one millisecond */ } while (--timeout); /* Make bus idle */ fdomain_make_bus_idle(); #if EVERY_ACCESS printk( "Arbitration failed, status = %x\n", status ); #endif #if ERRORS_ONLY printk( "scsi: <fdomain> Arbitration failed, status = %x\n", status ); #endif return 1; } #endif static int fdomain_select( int target ) { int status; unsigned long timeout; #if ERRORS_ONLY static int flag = 0; #endif outb(0x82, port_base + SCSI_Cntl); /* Bus Enable + Select */ outb(adapter_mask | (1 << target), port_base + SCSI_Data_NoACK); /* Stop arbitration and enable parity */ outb(PARITY_MASK, port_base + TMC_Cntl); timeout = 350; /* 350 msec */ do { status = inb(port_base + SCSI_Status); /* Read adapter status */ if (status & 1) { /* Busy asserted */ /* Enable SCSI Bus (on error, should make bus idle with 0) */ outb(0x80, port_base + SCSI_Cntl); return 0; } mdelay(1); /* wait one msec */ } while (--timeout); /* Make bus idle */ fdomain_make_bus_idle(); #if EVERY_ACCESS if (!target) printk( "Selection failed\n" ); #endif #if ERRORS_ONLY if (!target) { if (!flag) /* Skip first failure for all chips. */ ++flag; else printk( "scsi: <fdomain> Selection failed\n" ); } #endif return 1; } static void my_done(int error) { if (in_command) { in_command = 0; outb(0x00, port_base + Interrupt_Cntl); fdomain_make_bus_idle(); current_SC->result = error; if (current_SC->scsi_done) current_SC->scsi_done( current_SC ); else panic( "scsi: <fdomain> current_SC->scsi_done() == NULL" ); } else { panic( "scsi: <fdomain> my_done() called outside of command\n" ); } #if DEBUG_RACE in_interrupt_flag = 0; #endif } static irqreturn_t do_fdomain_16x0_intr(int irq, void *dev_id, struct pt_regs * regs ) { unsigned long flags; int status; int done = 0; unsigned data_count; /* The fdomain_16x0_intr is only called via the interrupt handler. The goal of the sti() here is to allow other interruptions while this routine is running. */ /* Check for other IRQ sources */ if ((inb(port_base + TMC_Status) & 0x01) == 0) return IRQ_NONE; /* It is our IRQ */ outb(0x00, port_base + Interrupt_Cntl); /* We usually have one spurious interrupt after each command. Ignore it. */ if (!in_command || !current_SC) { /* Spurious interrupt */ #if EVERY_ACCESS printk( "Spurious interrupt, in_command = %d, current_SC = %x\n", in_command, current_SC ); #endif return IRQ_NONE; } /* Abort calls my_done, so we do nothing here. */ if (current_SC->SCp.phase & aborted) { #if DEBUG_ABORT printk( "scsi: <fdomain> Interrupt after abort, ignoring\n" ); #endif /* return IRQ_HANDLED; */ } #if DEBUG_RACE ++in_interrupt_flag; #endif if (current_SC->SCp.phase & in_arbitration) { status = inb(port_base + TMC_Status); /* Read adapter status */ if (!(status & 0x02)) { #if EVERY_ACCESS printk( " AFAIL " ); #endif spin_lock_irqsave(current_SC->device->host->host_lock, flags); my_done( DID_BUS_BUSY << 16 ); spin_unlock_irqrestore(current_SC->device->host->host_lock, flags); return IRQ_HANDLED; } current_SC->SCp.phase = in_selection; outb(0x40 | FIFO_COUNT, port_base + Interrupt_Cntl); outb(0x82, port_base + SCSI_Cntl); /* Bus Enable + Select */ outb(adapter_mask | (1 << current_SC->device->id), port_base + SCSI_Data_NoACK); /* Stop arbitration and enable parity */ outb(0x10 | PARITY_MASK, port_base + TMC_Cntl); #if DEBUG_RACE in_interrupt_flag = 0; #endif return IRQ_HANDLED; } else if (current_SC->SCp.phase & in_selection) { status = inb(port_base + SCSI_Status); if (!(status & 0x01)) { /* Try again, for slow devices */ if (fdomain_select( current_SC->device->id )) { #if EVERY_ACCESS printk( " SFAIL " ); #endif spin_lock_irqsave(current_SC->device->host->host_lock, flags); my_done( DID_NO_CONNECT << 16 ); spin_unlock_irqrestore(current_SC->device->host->host_lock, flags); return IRQ_HANDLED; } else { #if EVERY_ACCESS printk( " AltSel " ); #endif /* Stop arbitration and enable parity */ outb(0x10 | PARITY_MASK, port_base + TMC_Cntl); } } current_SC->SCp.phase = in_other; outb(0x90 | FIFO_COUNT, port_base + Interrupt_Cntl); outb(0x80, port_base + SCSI_Cntl); #if DEBUG_RACE in_interrupt_flag = 0; #endif return IRQ_HANDLED; } /* current_SC->SCp.phase == in_other: this is the body of the routine */ status = inb(port_base + SCSI_Status); if (status & 0x10) { /* REQ */ switch (status & 0x0e) { case 0x08: /* COMMAND OUT */ outb(current_SC->cmnd[current_SC->SCp.sent_command++], port_base + Write_SCSI_Data); #if EVERY_ACCESS printk( "CMD = %x,", current_SC->cmnd[ current_SC->SCp.sent_command - 1] ); #endif break; case 0x00: /* DATA OUT -- tmc18c50/tmc18c30 only */ if (chip != tmc1800 && !current_SC->SCp.have_data_in) { current_SC->SCp.have_data_in = -1; outb(0xd0 | PARITY_MASK, port_base + TMC_Cntl); } break; case 0x04: /* DATA IN -- tmc18c50/tmc18c30 only */ if (chip != tmc1800 && !current_SC->SCp.have_data_in) { current_SC->SCp.have_data_in = 1; outb(0x90 | PARITY_MASK, port_base + TMC_Cntl); } break; case 0x0c: /* STATUS IN */ current_SC->SCp.Status = inb(port_base + Read_SCSI_Data); #if EVERY_ACCESS printk( "Status = %x, ", current_SC->SCp.Status ); #endif #if ERRORS_ONLY if (current_SC->SCp.Status && current_SC->SCp.Status != 2 && current_SC->SCp.Status != 8) { printk( "scsi: <fdomain> target = %d, command = %x, status = %x\n", current_SC->device->id, current_SC->cmnd[0], current_SC->SCp.Status ); } #endif break; case 0x0a: /* MESSAGE OUT */ outb(MESSAGE_REJECT, port_base + Write_SCSI_Data); /* Reject */ break; case 0x0e: /* MESSAGE IN */ current_SC->SCp.Message = inb(port_base + Read_SCSI_Data); #if EVERY_ACCESS printk( "Message = %x, ", current_SC->SCp.Message ); #endif if (!current_SC->SCp.Message) ++done; #if DEBUG_MESSAGES || EVERY_ACCESS if (current_SC->SCp.Message) { printk( "scsi: <fdomain> message = %x\n", current_SC->SCp.Message ); } #endif break; } } if (chip == tmc1800 && !current_SC->SCp.have_data_in && (current_SC->SCp.sent_command >= current_SC->cmd_len)) { if(current_SC->sc_data_direction == DMA_TO_DEVICE) { current_SC->SCp.have_data_in = -1; outb(0xd0 | PARITY_MASK, port_base + TMC_Cntl); } else { current_SC->SCp.have_data_in = 1; outb(0x90 | PARITY_MASK, port_base + TMC_Cntl); } } if (current_SC->SCp.have_data_in == -1) { /* DATA OUT */ while ((data_count = FIFO_Size - inw(port_base + FIFO_Data_Count)) > 512) { #if EVERY_ACCESS printk( "DC=%d, ", data_count ) ; #endif if (data_count > current_SC->SCp.this_residual) data_count = current_SC->SCp.this_residual; if (data_count > 0) { #if EVERY_ACCESS printk( "%d OUT, ", data_count ); #endif if (data_count == 1) { outb(*current_SC->SCp.ptr++, port_base + Write_FIFO); --current_SC->SCp.this_residual; } else { data_count >>= 1; outsw(port_base + Write_FIFO, current_SC->SCp.ptr, data_count); current_SC->SCp.ptr += 2 * data_count; current_SC->SCp.this_residual -= 2 * data_count; } } if (!current_SC->SCp.this_residual) { if (current_SC->SCp.buffers_residual) { --current_SC->SCp.buffers_residual; ++current_SC->SCp.buffer; current_SC->SCp.ptr = page_address(current_SC->SCp.buffer->page) + current_SC->SCp.buffer->offset; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; } else break; } } } if (current_SC->SCp.have_data_in == 1) { /* DATA IN */ while ((data_count = inw(port_base + FIFO_Data_Count)) > 0) { #if EVERY_ACCESS printk( "DC=%d, ", data_count ); #endif if (data_count > current_SC->SCp.this_residual) data_count = current_SC->SCp.this_residual; if (data_count) { #if EVERY_ACCESS printk( "%d IN, ", data_count ); #endif if (data_count == 1) { *current_SC->SCp.ptr++ = inb(port_base + Read_FIFO); --current_SC->SCp.this_residual; } else { data_count >>= 1; /* Number of words */ insw(port_base + Read_FIFO, current_SC->SCp.ptr, data_count); current_SC->SCp.ptr += 2 * data_count; current_SC->SCp.this_residual -= 2 * data_count; } } if (!current_SC->SCp.this_residual && current_SC->SCp.buffers_residual) { --current_SC->SCp.buffers_residual; ++current_SC->SCp.buffer; current_SC->SCp.ptr = page_address(current_SC->SCp.buffer->page) + current_SC->SCp.buffer->offset; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; } } } if (done) { #if EVERY_ACCESS printk( " ** IN DONE %d ** ", current_SC->SCp.have_data_in ); #endif #if ERRORS_ONLY if (current_SC->cmnd[0] == REQUEST_SENSE && !current_SC->SCp.Status) { if ((unsigned char)(*((char *)current_SC->request_buffer+2)) & 0x0f) { unsigned char key; unsigned char code; unsigned char qualifier; key = (unsigned char)(*((char *)current_SC->request_buffer + 2)) & 0x0f; code = (unsigned char)(*((char *)current_SC->request_buffer + 12)); qualifier = (unsigned char)(*((char *)current_SC->request_buffer + 13)); if (key != UNIT_ATTENTION && !(key == NOT_READY && code == 0x04 && (!qualifier || qualifier == 0x02 || qualifier == 0x01)) && !(key == ILLEGAL_REQUEST && (code == 0x25 || code == 0x24 || !code))) printk( "scsi: <fdomain> REQUEST SENSE" " Key = %x, Code = %x, Qualifier = %x\n", key, code, qualifier ); } } #endif #if EVERY_ACCESS printk( "BEFORE MY_DONE. . ." ); #endif spin_lock_irqsave(current_SC->device->host->host_lock, flags); my_done( (current_SC->SCp.Status & 0xff) | ((current_SC->SCp.Message & 0xff) << 8) | (DID_OK << 16) ); spin_unlock_irqrestore(current_SC->device->host->host_lock, flags); #if EVERY_ACCESS printk( "RETURNING.\n" ); #endif } else { if (current_SC->SCp.phase & disconnect) { outb(0xd0 | FIFO_COUNT, port_base + Interrupt_Cntl); outb(0x00, port_base + SCSI_Cntl); } else { outb(0x90 | FIFO_COUNT, port_base + Interrupt_Cntl); } } #if DEBUG_RACE in_interrupt_flag = 0; #endif return IRQ_HANDLED; } static int fdomain_16x0_queue(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) { if (in_command) { panic( "scsi: <fdomain> fdomain_16x0_queue() NOT REENTRANT!\n" ); } #if EVERY_ACCESS printk( "queue: target = %d cmnd = 0x%02x pieces = %d size = %u\n", SCpnt->target, *(unsigned char *)SCpnt->cmnd, SCpnt->use_sg, SCpnt->request_bufflen ); #endif fdomain_make_bus_idle(); current_SC = SCpnt; /* Save this for the done function */ current_SC->scsi_done = done; /* Initialize static data */ if (current_SC->use_sg) { current_SC->SCp.buffer = (struct scatterlist *)current_SC->request_buffer; current_SC->SCp.ptr = page_address(current_SC->SCp.buffer->page) + current_SC->SCp.buffer->offset; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; current_SC->SCp.buffers_residual = current_SC->use_sg - 1; } else { current_SC->SCp.ptr = (char *)current_SC->request_buffer; current_SC->SCp.this_residual = current_SC->request_bufflen; current_SC->SCp.buffer = NULL; current_SC->SCp.buffers_residual = 0; } current_SC->SCp.Status = 0; current_SC->SCp.Message = 0; current_SC->SCp.have_data_in = 0; current_SC->SCp.sent_command = 0; current_SC->SCp.phase = in_arbitration; /* Start arbitration */ outb(0x00, port_base + Interrupt_Cntl); outb(0x00, port_base + SCSI_Cntl); /* Disable data drivers */ outb(adapter_mask, port_base + SCSI_Data_NoACK); /* Set our id bit */ ++in_command; outb(0x20, port_base + Interrupt_Cntl); outb(0x14 | PARITY_MASK, port_base + TMC_Cntl); /* Start arbitration */ return 0; } #if DEBUG_ABORT static void print_info(struct scsi_cmnd *SCpnt) { unsigned int imr; unsigned int irr; unsigned int isr; if (!SCpnt || !SCpnt->device || !SCpnt->device->host) { printk(KERN_WARNING "scsi: <fdomain> Cannot provide detailed information\n"); return; } printk(KERN_INFO "%s\n", fdomain_16x0_info( SCpnt->device->host ) ); print_banner(SCpnt->device->host); switch (SCpnt->SCp.phase) { case in_arbitration: printk("arbitration"); break; case in_selection: printk("selection"); break; case in_other: printk("other"); break; default: printk("unknown"); break; } printk( " (%d), target = %d cmnd = 0x%02x pieces = %d size = %u\n", SCpnt->SCp.phase, SCpnt->device->id, *(unsigned char *)SCpnt->cmnd, SCpnt->use_sg, SCpnt->request_bufflen ); printk( "sent_command = %d, have_data_in = %d, timeout = %d\n", SCpnt->SCp.sent_command, SCpnt->SCp.have_data_in, SCpnt->timeout ); #if DEBUG_RACE printk( "in_interrupt_flag = %d\n", in_interrupt_flag ); #endif imr = (inb( 0x0a1 ) << 8) + inb( 0x21 ); outb( 0x0a, 0xa0 ); irr = inb( 0xa0 ) << 8; outb( 0x0a, 0x20 ); irr += inb( 0x20 ); outb( 0x0b, 0xa0 ); isr = inb( 0xa0 ) << 8; outb( 0x0b, 0x20 ); isr += inb( 0x20 ); /* Print out interesting information */ printk( "IMR = 0x%04x", imr ); if (imr & (1 << interrupt_level)) printk( " (masked)" ); printk( ", IRR = 0x%04x, ISR = 0x%04x\n", irr, isr ); printk( "SCSI Status = 0x%02x\n", inb(port_base + SCSI_Status)); printk( "TMC Status = 0x%02x", inb(port_base + TMC_Status)); if (inb((port_base + TMC_Status) & 1)) printk( " (interrupt)" ); printk( "\n" ); printk("Interrupt Status = 0x%02x", inb(port_base + Interrupt_Status)); if (inb(port_base + Interrupt_Status) & 0x08) printk( " (enabled)" ); printk( "\n" ); if (chip == tmc18c50 || chip == tmc18c30) { printk("FIFO Status = 0x%02x\n", inb(port_base + FIFO_Status)); printk( "Int. Condition = 0x%02x\n", inb( port_base + Interrupt_Cond ) ); } printk( "Configuration 1 = 0x%02x\n", inb( port_base + Configuration1 ) ); if (chip == tmc18c50 || chip == tmc18c30) printk( "Configuration 2 = 0x%02x\n", inb( port_base + Configuration2 ) ); } #endif static int fdomain_16x0_abort(struct scsi_cmnd *SCpnt) { #if EVERY_ACCESS || ERRORS_ONLY || DEBUG_ABORT printk( "scsi: <fdomain> abort " ); #endif if (!in_command) { #if EVERY_ACCESS || ERRORS_ONLY printk( " (not in command)\n" ); #endif return FAILED; } else printk( "\n" ); #if DEBUG_ABORT print_info( SCpnt ); #endif fdomain_make_bus_idle(); current_SC->SCp.phase |= aborted; current_SC->result = DID_ABORT << 16; /* Aborts are not done well. . . */ my_done(DID_ABORT << 16); return SUCCESS; } int fdomain_16x0_bus_reset(struct scsi_cmnd *SCpnt) { unsigned long flags; local_irq_save(flags); outb(1, port_base + SCSI_Cntl); do_pause( 2 ); outb(0, port_base + SCSI_Cntl); do_pause( 115 ); outb(0, port_base + SCSI_Mode_Cntl); outb(PARITY_MASK, port_base + TMC_Cntl); local_irq_restore(flags); return SUCCESS; } static int fdomain_16x0_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *info_array) { int drive; int size = capacity; unsigned long offset; struct drive_info { unsigned short cylinders; unsigned char heads; unsigned char sectors; } i; /* NOTES: The RAM area starts at 0x1f00 from the bios_base address. For BIOS Version 2.0: The drive parameter table seems to start at 0x1f30. The first byte's purpose is not known. Next is the cylinder, head, and sector information. The last 4 bytes appear to be the drive's size in sectors. The other bytes in the drive parameter table are unknown. If anyone figures them out, please send me mail, and I will update these notes. Tape drives do not get placed in this table. There is another table at 0x1fea: If the byte is 0x01, then the SCSI ID is not in use. If the byte is 0x18 or 0x48, then the SCSI ID is in use, although tapes don't seem to be in this table. I haven't seen any other numbers (in a limited sample). 0x1f2d is a drive count (i.e., not including tapes) The table at 0x1fcc are I/O ports addresses for the various operations. I calculate these by hand in this driver code. For the ISA-200S version of BIOS Version 2.0: The drive parameter table starts at 0x1f33. WARNING: Assume that the table entry is 25 bytes long. Someone needs to check this for the Quantum ISA-200S card. For BIOS Version 3.2: The drive parameter table starts at 0x1f70. Each entry is 0x0a bytes long. Heads are one less than we need to report. */ if (MAJOR(bdev->bd_dev) != SCSI_DISK0_MAJOR) { printk("scsi: <fdomain> fdomain_16x0_biosparam: too many disks"); return 0; } drive = MINOR(bdev->bd_dev) >> 4; if (bios_major == 2) { switch (Quantum) { case 2: /* ISA_200S */ /* The value of 25 has never been verified. It should probably be 15. */ offset = 0x1f33 + drive * 25; break; case 3: /* ISA_250MG */ offset = 0x1f36 + drive * 15; break; case 4: /* ISA_200S (another one) */ offset = 0x1f34 + drive * 15; break; default: offset = 0x1f31 + drive * 25; break; } memcpy_fromio( &i, bios_mem + offset, sizeof( struct drive_info ) ); info_array[0] = i.heads; info_array[1] = i.sectors; info_array[2] = i.cylinders; } else if (bios_major == 3 && bios_minor >= 0 && bios_minor < 4) { /* 3.0 and 3.2 BIOS */ memcpy_fromio( &i, bios_mem + 0x1f71 + drive * 10, sizeof( struct drive_info ) ); info_array[0] = i.heads + 1; info_array[1] = i.sectors; info_array[2] = i.cylinders; } else { /* 3.4 BIOS (and up?) */ /* This algorithm was provided by Future Domain (much thanks!). */ unsigned char *p = scsi_bios_ptable(bdev); if (p && p[65] == 0xaa && p[64] == 0x55 /* Partition table valid */ && p[4]) { /* Partition type */ /* The partition table layout is as follows: Start: 0x1b3h Offset: 0 = partition status 1 = starting head 2 = starting sector and cylinder (word, encoded) 4 = partition type 5 = ending head 6 = ending sector and cylinder (word, encoded) 8 = starting absolute sector (double word) c = number of sectors (double word) Signature: 0x1fe = 0x55aa So, this algorithm assumes: 1) the first partition table is in use, 2) the data in the first entry is correct, and 3) partitions never divide cylinders Note that (1) may be FALSE for NetBSD (and other BSD flavors), as well as for Linux. Note also, that Linux doesn't pay any attention to the fields that are used by this algorithm -- it only uses the absolute sector data. Recent versions of Linux's fdisk(1) will fill this data in correctly, and forthcoming versions will check for consistency. Checking for a non-zero partition type is not part of the Future Domain algorithm, but it seemed to be a reasonable thing to do, especially in the Linux and BSD worlds. */ info_array[0] = p[5] + 1; /* heads */ info_array[1] = p[6] & 0x3f; /* sectors */ } else { /* Note that this new method guarantees that there will always be less than 1024 cylinders on a platter. This is good for drives up to approximately 7.85GB (where 1GB = 1024 * 1024 kB). */ if ((unsigned int)size >= 0x7e0000U) { info_array[0] = 0xff; /* heads = 255 */ info_array[1] = 0x3f; /* sectors = 63 */ } else if ((unsigned int)size >= 0x200000U) { info_array[0] = 0x80; /* heads = 128 */ info_array[1] = 0x3f; /* sectors = 63 */ } else { info_array[0] = 0x40; /* heads = 64 */ info_array[1] = 0x20; /* sectors = 32 */ } } /* For both methods, compute the cylinders */ info_array[2] = (unsigned int)size / (info_array[0] * info_array[1] ); kfree(p); } return 0; } static int fdomain_16x0_release(struct Scsi_Host *shpnt) { if (shpnt->irq) free_irq(shpnt->irq, shpnt); if (shpnt->io_port && shpnt->n_io_port) release_region(shpnt->io_port, shpnt->n_io_port); return 0; } struct scsi_host_template fdomain_driver_template = { .module = THIS_MODULE, .name = "fdomain", .proc_name = "fdomain", .detect = fdomain_16x0_detect, .info = fdomain_16x0_info, .queuecommand = fdomain_16x0_queue, .eh_abort_handler = fdomain_16x0_abort, .eh_bus_reset_handler = fdomain_16x0_bus_reset, .bios_param = fdomain_16x0_biosparam, .release = fdomain_16x0_release, .can_queue = 1, .this_id = 6, .sg_tablesize = 64, .cmd_per_lun = 1, .use_clustering = DISABLE_CLUSTERING, }; #ifndef PCMCIA #define driver_template fdomain_driver_template #include "scsi_module.c" #endif