# For a description of the syntax of this configuration file, # see Documentation/kbuild/kconfig-language.txt. # mainmenu "Linux/PowerPC Kernel Configuration" config MMU bool default y config GENERIC_HARDIRQS bool default y config RWSEM_GENERIC_SPINLOCK bool config RWSEM_XCHGADD_ALGORITHM bool default y config ARCH_HAS_ILOG2_U32 bool default y config ARCH_HAS_ILOG2_U64 bool default n config GENERIC_HWEIGHT bool default y config GENERIC_CALIBRATE_DELAY bool default y config PPC bool default y config PPC32 bool default y # All PPCs use generic nvram driver through ppc_md config GENERIC_NVRAM bool default y config GENERIC_FIND_NEXT_BIT bool default y config SCHED_NO_NO_OMIT_FRAME_POINTER bool default y config ARCH_MAY_HAVE_PC_FDC bool default y config GENERIC_BUG bool default y depends on BUG source "init/Kconfig" menu "Processor" choice prompt "Processor Type" default 6xx config 6xx bool "6xx/7xx/74xx/52xx/82xx/83xx" select PPC_FPU help There are four types of PowerPC chips supported. The more common types (601, 603, 604, 740, 750, 7400), the older Freescale (formerly Motorola) embedded versions (821, 823, 850, 855, 860, 52xx, 82xx, 83xx), the IBM embedded versions (403 and 405) and the Book E embedded processors from IBM (44x) and Freescale (85xx). For support for 64-bit processors, set ARCH=powerpc. Unless you are building a kernel for one of the embedded processor systems, choose 6xx. Also note that because the 52xx, 82xx, & 83xx family have a 603e core, specific support for that chipset is asked later on. config 40x bool "40x" select PPC_DCR_NATIVE config 44x bool "44x" select PPC_DCR_NATIVE config 8xx bool "8xx" config E200 bool "e200" config E500 bool "e500" endchoice config PPC_FPU bool config PPC_DCR_NATIVE bool default n config PPC_DCR bool depends on PPC_DCR_NATIVE default y config BOOKE bool depends on E200 || E500 default y config FSL_BOOKE bool depends on E200 || E500 default y config PTE_64BIT bool depends on 44x || E500 default y if 44x default y if E500 && PHYS_64BIT config PHYS_64BIT bool 'Large physical address support' if E500 depends on 44x || E500 default y if 44x ---help--- This option enables kernel support for larger than 32-bit physical addresses. This features is not be available on all e500 cores. If in doubt, say N here. config ALTIVEC bool "AltiVec Support" depends on 6xx depends on !8260 && !83xx ---help--- This option enables kernel support for the Altivec extensions to the PowerPC processor. The kernel currently supports saving and restoring altivec registers, and turning on the 'altivec enable' bit so user processes can execute altivec instructions. This option is only usefully if you have a processor that supports altivec (G4, otherwise known as 74xx series), but does not have any affect on a non-altivec cpu (it does, however add code to the kernel). If in doubt, say Y here. config SPE bool "SPE Support" depends on E200 || E500 ---help--- This option enables kernel support for the Signal Processing Extensions (SPE) to the PowerPC processor. The kernel currently supports saving and restoring SPE registers, and turning on the 'spe enable' bit so user processes can execute SPE instructions. This option is only useful if you have a processor that supports SPE (e500, otherwise known as 85xx series), but does not have any effect on a non-spe cpu (it does, however add code to the kernel). If in doubt, say Y here. config TAU bool "Thermal Management Support" depends on 6xx && !8260 && !83xx help G3 and G4 processors have an on-chip temperature sensor called the 'Thermal Assist Unit (TAU)', which, in theory, can measure the on-die temperature within 2-4 degrees Celsius. This option shows the current on-die temperature in /proc/cpuinfo if the cpu supports it. Unfortunately, on some chip revisions, this sensor is very inaccurate and in some cases, does not work at all, so don't assume the cpu temp is actually what /proc/cpuinfo says it is. config TAU_INT bool "Interrupt driven TAU driver (DANGEROUS)" depends on TAU ---help--- The TAU supports an interrupt driven mode which causes an interrupt whenever the temperature goes out of range. This is the fastest way to get notified the temp has exceeded a range. With this option off, a timer is used to re-check the temperature periodically. However, on some cpus it appears that the TAU interrupt hardware is buggy and can cause a situation which would lead unexplained hard lockups. Unless you are extending the TAU driver, or enjoy kernel/hardware debugging, leave this option off. config TAU_AVERAGE bool "Average high and low temp" depends on TAU ---help--- The TAU hardware can compare the temperature to an upper and lower bound. The default behavior is to show both the upper and lower bound in /proc/cpuinfo. If the range is large, the temperature is either changing a lot, or the TAU hardware is broken (likely on some G4's). If the range is small (around 4 degrees), the temperature is relatively stable. If you say Y here, a single temperature value, halfway between the upper and lower bounds, will be reported in /proc/cpuinfo. If in doubt, say N here. config MATH_EMULATION bool "Math emulation" depends on 4xx || 8xx || E200 || E500 ---help--- Some PowerPC chips designed for embedded applications do not have a floating-point unit and therefore do not implement the floating-point instructions in the PowerPC instruction set. If you say Y here, the kernel will include code to emulate a floating-point unit, which will allow programs that use floating-point instructions to run. If you have an Apple machine or an IBM RS/6000 or pSeries machine, or any machine with a 6xx, 7xx or 7xxx series processor, say N here. Saying Y here will not hurt performance (on any machine) but will increase the size of the kernel. config KEXEC bool "kexec system call (EXPERIMENTAL)" depends on EXPERIMENTAL help kexec is a system call that implements the ability to shutdown your current kernel, and to start another kernel. It is like a reboot but it is independent of the system firmware. And like a reboot you can start any kernel with it, not just Linux. The name comes from the similarity to the exec system call. It is an ongoing process to be certain the hardware in a machine is properly shutdown, so do not be surprised if this code does not initially work for you. It may help to enable device hotplugging support. As of this writing the exact hardware interface is strongly in flux, so no good recommendation can be made. In the GameCube implementation, kexec allows you to load and run DOL files, including kernel and homebrew DOLs. source "drivers/cpufreq/Kconfig" config PPC601_SYNC_FIX bool "Workarounds for PPC601 bugs" depends on 6xx && PPC_PREP help Some versions of the PPC601 (the first PowerPC chip) have bugs which mean that extra synchronization instructions are required near certain instructions, typically those that make major changes to the CPU state. These extra instructions reduce performance slightly. If you say N here, these extra instructions will not be included, resulting in a kernel which will run faster but may not run at all on some systems with the PPC601 chip. If in doubt, say Y here. source arch/ppc/platforms/4xx/Kconfig source arch/ppc/platforms/85xx/Kconfig config PPC_STD_MMU bool depends on 6xx default y config NOT_COHERENT_CACHE bool depends on 4xx || 8xx || E200 default y endmenu menu "Platform options" config FADS bool choice prompt "8xx Machine Type" depends on 8xx default RPXLITE config RPXLITE bool "RPX-Lite" ---help--- Single-board computers based around the PowerPC MPC8xx chips and intended for embedded applications. The following types are supported: RPX-Lite: Embedded Planet RPX Lite. PC104 form-factor SBC based on the MPC823. RPX-Classic: Embedded Planet RPX Classic Low-fat. Credit-card-size SBC based on the MPC 860 BSE-IP: Bright Star Engineering ip-Engine. TQM823L: TQM850L: TQM855L: TQM860L: MPC8xx based family of mini modules, half credit card size, up to 64 MB of RAM, 8 MB Flash, (Fast) Ethernet, 2 x serial ports, 2 x CAN bus interface, ... Manufacturer: TQ Components, www.tq-group.de Date of Release: October (?) 1999 End of Life: not yet :-) URL: - module: - starter kit: - images: FPS850L: FingerPrint Sensor System (based on TQM850L) Manufacturer: IKENDI AG, Date of Release: November 1999 End of life: end 2000 ? URL: see TQM850L IVMS8: MPC860 based board used in the "Integrated Voice Mail System", Small Version (8 voice channels) Manufacturer: Speech Design, Date of Release: December 2000 (?) End of life: - URL: IVML24: MPC860 based board used in the "Integrated Voice Mail System", Large Version (24 voice channels) Manufacturer: Speech Design, Date of Release: March 2001 (?) End of life: - URL: HERMES: Hermes-Pro ISDN/LAN router with integrated 8 x hub Manufacturer: Multidata Gesellschaft fur Datentechnik und Informatik Date of Release: 2000 (?) End of life: - URL: IP860: VMEBus IP (Industry Pack) carrier board with MPC860 Manufacturer: MicroSys GmbH, Date of Release: ? End of life: - URL: PCU_E: PCU = Peripheral Controller Unit, Extended Manufacturer: Siemens AG, ICN (Information and Communication Networks) Date of Release: April 2001 End of life: August 2001 URL: n. a. config RPXCLASSIC bool "RPX-Classic" help The RPX-Classic is a single-board computer based on the Motorola MPC860. It features 16MB of DRAM and a variable amount of flash, I2C EEPROM, thermal monitoring, a PCMCIA slot, a DIP switch and two LEDs. Variants with Ethernet ports exist. Say Y here to support it directly. config BSEIP bool "BSE-IP" help Say Y here to support the Bright Star Engineering ipEngine SBC. This is a credit-card-sized device featuring a MPC823 processor, 26MB DRAM, 4MB flash, Ethernet, a 16K-gate FPGA, USB, an LCD/video controller, and two RS232 ports. config MPC8XXFADS bool "FADS" select FADS config MPC86XADS bool "MPC86XADS" help MPC86x Application Development System by Freescale Semiconductor. The MPC86xADS is meant to serve as a platform for s/w and h/w development around the MPC86X processor families. select FADS config MPC885ADS bool "MPC885ADS" help Freescale Semiconductor MPC885 Application Development System (ADS). Also known as DUET. The MPC885ADS is meant to serve as a platform for s/w and h/w development around the MPC885 processor family. config TQM823L bool "TQM823L" help Say Y here to support the TQM823L, one of an MPC8xx-based family of mini SBCs (half credit-card size) from TQ Components first released in late 1999. Technical references are at , and , and an image at . config TQM850L bool "TQM850L" help Say Y here to support the TQM850L, one of an MPC8xx-based family of mini SBCs (half credit-card size) from TQ Components first released in late 1999. Technical references are at , and , and an image at . config TQM855L bool "TQM855L" help Say Y here to support the TQM855L, one of an MPC8xx-based family of mini SBCs (half credit-card size) from TQ Components first released in late 1999. Technical references are at , and , and an image at . config TQM860L bool "TQM860L" help Say Y here to support the TQM860L, one of an MPC8xx-based family of mini SBCs (half credit-card size) from TQ Components first released in late 1999. Technical references are at , and , and an image at . config FPS850L bool "FPS850L" config IVMS8 bool "IVMS8" help Say Y here to support the Integrated Voice-Mail Small 8-channel SBC from Speech Design, released March 2001. The manufacturer's website is at . config IVML24 bool "IVML24" help Say Y here to support the Integrated Voice-Mail Large 24-channel SBC from Speech Design, released March 2001. The manufacturer's website is at . config HERMES_PRO bool "HERMES" config IP860 bool "IP860" config LWMON bool "LWMON" config PCU_E bool "PCU_E" config CCM bool "CCM" config LANTEC bool "LANTEC" config MBX bool "MBX" help MBX is a line of Motorola single-board computer based around the MPC821 and MPC860 processors, and intended for embedded-controller applications. Say Y here to support these boards directly. config WINCEPT bool "WinCept" help The Wincept 100/110 is a Motorola single-board computer based on the MPC821 PowerPC, introduced in 1998 and designed to be used in thin-client machines. Say Y to support it directly. endchoice menu "Freescale Ethernet driver platform-specific options" depends on FS_ENET config MPC8xx_SECOND_ETH bool "Second Ethernet channel" depends on (MPC885ADS || MPC86XADS) default y help This enables support for second Ethernet on MPC885ADS and MPC86xADS boards. The latter will use SCC1, for 885ADS you can select it below. choice prompt "Second Ethernet channel" depends on MPC8xx_SECOND_ETH default MPC8xx_SECOND_ETH_FEC2 config MPC8xx_SECOND_ETH_FEC2 bool "FEC2" depends on MPC885ADS help Enable FEC2 to serve as 2-nd Ethernet channel. Note that SMC2 (often 2-nd UART) will not work if this is enabled. config MPC8xx_SECOND_ETH_SCC1 bool "SCC1" depends on MPC86XADS select MPC8xx_SCC_ENET_FIXED help Enable SCC1 to serve as 2-nd Ethernet channel. Note that SMC1 (often 1-nd UART) will not work if this is enabled. config MPC8xx_SECOND_ETH_SCC3 bool "SCC3" depends on MPC885ADS help Enable SCC3 to serve as 2-nd Ethernet channel. Note that SMC1 (often 1-nd UART) will not work if this is enabled. endchoice config MPC8xx_SCC_ENET_FIXED depends on MPC8xx_SECOND_ETH_SCC default n bool "Use fixed MII-less mode for SCC Ethernet" endmenu choice prompt "Machine Type" depends on 6xx default PPC_PREP ---help--- Linux currently supports several different kinds of PowerPC-based machines: Apple Power Macintoshes and clones (such as the Motorola Starmax series), PReP (PowerPC Reference Platform) machines (such as the Motorola PowerStacks, Motorola cPCI/VME embedded systems, and some IBM RS/6000 systems), CHRP (Common Hardware Reference Platform) machines (including all of the recent IBM RS/6000 and pSeries machines), and several embedded PowerPC systems containing 4xx, 6xx, 7xx, 8xx, 74xx, and 82xx processors. Currently, the default option is to build a kernel which works on PReP. Note that support for Apple and CHRP machines is now only available with ARCH=powerpc, and has been removed from this menu. If you wish to build a kernel for an Apple or CHRP machine, exit this configuration process and re-run it with ARCH=powerpc. Select PReP if configuring for a PReP machine. Select Gemini if configuring for a Synergy Microsystems' Gemini series Single Board Computer. More information is available at: . Select APUS if configuring for a PowerUP Amiga. More information is available at: . config PPC_PREP bool "PReP" config APUS bool "Amiga-APUS" depends on BROKEN help Select APUS if configuring for a PowerUP Amiga. More information is available at: . config KATANA bool "Artesyn-Katana" help Select KATANA if configuring an Artesyn KATANA 750i or 3750 cPCI board. config WILLOW bool "Cogent-Willow" config CPCI690 bool "Force-CPCI690" help Select CPCI690 if configuring a Force CPCI690 cPCI board. config POWERPMC250 bool "Force-PowerPMC250" config CHESTNUT bool "IBM 750FX Eval board or 750GX Eval board" help Select CHESTNUT if configuring an IBM 750FX Eval Board or a IBM 750GX Eval board. config SPRUCE bool "IBM-Spruce" select PPC_INDIRECT_PCI config HDPU bool "Sky-HDPU" help Select HDPU if configuring a Sky Computers Compute Blade. config HDPU_FEATURES depends on HDPU tristate "HDPU-Features" help Select to enable HDPU enhanced features. config EV64260 bool "Marvell-EV64260BP" help Select EV64260 if configuring a Marvell (formerly Galileo) EV64260BP Evaluation platform. config LOPEC bool "Motorola-LoPEC" select PPC_I8259 config MVME5100 bool "Motorola-MVME5100" select PPC_INDIRECT_PCI config PPLUS bool "Motorola-PowerPlus" select PPC_I8259 select PPC_INDIRECT_PCI config PRPMC750 bool "Motorola-PrPMC750" select PPC_INDIRECT_PCI config PRPMC800 bool "Motorola-PrPMC800" select PPC_INDIRECT_PCI config SANDPOINT bool "Motorola-Sandpoint" select PPC_I8259 help Select SANDPOINT if configuring for a Motorola Sandpoint X3 (any flavor). config RADSTONE_PPC7D bool "Radstone Technology PPC7D board" select PPC_I8259 config PAL4 bool "SBS-Palomar4" config EST8260 bool "EST8260" ---help--- The EST8260 is a single-board computer manufactured by Wind River Systems, Inc. (formerly Embedded Support Tools Corp.) and based on the MPC8260. Wind River Systems has a website at , but the EST8260 cannot be found on it and has probably been discontinued or rebadged. config SBC82xx bool "SBC82xx" ---help--- SBC PowerQUICC II, single-board computer with MPC82xx CPU Manufacturer: Wind River Systems, Inc. Date of Release: May 2003 End of Life: - URL: config SBS8260 bool "SBS8260" config RPX8260 bool "RPXSUPER" config TQM8260 bool "TQM8260" ---help--- MPC8260 based module, little larger than credit card, up to 128 MB global + 64 MB local RAM, 32 MB Flash, 32 kB EEPROM, 256 kB L@ Cache, 10baseT + 100baseT Ethernet, 2 x serial ports, ... Manufacturer: TQ Components, www.tq-group.de Date of Release: June 2001 End of Life: not yet :-) URL: config ADS8272 bool "ADS8272" config PQ2FADS bool "Freescale-PQ2FADS" help Select PQ2FADS if you wish to configure for a Freescale PQ2FADS board (-VR or -ZU). config LITE5200 bool "Freescale LITE5200 / (IceCube)" select PPC_MPC52xx help Support for the LITE5200 dev board for the MPC5200 from Freescale. This is for the LITE5200 version 2.0 board. Don't know if it changes much but it's only been tested on this board version. I think this board is also known as IceCube. config LITE5200B bool "Freescale LITE5200B" depends on LITE5200 help Support for the LITE5200B dev board for the MPC5200 from Freescale. This is the new board with 2 PCI slots. config MPC834x_SYS bool "Freescale MPC834x SYS" help This option enables support for the MPC 834x SYS evaluation board. Be aware that PCI buses can only function when SYS board is plugged into the PIB (Platform IO Board) board from Freescale which provide 3 PCI slots. The PIBs PCI initialization is the bootloader's responsibility. config EV64360 bool "Marvell-EV64360BP" help Select EV64360 if configuring a Marvell EV64360BP Evaluation platform. endchoice config PQ2ADS bool depends on ADS8272 default y config TQM8xxL bool depends on 8xx && (TQM823L || TQM850L || FPS850L || TQM855L || TQM860L) default y config EMBEDDEDBOOT bool depends on 8xx || 8260 default y config PPC_MPC52xx bool config 8260 bool "CPM2 Support" if WILLOW depends on 6xx default y if TQM8260 || RPX8260 || EST8260 || SBS8260 || SBC82xx || PQ2FADS help The MPC8260 is a typical embedded CPU made by Motorola. Selecting this option means that you wish to build a kernel for a machine with an 8260 class CPU. config 8272 bool depends on 6xx default y if ADS8272 select 8260 help The MPC8272 CPM has a different internal dpram setup than other CPM2 devices config 83xx bool default y if MPC834x_SYS config MPC834x bool default y if MPC834x_SYS config PPC_83xx bool default y if 83xx config CPM1 bool depends on 8xx default y help The CPM1 (Communications Processor Module) is a coprocessor on embedded CPUs made by Motorola. Selecting this option means that you wish to build a kernel for a machine with a CPM1 coprocessor on it (8xx, 827x, 8560). config CPM2 bool depends on 8260 || MPC8560 || MPC8555 default y help The CPM2 (Communications Processor Module) is a coprocessor on embedded CPUs made by Motorola. Selecting this option means that you wish to build a kernel for a machine with a CPM2 coprocessor on it (826x, 827x, 8560). config PPC_GEN550 bool depends on SANDPOINT || SPRUCE || PPLUS || \ PRPMC750 || PRPMC800 || LOPEC || \ (EV64260 && !SERIAL_MPSC) || CHESTNUT || RADSTONE_PPC7D || \ 83xx default y config FORCE bool depends on 6xx && POWERPMC250 default y config GT64260 bool depends on EV64260 || CPCI690 default y config MV64360 # Really MV64360 & MV64460 bool depends on CHESTNUT || KATANA || RADSTONE_PPC7D || HDPU || EV64360 default y config MV64X60 bool depends on (GT64260 || MV64360) select PPC_INDIRECT_PCI default y menu "Set bridge options" depends on MV64X60 config NOT_COHERENT_CACHE bool "Turn off Cache Coherency" default n help Some 64x60 bridges lock up when trying to enforce cache coherency. When this option is selected, cache coherency will be turned off. Note that this can cause other problems (e.g., stale data being speculatively loaded via a cached mapping). Use at your own risk. config MV64X60_BASE hex "Set bridge base used by firmware" default "0xf1000000" help A firmware can leave the base address of the bridge's registers at a non-standard location. If so, set this value to reflect the address of that non-standard location. config MV64X60_NEW_BASE hex "Set bridge base used by kernel" default "0xf1000000" help If the current base address of the bridge's registers is not where you want it, set this value to the address that you want it moved to. endmenu config NONMONARCH_SUPPORT bool "Enable Non-Monarch Support" depends on PRPMC800 config HARRIER bool depends on PRPMC800 default y config EPIC_SERIAL_MODE bool depends on 6xx && (LOPEC || SANDPOINT) default y config MPC10X_BRIDGE bool depends on POWERPMC250 || LOPEC || SANDPOINT select PPC_INDIRECT_PCI default y config MPC10X_OPENPIC bool depends on POWERPMC250 || LOPEC || SANDPOINT default y config MPC10X_STORE_GATHERING bool "Enable MPC10x store gathering" depends on MPC10X_BRIDGE config SANDPOINT_ENABLE_UART1 bool "Enable DUART mode on Sandpoint" depends on SANDPOINT help If this option is enabled then the MPC824x processor will run in DUART mode instead of UART mode. config HARRIER_STORE_GATHERING bool "Enable Harrier store gathering" depends on HARRIER config MVME5100_IPMC761_PRESENT bool "MVME5100 configured with an IPMC761" depends on MVME5100 select PPC_I8259 config SPRUCE_BAUD_33M bool "Spruce baud clock support" depends on SPRUCE config PC_KEYBOARD bool "PC PS/2 style Keyboard" depends on 4xx || CPM2 config PPCBUG_NVRAM bool "Enable reading PPCBUG NVRAM during boot" if PPLUS || LOPEC default y if PPC_PREP config SMP depends on PPC_STD_MMU bool "Symmetric multi-processing support" ---help--- This enables support for systems with more than one CPU. If you have a system with only one CPU, say N. If you have a system with more than one CPU, say Y. Note that the kernel does not currently support SMP machines with 603/603e/603ev or PPC750 ("G3") processors since they have inadequate hardware support for multiprocessor operation. If you say N here, the kernel will run on single and multiprocessor machines, but will use only one CPU of a multiprocessor machine. If you say Y here, the kernel will run on single-processor machines. On a single-processor machine, the kernel will run faster if you say N here. If you don't know what to do here, say N. config IRQ_ALL_CPUS bool "Distribute interrupts on all CPUs by default" depends on SMP && !MV64360 help This option gives the kernel permission to distribute IRQs across multiple CPUs. Saying N here will route all IRQs to the first CPU. Generally saying Y is safe, although some problems have been reported with SMP Power Macintoshes with this option enabled. config NR_CPUS int "Maximum number of CPUs (2-32)" range 2 32 depends on SMP default "4" config HIGHMEM bool "High memory support" config ARCH_POPULATES_NODE_MAP def_bool y source kernel/Kconfig.hz source kernel/Kconfig.preempt source "mm/Kconfig" source "fs/Kconfig.binfmt" config PREP_RESIDUAL bool "Support for PReP Residual Data" depends o/* * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation * Provides Bus interface for MIIM regs * * Author: Andy Fleming <afleming@freescale.com> * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> * * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc. * * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/unistd.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/phy.h> #include <linux/of.h> #include <linux/of_mdio.h> #include <linux/of_platform.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/uaccess.h> #include <asm/ucc.h> #include "gianfar.h" #include "fsl_pq_mdio.h" struct fsl_pq_mdio_priv { void __iomem *map; struct fsl_pq_mdio __iomem *regs; }; /* * Write value to the PHY at mii_id at register regnum, * on the bus attached to the local interface, which may be different from the * generic mdio bus (tied to a single interface), waiting until the write is * done before returning. This is helpful in programming interfaces like * the TBI which control interfaces like onchip SERDES and are always tied to * the local mdio pins, which may not be the same as system mdio bus, used for * controlling the external PHYs, for example. */ int fsl_pq_local_mdio_write(struct fsl_pq_mdio __iomem *regs, int mii_id, int regnum, u16 value) { /* Set the PHY address and the register address we want to write */ out_be32(&regs->miimadd, (mii_id << 8) | regnum); /* Write out the value we want */ out_be32(&regs->miimcon, value); /* Wait for the transaction to finish */ while (in_be32(&regs->miimind) & MIIMIND_BUSY) cpu_relax(); return 0; } /* * Read the bus for PHY at addr mii_id, register regnum, and * return the value. Clears miimcom first. All PHY operation * done on the bus attached to the local interface, * which may be different from the generic mdio bus * This is helpful in programming interfaces like * the TBI which, in turn, control interfaces like onchip SERDES * and are always tied to the local mdio pins, which may not be the * same as system mdio bus, used for controlling the external PHYs, for eg. */ int fsl_pq_local_mdio_read(struct fsl_pq_mdio __iomem *regs, int mii_id, int regnum) { u16 value; /* Set the PHY address and the register address we want to read */ out_be32(&regs->miimadd, (mii_id << 8) | regnum); /* Clear miimcom, and then initiate a read */ out_be32(&regs->miimcom, 0); out_be32(&regs->miimcom, MII_READ_COMMAND); /* Wait for the transaction to finish */ while (in_be32(&regs->miimind) & (MIIMIND_NOTVALID | MIIMIND_BUSY)) cpu_relax(); /* Grab the value of the register from miimstat */ value = in_be32(&regs->miimstat); return value; } static struct fsl_pq_mdio __iomem *fsl_pq_mdio_get_regs(struct mii_bus *bus) { struct fsl_pq_mdio_priv *priv = bus->priv; return priv->regs; } /* * Write value to the PHY at mii_id at register regnum, * on the bus, waiting until the write is done before returning. */ int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 value) { struct fsl_pq_mdio __iomem *regs = fsl_pq_mdio_get_regs(bus); /* Write to the local MII regs */ return(fsl_pq_local_mdio_write(regs, mii_id, regnum, value)); } /* * Read the bus for PHY at addr mii_id, register regnum, and * return the value. Clears miimcom first. */ int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum) { struct fsl_pq_mdio __iomem *regs = fsl_pq_mdio_get_regs(bus); /* Read the local MII regs */ return(fsl_pq_local_mdio_read(regs, mii_id, regnum)); } /* Reset the MIIM registers, and wait for the bus to free */ static int fsl_pq_mdio_reset(struct mii_bus *bus) { struct fsl_pq_mdio __iomem *regs = fsl_pq_mdio_get_regs(bus); int timeout = PHY_INIT_TIMEOUT; mutex_lock(&bus->mdio_lock); /* Reset the management interface */ out_be32(&regs->miimcfg, MIIMCFG_RESET); /* Setup the MII Mgmt clock speed */ out_be32(&regs->miimcfg, MIIMCFG_INIT_VALUE); /* Wait until the bus is free */ whil