1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
|
/*
* drivers/serial/serial_ks8695.c
*
* Driver for KS8695 serial ports
*
* Based on drivers/serial/serial_amba.c, by Kam Lee.
*
* Copyright 2002-2005 Micrel Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/module.h>
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/serial.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/device.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/mach/irq.h>
#include <asm/arch/regs-uart.h>
#include <asm/arch/regs-irq.h>
#if defined(CONFIG_SERIAL_KS8695_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/serial_core.h>
#define SERIAL_KS8695_MAJOR 204
#define SERIAL_KS8695_MINOR 16
#define SERIAL_KS8695_DEVNAME "ttyAM"
#define SERIAL_KS8695_NR 1
/*
* Access macros for the KS8695 UART
*/
#define UART_GET_CHAR(p) (__raw_readl((p)->membase + KS8695_URRB) & 0xFF)
#define UART_PUT_CHAR(p, c) __raw_writel((c), (p)->membase + KS8695_URTH)
#define UART_GET_FCR(p) __raw_readl((p)->membase + KS8695_URFC)
#define UART_PUT_FCR(p, c) __raw_writel((c), (p)->membase + KS8695_URFC)
#define UART_GET_MSR(p) __raw_readl((p)->membase + KS8695_URMS)
#define UART_GET_LSR(p) __raw_readl((p)->membase + KS8695_URLS)
#define UART_GET_LCR(p) __raw_readl((p)->membase + KS8695_URLC)
#define UART_PUT_LCR(p, c) __raw_writel((c), (p)->membase + KS8695_URLC)
#define UART_GET_MCR(p) __raw_readl((p)->membase + KS8695_URMC)
#define UART_PUT_MCR(p, c) __raw_writel((c), (p)->membase + KS8695_URMC)
#define UART_GET_BRDR(p) __raw_readl((p)->membase + KS8695_URBD)
#define UART_PUT_BRDR(p, c) __raw_writel((c), (p)->membase + KS8695_URBD)
#define KS8695_CLR_TX_INT() __raw_writel(1 << KS8695_IRQ_UART_TX, KS8695_IRQ_VA + KS8695_INTST)
#define UART_DUMMY_LSR_RX 0x100
#define UART_PORT_SIZE (KS8695_USR - KS8695_URRB + 4)
#define tx_enabled(port) ((port)->unused[0])
#define rx_enabled(port) ((port)->unused[1])
#ifdef SUPPORT_SYSRQ
static struct console ks8695_console;
#endif
static void ks8695uart_stop_tx(struct uart_port *port)
{
if (tx_enabled(port)) {
disable_irq(KS8695_IRQ_UART_TX);
tx_enabled(port) = 0;
}
}
static void ks8695uart_start_tx(struct uart_port *port)
{
if (!tx_enabled(port)) {
enable_irq(KS8695_IRQ_UART_TX);
tx_enabled(port) = 1;
}
}
static void ks8695uart_stop_rx(struct uart_port *port)
{
if (rx_enabled(port)) {
disable_irq(KS8695_IRQ_UART_RX);
rx_enabled(port) = 0;
}
}
static void ks8695uart_enable_ms(struct uart_port *port)
{
enable_irq(KS8695_IRQ_UART_MODEM_STATUS);
}
static void ks8695uart_disable_ms(struct uart_port *port)
{
disable_irq(KS8695_IRQ_UART_MODEM_STATUS);
}
static irqreturn_t ks8695uart_rx_chars(int irq, void *dev_id)
{
struct uart_port *port = dev_id;
struct tty_struct *tty = port->info->tty;
unsigned int status, ch, lsr, flg, max_count = 256;
status = UART_GET_LSR(port); /* clears pending LSR interrupts */
while ((status & URLS_URDR) && max_count--) {
ch = UART_GET_CHAR(port);
flg = TTY_NORMAL;
port->icount.rx++;
/*
* Note that the error handling code is
* out of the main execution path
*/
lsr = UART_GET_LSR(port) | UART_DUMMY_LSR_RX;
if (unlikely(lsr & (URLS_URBI | URLS_URPE | URLS_URFE | URLS_URROE))) {
if (lsr & URLS_URBI) {
lsr &= ~(URLS_URFE | URLS_URPE);
port->icount.brk++;
if (uart_handle_break(port))
goto ignore_char;
}
if (lsr & URLS_URPE)
port->icount.parity++;
if (lsr & URLS_URFE)
port->icount.frame++;
if (lsr & URLS_URROE)
port->icount.overrun++;
lsr &= port->read_status_mask;
if (lsr & URLS_URBI)
flg = TTY_BREAK;
else if (lsr & URLS_URPE)
flg = TTY_PARITY;
else if (lsr & URLS_URFE)
flg = TTY_FRAME;
}
if (uart_handle_sysrq_char(port, ch))
goto ignore_char;
uart_insert_char(port, lsr, URLS_URROE, ch, flg);
ignore_char:
status = UART_GET_LSR(port);
}
tty_flip_buffer_push(tty);
return IRQ_HANDLED;
}
static irqreturn_t ks8695uart_tx_chars(int irq, void *dev_id)
{
struct uart_port *port = dev_id;
struct circ_buf *xmit = &port->info->xmit;
unsigned int count;
if (port->x_char) {
KS8695_CLR_TX_INT();
UART_PUT_CHAR(port, port->x_char);
port->icount.tx++;
port->x_char = 0;
return IRQ_HANDLED;
}
if (uart_tx_stopped(port) || uart_circ_empty(xmit)) {
ks8695uart_stop_tx(port);
return IRQ_HANDLED;
}
count = 16; /* fifo size */
while (!uart_circ_empty(xmit) && (count-- > 0)) {
KS8695_CLR_TX_INT();
UART_PUT_CHAR(port, xmit->buf[xmit->tail]);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (uart_circ_empty(xmit))
ks8695uart_stop_tx(port);
return IRQ_HANDLED;
}
static irqreturn_t ks8695uart_modem_status(int irq, void *dev_id)
{
struct uart_port *port = dev_id;
unsigned int status;
/*
* clear modem interrupt by reading MSR
*/
status = UART_GET_MSR(port);
if (status & URMS_URDDCD)
uart_handle_dcd_change(port, status & URMS_URDDCD);
if (status & URMS_URDDST)
port->icount.dsr++;
if (status & URMS_URDCTS)
uart_handle_cts_change(port, status & URMS_URDCTS);
if (status & URMS_URTERI)
port->icount.rng++;
wake_up_interruptible(&port->info->delta_msr_wait);
return IRQ_HANDLED;
}
static unsigned int ks8695uart_tx_empty(struct uart_port *port)
{
return (UART_GET_LSR(port) & URLS_URTE) ? TIOCSER_TEMT : 0;
}
static unsigned int ks8695uart_get_mctrl(struct uart_port *port)
{
unsigned int result = 0;
unsigned int status;
status = UART_GET_MSR(port);
if (status & URMS_URDCD)
result |= TIOCM_CAR;
if (status & URMS_URDSR)
result |= TIOCM_DSR;
if (status & URMS_URCTS)
result |= TIOCM_CTS;
if (status & URMS_URRI)
result |= TIOCM_RI;
return result;
}
static void ks8695uart_set_mctrl(struct uart_port *port, u_int mctrl)
{
unsigned int mcr;
mcr = UART_GET_MCR(port);
if (mctrl & TIOCM_RTS)
mcr |= URMC_URRTS;
else
mcr &= ~URMC_URRTS;
if (mctrl & TIOCM_DTR)
mcr |= URMC_URDTR;
else
mcr &= ~URMC_URDTR;
UART_PUT_MCR(port, mcr);
}
static void ks8695uart_break_ctl(struct uart_port *port, int break_state)
{
unsigned int lcr;
lcr = UART_GET_LCR(port);
if (break_state == -1)
lcr |= URLC_URSBC;
else
lcr &= ~URLC_URSBC;
UART_PUT_LCR(port, lcr);
}
static int ks8695uart_startup(struct uart_port *port)
{
int retval;
set_irq_flags(KS8695_IRQ_UART_TX, IRQF_VALID | IRQF_NOAUTOEN);
tx_enabled(port) = 0;
rx_enabled(port) = 1;
/*
* Allocate the IRQ
*/
retval = request_irq(KS8695_IRQ_UART_TX, ks8695uart_tx_chars, IRQF_DISABLED, "UART TX", port);
if (retval)
goto err_tx;
retval = request_irq(KS8695_IRQ_UART_RX, ks8695uart_rx_chars, IRQF_DISABLED, "UART RX", port);
if (retval)
goto err_rx;
retval = request_irq(KS8695_IRQ_UART_LINE_STATUS, ks8695uart_rx_chars, IRQF_DISABLED, "UART LineStatus", port);
if (retval)
goto err_ls;
retval = request_irq(KS8695_IRQ_UART_MODEM_STATUS, ks8695uart_modem_status, IRQF_DISABLED, "UART ModemStatus", port);
if (retval)
goto err_ms;
return 0;
err_ms:
free_irq(KS8695_IRQ_UART_LINE_STATUS, port);
err_ls:
free_irq(KS8695_IRQ_UART_RX, port);
err_rx:
free_irq(KS8695_IRQ_UART_TX, port);
err_tx:
return retval;
}
static void ks8695uart_shutdown(struct uart_port *port)
{
/*
* Free the interrupt
*/
free_irq(KS8695_IRQ_UART_RX, port);
free_irq(KS8695_IRQ_UART_TX, port);
free_irq(KS8695_IRQ_UART_MODEM_STATUS, port);
free_irq(KS8695_IRQ_UART_LINE_STATUS, port);
/* disable break condition and fifos */
UART_PUT_LCR(port, UART_GET_LCR(port) & ~URLC_URSBC);
UART_PUT_FCR(port, UART_GET_FCR(port) & ~URFC_URFE);
}
static void ks8695uart_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old)
{
unsigned int lcr, fcr = 0;
unsigned long flags;
unsigned int baud, quot;
/*
* Ask the core to calculate the divisor for us.
*/
baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/16);
quot = uart_get_divisor(port, baud);
switch (termios->c_cflag & CSIZE) {
case CS5:
lcr = URCL_5;
break;
case CS6:
lcr = URCL_6;
break;
case CS7:
lcr = URCL_7;
break;
default:
lcr = URCL_8;
break;
}
/* stop bits */
if (termios->c_cflag & CSTOPB)
lcr |= URLC_URSB;
/* parity */
if (termios->c_cflag & PARENB) {
if (termios->c_cflag & CMSPAR) { /* Mark or Space parity */
if (termios->c_cflag & PARODD)
lcr |= URPE_MARK;
else
lcr |= URPE_SPACE;
}
else if (termios->c_cflag & PARODD)
lcr |= URPE_ODD;
else
lcr |= URPE_EVEN;
}
if (port->fifosize > 1)
fcr = URFC_URFRT_8 | URFC_URTFR | URFC_URRFR | URFC_URFE;
spin_lock_irqsave(&port->lock, flags);
/*
* Update the per-port timeout.
*/
uart_update_timeout(port, termios->c_cflag, baud);
port->read_status_mask = URLS_URROE;
if (termios->c_iflag & INPCK)
port->read_status_mask |= (URLS_URFE | URLS_URPE);
if (termios->c_iflag & (BRKINT | PARMRK))
port->read_status_mask |= URLS_URBI;
/*
* Characters to ignore
*/
port->ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= (URLS_URFE | URLS_URPE);
if (termios->c_iflag & IGNBRK) {
port->ignore_status_mask |= URLS_URBI;
/*
* If we're ignoring parity and break indicators,
* ignore overruns too (for real raw support).
*/
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= URLS_URROE;
}
/*
* Ignore all characters if CREAD is not set.
*/
if ((termios->c_cflag & CREAD) == 0)
port->ignore_status_mask |= UART_DUMMY_LSR_RX;
/* first, disable everything */
if (UART_ENABLE_MS(port, termios->c_cflag))
ks8695uart_enable_ms(port);
else
ks8695uart_disable_ms(port);
/* Set baud rate */
UART_PUT_BRDR(port, quot);
UART_PUT_LCR(port, lcr);
UART_PUT_FCR(port, fcr);
spin_unlock_irqrestore(&port->lock, flags);
}
static const char *ks8695uart_type(struct uart_port *port)
{
return port->type == PORT_KS8695 ? "KS8695" : NULL;
}
/*
* Release the memory region(s) being used by 'port'
*/
static void ks8695uart_release_port(struct uart_port *port)
{
release_mem_region(port->mapbase, UART_PORT_SIZE);
}
/*
* Request the memory region(s) being used by 'port'
*/
static int ks8695uart_request_port(struct uart_port *port)
{
return request_mem_region(port->mapbase, UART_PORT_SIZE,
"serial_ks8695") != NULL ? 0 : -EBUSY;
}
/*
* Configure/autoconfigure the port.
*/
static void ks8695uart_config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE) {
port->type = PORT_KS8695;
ks8695uart_request_port(port);
}
}
/*
* verify the new serial_struct (for TIOCSSERIAL).
*/
static int ks8695uart_verify_port(struct uart_port *port, struct serial_struct *ser)
{
int ret = 0;
if (ser->type != PORT_UNKNOWN && ser->type != PORT_KS8695)
ret = -EINVAL;
if (ser->irq != port->irq)
ret = -EINVAL;
if (ser->baud_base < 9600)
ret = -EINVAL;
return ret;
}
static struct uart_ops ks8695uart_pops = {
.tx_empty = ks8695uart_tx_empty,
.set_mctrl = ks8695uart_set_mctrl,
.get_mctrl = ks8695uart_get_mctrl,
.stop_tx = ks8695uart_stop_tx,
.start_tx = ks8695uart_start_tx,
.stop_rx = ks8695uart_stop_rx,
.enable_ms = ks8695uart_enable_ms,
.break_ctl = ks8695uart_break_ctl,
.startup = ks8695uart_startup,
.shutdown = ks8695uart_shutdown,
.set_termios = ks8695uart_set_termios,
.type = ks8695uart_type,
.release_port = ks8695uart_release_port,
.request_port = ks8695uart_request_port,
.config_port = ks8695uart_config_port,
.verify_port = ks8695uart_verify_port,
};
static struct uart_port ks8695uart_ports[SERIAL_KS8695_NR] = {
{
.membase = (void *) KS8695_UART_VA,
.mapbase = KS8695_UART_VA,
.iotype = SERIAL_IO_MEM,
.irq = KS8695_IRQ_UART_TX,
.uartclk = CLOCK_TICK_RATE * 16,
.fifosize = 16,
.ops = &ks8695uart_pops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
}
};
#ifdef CONFIG_SERIAL_KS8695_CONSOLE
static void ks8695_console_putchar(struct uart_port *port, int ch)
{
while (!(UART_GET_LSR(port) & URLS_URTHRE))
barrier();
UART_PUT_CHAR(port, ch);
}
static void ks8695_console_write(struct console *co, const char *s, u_int count)
{
struct uart_port *port = ks8695uart_ports + co->index;
uart_console_write(port, s, count, ks8695_console_putchar);
}
static void __init ks8695_console_get_options(struct uart_port *port, int *baud, int *parity, int *bits)
{
unsigned int lcr;
lcr = UART_GET_LCR(port);
switch (lcr & URLC_PARITY) {
case URPE_ODD:
*parity = 'o';
break;
case URPE_EVEN:
*parity = 'e';
break;
default:
*parity = 'n';
}
switch (lcr & URLC_URCL) {
case URCL_5:
*bits = 5;
break;
case URCL_6:
*bits = 6;
break;
case URCL_7:
*bits = 7;
break;
default:
*bits = 8;
}
*baud = port->uartclk / (UART_GET_BRDR(port) & 0x0FFF);
*baud /= 16;
*baud &= 0xFFFFFFF0;
}
static int __init ks8695_console_setup(struct console *co, char *options)
{
struct uart_port *port;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
/*
* Check whether an invalid uart number has been specified, and
* if so, search for the first available port that does have
* console support.
*/
port = uart_get_console(ks8695uart_ports, SERIAL_KS8695_NR, co);
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
else
ks8695_console_get_options(port, &baud, &parity, &bits);
return uart_set_options(port, co, baud, parity, bits, flow);
}
static struct uart_driver ks8695_reg;
static struct console ks8695_console = {
.name = SERIAL_KS8695_DEVNAME,
.write = ks8695_console_write,
.device = uart_console_device,
.setup = ks8695_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &ks8695_reg,
};
static int __init ks8695_console_init(void)
{
register_console(&ks8695_console);
return 0;
}
console_initcall(ks8695_console_init);
#define KS8695_CONSOLE &ks8695_console
#else
#define KS8695_CONSOLE NULL
#endif
static struct uart_driver ks8695_reg = {
.owner = THIS_MODULE,
.driver_name = "serial_ks8695",
.dev_name = SERIAL_KS8695_DEVNAME,
.major = SERIAL_KS8695_MAJOR,
.minor = SERIAL_KS8695_MINOR,
.nr = SERIAL_KS8695_NR,
.cons = KS8695_CONSOLE,
};
static int __init ks8695uart_init(void)
{
int i, ret;
printk(KERN_INFO "Serial: Micrel KS8695 UART driver\n");
ret = uart_register_driver(&ks8695_reg);
if (ret)
return ret;
for (i = 0; i < SERIAL_KS8695_NR; i++)
uart_add_one_port(&ks8695_reg, &ks8695uart_ports[0]);
return 0;
}
static void __exit ks8695uart_exit(void)
{
int i;
for (i = 0; i < SERIAL_KS8695_NR; i++)
uart_remove_one_port(&ks8695_reg, &ks8695uart_ports[0]);
uart_unregister_driver(&ks8695_reg);
}
module_init(ks8695uart_init);
module_exit(ks8695uart_exit);
MODULE_DESCRIPTION("KS8695 serial port driver");
MODULE_AUTHOR("Micrel Inc.");
MODULE_LICENSE("GPL");
'n2315' href='#n2315'>2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
|
/*
* drivers/net/gianfar.c
*
* Gianfar Ethernet Driver
* This driver is designed for the non-CPM ethernet controllers
* on the 85xx and 83xx family of integrated processors
* Based on 8260_io/fcc_enet.c
*
* Author: Andy Fleming
* Maintainer: Kumar Gala
*
* Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
* Copyright (c) 2007 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Gianfar: AKA Lambda Draconis, "Dragon"
* RA 11 31 24.2
* Dec +69 19 52
* V 3.84
* B-V +1.62
*
* Theory of operation
*
* The driver is initialized through of_device. Configuration information
* is therefore conveyed through an OF-style device tree.
*
* The Gianfar Ethernet Controller uses a ring of buffer
* descriptors. The beginning is indicated by a register
* pointing to the physical address of the start of the ring.
* The end is determined by a "wrap" bit being set in the
* last descriptor of the ring.
*
* When a packet is received, the RXF bit in the
* IEVENT register is set, triggering an interrupt when the
* corresponding bit in the IMASK register is also set (if
* interrupt coalescing is active, then the interrupt may not
* happen immediately, but will wait until either a set number
* of frames or amount of time have passed). In NAPI, the
* interrupt handler will signal there is work to be done, and
* exit. This method will start at the last known empty
* descriptor, and process every subsequent descriptor until there
* are none left with data (NAPI will stop after a set number of
* packets to give time to other tasks, but will eventually
* process all the packets). The data arrives inside a
* pre-allocated skb, and so after the skb is passed up to the
* stack, a new skb must be allocated, and the address field in
* the buffer descriptor must be updated to indicate this new
* skb.
*
* When the kernel requests that a packet be transmitted, the
* driver starts where it left off last time, and points the
* descriptor at the buffer which was passed in. The driver
* then informs the DMA engine that there are packets ready to
* be transmitted. Once the controller is finished transmitting
* the packet, an interrupt may be triggered (under the same
* conditions as for reception, but depending on the TXF bit).
* The driver then cleans up the buffer.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/of_platform.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/of.h>
#include "gianfar.h"
#include "gianfar_mii.h"
#define TX_TIMEOUT (1*HZ)
#undef BRIEF_GFAR_ERRORS
#undef VERBOSE_GFAR_ERRORS
const char gfar_driver_name[] = "Gianfar Ethernet";
const char gfar_driver_version[] = "1.3";
static int gfar_enet_open(struct net_device *dev);
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void gfar_reset_task(struct work_struct *work);
static void gfar_timeout(struct net_device *dev);
static int gfar_close(struct net_device *dev);
struct sk_buff *gfar_new_skb(struct net_device *dev);
static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
struct sk_buff *skb);
static int gfar_set_mac_address(struct net_device *dev);
static int gfar_change_mtu(struct net_device *dev, int new_mtu);
static irqreturn_t gfar_error(int irq, void *dev_id);
static irqreturn_t gfar_transmit(int irq, void *dev_id);
static irqreturn_t gfar_interrupt(int irq, void *dev_id);
static void adjust_link(struct net_device *dev);
static void init_registers(struct net_device *dev);
static int init_phy(struct net_device *dev);
static int gfar_probe(struct of_device *ofdev,
const struct of_device_id *match);
static int gfar_remove(struct of_device *ofdev);
static void free_skb_resources(struct gfar_private *priv);
static void gfar_set_multi(struct net_device *dev);
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
static void gfar_configure_serdes(struct net_device *dev);
static int gfar_poll(struct napi_struct *napi, int budget);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void gfar_netpoll(struct net_device *dev);
#endif
int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
static int gfar_clean_tx_ring(struct net_device *dev);
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
int amount_pull);
static void gfar_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp);
void gfar_halt(struct net_device *dev);
static void gfar_halt_nodisable(struct net_device *dev);
void gfar_start(struct net_device *dev);
static void gfar_clear_exact_match(struct net_device *dev);
static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
extern const struct ethtool_ops gfar_ethtool_ops;
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION("Gianfar Ethernet Driver");
MODULE_LICENSE("GPL");
/* Returns 1 if incoming frames use an FCB */
static inline int gfar_uses_fcb(struct gfar_private *priv)
{
return priv->vlgrp || priv->rx_csum_enable;
}
static int gfar_of_init(struct net_device *dev)
{
struct device_node *phy, *mdio;
const unsigned int *id;
const char *model;
const char *ctype;
const void *mac_addr;
const phandle *ph;
u64 addr, size;
int err = 0;
struct gfar_private *priv = netdev_priv(dev);
struct device_node *np = priv->node;
char bus_name[MII_BUS_ID_SIZE];
if (!np || !of_device_is_available(np))
return -ENODEV;
/* get a pointer to the register memory */
addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
priv->regs = ioremap(addr, size);
if (priv->regs == NULL)
return -ENOMEM;
priv->interruptTransmit = irq_of_parse_and_map(np, 0);
model = of_get_property(np, "model", NULL);
/* If we aren't the FEC we have multiple interrupts */
if (model && strcasecmp(model, "FEC")) {
priv->interruptReceive = irq_of_parse_and_map(np, 1);
priv->interruptError = irq_of_parse_and_map(np, 2);
if (priv->interruptTransmit < 0 ||
priv->interruptReceive < 0 ||
priv->interruptError < 0) {
err = -EINVAL;
goto err_out;
}
}
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
if (model && !strcasecmp(model, "TSEC"))
priv->device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR;
if (model && !strcasecmp(model, "eTSEC"))
priv->device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR |
FSL_GIANFAR_DEV_HAS_PADDING |
FSL_GIANFAR_DEV_HAS_CSUM |
FSL_GIANFAR_DEV_HAS_VLAN |
FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
ctype = of_get_property(np, "phy-connection-type", NULL);
/* We only care about rgmii-id. The rest are autodetected */
if (ctype && !strcmp(ctype, "rgmii-id"))
priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
else
priv->interface = PHY_INTERFACE_MODE_MII;
if (of_get_property(np, "fsl,magic-packet", NULL))
priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
ph = of_get_property(np, "phy-handle", NULL);
if (ph == NULL) {
u32 *fixed_link;
fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
if (!fixed_link) {
err = -ENODEV;
goto err_out;
}
snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id),
PHY_ID_FMT, "0", fixed_link[0]);
} else {
phy = of_find_node_by_phandle(*ph);
if (phy == NULL) {
err = -ENODEV;
goto err_out;
}
mdio = of_get_parent(phy);
id = of_get_property(phy, "reg", NULL);
of_node_put(phy);
of_node_put(mdio);
gfar_mdio_bus_name(bus_name, mdio);
snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id), "%s:%02x",
bus_name, *id);
}
/* Find the TBI PHY. If it's not there, we don't support SGMII */
ph = of_get_property(np, "tbi-handle", NULL);
if (ph) {
struct device_node *tbi = of_find_node_by_phandle(*ph);
struct of_device *ofdev;
struct mii_bus *bus;
if (!tbi)
return 0;
mdio = of_get_parent(tbi);
if (!mdio)
return 0;
ofdev = of_find_device_by_node(mdio);
of_node_put(mdio);
id = of_get_property(tbi, "reg", NULL);
if (!id)
return 0;
of_node_put(tbi);
bus = dev_get_drvdata(&ofdev->dev);
priv->tbiphy = bus->phy_map[*id];
}
return 0;
err_out:
iounmap(priv->regs);
return err;
}
/* Ioctl MII Interface */
static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct gfar_private *priv = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
if (!priv->phydev)
return -ENODEV;
return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
}
/* Set up the ethernet device structure, private data,
* and anything else we need before we start */
static int gfar_probe(struct of_device *ofdev,
const struct of_device_id *match)
{
u32 tempval;
struct net_device *dev = NULL;
struct gfar_private *priv = NULL;
DECLARE_MAC_BUF(mac);
int err = 0;
int len_devname;
/* Create an ethernet device instance */
dev = alloc_etherdev(sizeof (*priv));
if (NULL == dev)
return -ENOMEM;
priv = netdev_priv(dev);
priv->dev = dev;
priv->node = ofdev->node;
err = gfar_of_init(dev);
if (err)
goto regs_fail;
spin_lock_init(&priv->txlock);
spin_lock_init(&priv->rxlock);
spin_lock_init(&priv->bflock);
INIT_WORK(&priv->reset_task, gfar_reset_task);
dev_set_drvdata(&ofdev->dev, priv);
/* Stop the DMA engine now, in case it was running before */
/* (The firmware could have used it, and left it running). */
gfar_halt(dev);
/* Reset MAC layer */
gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
/* We need to delay at least 3 TX clocks */
udelay(2);
tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
gfar_write(&priv->regs->maccfg1, tempval);
/* Initialize MACCFG2. */
gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
/* Initialize ECNTRL */
gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
/* Set the dev->base_addr to the gfar reg region */
dev->base_addr = (unsigned long) (priv->regs);
SET_NETDEV_DEV(dev, &ofdev->dev);
/* Fill in the dev structure */
dev->open = gfar_enet_open;
dev->hard_start_xmit = gfar_start_xmit;
dev->tx_timeout = gfar_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = gfar_netpoll;
#endif
dev->stop = gfar_close;
dev->change_mtu = gfar_change_mtu;
dev->mtu = 1500;
dev->set_multicast_list = gfar_set_multi;
dev->ethtool_ops = &gfar_ethtool_ops;
dev->do_ioctl = gfar_ioctl;
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
priv->rx_csum_enable = 1;
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
} else
priv->rx_csum_enable = 0;
priv->vlgrp = NULL;
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
dev->vlan_rx_register = gfar_vlan_rx_register;
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
priv->extended_hash = 1;
priv->hash_width = 9;
priv->hash_regs[0] = &priv->regs->igaddr0;
priv->hash_regs[1] = &priv->regs->igaddr1;
priv->hash_regs[2] = &priv->regs->igaddr2;
priv->hash_regs[3] = &priv->regs->igaddr3;
priv->hash_regs[4] = &priv->regs->igaddr4;
priv->hash_regs[5] = &priv->regs->igaddr5;
priv->hash_regs[6] = &priv->regs->igaddr6;
priv->hash_regs[7] = &priv->regs->igaddr7;
priv->hash_regs[8] = &priv->regs->gaddr0;
priv->hash_regs[9] = &priv->regs->gaddr1;
priv->hash_regs[10] = &priv->regs->gaddr2;
priv->hash_regs[11] = &priv->regs->gaddr3;
priv->hash_regs[12] = &priv->regs->gaddr4;
priv->hash_regs[13] = &priv->regs->gaddr5;
priv->hash_regs[14] = &priv->regs->gaddr6;
priv->hash_regs[15] = &priv->regs->gaddr7;
} else {
priv->extended_hash = 0;
priv->hash_width = 8;
priv->hash_regs[0] = &priv->regs->gaddr0;
priv->hash_regs[1] = &priv->regs->gaddr1;
priv->hash_regs[2] = &priv->regs->gaddr2;
priv->hash_regs[3] = &priv->regs->gaddr3;
priv->hash_regs[4] = &priv->regs->gaddr4;
priv->hash_regs[5] = &priv->regs->gaddr5;
priv->hash_regs[6] = &priv->regs->gaddr6;
priv->hash_regs[7] = &priv->regs->gaddr7;
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
priv->padding = DEFAULT_PADDING;
else
priv->padding = 0;
if (dev->features & NETIF_F_IP_CSUM)
dev->hard_header_len += GMAC_FCB_LEN;
priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
priv->txcoalescing = DEFAULT_TX_COALESCE;
priv->txic = DEFAULT_TXIC;
priv->rxcoalescing = DEFAULT_RX_COALESCE;
priv->rxic = DEFAULT_RXIC;
/* Enable most messages by default */
priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
/* Carrier starts down, phylib will bring it up */
netif_carrier_off(dev);
err = register_netdev(dev);
if (err) {
printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
dev->name);
goto register_fail;
}
/* fill out IRQ number and name fields */
len_devname = strlen(dev->name);
strncpy(&priv->int_name_tx[0], dev->name, len_devname);
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
strncpy(&priv->int_name_tx[len_devname],
"_tx", sizeof("_tx") + 1);
strncpy(&priv->int_name_rx[0], dev->name, len_devname);
strncpy(&priv->int_name_rx[len_devname],
"_rx", sizeof("_rx") + 1);
strncpy(&priv->int_name_er[0], dev->name, len_devname);
strncpy(&priv->int_name_er[len_devname],
"_er", sizeof("_er") + 1);
} else
priv->int_name_tx[len_devname] = '\0';
/* Create all the sysfs files */
gfar_init_sysfs(dev);
/* Print out the device info */
printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
/* Even more device info helps when determining which kernel */
/* provided which set of benchmarks. */
printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
dev->name, priv->rx_ring_size, priv->tx_ring_size);
return 0;
register_fail:
iounmap(priv->regs);
regs_fail:
free_netdev(dev);
return err;
}
static int gfar_remove(struct of_device *ofdev)
{
struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
dev_set_drvdata(&ofdev->dev, NULL);
iounmap(priv->regs);
free_netdev(priv->dev);
return 0;
}
#ifdef CONFIG_PM
static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
{
struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
struct net_device *dev = priv->dev;
unsigned long flags;
u32 tempval;
int magic_packet = priv->wol_en &&
(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
netif_device_detach(dev);
if (netif_running(dev)) {
spin_lock_irqsave(&priv->txlock, flags);
spin_lock(&priv->rxlock);
gfar_halt_nodisable(dev);
/* Disable Tx, and Rx if wake-on-LAN is disabled. */
tempval = gfar_read(&priv->regs->maccfg1);
tempval &= ~MACCFG1_TX_EN;
if (!magic_packet)
tempval &= ~MACCFG1_RX_EN;
gfar_write(&priv->regs->maccfg1, tempval);
spin_unlock(&priv->rxlock);
spin_unlock_irqrestore(&priv->txlock, flags);
napi_disable(&priv->napi);
if (magic_packet) {
/* Enable interrupt on Magic Packet */
gfar_write(&priv->regs->imask, IMASK_MAG);
/* Enable Magic Packet mode */
tempval = gfar_read(&priv->regs->maccfg2);
tempval |= MACCFG2_MPEN;
gfar_write(&priv->regs->maccfg2, tempval);
} else {
phy_stop(priv->phydev);
}
}
return 0;
}
static int gfar_resume(struct of_device *ofdev)
{
struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
struct net_device *dev = priv->dev;
unsigned long flags;
u32 tempval;
int magic_packet = priv->wol_en &&
(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
if (!netif_running(dev)) {
netif_device_attach(dev);
return 0;
}
if (!magic_packet && priv->phydev)
phy_start(priv->phydev);
/* Disable Magic Packet mode, in case something
* else woke us up.
*/
spin_lock_irqsave(&priv->txlock, flags);
spin_lock(&priv->rxlock);
tempval = gfar_read(&priv->regs->maccfg2);
tempval &= ~MACCFG2_MPEN;
gfar_write(&priv->regs->maccfg2, tempval);
gfar_start(dev);
spin_unlock(&priv->rxlock);
spin_unlock_irqrestore(&priv->txlock, flags);
netif_device_attach(dev);
napi_enable(&priv->napi);
return 0;
}
#else
#define gfar_suspend NULL
#define gfar_resume NULL
#endif
/* Reads the controller's registers to determine what interface
* connects it to the PHY.
*/
static phy_interface_t gfar_get_interface(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
u32 ecntrl = gfar_read(&priv->regs->ecntrl);
if (ecntrl & ECNTRL_SGMII_MODE)
return PHY_INTERFACE_MODE_SGMII;
if (ecntrl & ECNTRL_TBI_MODE) {
if (ecntrl & ECNTRL_REDUCED_MODE)
return PHY_INTERFACE_MODE_RTBI;
else
return PHY_INTERFACE_MODE_TBI;
}
if (ecntrl & ECNTRL_REDUCED_MODE) {
if (ecntrl & ECNTRL_REDUCED_MII_MODE)
return PHY_INTERFACE_MODE_RMII;
else {
phy_interface_t interface = priv->interface;
/*
* This isn't autodetected right now, so it must
* be set by the device tree or platform code.
*/
if (interface == PHY_INTERFACE_MODE_RGMII_ID)
return PHY_INTERFACE_MODE_RGMII_ID;
return PHY_INTERFACE_MODE_RGMII;
}
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
return PHY_INTERFACE_MODE_GMII;
return PHY_INTERFACE_MODE_MII;
}
/* Initializes driver's PHY state, and attaches to the PHY.
* Returns 0 on success.
*/
static int init_phy(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
uint gigabit_support =
priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
SUPPORTED_1000baseT_Full : 0;
struct phy_device *phydev;
phy_interface_t interface;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
interface = gfar_get_interface(dev);
phydev = phy_connect(dev, priv->phy_bus_id, &adjust_link, 0, interface);
if (interface == PHY_INTERFACE_MODE_SGMII)
gfar_configure_serdes(dev);
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
/* Remove any features not supported by the controller */
phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
phydev->advertising = phydev->supported;
priv->phydev = phydev;
return 0;
}
/*
* Initialize TBI PHY interface for communicating with the
* SERDES lynx PHY on the chip. We communicate with this PHY
* through the MDIO bus on each controller, treating it as a
* "normal" PHY at the address found in the TBIPA register. We assume
* that the TBIPA register is valid. Either the MDIO bus code will set
* it to a value that doesn't conflict with other PHYs on the bus, or the
* value doesn't matter, as there are no other PHYs on the bus.
*/
static void gfar_configure_serdes(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
if (!priv->tbiphy) {
printk(KERN_WARNING "SGMII mode requires that the device "
"tree specify a tbi-handle\n");
return;
}
/*
* If the link is already up, we must already be ok, and don't need to
* configure and reset the TBI<->SerDes link. Maybe U-Boot configured
* everything for us? Resetting it takes the link down and requires
* several seconds for it to come back.
*/
if (phy_read(priv->tbiphy, MII_BMSR) & BMSR_LSTATUS)
return;
/* Single clk mode, mii mode off(for serdes communication) */
phy_write(priv->tbiphy, MII_TBICON, TBICON_CLK_SELECT);
phy_write(priv->tbiphy, MII_ADVERTISE,
ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
ADVERTISE_1000XPSE_ASYM);
phy_write(priv->tbiphy, MII_BMCR, BMCR_ANENABLE |
BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
}
static void init_registers(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
/* Initialize IMASK */
gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
/* Init hash registers to zero */
gfar_write(&priv->regs->igaddr0, 0);
gfar_write(&priv->regs->igaddr1, 0);
gfar_write(&priv->regs->igaddr2, 0);
gfar_write(&priv->regs->igaddr3, 0);
gfar_write(&priv->regs->igaddr4, 0);
gfar_write(&priv->regs->igaddr5, 0);
gfar_write(&priv->regs->igaddr6, 0);
gfar_write(&priv->regs->igaddr7, 0);
gfar_write(&priv->regs->gaddr0, 0);
gfar_write(&priv->regs->gaddr1, 0);
gfar_write(&priv->regs->gaddr2, 0);
gfar_write(&priv->regs->gaddr3, 0);
gfar_write(&priv->regs->gaddr4, 0);
gfar_write(&priv->regs->gaddr5, 0);
gfar_write(&priv->regs->gaddr6, 0);
gfar_write(&priv->regs->gaddr7, 0);
/* Zero out the rmon mib registers if it has them */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
/* Mask off the CAM interrupts */
gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
}
/* Initialize the max receive buffer length */
gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
/* Initialize the Minimum Frame Length Register */
gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
}
/* Halt the receive and transmit queues */
static void gfar_halt_nodisable(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
/* Mask all interrupts */
gfar_write(®s->imask, IMASK_INIT_CLEAR);
/* Clear all interrupts */
gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
/* Stop the DMA, and wait for it to stop */
tempval = gfar_read(&priv->regs->dmactrl);
if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
!= (DMACTRL_GRS | DMACTRL_GTS)) {
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
while (!(gfar_read(&priv->regs->ievent) &
(IEVENT_GRSC | IEVENT_GTSC)))
cpu_relax();
}
}
/* Halt the receive and transmit queues */
void gfar_halt(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
gfar_halt_nodisable(dev);
/* Disable Rx and Tx */
tempval = gfar_read(®s->maccfg1);
tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(®s->maccfg1, tempval);
}
void stop_gfar(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
unsigned long flags;
phy_stop(priv->phydev);
/* Lock it down */
spin_lock_irqsave(&priv->txlock, flags);
spin_lock(&priv->rxlock);
gfar_halt(dev);
spin_unlock(&priv->rxlock);
spin_unlock_irqrestore(&priv->txlock, flags);
/* Free the IRQs */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
free_irq(priv->interruptError, dev);
free_irq(priv->interruptTransmit, dev);
free_irq(priv->interruptReceive, dev);
} else {
free_irq(priv->interruptTransmit, dev);
}
free_skb_resources(priv);
dma_free_coherent(&dev->dev,
sizeof(struct txbd8)*priv->tx_ring_size
+ sizeof(struct rxbd8)*priv->rx_ring_size,
priv->tx_bd_base,
gfar_read(®s->tbase0));
}
/* If there are any tx skbs or rx skbs still around, free them.
* Then free tx_skbuff and rx_skbuff */
static void free_skb_resources(struct gfar_private *priv)
{
struct rxbd8 *rxbdp;
struct txbd8 *txbdp;
int i, j;
/* Go through all the buffer descriptors and free their data buffers */
txbdp = priv->tx_bd_base;
for (i = 0; i < priv->tx_ring_size; i++) {
if (!priv->tx_skbuff[i])
continue;
dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
txbdp->length, DMA_TO_DEVICE);
txbdp->lstatus = 0;
for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
txbdp++;
dma_unmap_page(&priv->dev->dev, txbdp->bufPtr,
txbdp->length, DMA_TO_DEVICE);
}
txbdp++;
dev_kfree_skb_any(priv->tx_skbuff[i]);
priv->tx_skbuff[i] = NULL;
}
kfree(priv->tx_skbuff);
rxbdp = priv->rx_bd_base;
/* rx_skbuff is not guaranteed to be allocated, so only
* free it and its contents if it is allocated */
if(priv->rx_skbuff != NULL) {
for (i = 0; i < priv->rx_ring_size; i++) {
if (priv->rx_skbuff[i]) {
dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
priv->rx_buffer_size,
DMA_FROM_DEVICE);
dev_kfree_skb_any(priv->rx_skbuff[i]);
priv->rx_skbuff[i] = NULL;
}
rxbdp->lstatus = 0;
rxbdp->bufPtr = 0;
rxbdp++;
}
kfree(priv->rx_skbuff);
}
}
void gfar_start(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
/* Enable Rx and Tx in MACCFG1 */
tempval = gfar_read(®s->maccfg1);
tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(®s->maccfg1, tempval);
/* Initialize DMACTRL to have WWR and WOP */
tempval = gfar_read(&priv->regs->dmactrl);
tempval |= DMACTRL_INIT_SETTINGS;
gfar_write(&priv->regs->dmactrl, tempval);
/* Make sure we aren't stopped */
tempval = gfar_read(&priv->regs->dmactrl);
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
/* Clear THLT/RHLT, so that the DMA starts polling now */
gfar_write(®s->tstat, TSTAT_CLEAR_THALT);
gfar_write(®s->rstat, RSTAT_CLEAR_RHALT);
/* Unmask the interrupts we look for */
gfar_write(®s->imask, IMASK_DEFAULT);
dev->trans_start = jiffies;
}
/* Bring the controller up and running */
int startup_gfar(struct net_device *dev)
{
struct txbd8 *txbdp;
struct rxbd8 *rxbdp;
dma_addr_t addr = 0;
unsigned long vaddr;
int i;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
int err = 0;
u32 rctrl = 0;
u32 attrs = 0;
gfar_write(®s->imask, IMASK_INIT_CLEAR);
/* Allocate memory for the buffer descriptors */
vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
sizeof (struct txbd8) * priv->tx_ring_size +
sizeof (struct rxbd8) * priv->rx_ring_size,
&addr, GFP_KERNEL);
if (vaddr == 0) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
dev->name);
return -ENOMEM;
}
priv->tx_bd_base = (struct txbd8 *) vaddr;
/* enet DMA only understands physical addresses */
gfar_write(®s->tbase0, addr);
/* Start the rx descriptor ring where the tx ring leaves off */
addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
priv->rx_bd_base = (struct rxbd8 *) vaddr;
gfar_write(®s->rbase0, addr);
/* Setup the skbuff rings */
priv->tx_skbuff =
(struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
priv->tx_ring_size, GFP_KERNEL);
if (NULL == priv->tx_skbuff) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
dev->name);
err = -ENOMEM;
goto tx_skb_fail;
}
for (i = 0; i < priv->tx_ring_size; i++)
priv->tx_skbuff[i] = NULL;
priv->rx_skbuff =
(struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
priv->rx_ring_size, GFP_KERNEL);
if (NULL == priv->rx_skbuff) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
dev->name);
err = -ENOMEM;
goto rx_skb_fail;
}
for (i = 0; i < priv->rx_ring_size; i++)
priv->rx_skbuff[i] = NULL;
/* Initialize some variables in our dev structure */
priv->num_txbdfree = priv->tx_ring_size;
priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
priv->cur_rx = priv->rx_bd_base;
priv->skb_curtx = priv->skb_dirtytx = 0;
priv->skb_currx = 0;
/* Initialize Transmit Descriptor Ring */
txbdp = priv->tx_bd_base;
for (i = 0; i < priv->tx_ring_size; i++) {
txbdp->lstatus = 0;
txbdp->bufPtr = 0;
txbdp++;
}
/* Set the last descriptor in the ring to indicate wrap */
txbdp--;
txbdp->status |= TXBD_WRAP;
rxbdp = priv->rx_bd_base;
for (i = 0; i < priv->rx_ring_size; i++) {
struct sk_buff *skb;
skb = gfar_new_skb(dev);
if (!skb) {
printk(KERN_ERR "%s: Can't allocate RX buffers\n",
dev->name);
goto err_rxalloc_fail;
}
priv->rx_skbuff[i] = skb;
gfar_new_rxbdp(dev, rxbdp, skb);
rxbdp++;
}
/* Set the last descriptor in the ring to wrap */
rxbdp--;
rxbdp->status |= RXBD_WRAP;
/* If the device has multiple interrupts, register for
* them. Otherwise, only register for the one */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
/* Install our interrupt handlers for Error,
* Transmit, and Receive */
if (request_irq(priv->interruptError, gfar_error,
0, priv->int_name_er, dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptError);
err = -1;
goto err_irq_fail;
}
if (request_irq(priv->interruptTransmit, gfar_transmit,
0, priv->int_name_tx, dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptTransmit);
err = -1;
goto tx_irq_fail;
}
if (request_irq(priv->interruptReceive, gfar_receive,
0, priv->int_name_rx, dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
dev->name, priv->interruptReceive);
err = -1;
goto rx_irq_fail;
}
} else {
if (request_irq(priv->interruptTransmit, gfar_interrupt,
0, priv->int_name_tx, dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptTransmit);
err = -1;
goto err_irq_fail;
}
}
phy_start(priv->phydev);
/* Configure the coalescing support */
gfar_write(®s->txic, 0);
if (priv->txcoalescing)
gfar_write(®s->txic, priv->txic);
gfar_write(®s->rxic, 0);
if (priv->rxcoalescing)
gfar_write(®s->rxic, priv->rxic);
if (priv->rx_csum_enable)
rctrl |= RCTRL_CHECKSUMMING;
if (priv->extended_hash) {
rctrl |= RCTRL_EXTHASH;
gfar_clear_exact_match(dev);
rctrl |= RCTRL_EMEN;
}
if (priv->padding) {
rctrl &= ~RCTRL_PAL_MASK;
rctrl |= RCTRL_PADDING(priv->padding);
}
/* Init rctrl based on our settings */
gfar_write(&priv->regs->rctrl, rctrl);
if (dev->features & NETIF_F_IP_CSUM)
gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
/* Set the extraction length and index */
attrs = ATTRELI_EL(priv->rx_stash_size) |
ATTRELI_EI(priv->rx_stash_index);
gfar_write(&priv->regs->attreli, attrs);
/* Start with defaults, and add stashing or locking
* depending on the approprate variables */
attrs = ATTR_INIT_SETTINGS;
if (priv->bd_stash_en)
attrs |= ATTR_BDSTASH;
if (priv->rx_stash_size != 0)
attrs |= ATTR_BUFSTASH;
gfar_write(&priv->regs->attr, attrs);
gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
/* Start the controller */
gfar_start(dev);
return 0;
rx_irq_fail:
free_irq(priv->interruptTransmit, dev);
tx_irq_fail:
free_irq(priv->interruptError, dev);
err_irq_fail:
err_rxalloc_fail:
rx_skb_fail:
free_skb_resources(priv);
tx_skb_fail:
dma_free_coherent(&dev->dev,
sizeof(struct txbd8)*priv->tx_ring_size
+ sizeof(struct rxbd8)*priv->rx_ring_size,
priv->tx_bd_base,
gfar_read(®s->tbase0));
return err;
}
/* Called when something needs to use the ethernet device */
/* Returns 0 for success. */
static int gfar_enet_open(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
int err;
napi_enable(&priv->napi);
/* Initialize a bunch of registers */
init_registers(dev);
gfar_set_mac_address(dev);
err = init_phy(dev);
if(err) {
napi_disable(&priv->napi);
return err;
}
err = startup_gfar(dev);
if (err) {
napi_disable(&priv->napi);
return err;
}
netif_start_queue(dev);
return err;
}
static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
{
struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
cacheable_memzero(fcb, GMAC_FCB_LEN);
return fcb;
}
static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
{
u8 flags = 0;
/* If we're here, it's a IP packet with a TCP or UDP
* payload. We set it to checksum, using a pseudo-header
* we provide
*/
flags = TXFCB_DEFAULT;
/* Tell the controller what the protocol is */
/* And provide the already calculated phcs */
if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
flags |= TXFCB_UDP;
fcb->phcs = udp_hdr(skb)->check;
} else
fcb->phcs = tcp_hdr(skb)->check;
/* l3os is the distance between the start of the
* frame (skb->data) and the start of the IP hdr.
* l4os is the distance between the start of the
* l3 hdr and the l4 hdr */
fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
fcb->l4os = skb_network_header_len(skb);
fcb->flags = flags;
}
void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
{
fcb->flags |= TXFCB_VLN;
fcb->vlctl = vlan_tx_tag_get(skb);
}
static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
struct txbd8 *base, int ring_size)
{
struct txbd8 *new_bd = bdp + stride;
return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
}
static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
int ring_size)
{
return skip_txbd(bdp, 1, base, ring_size);
}
/* This is called by the kernel when a frame is ready for transmission. */
/* It is pointed to by the dev->hard_start_xmit function pointer */
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct txfcb *fcb = NULL;
struct txbd8 *txbdp, *txbdp_start, *base;
u32 lstatus;
int i;
u32 bufaddr;
unsigned long flags;
unsigned int nr_frags, length;
base = priv->tx_bd_base;
/* total number of fragments in the SKB */
nr_frags = skb_shinfo(skb)->nr_frags;
spin_lock_irqsave(&priv->txlock, flags);
/* check if there is space to queue this packet */
if (nr_frags > priv->num_txbdfree) {
/* no space, stop the queue */
netif_stop_queue(dev);
dev->stats.tx_fifo_errors++;
spin_unlock_irqrestore(&priv->txlock, flags);
return NETDEV_TX_BUSY;
}
/* Update transmit stats */
dev->stats.tx_bytes += skb->len;
txbdp = txbdp_start = priv->cur_tx;
if (nr_frags == 0) {
lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
} else {
/* Place the fragment addresses and lengths into the TxBDs */
for (i = 0; i < nr_frags; i++) {
/* Point at the next BD, wrapping as needed */
txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
length = skb_shinfo(skb)->frags[i].size;
lstatus = txbdp->lstatus | length |
BD_LFLAG(TXBD_READY);
/* Handle the last BD specially */
if (i == nr_frags - 1)
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
bufaddr = dma_map_page(&dev->dev,
skb_shinfo(skb)->frags[i].page,
skb_shinfo(skb)->frags[i].page_offset,
length,
DMA_TO_DEVICE);
/* set the TxBD length and buffer pointer */
txbdp->bufPtr = bufaddr;
txbdp->lstatus = lstatus;
}
lstatus = txbdp_start->lstatus;
}
/* Set up checksumming */
if (CHECKSUM_PARTIAL == skb->ip_summed) {
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
gfar_tx_checksum(skb, fcb);
}
if (priv->vlgrp && vlan_tx_tag_present(skb)) {
if (unlikely(NULL == fcb)) {
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
}
gfar_tx_vlan(skb, fcb);
}
/* setup the TxBD length and buffer pointer for the first BD */
priv->tx_skbuff[priv->skb_curtx] = skb;
txbdp_start->bufPtr = dma_map_single(&dev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
/*
* The powerpc-specific eieio() is used, as wmb() has too strong
* semantics (it requires synchronization between cacheable and
* uncacheable mappings, which eieio doesn't provide and which we
* don't need), thus requiring a more expensive sync instruction. At
* some point, the set of architecture-independent barrier functions
* should be expanded to include weaker barriers.
*/
eieio();
txbdp_start->lstatus = lstatus;
/* Update the current skb pointer to the next entry we will use
* (wrapping if necessary) */
priv->skb_curtx = (priv->skb_curtx + 1) &
TX_RING_MOD_MASK(priv->tx_ring_size);
priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
/* reduce TxBD free count */
priv->num_txbdfree -= (nr_frags + 1);
dev->trans_start = jiffies;
/* If the next BD still needs to be cleaned up, then the bds
are full. We need to tell the kernel to stop sending us stuff. */
if (!priv->num_txbdfree) {
netif_stop_queue(dev);
dev->stats.tx_fifo_errors++;
}
/* Tell the DMA to go go go */
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
/* Unlock priv */
spin_unlock_irqrestore(&priv->txlock, flags);
return 0;
}
/* Stops the kernel queue, and halts the controller */
static int gfar_close(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
napi_disable(&priv->napi);
cancel_work_sync(&priv->reset_task);
stop_gfar(dev);
/* Disconnect from the PHY */
phy_disconnect(priv->phydev);
priv->phydev = NULL;
netif_stop_queue(dev);
return 0;
}
/* Changes the mac address if the controller is not running. */
static int gfar_set_mac_address(struct net_device *dev)
{
gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
return 0;
}
/* Enables and disables VLAN insertion/extraction */
static void gfar_vlan_rx_register(struct net_device *dev,
struct vlan_group *grp)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
u32 tempval;
spin_lock_irqsave(&priv->rxlock, flags);
priv->vlgrp = grp;
if (grp) {
/* Enable VLAN tag insertion */
tempval = gfar_read(&priv->regs->tctrl);
tempval |= TCTRL_VLINS;
gfar_write(&priv->regs->tctrl, tempval);
/* Enable VLAN tag extraction */
tempval = gfar_read(&priv->regs->rctrl);
tempval |= RCTRL_VLEX;
tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
gfar_write(&priv->regs->rctrl, tempval);
} else {
/* Disable VLAN tag insertion */
tempval = gfar_read(&priv->regs->tctrl);
tempval &= ~TCTRL_VLINS;
gfar_write(&priv->regs->tctrl, tempval);
/* Disable VLAN tag extraction */
tempval = gfar_read(&priv->regs->rctrl);
tempval &= ~RCTRL_VLEX;
/* If parse is no longer required, then disable parser */
if (tempval & RCTRL_REQ_PARSER)
tempval |= RCTRL_PRSDEP_INIT;
else
tempval &= ~RCTRL_PRSDEP_INIT;
gfar_write(&priv->regs->rctrl, tempval);
}
gfar_change_mtu(dev, dev->mtu);
spin_unlock_irqrestore(&priv->rxlock, flags);
}
static int gfar_change_mtu(struct net_device *dev, int new_mtu)
{
int tempsize, tempval;
struct gfar_private *priv = netdev_priv(dev);
int oldsize = priv->rx_buffer_size;
int frame_size = new_mtu + ETH_HLEN;
if (priv->vlgrp)
frame_size += VLAN_HLEN;
if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: Invalid MTU setting\n",
dev->name);
return -EINVAL;
}
if (gfar_uses_fcb(priv))
frame_size += GMAC_FCB_LEN;
frame_size += priv->padding;
tempsize =
(frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
INCREMENTAL_BUFFER_SIZE;
/* Only stop and start the controller if it isn't already
* stopped, and we changed something */
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
stop_gfar(dev);
priv->rx_buffer_size = tempsize;
dev->mtu = new_mtu;
gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
/* If the mtu is larger than the max size for standard
* ethernet frames (ie, a jumbo frame), then set maccfg2
* to allow huge frames, and to check the length */
tempval = gfar_read(&priv->regs->maccfg2);
if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
else
tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
gfar_write(&priv->regs->maccfg2, tempval);
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
startup_gfar(dev);
return 0;
}
/* gfar_reset_task gets scheduled when a packet has not been
* transmitted after a set amount of time.
* For now, assume that clearing out all the structures, and
* starting over will fix the problem.
*/
static void gfar_reset_task(struct work_struct *work)
{
struct gfar_private *priv = container_of(work, struct gfar_private,
reset_task);
struct net_device *dev = priv->dev;
if (dev->flags & IFF_UP) {
stop_gfar(dev);
startup_gfar(dev);
}
netif_tx_schedule_all(dev);
}
static void gfar_timeout(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
dev->stats.tx_errors++;
schedule_work(&priv->reset_task);
}
/* Interrupt Handler for Transmit complete */
static int gfar_clean_tx_ring(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct txbd8 *bdp;
struct txbd8 *lbdp = NULL;
struct txbd8 *base = priv->tx_bd_base;
struct sk_buff *skb;
int skb_dirtytx;
int tx_ring_size = priv->tx_ring_size;
int frags = 0;
int i;
int howmany = 0;
u32 lstatus;
bdp = priv->dirty_tx;
skb_dirtytx = priv->skb_dirtytx;
while ((skb = priv->tx_skbuff[skb_dirtytx])) {
frags = skb_shinfo(skb)->nr_frags;
lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
lstatus = lbdp->lstatus;
/* Only clean completed frames */
if ((lstatus & BD_LFLAG(TXBD_READY)) &&
(lstatus & BD_LENGTH_MASK))
break;
dma_unmap_single(&dev->dev,
bdp->bufPtr,
bdp->length,
DMA_TO_DEVICE);
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next_txbd(bdp, base, tx_ring_size);
for (i = 0; i < frags; i++) {
dma_unmap_page(&dev->dev,
bdp->bufPtr,
bdp->length,
DMA_TO_DEVICE);
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next_txbd(bdp, base, tx_ring_size);
}
dev_kfree_skb_any(skb);
priv->tx_skbuff[skb_dirtytx] = NULL;
skb_dirtytx = (skb_dirtytx + 1) &
TX_RING_MOD_MASK(tx_ring_size);
howmany++;
priv->num_txbdfree += frags + 1;
}
/* If we freed a buffer, we can restart transmission, if necessary */
if (netif_queue_stopped(dev) && priv->num_txbdfree)
netif_wake_queue(dev);
/* Update dirty indicators */
priv->skb_dirtytx = skb_dirtytx;
priv->dirty_tx = bdp;
dev->stats.tx_packets += howmany;
return howmany;
}
static void gfar_schedule_cleanup(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&priv->txlock, flags);
spin_lock(&priv->rxlock);
if (netif_rx_schedule_prep(&priv->napi)) {
gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
__netif_rx_schedule(&priv->napi);
}
spin_unlock(&priv->rxlock);
spin_unlock_irqrestore(&priv->txlock, flags);
}
/* Interrupt Handler for Transmit complete */
static irqreturn_t gfar_transmit(int irq, void *dev_id)
{
gfar_schedule_cleanup((struct net_device *)dev_id);
return IRQ_HANDLED;
}
static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
struct sk_buff *skb)
{
struct gfar_private *priv = netdev_priv(dev);
u32 lstatus;
bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
priv->rx_buffer_size, DMA_FROM_DEVICE);
lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
lstatus |= BD_LFLAG(RXBD_WRAP);
eieio();
bdp->lstatus = lstatus;
}
struct sk_buff * gfar_new_skb(struct net_device *dev)
{
unsigned int alignamount;
struct gfar_private *priv = netdev_priv(dev);
struct sk_buff *skb = NULL;
/* We have to allocate the skb, so keep trying till we succeed */
skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
if (!skb)
return NULL;
alignamount = RXBUF_ALIGNMENT -
(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
/* We need the data buffer to be aligned properly. We will reserve
* as many bytes as needed to align the data properly
*/
skb_reserve(skb, alignamount);
return skb;
}
static inline void count_errors(unsigned short status, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
struct gfar_extra_stats *estats = &priv->extra_stats;
/* If the packet was truncated, none of the other errors
* matter */
if (status & RXBD_TRUNCATED) {
stats->rx_length_errors++;
estats->rx_trunc++;
return;
}
/* Count the errors, if there were any */
if (status & (RXBD_LARGE | RXBD_SHORT)) {
stats->rx_length_errors++;
if (status & RXBD_LARGE)
estats->rx_large++;
else
estats->rx_short++;
}
if (status & RXBD_NONOCTET) {
stats->rx_frame_errors++;
estats->rx_nonoctet++;
}
if (status & RXBD_CRCERR) {
estats->rx_crcerr++;
stats->rx_crc_errors++;
}
if (status & RXBD_OVERRUN) {
estats->rx_overrun++;
stats->rx_crc_errors++;
}
}
irqreturn_t gfar_receive(int irq, void *dev_id)
{
gfar_schedule_cleanup((struct net_device *)dev_id);
return IRQ_HANDLED;
}
static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
{
/* If valid headers were found, and valid sums
* were verified, then we tell the kernel that no
* checksumming is necessary. Otherwise, it is */
if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
/* gfar_process_frame() -- handle one incoming packet if skb
* isn't NULL. */
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
int amount_pull)
{
struct gfar_private *priv = netdev_priv(dev);
struct rxfcb *fcb = NULL;
int ret;
/* fcb is at the beginning if exists */
fcb = (struct rxfcb *)skb->data;
/* Remove the FCB from the skb */
/* Remove the padded bytes, if there are any */
if (amount_pull)
skb_pull(skb, amount_pull);
if (priv->rx_csum_enable)
gfar_rx_checksum(skb, fcb);
/* Tell the skb what kind of packet this is */
skb->protocol = eth_type_trans(skb, dev);
/* Send the packet up the stack */
if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
else
ret = netif_receive_skb(skb);
if (NET_RX_DROP == ret)
priv->extra_stats.kernel_dropped++;
return 0;
}
/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
* until the budget/quota has been reached. Returns the number
* of frames handled
*/
int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
{
struct rxbd8 *bdp, *base;
struct sk_buff *skb;
int pkt_len;
int amount_pull;
int howmany = 0;
struct gfar_private *priv = netdev_priv(dev);
/* Get the first full descriptor */
bdp = priv->cur_rx;
base = priv->rx_bd_base;
amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
priv->padding;
while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
struct sk_buff *newskb;
rmb();
/* Add another skb for the future */
newskb = gfar_new_skb(dev);
skb = priv->rx_skbuff[priv->skb_currx];
dma_unmap_single(&priv->dev->dev, bdp->bufPtr,
priv->rx_buffer_size, DMA_FROM_DEVICE);
/* We drop the frame if we failed to allocate a new buffer */
if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
bdp->status & RXBD_ERR)) {
count_errors(bdp->status, dev);
if (unlikely(!newskb))
newskb = skb;
else if (skb)
dev_kfree_skb_any(skb);
} else {
/* Increment the number of packets */
dev->stats.rx_packets++;
howmany++;
if (likely(skb)) {
pkt_len = bdp->length - ETH_FCS_LEN;
/* Remove the FCS from the packet length */
skb_put(skb, pkt_len);
dev->stats.rx_bytes += pkt_len;
gfar_process_frame(dev, skb, amount_pull);
} else {
if (netif_msg_rx_err(priv))
printk(KERN_WARNING
"%s: Missing skb!\n", dev->name);
dev->stats.rx_dropped++;
priv->extra_stats.rx_skbmissing++;
}
}
priv->rx_skbuff[priv->skb_currx] = newskb;
/* Setup the new bdp */
gfar_new_rxbdp(dev, bdp, newskb);
/* Update to the next pointer */
bdp = next_bd(bdp, base, priv->rx_ring_size);
/* update to point at the next skb */
priv->skb_currx =
(priv->skb_currx + 1) &
RX_RING_MOD_MASK(priv->rx_ring_size);
}
/* Update the current rxbd pointer to be the next one */
priv->cur_rx = bdp;
return howmany;
}
static int gfar_poll(struct napi_struct *napi, int budget)
{
struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
struct net_device *dev = priv->dev;
int tx_cleaned = 0;
int rx_cleaned = 0;
unsigned long flags;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived */
gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
/* If we fail to get the lock, don't bother with the TX BDs */
if (spin_trylock_irqsave(&priv->txlock, flags)) {
tx_cleaned = gfar_clean_tx_ring(dev);
spin_unlock_irqrestore(&priv->txlock, flags);
}
rx_cleaned = gfar_clean_rx_ring(dev, budget);
if (tx_cleaned)
return budget;
if (rx_cleaned < budget) {
netif_rx_complete(napi);
/* Clear the halt bit in RSTAT */
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
gfar_write(&priv->regs->imask, IMASK_DEFAULT);
/* If we are coalescing interrupts, update the timer */
/* Otherwise, clear it */
if (likely(priv->rxcoalescing)) {
gfar_write(&priv->regs->rxic, 0);
gfar_write(&priv->regs->rxic, priv->rxic);
}
if (likely(priv->txcoalescing)) {
gfar_write(&priv->regs->txic, 0);
gfar_write(&priv->regs->txic, priv->txic);
}
}
return rx_cleaned;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void gfar_netpoll(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
/* If the device has multiple interrupts, run tx/rx */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
disable_irq(priv->interruptTransmit);
disable_irq(priv->interruptReceive);
disable_irq(priv->interruptError);
gfar_interrupt(priv->interruptTransmit, dev);
enable_irq(priv->interruptError);
enable_irq(priv->interruptReceive);
enable_irq(priv->interruptTransmit);
} else {
disable_irq(priv->interruptTransmit);
gfar_interrupt(priv->interruptTransmit, dev);
enable_irq(priv->interruptTransmit);
}
}
#endif
/* The interrupt handler for devices with one interrupt */
static irqreturn_t gfar_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct gfar_private *priv = netdev_priv(dev);
/* Save ievent for future reference */
u32 events = gfar_read(&priv->regs->ievent);
/* Check for reception */
if (events & IEVENT_RX_MASK)
gfar_receive(irq, dev_id);
/* Check for transmit completion */
if (events & IEVENT_TX_MASK)
gfar_transmit(irq, dev_id);
/* Check for errors */
if (events & IEVENT_ERR_MASK)
gfar_error(irq, dev_id);
return IRQ_HANDLED;
}
/* Called every time the controller might need to be made
* aware of new link state. The PHY code conveys this
* information through variables in the phydev structure, and this
* function converts those variables into the appropriate
* register values, and can bring down the device if needed.
*/
static void adjust_link(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
unsigned long flags;
struct phy_device *phydev = priv->phydev;
int new_state = 0;
spin_lock_irqsave(&priv->txlock, flags);
if (phydev->link) {
u32 tempval = gfar_read(®s->maccfg2);
u32 ecntrl = gfar_read(®s->ecntrl);
/* Now we make sure that we can be in full duplex mode.
* If not, we operate in half-duplex mode. */
if (phydev->duplex != priv->oldduplex) {
new_state = 1;
if (!(phydev->duplex))
tempval &= ~(MACCFG2_FULL_DUPLEX);
else
tempval |= MACCFG2_FULL_DUPLEX;
priv->oldduplex = phydev->duplex;
}
if (phydev->speed != priv->oldspeed) {
new_state = 1;
switch (phydev->speed) {
case 1000:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
ecntrl &= ~(ECNTRL_R100);
break;
case 100:
case 10:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
/* Reduced mode distinguishes
* between 10 and 100 */
if (phydev->speed == SPEED_100)
ecntrl |= ECNTRL_R100;
else
ecntrl &= ~(ECNTRL_R100);
break;
default:
if (netif_msg_link(priv))
printk(KERN_WARNING
"%s: Ack! Speed (%d) is not 10/100/1000!\n",
dev->name, phydev->speed);
break;
}
priv->oldspeed = phydev->speed;
}
gfar_write(®s->maccfg2, tempval);
gfar_write(®s->ecntrl, ecntrl);
if (!priv->oldlink) {
new_state = 1;
priv->oldlink = 1;
}
} else if (priv->oldlink) {
new_state = 1;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if (new_state && netif_msg_link(priv))
phy_print_status(phydev);
spin_unlock_irqrestore(&priv->txlock, flags);
}
/* Update the hash table based on the current list of multicast
* addresses we subscribe to. Also, change the promiscuity of
* the device based on the flags (this function is called
* whenever dev->flags is changed */
static void gfar_set_multi(struct net_device *dev)
{
struct dev_mc_list *mc_ptr;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
if(dev->flags & IFF_PROMISC) {
/* Set RCTRL to PROM */
tempval = gfar_read(®s->rctrl);
tempval |= RCTRL_PROM;
gfar_write(®s->rctrl, tempval);
} else {
/* Set RCTRL to not PROM */
tempval = gfar_read(®s->rctrl);
tempval &= ~(RCTRL_PROM);
gfar_write(®s->rctrl, tempval);
}
if(dev->flags & IFF_ALLMULTI) {
/* Set the hash to rx all multicast frames */
gfar_write(®s->igaddr0, 0xffffffff);
gfar_write(®s->igaddr1, 0xffffffff);
gfar_write(®s->igaddr2, 0xffffffff);
gfar_write(®s->igaddr3, 0xffffffff);
gfar_write(®s->igaddr4, 0xffffffff);
gfar_write(®s->igaddr5, 0xffffffff);
gfar_write(®s->igaddr6, 0xffffffff);
gfar_write(®s->igaddr7, 0xffffffff);
gfar_write(®s->gaddr0, 0xffffffff);
gfar_write(®s->gaddr1, 0xffffffff);
gfar_write(®s->gaddr2, 0xffffffff);
gfar_write(®s->gaddr3, 0xffffffff);
gfar_write(®s->gaddr4, 0xffffffff);
gfar_write(®s->gaddr5, 0xffffffff);
gfar_write(®s->gaddr6, 0xffffffff);
gfar_write(®s->gaddr7, 0xffffffff);
} else {
int em_num;
int idx;
/* zero out the hash */
gfar_write(®s->igaddr0, 0x0);
gfar_write(®s->igaddr1, 0x0);
gfar_write(®s->igaddr2, 0x0);
gfar_write(®s->igaddr3, 0x0);
gfar_write(®s->igaddr4, 0x0);
gfar_write(®s->igaddr5, 0x0);
gfar_write(®s->igaddr6, 0x0);
gfar_write(®s->igaddr7, 0x0);
gfar_write(®s->gaddr0, 0x0);
gfar_write(®s->gaddr1, 0x0);
gfar_write(®s->gaddr2, 0x0);
gfar_write(®s->gaddr3, 0x0);
gfar_write(®s->gaddr4, 0x0);
gfar_write(®s->gaddr5, 0x0);
gfar_write(®s->gaddr6, 0x0);
gfar_write(®s->gaddr7, 0x0);
/* If we have extended hash tables, we need to
* clear the exact match registers to prepare for
* setting them */
if (priv->extended_hash) {
em_num = GFAR_EM_NUM + 1;
gfar_clear_exact_match(dev);
idx = 1;
} else {
idx = 0;
em_num = 0;
}
if(dev->mc_count == 0)
return;
/* Parse the list, and set the appropriate bits */
for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
if (idx < em_num) {
gfar_set_mac_for_addr(dev, idx,
mc_ptr->dmi_addr);
idx++;
} else
gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
}
}
return;
}
/* Clears each of the exact match registers to zero, so they
* don't interfere with normal reception */
static void gfar_clear_exact_match(struct net_device *dev)
{
int idx;
u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
}
/* Set the appropriate hash bit for the given addr */
/* The algorithm works like so:
* 1) Take the Destination Address (ie the multicast address), and
* do a CRC on it (little endian), and reverse the bits of the
* result.
* 2) Use the 8 most significant bits as a hash into a 256-entry
* table. The table is controlled through 8 32-bit registers:
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
* gaddr7. This means that the 3 most significant bits in the
* hash index which gaddr register to use, and the 5 other bits
* indicate which bit (assuming an IBM numbering scheme, which
* for PowerPC (tm) is usually the case) in the register holds
* the entry. */
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
{
u32 tempval;
struct gfar_private *priv = netdev_priv(dev);
u32 result = ether_crc(MAC_ADDR_LEN, addr);
int width = priv->hash_width;
u8 whichbit = (result >> (32 - width)) & 0x1f;
u8 whichreg = result >> (32 - width + 5);
u32 value = (1 << (31-whichbit));
tempval = gfar_read(priv->hash_regs[whichreg]);
tempval |= value;
gfar_write(priv->hash_regs[whichreg], tempval);
return;
}
/* There are multiple MAC Address register pairs on some controllers
* This function sets the numth pair to a given address
*/
static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
{
struct gfar_private *priv = netdev_priv(dev);
int idx;
char tmpbuf[MAC_ADDR_LEN];
u32 tempval;
u32 __iomem *macptr = &priv->regs->macstnaddr1;
macptr += num*2;
/* Now copy it into the mac registers backwards, cuz */
/* little endian is silly */
for (idx = 0; idx < MAC_ADDR_LEN; idx++)
tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
gfar_write(macptr, *((u32 *) (tmpbuf)));
tempval = *((u32 *) (tmpbuf + 4));
gfar_write(macptr+1, tempval);
}
/* GFAR error interrupt handler */
static irqreturn_t gfar_error(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct gfar_private *priv = netdev_priv(dev);
/* Save ievent for future reference */
u32 events = gfar_read(&priv->regs->ievent);
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
/* Magic Packet is not an error. */
if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
(events & IEVENT_MAG))
events &= ~IEVENT_MAG;
/* Hmm... */
if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
dev->name, events, gfar_read(&priv->regs->imask));
/* Update the error counters */
if (events & IEVENT_TXE) {
dev->stats.tx_errors++;
if (events & IEVENT_LC)
dev->stats.tx_window_errors++;
if (events & IEVENT_CRL)
dev->stats.tx_aborted_errors++;
if (events & IEVENT_XFUN) {
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: TX FIFO underrun, "
"packet dropped.\n", dev->name);
dev->stats.tx_dropped++;
priv->extra_stats.tx_underrun++;
/* Reactivate the Tx Queues */
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
}
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
}
if (events & IEVENT_BSY) {
dev->stats.rx_errors++;
priv->extra_stats.rx_bsy++;
gfar_receive(irq, dev_id);
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
dev->name, gfar_read(&priv->regs->rstat));
}
if (events & IEVENT_BABR) {
dev->stats.rx_errors++;
priv->extra_stats.rx_babr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
}
if (events & IEVENT_EBERR) {
priv->extra_stats.eberr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: bus error\n", dev->name);
}
if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
printk(KERN_DEBUG "%s: control frame\n", dev->name);
if (events & IEVENT_BABT) {
priv->extra_stats.tx_babt++;
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
}
return IRQ_HANDLED;
}
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:fsl-gianfar");
static struct of_device_id gfar_match[] =
{
{
.type = "network",
.compatible = "gianfar",
},
{},
};
/* Structure for a device driver */
static struct of_platform_driver gfar_driver = {
.name = "fsl-gianfar",
.match_table = gfar_match,
.probe = gfar_probe,
.remove = gfar_remove,
.suspend = gfar_suspend,
.resume = gfar_resume,
};
static int __init gfar_init(void)
{
int err = gfar_mdio_init();
if (err)
return err;
err = of_register_platform_driver(&gfar_driver);
if (err)
gfar_mdio_exit();
return err;
}
static void __exit gfar_exit(void)
{
of_unregister_platform_driver(&gfar_driver);
gfar_mdio_exit();
}
module_init(gfar_init);
module_exit(gfar_exit);
|