1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
|
/*
* Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "common.h"
#include "regs.h"
#include "sge_defs.h"
#include "firmware_exports.h"
/**
* t3_wait_op_done_val - wait until an operation is completed
* @adapter: the adapter performing the operation
* @reg: the register to check for completion
* @mask: a single-bit field within @reg that indicates completion
* @polarity: the value of the field when the operation is completed
* @attempts: number of check iterations
* @delay: delay in usecs between iterations
* @valp: where to store the value of the register at completion time
*
* Wait until an operation is completed by checking a bit in a register
* up to @attempts times. If @valp is not NULL the value of the register
* at the time it indicated completion is stored there. Returns 0 if the
* operation completes and -EAGAIN otherwise.
*/
int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
int polarity, int attempts, int delay, u32 *valp)
{
while (1) {
u32 val = t3_read_reg(adapter, reg);
if (!!(val & mask) == polarity) {
if (valp)
*valp = val;
return 0;
}
if (--attempts == 0)
return -EAGAIN;
if (delay)
udelay(delay);
}
}
/**
* t3_write_regs - write a bunch of registers
* @adapter: the adapter to program
* @p: an array of register address/register value pairs
* @n: the number of address/value pairs
* @offset: register address offset
*
* Takes an array of register address/register value pairs and writes each
* value to the corresponding register. Register addresses are adjusted
* by the supplied offset.
*/
void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
int n, unsigned int offset)
{
while (n--) {
t3_write_reg(adapter, p->reg_addr + offset, p->val);
p++;
}
}
/**
* t3_set_reg_field - set a register field to a value
* @adapter: the adapter to program
* @addr: the register address
* @mask: specifies the portion of the register to modify
* @val: the new value for the register field
*
* Sets a register field specified by the supplied mask to the
* given value.
*/
void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
u32 val)
{
u32 v = t3_read_reg(adapter, addr) & ~mask;
t3_write_reg(adapter, addr, v | val);
t3_read_reg(adapter, addr); /* flush */
}
/**
* t3_read_indirect - read indirectly addressed registers
* @adap: the adapter
* @addr_reg: register holding the indirect address
* @data_reg: register holding the value of the indirect register
* @vals: where the read register values are stored
* @start_idx: index of first indirect register to read
* @nregs: how many indirect registers to read
*
* Reads registers that are accessed indirectly through an address/data
* register pair.
*/
void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, u32 *vals, unsigned int nregs,
unsigned int start_idx)
{
while (nregs--) {
t3_write_reg(adap, addr_reg, start_idx);
*vals++ = t3_read_reg(adap, data_reg);
start_idx++;
}
}
/**
* t3_mc7_bd_read - read from MC7 through backdoor accesses
* @mc7: identifies MC7 to read from
* @start: index of first 64-bit word to read
* @n: number of 64-bit words to read
* @buf: where to store the read result
*
* Read n 64-bit words from MC7 starting at word start, using backdoor
* accesses.
*/
int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
u64 *buf)
{
static const int shift[] = { 0, 0, 16, 24 };
static const int step[] = { 0, 32, 16, 8 };
unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
struct adapter *adap = mc7->adapter;
if (start >= size64 || start + n > size64)
return -EINVAL;
start *= (8 << mc7->width);
while (n--) {
int i;
u64 val64 = 0;
for (i = (1 << mc7->width) - 1; i >= 0; --i) {
int attempts = 10;
u32 val;
t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
while ((val & F_BUSY) && attempts--)
val = t3_read_reg(adap,
mc7->offset + A_MC7_BD_OP);
if (val & F_BUSY)
return -EIO;
val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
if (mc7->width == 0) {
val64 = t3_read_reg(adap,
mc7->offset +
A_MC7_BD_DATA0);
val64 |= (u64) val << 32;
} else {
if (mc7->width > 1)
val >>= shift[mc7->width];
val64 |= (u64) val << (step[mc7->width] * i);
}
start += 8;
}
*buf++ = val64;
}
return 0;
}
/*
* Initialize MI1.
*/
static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
{
u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
V_CLKDIV(clkdiv);
if (!(ai->caps & SUPPORTED_10000baseT_Full))
val |= V_ST(1);
t3_write_reg(adap, A_MI1_CFG, val);
}
#define MDIO_ATTEMPTS 10
/*
* MI1 read/write operations for direct-addressed PHYs.
*/
static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
int reg_addr, unsigned int *valp)
{
int ret;
u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
if (mmd_addr)
return -EINVAL;
mutex_lock(&adapter->mdio_lock);
t3_write_reg(adapter, A_MI1_ADDR, addr);
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
if (!ret)
*valp = t3_read_reg(adapter, A_MI1_DATA);
mutex_unlock(&adapter->mdio_lock);
return ret;
}
static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
int reg_addr, unsigned int val)
{
int ret;
u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
if (mmd_addr)
return -EINVAL;
mutex_lock(&adapter->mdio_lock);
t3_write_reg(adapter, A_MI1_ADDR, addr);
t3_write_reg(adapter, A_MI1_DATA, val);
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
mutex_unlock(&adapter->mdio_lock);
return ret;
}
static const struct mdio_ops mi1_mdio_ops = {
mi1_read,
mi1_write
};
/*
* MI1 read/write operations for indirect-addressed PHYs.
*/
static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
int reg_addr, unsigned int *valp)
{
int ret;
u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
mutex_lock(&adapter->mdio_lock);
t3_write_reg(adapter, A_MI1_ADDR, addr);
t3_write_reg(adapter, A_MI1_DATA, reg_addr);
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
if (!ret) {
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
MDIO_ATTEMPTS, 20);
if (!ret)
*valp = t3_read_reg(adapter, A_MI1_DATA);
}
mutex_unlock(&adapter->mdio_lock);
return ret;
}
static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
int reg_addr, unsigned int val)
{
int ret;
u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
mutex_lock(&adapter->mdio_lock);
t3_write_reg(adapter, A_MI1_ADDR, addr);
t3_write_reg(adapter, A_MI1_DATA, reg_addr);
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
if (!ret) {
t3_write_reg(adapter, A_MI1_DATA, val);
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
MDIO_ATTEMPTS, 20);
}
mutex_unlock(&adapter->mdio_lock);
return ret;
}
static const struct mdio_ops mi1_mdio_ext_ops = {
mi1_ext_read,
mi1_ext_write
};
/**
* t3_mdio_change_bits - modify the value of a PHY register
* @phy: the PHY to operate on
* @mmd: the device address
* @reg: the register address
* @clear: what part of the register value to mask off
* @set: what part of the register value to set
*
* Changes the value of a PHY register by applying a mask to its current
* value and ORing the result with a new value.
*/
int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
unsigned int set)
{
int ret;
unsigned int val;
ret = mdio_read(phy, mmd, reg, &val);
if (!ret) {
val &= ~clear;
ret = mdio_write(phy, mmd, reg, val | set);
}
return ret;
}
/**
* t3_phy_reset - reset a PHY block
* @phy: the PHY to operate on
* @mmd: the device address of the PHY block to reset
* @wait: how long to wait for the reset to complete in 1ms increments
*
* Resets a PHY block and optionally waits for the reset to complete.
* @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
* for 10G PHYs.
*/
int t3_phy_reset(struct cphy *phy, int mmd, int wait)
{
int err;
unsigned int ctl;
err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
if (err || !wait)
return err;
do {
err = mdio_read(phy, mmd, MII_BMCR, &ctl);
if (err)
return err;
ctl &= BMCR_RESET;
if (ctl)
msleep(1);
} while (ctl && --wait);
return ctl ? -1 : 0;
}
/**
* t3_phy_advertise - set the PHY advertisement registers for autoneg
* @phy: the PHY to operate on
* @advert: bitmap of capabilities the PHY should advertise
*
* Sets a 10/100/1000 PHY's advertisement registers to advertise the
* requested capabilities.
*/
int t3_phy_advertise(struct cphy *phy, unsigned int advert)
{
int err;
unsigned int val = 0;
err = mdio_read(phy, 0, MII_CTRL1000, &val);
if (err)
return err;
val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
if (advert & ADVERTISED_1000baseT_Half)
val |= ADVERTISE_1000HALF;
if (advert & ADVERTISED_1000baseT_Full)
val |= ADVERTISE_1000FULL;
err = mdio_write(phy, 0, MII_CTRL1000, val);
if (err)
return err;
val = 1;
if (advert & ADVERTISED_10baseT_Half)
val |= ADVERTISE_10HALF;
if (advert & ADVERTISED_10baseT_Full)
val |= ADVERTISE_10FULL;
if (advert & ADVERTISED_100baseT_Half)
val |= ADVERTISE_100HALF;
if (advert & ADVERTISED_100baseT_Full)
val |= ADVERTISE_100FULL;
if (advert & ADVERTISED_Pause)
val |= ADVERTISE_PAUSE_CAP;
if (advert & ADVERTISED_Asym_Pause)
val |= ADVERTISE_PAUSE_ASYM;
return mdio_write(phy, 0, MII_ADVERTISE, val);
}
/**
* t3_set_phy_speed_duplex - force PHY speed and duplex
* @phy: the PHY to operate on
* @speed: requested PHY speed
* @duplex: requested PHY duplex
*
* Force a 10/100/1000 PHY's speed and duplex. This also disables
* auto-negotiation except for GigE, where auto-negotiation is mandatory.
*/
int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
{
int err;
unsigned int ctl;
err = mdio_read(phy, 0, MII_BMCR, &ctl);
if (err)
return err;
if (speed >= 0) {
ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
if (speed == SPEED_100)
ctl |= BMCR_SPEED100;
else if (speed == SPEED_1000)
ctl |= BMCR_SPEED1000;
}
if (duplex >= 0) {
ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
if (duplex == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
}
if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
ctl |= BMCR_ANENABLE;
return mdio_write(phy, 0, MII_BMCR, ctl);
}
static const struct adapter_info t3_adap_info[] = {
{2, 0, 0, 0,
F_GPIO2_OEN | F_GPIO4_OEN |
F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
SUPPORTED_OFFLOAD,
&mi1_mdio_ops, "Chelsio PE9000"},
{2, 0, 0, 0,
F_GPIO2_OEN | F_GPIO4_OEN |
F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
SUPPORTED_OFFLOAD,
&mi1_mdio_ops, "Chelsio T302"},
{1, 0, 0, 0,
F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
&mi1_mdio_ext_ops, "Chelsio T310"},
{2, 0, 0, 0,
F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
&mi1_mdio_ext_ops, "Chelsio T320"},
};
/*
* Return the adapter_info structure with a given index. Out-of-range indices
* return NULL.
*/
const struct adapter_info *t3_get_adapter_info(unsigned int id)
{
return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
}
#define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
#define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
static const struct port_type_info port_types[] = {
{NULL},
{t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
"10GBASE-XR"},
{t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
"10/100/1000BASE-T"},
{NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
"10/100/1000BASE-T"},
{t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
{NULL, CAPS_10G, "10GBASE-KX4"},
{t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
{t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
"10GBASE-SR"},
{NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
};
#undef CAPS_1G
#undef CAPS_10G
#define VPD_ENTRY(name, len) \
u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
/*
* Partial EEPROM Vital Product Data structure. Includes only the ID and
* VPD-R sections.
*/
struct t3_vpd {
u8 id_tag;
u8 id_len[2];
u8 id_data[16];
u8 vpdr_tag;
u8 vpdr_len[2];
VPD_ENTRY(pn, 16); /* part number */
VPD_ENTRY(ec, 16); /* EC level */
VPD_ENTRY(sn, 16); /* serial number */
VPD_ENTRY(na, 12); /* MAC address base */
VPD_ENTRY(cclk, 6); /* core clock */
VPD_ENTRY(mclk, 6); /* mem clock */
VPD_ENTRY(uclk, 6); /* uP clk */
VPD_ENTRY(mdc, 6); /* MDIO clk */
VPD_ENTRY(mt, 2); /* mem timing */
VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
VPD_ENTRY(port0, 2); /* PHY0 complex */
VPD_ENTRY(port1, 2); /* PHY1 complex */
VPD_ENTRY(port2, 2); /* PHY2 complex */
VPD_ENTRY(port3, 2); /* PHY3 complex */
VPD_ENTRY(rv, 1); /* csum */
u32 pad; /* for multiple-of-4 sizing and alignment */
};
#define EEPROM_MAX_POLL 4
#define EEPROM_STAT_ADDR 0x4000
#define VPD_BASE 0xc00
/**
* t3_seeprom_read - read a VPD EEPROM location
* @adapter: adapter to read
* @addr: EEPROM address
* @data: where to store the read data
*
* Read a 32-bit word from a location in VPD EEPROM using the card's PCI
* VPD ROM capability. A zero is written to the flag bit when the
* addres is written to the control register. The hardware device will
* set the flag to 1 when 4 bytes have been read into the data register.
*/
int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
{
u16 val;
int attempts = EEPROM_MAX_POLL;
unsigned int base = adapter->params.pci.vpd_cap_addr;
if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
return -EINVAL;
pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
do {
udelay(10);
pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
} while (!(val & PCI_VPD_ADDR_F) && --attempts);
if (!(val & PCI_VPD_ADDR_F)) {
CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
return -EIO;
}
pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
*data = le32_to_cpu(*data);
return 0;
}
/**
* t3_seeprom_write - write a VPD EEPROM location
* @adapter: adapter to write
* @addr: EEPROM address
* @data: value to write
*
* Write a 32-bit word to a location in VPD EEPROM using the card's PCI
* VPD ROM capability.
*/
int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
{
u16 val;
int attempts = EEPROM_MAX_POLL;
unsigned int base = adapter->params.pci.vpd_cap_addr;
if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
return -EINVAL;
pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
cpu_to_le32(data));
pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
addr | PCI_VPD_ADDR_F);
do {
msleep(1);
pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
} while ((val & PCI_VPD_ADDR_F) && --attempts);
if (val & PCI_VPD_ADDR_F) {
CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
return -EIO;
}
return 0;
}
/**
* t3_seeprom_wp - enable/disable EEPROM write protection
* @adapter: the adapter
* @enable: 1 to enable write protection, 0 to disable it
*
* Enables or disables write protection on the serial EEPROM.
*/
int t3_seeprom_wp(struct adapter *adapter, int enable)
{
return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
}
/*
* Convert a character holding a hex digit to a number.
*/
static unsigned int hex2int(unsigned char c)
{
return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
}
/**
* get_vpd_params - read VPD parameters from VPD EEPROM
* @adapter: adapter to read
* @p: where to store the parameters
*
* Reads card parameters stored in VPD EEPROM.
*/
static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
{
int i, addr, ret;
struct t3_vpd vpd;
/*
* Card information is normally at VPD_BASE but some early cards had
* it at 0.
*/
ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
if (ret)
return ret;
addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
for (i = 0; i < sizeof(vpd); i += 4) {
ret = t3_seeprom_read(adapter, addr + i,
(u32 *)((u8 *)&vpd + i));
if (ret)
return ret;
}
p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
/* Old eeproms didn't have port information */
if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
} else {
p->port_type[0] = hex2int(vpd.port0_data[0]);
p->port_type[1] = hex2int(vpd.port1_data[0]);
p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
}
for (i = 0; i < 6; i++)
p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
hex2int(vpd.na_data[2 * i + 1]);
return 0;
}
/* serial flash and firmware constants */
enum {
SF_ATTEMPTS = 5, /* max retries for SF1 operations */
SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
/* flash command opcodes */
SF_PROG_PAGE = 2, /* program page */
SF_WR_DISABLE = 4, /* disable writes */
SF_RD_STATUS = 5, /* read status register */
SF_WR_ENABLE = 6, /* enable writes */
SF_RD_DATA_FAST = 0xb, /* read flash */
SF_ERASE_SECTOR = 0xd8, /* erase sector */
FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
FW_VERS_ADDR = 0x77ffc, /* flash address holding FW version */
FW_MIN_SIZE = 8 /* at least version and csum */
};
/**
* sf1_read - read data from the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to read
* @cont: whether another operation will be chained
* @valp: where to store the read data
*
* Reads up to 4 bytes of data from the serial flash. The location of
* the read needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
u32 *valp)
{
int ret;
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
if (!ret)
*valp = t3_read_reg(adapter, A_SF_DATA);
return ret;
}
/**
* sf1_write - write data to the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to write
* @cont: whether another operation will be chained
* @val: value to write
*
* Writes up to 4 bytes of data to the serial flash. The location of
* the write needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
u32 val)
{
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SF_DATA, val);
t3_write_reg(adapter, A_SF_OP,
V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
}
/**
* flash_wait_op - wait for a flash operation to complete
* @adapter: the adapter
* @attempts: max number of polls of the status register
* @delay: delay between polls in ms
*
* Wait for a flash operation to complete by polling the status register.
*/
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
int ret;
u32 status;
while (1) {
if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
(ret = sf1_read(adapter, 1, 0, &status)) != 0)
return ret;
if (!(status & 1))
return 0;
if (--attempts == 0)
return -EAGAIN;
if (delay)
msleep(delay);
}
}
/**
* t3_read_flash - read words from serial flash
* @adapter: the adapter
* @addr: the start address for the read
* @nwords: how many 32-bit words to read
* @data: where to store the read data
* @byte_oriented: whether to store data as bytes or as words
*
* Read the specified number of 32-bit words from the serial flash.
* If @byte_oriented is set the read data is stored as a byte array
* (i.e., big-endian), otherwise as 32-bit words in the platform's
* natural endianess.
*/
int t3_read_flash(struct adapter *adapter, unsigned int addr,
unsigned int nwords, u32 *data, int byte_oriented)
{
int ret;
if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
return -EINVAL;
addr = swab32(addr) | SF_RD_DATA_FAST;
if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
(ret = sf1_read(adapter, 1, 1, data)) != 0)
return ret;
for (; nwords; nwords--, data++) {
ret = sf1_read(adapter, 4, nwords > 1, data);
if (ret)
return ret;
if (byte_oriented)
*data = htonl(*data);
}
return 0;
}
/**
* t3_write_flash - write up to a page of data to the serial flash
* @adapter: the adapter
* @addr: the start address to write
* @n: length of data to write
* @data: the data to write
*
* Writes up to a page of data (256 bytes) to the serial flash starting
* at the given address.
*/
static int t3_write_flash(struct adapter *adapter, unsigned int addr,
unsigned int n, const u8 *data)
{
int ret;
u32 buf[64];
unsigned int i, c, left, val, offset = addr & 0xff;
if (addr + n > SF_SIZE || offset + n > 256)
return -EINVAL;
val = swab32(addr) | SF_PROG_PAGE;
if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 1, val)) != 0)
return ret;
for (left = n; left; left -= c) {
c = min(left, 4U);
for (val = 0, i = 0; i < c; ++i)
val = (val << 8) + *data++;
ret = sf1_write(adapter, c, c != left, val);
if (ret)
return ret;
}
if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
return ret;
/* Read the page to verify the write succeeded */
ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
if (ret)
return ret;
if (memcmp(data - n, (u8 *) buf + offset, n))
return -EIO;
return 0;
}
enum fw_version_type {
FW_VERSION_N3,
FW_VERSION_T3
};
/**
* t3_get_fw_version - read the firmware version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the FW version from flash.
*/
int t3_get_fw_version(struct adapter *adapter, u32 *vers)
{
return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
}
/**
* t3_check_fw_version - check if the FW is compatible with this driver
* @adapter: the adapter
*
* Checks if an adapter's FW is compatible with the driver. Returns 0
* if the versions are compatible, a negative error otherwise.
*/
int t3_check_fw_version(struct adapter *adapter)
{
int ret;
u32 vers;
unsigned int type, major, minor;
ret = t3_get_fw_version(adapter, &vers);
if (ret)
return ret;
type = G_FW_VERSION_TYPE(vers);
major = G_FW_VERSION_MAJOR(vers);
minor = G_FW_VERSION_MINOR(vers);
if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
minor == FW_VERSION_MINOR)
return 0;
CH_ERR(adapter, "found wrong FW version(%u.%u), "
"driver needs version %u.%u\n", major, minor,
FW_VERSION_MAJOR, FW_VERSION_MINOR);
return -EINVAL;
}
/**
* t3_flash_erase_sectors - erase a range of flash sectors
* @adapter: the adapter
* @start: the first sector to erase
* @end: the last sector to erase
*
* Erases the sectors in the given range.
*/
static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
while (start <= end) {
int ret;
if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 0,
SF_ERASE_SECTOR | (start << 8))) != 0 ||
(ret = flash_wait_op(adapter, 5, 500)) != 0)
return ret;
start++;
}
return 0;
}
/*
* t3_load_fw - download firmware
* @adapter: the adapter
* @fw_data: the firrware image to write
* @size: image size
*
* Write the supplied firmware image to the card's serial flash.
* The FW image has the following sections: @size - 8 bytes of code and
* data, followed by 4 bytes of FW version, followed by the 32-bit
* 1's complement checksum of the whole image.
*/
int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
{
u32 csum;
unsigned int i;
const u32 *p = (const u32 *)fw_data;
int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
if ((size & 3) || size < FW_MIN_SIZE)
return -EINVAL;
if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
return -EFBIG;
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
csum += ntohl(p[i]);
if (csum != 0xffffffff) {
CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
csum);
return -EINVAL;
}
ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
if (ret)
goto out;
size -= 8; /* trim off version and checksum */
for (addr = FW_FLASH_BOOT_ADDR; size;) {
unsigned int chunk_size = min(size, 256U);
ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
if (ret)
goto out;
addr += chunk_size;
fw_data += chunk_size;
size -= chunk_size;
}
ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
out:
if (ret)
CH_ERR(adapter, "firmware download failed, error %d\n", ret);
return ret;
}
#define CIM_CTL_BASE 0x2000
/**
* t3_cim_ctl_blk_read - read a block from CIM control region
*
* @adap: the adapter
* @addr: the start address within the CIM control region
* @n: number of words to read
* @valp: where to store the result
*
* Reads a block of 4-byte words from the CIM control region.
*/
int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
unsigned int n, unsigned int *valp)
{
int ret = 0;
if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
return -EBUSY;
for ( ; !ret && n--; addr += 4) {
t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
0, 5, 2);
if (!ret)
*valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
}
return ret;
}
/**
* t3_link_changed - handle interface link changes
* @adapter: the adapter
* @port_id: the port index that changed link state
*
* Called when a port's link settings change to propagate the new values
* to the associated PHY and MAC. After performing the common tasks it
* invokes an OS-specific handler.
*/
void t3_link_changed(struct adapter *adapter, int port_id)
{
int link_ok, speed, duplex, fc;
struct port_info *pi = adap2pinfo(adapter, port_id);
struct cphy *phy = &pi->phy;
struct cmac *mac = &pi->mac;
struct link_config *lc = &pi->link_config;
phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
uses_xaui(adapter)) {
if (link_ok)
t3b_pcs_reset(mac);
t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
link_ok ? F_TXACTENABLE | F_RXEN : 0);
}
lc->link_ok = link_ok;
lc->speed = speed < 0 ? SPEED_INVALID : speed;
lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
if (lc->requested_fc & PAUSE_AUTONEG)
fc &= lc->requested_fc;
else
fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
/* Set MAC speed, duplex, and flow control to match PHY. */
t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
lc->fc = fc;
}
t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
}
/**
* t3_link_start - apply link configuration to MAC/PHY
* @phy: the PHY to setup
* @mac: the MAC to setup
* @lc: the requested link configuration
*
* Set up a port's MAC and PHY according to a desired link configuration.
* - If the PHY can auto-negotiate first decide what to advertise, then
* enable/disable auto-negotiation as desired, and reset.
* - If the PHY does not auto-negotiate just reset it.
* - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
* otherwise do it later based on the outcome of auto-negotiation.
*/
int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
{
unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
lc->link_ok = 0;
if (lc->supported & SUPPORTED_Autoneg) {
lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
if (fc) {
lc->advertising |= ADVERTISED_Asym_Pause;
if (fc & PAUSE_RX)
lc->advertising |= ADVERTISED_Pause;
}
phy->ops->advertise(phy, lc->advertising);
if (lc->autoneg == AUTONEG_DISABLE) {
lc->speed = lc->requested_speed;
lc->duplex = lc->requested_duplex;
lc->fc = (unsigned char)fc;
t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
fc);
/* Also disables autoneg */
phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
phy->ops->reset(phy, 0);
} else
phy->ops->autoneg_enable(phy);
} else {
t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
lc->fc = (unsigned char)fc;
phy->ops->reset(phy, 0);
}
return 0;
}
/**
* t3_set_vlan_accel - control HW VLAN extraction
* @adapter: the adapter
* @ports: bitmap of adapter ports to operate on
* @on: enable (1) or disable (0) HW VLAN extraction
*
* Enables or disables HW extraction of VLAN tags for the given port.
*/
void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
{
t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
ports << S_VLANEXTRACTIONENABLE,
on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
}
struct intr_info {
unsigned int mask; /* bits to check in interrupt status */
const char *msg; /* message to print or NULL */
short stat_idx; /* stat counter to increment or -1 */
unsigned short fatal:1; /* whether the condition reported is fatal */
};
/**
* t3_handle_intr_status - table driven interrupt handler
* @adapter: the adapter that generated the interrupt
* @reg: the interrupt status register to process
* @mask: a mask to apply to the interrupt status
* @acts: table of interrupt actions
* @stats: statistics counters tracking interrupt occurences
*
* A table driven interrupt handler that applies a set of masks to an
* interrupt status word and performs the corresponding actions if the
* interrupts described by the mask have occured. The actions include
* optionally printing a warning or alert message, and optionally
* incrementing a stat counter. The table is terminated by an entry
* specifying mask 0. Returns the number of fatal interrupt conditions.
*/
static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
unsigned int mask,
const struct intr_info *acts,
unsigned long *stats)
{
int fatal = 0;
unsigned int status = t3_read_reg(adapter, reg) & mask;
for (; acts->mask; ++acts) {
if (!(status & acts->mask))
continue;
if (acts->fatal) {
fatal++;
CH_ALERT(adapter, "%s (0x%x)\n",
acts->msg, status & acts->mask);
} else if (acts->msg)
CH_WARN(adapter, "%s (0x%x)\n",
acts->msg, status & acts->mask);
if (acts->stat_idx >= 0)
stats[acts->stat_idx]++;
}
if (status) /* clear processed interrupts */
t3_write_reg(adapter, reg, status);
return fatal;
}
#define SGE_INTR_MASK (F_RSPQDISABLED)
#define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
F_NFASRCHFAIL)
#define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
#define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
#define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
#define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
/* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
V_BISTERR(M_BISTERR) | F_PEXERR)
#define ULPRX_INTR_MASK F_PARERR
#define ULPTX_INTR_MASK 0
#define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
F_ZERO_SWITCH_ERROR)
#define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
#define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
#define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
#define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
V_RXTPPARERRENB(M_RXTPPARERRENB) | \
V_MCAPARERRENB(M_MCAPARERRENB))
#define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
F_MPS0 | F_CPL_SWITCH)
/*
* Interrupt handler for the PCIX1 module.
*/
static void pci_intr_handler(struct adapter *adapter)
{
static const struct intr_info pcix1_intr_info[] = {
{F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
{F_SIGTARABT, "PCI signaled target abort", -1, 1},
{F_RCVTARABT, "PCI received target abort", -1, 1},
{F_RCVMSTABT, "PCI received master abort", -1, 1},
{F_SIGSYSERR, "PCI signaled system error", -1, 1},
{F_DETPARERR, "PCI detected parity error", -1, 1},
{F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
{F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
{F_RCVSPLCMPERR, "PCI received split completion error", -1,
1},
{F_DETCORECCERR, "PCI correctable ECC error",
STAT_PCI_CORR_ECC, 0},
{F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
{F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
{V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1},
{V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1},
{V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1},
{V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
"error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
pcix1_intr_info, adapter->irq_stats))
t3_fatal_err(adapter);
}
/*
* Interrupt handler for the PCIE module.
*/
static void pcie_intr_handler(struct adapter *adapter)
{
static const struct intr_info pcie_intr_info[] = {
{F_PEXERR, "PCI PEX error", -1, 1},
{F_UNXSPLCPLERRR,
"PCI unexpected split completion DMA read error", -1, 1},
{F_UNXSPLCPLERRC,
"PCI unexpected split completion DMA command error", -1, 1},
{F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
{F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
{F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
{F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
{V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
"PCI MSI-X table/PBA parity error", -1, 1},
{V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
pcie_intr_info, adapter->irq_stats))
t3_fatal_err(adapter);
}
/*
* TP interrupt handler.
*/
static void tp_intr_handler(struct adapter *adapter)
{
static const struct intr_info tp_intr_info[] = {
{0xffffff, "TP parity error", -1, 1},
{0x1000000, "TP out of Rx pages", -1, 1},
{0x2000000, "TP out of Tx pages", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
tp_intr_info, NULL))
t3_fatal_err(adapter);
}
/*
* CIM interrupt handler.
*/
static void cim_intr_handler(struct adapter *adapter)
{
static const struct intr_info cim_intr_info[] = {
{F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
{F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
{F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
{F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
{F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
{F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
{F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
{F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
{F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
{F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
{F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
{F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
cim_intr_info, NULL))
t3_fatal_err(adapter);
}
/*
* ULP RX interrupt handler.
*/
static void ulprx_intr_handler(struct adapter *adapter)
{
static const struct intr_info ulprx_intr_info[] = {
{F_PARERR, "ULP RX parity error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
ulprx_intr_info, NULL))
t3_fatal_err(adapter);
}
/*
* ULP TX interrupt handler.
*/
static void ulptx_intr_handler(struct adapter *adapter)
{
static const struct intr_info ulptx_intr_info[] = {
{F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
STAT_ULP_CH0_PBL_OOB, 0},
{F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
STAT_ULP_CH1_PBL_OOB, 0},
{0}
};
if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
ulptx_intr_info, adapter->irq_stats))
t3_fatal_err(adapter);
}
#define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
F_ICSPI1_TX_FRAMING_ERROR)
#define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
/*
* PM TX interrupt handler.
*/
static void pmtx_intr_handler(struct adapter *adapter)
{
static const struct intr_info pmtx_intr_info[] = {
{F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
{ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
{OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
{V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
"PMTX ispi parity error", -1, 1},
{V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
"PMTX ospi parity error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
pmtx_intr_info, NULL))
t3_fatal_err(adapter);
}
#define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
F_IESPI1_TX_FRAMING_ERROR)
#define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
/*
* PM RX interrupt handler.
*/
static void pmrx_intr_handler(struct adapter *adapter)
{
static const struct intr_info pmrx_intr_info[] = {
{F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
{IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
{OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
{V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
"PMRX ispi parity error", -1, 1},
{V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
"PMRX ospi parity error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
pmrx_intr_info, NULL))
t3_fatal_err(adapter);
}
/*
* CPL switch interrupt handler.
*/
static void cplsw_intr_handler(struct adapter *adapter)
{
static const struct intr_info cplsw_intr_info[] = {
/* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
{F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
{F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
{F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
{F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
cplsw_intr_info, NULL))
t3_fatal_err(adapter);
}
/*
* MPS interrupt handler.
*/
static void mps_intr_handler(struct adapter *adapter)
{
static const struct intr_info mps_intr_info[] = {
{0x1ff, "MPS parity error", -1, 1},
{0}
};
if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
mps_intr_info, NULL))
t3_fatal_err(adapter);
}
#define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
/*
* MC7 interrupt handler.
*/
static void mc7_intr_handler(struct mc7 *mc7)
{
struct adapter *adapter = mc7->adapter;
u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
if (cause & F_CE) {
mc7->stats.corr_err++;
CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
"data 0x%x 0x%x 0x%x\n", mc7->name,
t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
}
if (cause & F_UE) {
mc7->stats.uncorr_err++;
CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
"data 0x%x 0x%x 0x%x\n", mc7->name,
t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
}
if (G_PE(cause)) {
mc7->stats.parity_err++;
CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
mc7->name, G_PE(cause));
}
if (cause & F_AE) {
u32 addr = 0;
if (adapter->params.rev > 0)
addr = t3_read_reg(adapter,
mc7->offset + A_MC7_ERR_ADDR);
mc7->stats.addr_err++;
CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
mc7->name, addr);
}
if (cause & MC7_INTR_FATAL)
t3_fatal_err(adapter);
t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
}
#define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
/*
* XGMAC interrupt handler.
*/
static int mac_intr_handler(struct adapter *adap, unsigned int idx)
{
struct cmac *mac = &adap2pinfo(adap, idx)->mac;
u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
mac->stats.tx_fifo_parity_err++;
CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
}
if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
mac->stats.rx_fifo_parity_err++;
CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
}
if (cause & F_TXFIFO_UNDERRUN)
mac->stats.tx_fifo_urun++;
if (cause & F_RXFIFO_OVERFLOW)
mac->stats.rx_fifo_ovfl++;
if (cause & V_SERDES_LOS(M_SERDES_LOS))
mac->stats.serdes_signal_loss++;
if (cause & F_XAUIPCSCTCERR)
mac->stats.xaui_pcs_ctc_err++;
if (cause & F_XAUIPCSALIGNCHANGE)
mac->stats.xaui_pcs_align_change++;
t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
if (cause & XGM_INTR_FATAL)
t3_fatal_err(adap);
return cause != 0;
}
/*
* Interrupt handler for PHY events.
*/
int t3_phy_intr_handler(struct adapter *adapter)
{
static const int intr_gpio_bits[] = { 8, 0x20 };
u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
for_each_port(adapter, i) {
if (cause & intr_gpio_bits[i]) {
struct cphy *phy = &adap2pinfo(adapter, i)->phy;
int phy_cause = phy->ops->intr_handler(phy);
if (phy_cause & cphy_cause_link_change)
t3_link_changed(adapter, i);
if (phy_cause & cphy_cause_fifo_error)
phy->fifo_errors++;
}
}
t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
return 0;
}
/*
* T3 slow path (non-data) interrupt handler.
*/
int t3_slow_intr_handler(struct adapter *adapter)
{
u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
cause &= adapter->slow_intr_mask;
if (!cause)
return 0;
if (cause & F_PCIM0) {
if (is_pcie(adapter))
pcie_intr_handler(adapter);
else
pci_intr_handler(adapter);
}
if (cause & F_SGE3)
t3_sge_err_intr_handler(adapter);
if (cause & F_MC7_PMRX)
mc7_intr_handler(&adapter->pmrx);
if (cause & F_MC7_PMTX)
mc7_intr_handler(&adapter->pmtx);
if (cause & F_MC7_CM)
mc7_intr_handler(&adapter->cm);
if (cause & F_CIM)
cim_intr_handler(adapter);
if (cause & F_TP1)
tp_intr_handler(adapter);
if (cause & F_ULP2_RX)
ulprx_intr_handler(adapter);
if (cause & F_ULP2_TX)
ulptx_intr_handler(adapter);
if (cause & F_PM1_RX)
pmrx_intr_handler(adapter);
if (cause & F_PM1_TX)
pmtx_intr_handler(adapter);
if (cause & F_CPL_SWITCH)
cplsw_intr_handler(adapter);
if (cause & F_MPS0)
mps_intr_handler(adapter);
if (cause & F_MC5A)
t3_mc5_intr_handler(&adapter->mc5);
if (cause & F_XGMAC0_0)
mac_intr_handler(adapter, 0);
if (cause & F_XGMAC0_1)
mac_intr_handler(adapter, 1);
if (cause & F_T3DBG)
t3_os_ext_intr_handler(adapter);
/* Clear the interrupts just processed. */
t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
return 1;
}
/**
* t3_intr_enable - enable interrupts
* @adapter: the adapter whose interrupts should be enabled
*
* Enable interrupts by setting the interrupt enable registers of the
* various HW modules and then enabling the top-level interrupt
* concentrator.
*/
void t3_intr_enable(struct adapter *adapter)
{
static const struct addr_val_pair intr_en_avp[] = {
{A_SG_INT_ENABLE, SGE_INTR_MASK},
{A_MC7_INT_ENABLE, MC7_INTR_MASK},
{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
MC7_INTR_MASK},
{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
MC7_INTR_MASK},
{A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
{A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
{A_TP_INT_ENABLE, 0x3bfffff},
{A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
{A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
{A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
{A_MPS_INT_ENABLE, MPS_INTR_MASK},
};
adapter->slow_intr_mask = PL_INTR_MASK;
t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
if (adapter->params.rev > 0) {
t3_write_reg(adapter, A_CPL_INTR_ENABLE,
CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
F_PBL_BOUND_ERR_CH1);
} else {
t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
}
t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
adapter_info(adapter)->gpio_intr);
t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
adapter_info(adapter)->gpio_intr);
if (is_pcie(adapter))
t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
else
t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
}
/**
* t3_intr_disable - disable a card's interrupts
* @adapter: the adapter whose interrupts should be disabled
*
* Disable interrupts. We only disable the top-level interrupt
* concentrator and the SGE data interrupts.
*/
void t3_intr_disable(struct adapter *adapter)
{
t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
adapter->slow_intr_mask = 0;
}
/**
* t3_intr_clear - clear all interrupts
* @adapter: the adapter whose interrupts should be cleared
*
* Clears all interrupts.
*/
void t3_intr_clear(struct adapter *adapter)
{
static const unsigned int cause_reg_addr[] = {
A_SG_INT_CAUSE,
A_SG_RSPQ_FL_STATUS,
A_PCIX_INT_CAUSE,
A_MC7_INT_CAUSE,
A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
A_CIM_HOST_INT_CAUSE,
A_TP_INT_CAUSE,
A_MC5_DB_INT_CAUSE,
A_ULPRX_INT_CAUSE,
A_ULPTX_INT_CAUSE,
A_CPL_INTR_CAUSE,
A_PM1_TX_INT_CAUSE,
A_PM1_RX_INT_CAUSE,
A_MPS_INT_CAUSE,
A_T3DBG_INT_CAUSE,
};
unsigned int i;
/* Clear PHY and MAC interrupts for each port. */
for_each_port(adapter, i)
t3_port_intr_clear(adapter, i);
for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
}
/**
* t3_port_intr_enable - enable port-specific interrupts
* @adapter: associated adapter
* @idx: index of port whose interrupts should be enabled
*
* Enable port-specific (i.e., MAC and PHY) interrupts for the given
* adapter port.
*/
void t3_port_intr_enable(struct adapter *adapter, int idx)
{
struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
phy->ops->intr_enable(phy);
}
/**
* t3_port_intr_disable - disable port-specific interrupts
* @adapter: associated adapter
* @idx: index of port whose interrupts should be disabled
*
* Disable port-specific (i.e., MAC and PHY) interrupts for the given
* adapter port.
*/
void t3_port_intr_disable(struct adapter *adapter, int idx)
{
struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
phy->ops->intr_disable(phy);
}
/**
* t3_port_intr_clear - clear port-specific interrupts
* @adapter: associated adapter
* @idx: index of port whose interrupts to clear
*
* Clear port-specific (i.e., MAC and PHY) interrupts for the given
* adapter port.
*/
void t3_port_intr_clear(struct adapter *adapter, int idx)
{
struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
phy->ops->intr_clear(phy);
}
/**
* t3_sge_write_context - write an SGE context
* @adapter: the adapter
* @id: the context id
* @type: the context type
*
* Program an SGE context with the values already loaded in the
* CONTEXT_DATA? registers.
*/
static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
unsigned int type)
{
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, 5, 1);
}
/**
* t3_sge_init_ecntxt - initialize an SGE egress context
* @adapter: the adapter to configure
* @id: the context id
* @gts_enable: whether to enable GTS for the context
* @type: the egress context type
* @respq: associated response queue
* @base_addr: base address of queue
* @size: number of queue entries
* @token: uP token
* @gen: initial generation value for the context
* @cidx: consumer pointer
*
* Initialize an SGE egress context and make it ready for use. If the
* platform allows concurrent context operations, the caller is
* responsible for appropriate locking.
*/
int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
enum sge_context_type type, int respq, u64 base_addr,
unsigned int size, unsigned int token, int gen,
unsigned int cidx)
{
unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
if (base_addr & 0xfff) /* must be 4K aligned */
return -EINVAL;
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
base_addr >>= 12;
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
V_EC_BASE_LO(base_addr & 0xffff));
base_addr >>= 16;
t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
base_addr >>= 32;
t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
F_EC_VALID);
return t3_sge_write_context(adapter, id, F_EGRESS);
}
/**
* t3_sge_init_flcntxt - initialize an SGE free-buffer list context
* @adapter: the adapter to configure
* @id: the context id
* @gts_enable: whether to enable GTS for the context
* @base_addr: base address of queue
* @size: number of queue entries
* @bsize: size of each buffer for this queue
* @cong_thres: threshold to signal congestion to upstream producers
* @gen: initial generation value for the context
* @cidx: consumer pointer
*
* Initialize an SGE free list context and make it ready for use. The
* caller is responsible for ensuring only one context operation occurs
* at a time.
*/
int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
int gts_enable, u64 base_addr, unsigned int size,
unsigned int bsize, unsigned int cong_thres, int gen,
unsigned int cidx)
{
if (base_addr & 0xfff) /* must be 4K aligned */
return -EINVAL;
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
base_addr >>= 12;
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
base_addr >>= 32;
t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
V_FL_BASE_HI((u32) base_addr) |
V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
return t3_sge_write_context(adapter, id, F_FREELIST);
}
/**
* t3_sge_init_rspcntxt - initialize an SGE response queue context
* @adapter: the adapter to configure
* @id: the context id
* @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
* @base_addr: base address of queue
* @size: number of queue entries
* @fl_thres: threshold for selecting the normal or jumbo free list
* @gen: initial generation value for the context
* @cidx: consumer pointer
*
* Initialize an SGE response queue context and make it ready for use.
* The caller is responsible for ensuring only one context operation
* occurs at a time.
*/
int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
int irq_vec_idx, u64 base_addr, unsigned int size,
unsigned int fl_thres, int gen, unsigned int cidx)
{
unsigned int intr = 0;
if (base_addr & 0xfff) /* must be 4K aligned */
return -EINVAL;
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
base_addr >>= 12;
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
V_CQ_INDEX(cidx));
t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
base_addr >>= 32;
if (irq_vec_idx >= 0)
intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
return t3_sge_write_context(adapter, id, F_RESPONSEQ);
}
/**
* t3_sge_init_cqcntxt - initialize an SGE completion queue context
* @adapter: the adapter to configure
* @id: the context id
* @base_addr: base address of queue
* @size: number of queue entries
* @rspq: response queue for async notifications
* @ovfl_mode: CQ overflow mode
* @credits: completion queue credits
* @credit_thres: the credit threshold
*
* Initialize an SGE completion queue context and make it ready for use.
* The caller is responsible for ensuring only one context operation
* occurs at a time.
*/
int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
unsigned int size, int rspq, int ovfl_mode,
unsigned int credits, unsigned int credit_thres)
{
if (base_addr & 0xfff) /* must be 4K aligned */
return -EINVAL;
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
base_addr >>= 12;
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
base_addr >>= 32;
t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode));
t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
V_CQ_CREDIT_THRES(credit_thres));
return t3_sge_write_context(adapter, id, F_CQ);
}
/**
* t3_sge_enable_ecntxt - enable/disable an SGE egress context
* @adapter: the adapter
* @id: the egress context id
* @enable: enable (1) or disable (0) the context
*
* Enable or disable an SGE egress context. The caller is responsible for
* ensuring only one context operation occurs at a time.
*/
int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
{
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, 5, 1);
}
/**
* t3_sge_disable_fl - disable an SGE free-buffer list
* @adapter: the adapter
* @id: the free list context id
*
* Disable an SGE free-buffer list. The caller is responsible for
* ensuring only one context operation occurs at a time.
*/
int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
{
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, 5, 1);
}
/**
* t3_sge_disable_rspcntxt - disable an SGE response queue
* @adapter: the adapter
* @id: the response queue context id
*
* Disable an SGE response queue. The caller is responsible for
* ensuring only one context operation occurs at a time.
*/
int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
{
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, 5, 1);
}
/**
* t3_sge_disable_cqcntxt - disable an SGE completion queue
* @adapter: the adapter
* @id: the completion queue context id
*
* Disable an SGE completion queue. The caller is responsible for
* ensuring only one context operation occurs at a time.
*/
int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
{
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, 5, 1);
}
/**
* t3_sge_cqcntxt_op - perform an operation on a completion queue context
* @adapter: the adapter
* @id: the context id
* @op: the operation to perform
*
* Perform the selected operation on an SGE completion queue context.
* The caller is responsible for ensuring only one context operation
* occurs at a time.
*/
int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
unsigned int credits)
{
u32 val;
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
V_CONTEXT(id) | F_CQ);
if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
0, 5, 1, &val))
return -EIO;
if (op >= 2 && op < 7) {
if (adapter->params.rev > 0)
return G_CQ_INDEX(val);
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
F_CONTEXT_CMD_BUSY, 0, 5, 1))
return -EIO;
return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
}
return 0;
}
/**
* t3_sge_read_context - read an SGE context
* @type: the context type
* @adapter: the adapter
* @id: the context id
* @data: holds the retrieved context
*
* Read an SGE egress context. The caller is responsible for ensuring
* only one context operation occurs at a time.
*/
static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
unsigned int id, u32 data[4])
{
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
return -EBUSY;
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
5, 1))
return -EIO;
data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
return 0;
}
/**
* t3_sge_read_ecntxt - read an SGE egress context
* @adapter: the adapter
* @id: the context id
* @data: holds the retrieved context
*
* Read an SGE egress context. The caller is responsible for ensuring
* only one context operation occurs at a time.
*/
int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
{
if (id >= 65536)
return -EINVAL;
return t3_sge_read_context(F_EGRESS, adapter, id, data);
}
/**
* t3_sge_read_cq - read an SGE CQ context
* @adapter: the adapter
* @id: the context id
* @data: holds the retrieved context
*
* Read an SGE CQ context. The caller is responsible for ensuring
* only one context operation occurs at a time.
*/
int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
{
if (id >= 65536)
return -EINVAL;
return t3_sge_read_context(F_CQ, adapter, id, data);
}
/**
* t3_sge_read_fl - read an SGE free-list context
* @adapter: the adapter
* @id: the context id
* @data: holds the retrieved context
*
* Read an SGE free-list context. The caller is responsible for ensuring
* only one context operation occurs at a time.
*/
int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
{
if (id >= SGE_QSETS * 2)
return -EINVAL;
return t3_sge_read_context(F_FREELIST, adapter, id, data);
}
/**
* t3_sge_read_rspq - read an SGE response queue context
* @adapter: the adapter
* @id: the context id
* @data: holds the retrieved context
*
* Read an SGE response queue context. The caller is responsible for
* ensuring only one context operation occurs at a time.
*/
int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
{
if (id >= SGE_QSETS)
return -EINVAL;
return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
}
/**
* t3_config_rss - configure Rx packet steering
* @adapter: the adapter
* @rss_config: RSS settings (written to TP_RSS_CONFIG)
* @cpus: values for the CPU lookup table (0xff terminated)
* @rspq: values for the response queue lookup table (0xffff terminated)
*
* Programs the receive packet steering logic. @cpus and @rspq provide
* the values for the CPU and response queue lookup tables. If they
* provide fewer values than the size of the tables the supplied values
* are used repeatedly until the tables are fully populated.
*/
void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
const u8 * cpus, const u16 *rspq)
{
int i, j, cpu_idx = 0, q_idx = 0;
if (cpus)
for (i = 0; i < RSS_TABLE_SIZE; ++i) {
u32 val = i << 16;
for (j = 0; j < 2; ++j) {
val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
if (cpus[cpu_idx] == 0xff)
cpu_idx = 0;
}
t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
}
if (rspq)
for (i = 0; i < RSS_TABLE_SIZE; ++i) {
t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
(i << 16) | rspq[q_idx++]);
if (rspq[q_idx] == 0xffff)
q_idx = 0;
}
t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
}
/**
* t3_read_rss - read the contents of the RSS tables
* @adapter: the adapter
* @lkup: holds the contents of the RSS lookup table
* @map: holds the contents of the RSS map table
*
* Reads the contents of the receive packet steering tables.
*/
int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
{
int i;
u32 val;
if (lkup)
for (i = 0; i < RSS_TABLE_SIZE; ++i) {
t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
0xffff0000 | i);
val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
if (!(val & 0x80000000))
return -EAGAIN;
*lkup++ = val;
*lkup++ = (val >> 8);
}
if (map)
for (i = 0; i < RSS_TABLE_SIZE; ++i) {
t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
0xffff0000 | i);
val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
if (!(val & 0x80000000))
return -EAGAIN;
*map++ = val;
}
return 0;
}
/**
* t3_tp_set_offload_mode - put TP in NIC/offload mode
* @adap: the adapter
* @enable: 1 to select offload mode, 0 for regular NIC
*
* Switches TP to NIC/offload mode.
*/
void t3_tp_set_offload_mode(struct adapter *adap, int enable)
{
if (is_offload(adap) || !enable)
t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
V_NICMODE(!enable));
}
/**
* pm_num_pages - calculate the number of pages of the payload memory
* @mem_size: the size of the payload memory
* @pg_size: the size of each payload memory page
*
* Calculate the number of pages, each of the given size, that fit in a
* memory of the specified size, respecting the HW requirement that the
* number of pages must be a multiple of 24.
*/
static inline unsigned int pm_num_pages(unsigned int mem_size,
unsigned int pg_size)
{
unsigned int n = mem_size / pg_size;
return n - n % 24;
}
#define mem_region(adap, start, size, reg) \
t3_write_reg((adap), A_ ## reg, (start)); \
start += size
/*
* partition_mem - partition memory and configure TP memory settings
* @adap: the adapter
* @p: the TP parameters
*
* Partitions context and payload memory and configures TP's memory
* registers.
*/
static void partition_mem(struct adapter *adap, const struct tp_params *p)
{
unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
unsigned int timers = 0, timers_shift = 22;
if (adap->params.rev > 0) {
if (tids <= 16 * 1024) {
timers = 1;
timers_shift = 16;
} else if (tids <= 64 * 1024) {
timers = 2;
timers_shift = 18;
} else if (tids <= 256 * 1024) {
timers = 3;
timers_shift = 20;
}
}
t3_write_reg(adap, A_TP_PMM_SIZE,
p->chan_rx_size | (p->chan_tx_size >> 16));
t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
pstructs = p->rx_num_pgs + p->tx_num_pgs;
/* Add a bit of headroom and make multiple of 24 */
pstructs += 48;
pstructs -= pstructs % 24;
t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
m = tids * TCB_SIZE;
mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
m = (m + 4095) & ~0xfff;
t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
adap->params.mc5.nfilters - adap->params.mc5.nroutes;
if (tids < m)
adap->params.mc5.nservers += m - tids;
}
static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
u32 val)
{
t3_write_reg(adap, A_TP_PIO_ADDR, addr);
t3_write_reg(adap, A_TP_PIO_DATA, val);
}
static void tp_config(struct adapter *adap, const struct tp_params *p)
{
t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
F_MTUENABLE | V_WINDOWSCALEMODE(1) |
V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
F_IPV6ENABLE | F_NICMODE);
t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
t3_set_reg_field(adap, A_TP_PARA_REG6,
adap->params.rev > 0 ? F_ENABLEESND : F_T3A_ENABLEESND,
0);
t3_set_reg_field(adap, A_TP_PC_CONFIG,
F_ENABLEEPCMDAFULL | F_ENABLEOCSPIFULL,
F_TXDEFERENABLE | F_HEARBEATDACK | F_TXCONGESTIONMODE |
F_RXCONGESTIONMODE);
t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0);
if (adap->params.rev > 0) {
tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
F_TXPACEAUTO);
t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
} else
t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0x12121212);
t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0x12121212);
t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0x1212);
}
/* Desired TP timer resolution in usec */
#define TP_TMR_RES 50
/* TCP timer values in ms */
#define TP_DACK_TIMER 50
#define TP_RTO_MIN 250
/**
* tp_set_timers - set TP timing parameters
* @adap: the adapter to set
* @core_clk: the core clock frequency in Hz
*
* Set TP's timing parameters, such as the various timer resolutions and
* the TCP timer values.
*/
static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
{
unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
unsigned int tps = core_clk >> tre;
t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
V_DELAYEDACKRESOLUTION(dack_re) |
V_TIMESTAMPRESOLUTION(tstamp_re));
t3_write_reg(adap, A_TP_DACK_TIMER,
(core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
V_KEEPALIVEMAX(9));
#define SECONDS * tps
t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
#undef SECONDS
}
/**
* t3_tp_set_coalescing_size - set receive coalescing size
* @adap: the adapter
* @size: the receive coalescing size
* @psh: whether a set PSH bit should deliver coalesced data
*
* Set the receive coalescing size and PSH bit handling.
*/
int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
{
u32 val;
if (size > MAX_RX_COALESCING_LEN)
return -EINVAL;
val = t3_read_reg(adap, A_TP_PARA_REG3);
val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
if (size) {
val |= F_RXCOALESCEENABLE;
if (psh)
val |= F_RXCOALESCEPSHEN;
t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
V_MAXRXDATA(MAX_RX_COALESCING_LEN));
}
t3_write_reg(adap, A_TP_PARA_REG3, val);
return 0;
}
/**
* t3_tp_set_max_rxsize - set the max receive size
* @adap: the adapter
* @size: the max receive size
*
* Set TP's max receive size. This is the limit that applies when
* receive coalescing is disabled.
*/
void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
{
t3_write_reg(adap, A_TP_PARA_REG7,
V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
}
static void __devinit init_mtus(unsigned short mtus[])
{
/*
* See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
* it can accomodate max size TCP/IP headers when SACK and timestamps
* are enabled and still have at least 8 bytes of payload.
*/
mtus[0] = 88;
mtus[1] = 256;
mtus[2] = 512;
mtus[3] = 576;
mtus[4] = 808;
mtus[5] = 1024;
mtus[6] = 1280;
mtus[7] = 1492;
mtus[8] = 1500;
mtus[9] = 2002;
mtus[10] = 2048;
mtus[11] = 4096;
mtus[12] = 4352;
mtus[13] = 8192;
mtus[14] = 9000;
mtus[15] = 9600;
}
/*
* Initial congestion control parameters.
*/
static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
{
a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
a[9] = 2;
a[10] = 3;
a[11] = 4;
a[12] = 5;
a[13] = 6;
a[14] = 7;
a[15] = 8;
a[16] = 9;
a[17] = 10;
a[18] = 14;
a[19] = 17;
a[20] = 21;
a[21] = 25;
a[22] = 30;
a[23] = 35;
a[24] = 45;
a[25] = 60;
a[26] = 80;
a[27] = 100;
a[28] = 200;
a[29] = 300;
a[30] = 400;
a[31] = 500;
b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
b[9] = b[10] = 1;
b[11] = b[12] = 2;
b[13] = b[14] = b[15] = b[16] = 3;
b[17] = b[18] = b[19] = b[20] = b[21] = 4;
b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
b[28] = b[29] = 6;
b[30] = b[31] = 7;
}
/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U
/**
* t3_load_mtus - write the MTU and congestion control HW tables
* @adap: the adapter
* @mtus: the unrestricted values for the MTU table
* @alphs: the values for the congestion control alpha parameter
* @beta: the values for the congestion control beta parameter
* @mtu_cap: the maximum permitted effective MTU
*
* Write the MTU table with the supplied MTUs capping each at &mtu_cap.
* Update the high-speed congestion control table with the supplied alpha,
* beta, and MTUs.
*/
void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
unsigned short alpha[NCCTRL_WIN],
unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
{
static const unsigned int avg_pkts[NCCTRL_WIN] = {
2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
28672, 40960, 57344, 81920, 114688, 163840, 229376
};
unsigned int i, w;
for (i = 0; i < NMTUS; ++i) {
unsigned int mtu = min(mtus[i], mtu_cap);
unsigned int log2 = fls(mtu);
if (!(mtu & ((1 << log2) >> 2))) /* round */
log2--;
t3_write_reg(adap, A_TP_MTU_TABLE,
(i << 24) | (log2 << 16) | mtu);
for (w = 0; w < NCCTRL_WIN; ++w) {
unsigned int inc;
inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
CC_MIN_INCR);
t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
(w << 16) | (beta[w] << 13) | inc);
}
}
}
/**
* t3_read_hw_mtus - returns the values in the HW MTU table
* @adap: the adapter
* @mtus: where to store the HW MTU values
*
* Reads the HW MTU table.
*/
void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
{
int i;
for (i = 0; i < NMTUS; ++i) {
unsigned int val;
t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
val = t3_read_reg(adap, A_TP_MTU_TABLE);
mtus[i] = val & 0x3fff;
}
}
/**
* t3_get_cong_cntl_tab - reads the congestion control table
* @adap: the adapter
* @incr: where to store the alpha values
*
* Reads the additive increments programmed into the HW congestion
* control table.
*/
void t3_get_cong_cntl_tab(struct adapter *adap,
unsigned short incr[NMTUS][NCCTRL_WIN])
{
unsigned int mtu, w;
for (mtu = 0; mtu < NMTUS; ++mtu)
for (w = 0; w < NCCTRL_WIN; ++w) {
t3_write_reg(adap, A_TP_CCTRL_TABLE,
0xffff0000 | (mtu << 5) | w);
incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
0x1fff;
}
}
/**
* t3_tp_get_mib_stats - read TP's MIB counters
* @adap: the adapter
* @tps: holds the returned counter values
*
* Returns the values of TP's MIB counters.
*/
void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
{
t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
sizeof(*tps) / sizeof(u32), 0);
}
#define ulp_region(adap, name, start, len) \
t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
(start) + (len) - 1); \
start += len
#define ulptx_region(adap, name, start, len) \
t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
(start) + (len) - 1)
static void ulp_config(struct adapter *adap, const struct tp_params *p)
{
unsigned int m = p->chan_rx_size;
ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
ulp_region(adap, STAG, m, p->chan_rx_size / 4);
ulp_region(adap, RQ, m, p->chan_rx_size / 4);
ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
ulp_region(adap, PBL, m, p->chan_rx_size / 4);
t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
}
void t3_config_trace_filter(struct adapter *adapter,
const struct trace_params *tp, int filter_index,
int invert, int enable)
{
u32 addr, key[4], mask[4];
key[0] = tp->sport | (tp->sip << 16);
key[1] = (tp->sip >> 16) | (tp->dport << 16);
key[2] = tp->dip;
key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
mask[0] = tp->sport_mask | (tp->sip_mask << 16);
mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
mask[2] = tp->dip_mask;
mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
if (invert)
key[3] |= (1 << 29);
if (enable)
key[3] |= (1 << 28);
addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
tp_wr_indirect(adapter, addr++, key[0]);
tp_wr_indirect(adapter, addr++, mask[0]);
tp_wr_indirect(adapter, addr++, key[1]);
tp_wr_indirect(adapter, addr++, mask[1]);
tp_wr_indirect(adapter, addr++, key[2]);
tp_wr_indirect(adapter, addr++, mask[2]);
tp_wr_indirect(adapter, addr++, key[3]);
tp_wr_indirect(adapter, addr, mask[3]);
t3_read_reg(adapter, A_TP_PIO_DATA);
}
/**
* t3_config_sched - configure a HW traffic scheduler
* @adap: the adapter
* @kbps: target rate in Kbps
* @sched: the scheduler index
*
* Configure a HW scheduler for the target rate
*/
int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
{
unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
unsigned int clk = adap->params.vpd.cclk * 1000;
unsigned int selected_cpt = 0, selected_bpt = 0;
if (kbps > 0) {
kbps *= 125; /* -> bytes */
for (cpt = 1; cpt <= 255; cpt++) {
tps = clk / cpt;
bpt = (kbps + tps / 2) / tps;
if (bpt > 0 && bpt <= 255) {
v = bpt * tps;
delta = v >= kbps ? v - kbps : kbps - v;
if (delta <= mindelta) {
mindelta = delta;
selected_cpt = cpt;
selected_bpt = bpt;
}
} else if (selected_cpt)
break;
}
if (!selected_cpt)
return -EINVAL;
}
t3_write_reg(adap, A_TP_TM_PIO_ADDR,
A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
if (sched & 1)
v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
else
v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
return 0;
}
static int tp_init(struct adapter *adap, const struct tp_params *p)
{
int busy = 0;
tp_config(adap, p);
t3_set_vlan_accel(adap, 3, 0);
if (is_offload(adap)) {
tp_set_timers(adap, adap->params.vpd.cclk * 1000);
t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
0, 1000, 5);
if (busy)
CH_ERR(adap, "TP initialization timed out\n");
}
if (!busy)
t3_write_reg(adap, A_TP_RESET, F_TPRESET);
return busy;
}
int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
{
if (port_mask & ~((1 << adap->params.nports) - 1))
return -EINVAL;
t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
port_mask << S_PORT0ACTIVE);
return 0;
}
/*
* Perform the bits of HW initialization that are dependent on the number
* of available ports.
*/
static void init_hw_for_avail_ports(struct adapter *adap, int nports)
{
int i;
if (nports == 1) {
t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
F_PORT0ACTIVE | F_ENFORCEPKT);
t3_write_reg(adap, A_PM1_TX_CFG, 0xc000c000);
} else {
t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
F_ENFORCEPKT);
t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
V_TX_MOD_QUEUE_REQ_MAP(0xaa));
for (i = 0; i < 16; i++)
t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
(i << 16) | 0x1010);
}
}
static int calibrate_xgm(struct adapter *adapter)
{
if (uses_xaui(adapter)) {
unsigned int v, i;
for (i = 0; i < 5; ++i) {
t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
t3_read_reg(adapter, A_XGM_XAUI_IMP);
msleep(1);
v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
t3_write_reg(adapter, A_XGM_XAUI_IMP,
V_XAUIIMP(G_CALIMP(v) >> 2));
return 0;
}
}
CH_ERR(adapter, "MAC calibration failed\n");
return -1;
} else {
t3_write_reg(adapter, A_XGM_RGMII_IMP,
V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
F_XGM_IMPSETUPDATE);
}
return 0;
}
static void calibrate_xgm_t3b(struct adapter *adapter)
{
if (!uses_xaui(adapter)) {
t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
F_XGM_IMPSETUPDATE);
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
0);
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
}
}
struct mc7_timing_params {
unsigned char ActToPreDly;
unsigned char ActToRdWrDly;
unsigned char PreCyc;
unsigned char RefCyc[5];
unsigned char BkCyc;
unsigned char WrToRdDly;
unsigned char RdToWrDly;
};
/*
* Write a value to a register and check that the write completed. These
* writes normally complete in a cycle or two, so one read should suffice.
* The very first read exists to flush the posted write to the device.
*/
static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
{
t3_write_reg(adapter, addr, val);
t3_read_reg(adapter, addr); /* flush */
if (!(t3_read_reg(adapter, addr) & F_BUSY))
return 0;
CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
return -EIO;
}
static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
{
static const unsigned int mc7_mode[] = {
0x632, 0x642, 0x652, 0x432, 0x442
};
static const struct mc7_timing_params mc7_timings[] = {
{12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
{12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
{12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
{9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
{9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
};
u32 val;
unsigned int width, density, slow, attempts;
struct adapter *adapter = mc7->adapter;
const struct mc7_timing_params *p = &mc7_timings[mem_type];
val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
slow = val & F_SLOW;
width = G_WIDTH(val);
density = G_DEN(val);
t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
msleep(1);
if (!slow) {
t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
msleep(1);
if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
(F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
CH_ERR(adapter, "%s MC7 calibration timed out\n",
mc7->name);
goto out_fail;
}
}
t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
V_ACTTOPREDLY(p->ActToPreDly) |
V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
val | F_CLKEN | F_TERM150);
t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
if (!slow)
t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
F_DLLENB);
udelay(1);
val = slow ? 3 : 6;
if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
goto out_fail;
if (!slow) {
t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
udelay(5);
}
if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
mc7_mode[mem_type]) ||
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
goto out_fail;
/* clock value is in KHz */
mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
mc7_clock /= 1000000; /* KHz->MHz, ns->us */
t3_write_reg(adapter, mc7->offset + A_MC7_REF,
F_PERREFEN | V_PREREFDIV(mc7_clock));
t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
(mc7->size << width) - 1);
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
attempts = 50;
do {
msleep(250);
val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
} while ((val & F_BUSY) && --attempts);
if (val & F_BUSY) {
CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
goto out_fail;
}
/* Enable normal memory accesses. */
t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
return 0;
out_fail:
return -1;
}
static void config_pcie(struct adapter *adap)
{
static const u16 ack_lat[4][6] = {
{237, 416, 559, 1071, 2095, 4143},
{128, 217, 289, 545, 1057, 2081},
{73, 118, 154, 282, 538, 1050},
{67, 107, 86, 150, 278, 534}
};
static const u16 rpl_tmr[4][6] = {
{711, 1248, 1677, 3213, 6285, 12429},
{384, 651, 867, 1635, 3171, 6243},
{219, 354, 462, 846, 1614, 3150},
{201, 321, 258, 450, 834, 1602}
};
u16 val;
unsigned int log2_width, pldsize;
unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
pci_read_config_word(adap->pdev,
adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
&val);
pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
pci_read_config_word(adap->pdev,
adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
&val);
fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
log2_width = fls(adap->params.pci.width) - 1;
acklat = ack_lat[log2_width][pldsize];
if (val & 1) /* check LOsEnable */
acklat += fst_trn_tx * 4;
rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
if (adap->params.rev == 0)
t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
V_T3A_ACKLAT(M_T3A_ACKLAT),
V_T3A_ACKLAT(acklat));
else
t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
V_ACKLAT(acklat));
t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
V_REPLAYLMT(rpllmt));
t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
}
/*
* Initialize and configure T3 HW modules. This performs the
* initialization steps that need to be done once after a card is reset.
* MAC and PHY initialization is handled separarely whenever a port is enabled.
*
* fw_params are passed to FW and their value is platform dependent. Only the
* top 8 bits are available for use, the rest must be 0.
*/
int t3_init_hw(struct adapter *adapter, u32 fw_params)
{
int err = -EIO, attempts = 100;
const struct vpd_params *vpd = &adapter->params.vpd;
if (adapter->params.rev > 0)
calibrate_xgm_t3b(adapter);
else if (calibrate_xgm(adapter))
goto out_err;
if (vpd->mclk) {
partition_mem(adapter, &adapter->params.tp);
if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
adapter->params.mc5.nfilters,
adapter->params.mc5.nroutes))
goto out_err;
}
if (tp_init(adapter, &adapter->params.tp))
goto out_err;
t3_tp_set_coalescing_size(adapter,
min(adapter->params.sge.max_pkt_size,
MAX_RX_COALESCING_LEN), 1);
t3_tp_set_max_rxsize(adapter,
min(adapter->params.sge.max_pkt_size, 16384U));
ulp_config(adapter, &adapter->params.tp);
if (is_pcie(adapter))
config_pcie(adapter);
else
t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
t3_write_reg(adapter, A_PM1_RX_CFG, 0xf000f000);
init_hw_for_avail_ports(adapter, adapter->params.nports);
t3_sge_init(adapter, &adapter->params.sge);
t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
t3_write_reg(adapter, A_CIM_BOOT_CFG,
V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
do { /* wait for uP to initialize */
msleep(20);
} while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
if (!attempts)
goto out_err;
err = 0;
out_err:
return err;
}
/**
* get_pci_mode - determine a card's PCI mode
* @adapter: the adapter
* @p: where to store the PCI settings
*
* Determines a card's PCI mode and associated parameters, such as speed
* and width.
*/
static void __devinit get_pci_mode(struct adapter *adapter,
struct pci_params *p)
{
static unsigned short speed_map[] = { 33, 66, 100, 133 };
u32 pci_mode, pcie_cap;
pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
if (pcie_cap) {
u16 val;
p->variant = PCI_VARIANT_PCIE;
p->pcie_cap_addr = pcie_cap;
pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
&val);
p->width = (val >> 4) & 0x3f;
return;
}
pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
p->speed = speed_map[G_PCLKRANGE(pci_mode)];
p->width = (pci_mode & F_64BIT) ? 64 : 32;
pci_mode = G_PCIXINITPAT(pci_mode);
if (pci_mode == 0)
p->variant = PCI_VARIANT_PCI;
else if (pci_mode < 4)
p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
else if (pci_mode < 8)
p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
else
p->variant = PCI_VARIANT_PCIX_266_MODE2;
}
/**
* init_link_config - initialize a link's SW state
* @lc: structure holding the link state
* @ai: information about the current card
*
* Initializes the SW state maintained for each link, including the link's
* capabilities and default speed/duplex/flow-control/autonegotiation
* settings.
*/
static void __devinit init_link_config(struct link_config *lc,
unsigned int caps)
{
lc->supported = caps;
lc->requested_speed = lc->speed = SPEED_INVALID;
lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
if (lc->supported & SUPPORTED_Autoneg) {
lc->advertising = lc->supported;
lc->autoneg = AUTONEG_ENABLE;
lc->requested_fc |= PAUSE_AUTONEG;
} else {
lc->advertising = 0;
lc->autoneg = AUTONEG_DISABLE;
}
}
/**
* mc7_calc_size - calculate MC7 memory size
* @cfg: the MC7 configuration
*
* Calculates the size of an MC7 memory in bytes from the value of its
* configuration register.
*/
static unsigned int __devinit mc7_calc_size(u32 cfg)
{
unsigned int width = G_WIDTH(cfg);
unsigned int banks = !!(cfg & F_BKS) + 1;
unsigned int org = !!(cfg & F_ORG) + 1;
unsigned int density = G_DEN(cfg);
unsigned int MBs = ((256 << density) * banks) / (org << width);
return MBs << 20;
}
static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
unsigned int base_addr, const char *name)
{
u32 cfg;
mc7->adapter = adapter;
mc7->name = name;
mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
mc7->size = mc7_calc_size(cfg);
mc7->width = G_WIDTH(cfg);
}
void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
{
mac->adapter = adapter;
mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
mac->nucast = 1;
if (adapter->params.rev == 0 && uses_xaui(adapter)) {
t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
is_10G(adapter) ? 0x2901c04 : 0x2301c04);
t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
F_ENRGMII, 0);
}
}
void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
{
u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
mi1_init(adapter, ai);
t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
t3_write_reg(adapter, A_T3DBG_GPIO_EN,
ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
if (adapter->params.rev == 0 || !uses_xaui(adapter))
val |= F_ENRGMII;
/* Enable MAC clocks so we can access the registers */
t3_write_reg(adapter, A_XGM_PORT_CFG, val);
t3_read_reg(adapter, A_XGM_PORT_CFG);
val |= F_CLKDIVRESET_;
t3_write_reg(adapter, A_XGM_PORT_CFG, val);
t3_read_reg(adapter, A_XGM_PORT_CFG);
t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
t3_read_reg(adapter, A_XGM_PORT_CFG);
}
/*
* Reset the adapter. PCIe cards lose their config space during reset, PCI-X
* ones don't.
*/
int t3_reset_adapter(struct adapter *adapter)
{
int i;
uint16_t devid = 0;
if (is_pcie(adapter))
pci_save_state(adapter->pdev);
t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
/*
* Delay. Give Some time to device to reset fully.
* XXX The delay time should be modified.
*/
for (i = 0; i < 10; i++) {
msleep(50);
pci_read_config_word(adapter->pdev, 0x00, &devid);
if (devid == 0x1425)
break;
}
if (devid != 0x1425)
return -1;
if (is_pcie(adapter))
pci_restore_state(adapter->pdev);
return 0;
}
/*
* Initialize adapter SW state for the various HW modules, set initial values
* for some adapter tunables, take PHYs out of reset, and initialize the MDIO
* interface.
*/
int __devinit t3_prep_adapter(struct adapter *adapter,
const struct adapter_info *ai, int reset)
{
int ret;
unsigned int i, j = 0;
get_pci_mode(adapter, &adapter->params.pci);
adapter->params.info = ai;
adapter->params.nports = ai->nports;
adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
adapter->params.linkpoll_period = 0;
adapter->params.stats_update_period = is_10G(adapter) ?
MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
adapter->params.pci.vpd_cap_addr =
pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
ret = get_vpd_params(adapter, &adapter->params.vpd);
if (ret < 0)
return ret;
if (reset && t3_reset_adapter(adapter))
return -1;
t3_sge_prep(adapter, &adapter->params.sge);
if (adapter->params.vpd.mclk) {
struct tp_params *p = &adapter->params.tp;
mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
p->nchan = ai->nports;
p->pmrx_size = t3_mc7_size(&adapter->pmrx);
p->pmtx_size = t3_mc7_size(&adapter->pmtx);
p->cm_size = t3_mc7_size(&adapter->cm);
p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
p->chan_tx_size = p->pmtx_size / p->nchan;
p->rx_pg_size = 64 * 1024;
p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
p->ntimer_qs = p->cm_size >= (128 << 20) ||
adapter->params.rev > 0 ? 12 : 6;
adapter->params.mc5.nservers = DEFAULT_NSERVERS;
adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
DEFAULT_NFILTERS : 0;
adapter->params.mc5.nroutes = 0;
t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
init_mtus(adapter->params.mtus);
init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
}
early_hw_init(adapter, ai);
for_each_port(adapter, i) {
u8 hw_addr[6];
struct port_info *p = adap2pinfo(adapter, i);
while (!adapter->params.vpd.port_type[j])
++j;
p->port_type = &port_types[adapter->params.vpd.port_type[j]];
p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
ai->mdio_ops);
mac_prep(&p->mac, adapter, j);
++j;
/*
* The VPD EEPROM stores the base Ethernet address for the
* card. A port's address is derived from the base by adding
* the port's index to the base's low octet.
*/
memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
memcpy(adapter->port[i]->dev_addr, hw_addr,
ETH_ALEN);
memcpy(adapter->port[i]->perm_addr, hw_addr,
ETH_ALEN);
init_link_config(&p->link_config, p->port_type->caps);
p->phy.ops->power_down(&p->phy, 1);
if (!(p->port_type->caps & SUPPORTED_IRQ))
adapter->params.linkpoll_period = 10;
}
return 0;
}
void t3_led_ready(struct adapter *adapter)
{
t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
F_GPIO0_OUT_VAL);
}
|