aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/nandsim.c
blob: ecd70e2504f6c07eef8f87b824ba1a2d71d02ba6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
/*
 * NAND flash simulator.
 *
 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
 *
 * Copyright (C) 2004 Nokia Corporation
 *
 * Note: NS means "NAND Simulator".
 * Note: Input means input TO flash chip, output means output FROM chip.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2, or (at your option) any later
 * version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
 * Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
 */

#include <linux/init.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/random.h>
#include <asm/div64.h>

/* Default simulator parameters values */
#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
#endif

#ifndef CONFIG_NANDSIM_ACCESS_DELAY
#define CONFIG_NANDSIM_ACCESS_DELAY 25
#endif
#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
#endif
#ifndef CONFIG_NANDSIM_ERASE_DELAY
#define CONFIG_NANDSIM_ERASE_DELAY 2
#endif
#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
#endif
#ifndef CONFIG_NANDSIM_INPUT_CYCLE
#define CONFIG_NANDSIM_INPUT_CYCLE  50
#endif
#ifndef CONFIG_NANDSIM_BUS_WIDTH
#define CONFIG_NANDSIM_BUS_WIDTH  8
#endif
#ifndef CONFIG_NANDSIM_DO_DELAYS
#define CONFIG_NANDSIM_DO_DELAYS  0
#endif
#ifndef CONFIG_NANDSIM_LOG
#define CONFIG_NANDSIM_LOG        0
#endif
#ifndef CONFIG_NANDSIM_DBG
#define CONFIG_NANDSIM_DBG        0
#endif

static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
static uint log            = CONFIG_NANDSIM_LOG;
static uint dbg            = CONFIG_NANDSIM_DBG;
static unsigned long parts[MAX_MTD_DEVICES];
static unsigned int parts_num;
static char *badblocks = NULL;
static char *weakblocks = NULL;
static char *weakpages = NULL;
static unsigned int bitflips = 0;
static char *gravepages = NULL;
static unsigned int rptwear = 0;
static unsigned int overridesize = 0;

module_param(first_id_byte,  uint, 0400);
module_param(second_id_byte, uint, 0400);
module_param(third_id_byte,  uint, 0400);
module_param(fourth_id_byte, uint, 0400);
module_param(access_delay,   uint, 0400);
module_param(programm_delay, uint, 0400);
module_param(erase_delay,    uint, 0400);
module_param(output_cycle,   uint, 0400);
module_param(input_cycle,    uint, 0400);
module_param(bus_width,      uint, 0400);
module_param(do_delays,      uint, 0400);
module_param(log,            uint, 0400);
module_param(dbg,            uint, 0400);
module_param_array(parts, ulong, &parts_num, 0400);
module_param(badblocks,      charp, 0400);
module_param(weakblocks,     charp, 0400);
module_param(weakpages,      charp, 0400);
module_param(bitflips,       uint, 0400);
module_param(gravepages,     charp, 0400);
module_param(rptwear,        uint, 0400);
module_param(overridesize,   uint, 0400);

MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
MODULE_PARM_DESC(access_delay,   "Initial page access delay (microiseconds)");
MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
MODULE_PARM_DESC(log,            "Perform logging if not zero");
MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
/* Page and erase block positions for the following parameters are independent of any partitions */
MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
				 " separated by commas e.g. 113:2 means eb 113"
				 " can be erased only twice before failing");
MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
				 " separated by commas e.g. 1401:2 means page 1401"
				 " can be written only twice before failing");
MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
				 " separated by commas e.g. 1401:2 means page 1401"
				 " can be read only twice before failing");
MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
				 "The size is specified in erase blocks and as the exponent of a power of two"
				 " e.g. 5 means a size of 32 erase blocks");

/* The largest possible page size */
#define NS_LARGEST_PAGE_SIZE	2048

/* The prefix for simulator output */
#define NS_OUTPUT_PREFIX "[nandsim]"

/* Simulator's output macros (logging, debugging, warning, error) */
#define NS_LOG(args...) \
	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
#define NS_DBG(args...) \
	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
#define NS_WARN(args...) \
	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
#define NS_ERR(args...) \
	do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
#define NS_INFO(args...) \
	do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)

/* Busy-wait delay macros (microseconds, milliseconds) */
#define NS_UDELAY(us) \
        do { if (do_delays) udelay(us); } while(0)
#define NS_MDELAY(us) \
        do { if (do_delays) mdelay(us); } while(0)

/* Is the nandsim structure initialized ? */
#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)

/* Good operation completion status */
#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))

/* Operation failed completion status */
#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))

/* Calculate the page offset in flash RAM image by (row, column) address */
#define NS_RAW_OFFSET(ns) \
	(((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)

/* Calculate the OOB offset in flash RAM image by (row, column) address */
#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)

/* After a command is input, the simulator goes to one of the following states */
#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
#define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
#define STATE_CMD_STATUS       0x00000007 /* read status */
#define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
#define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
#define STATE_CMD_READID       0x0000000A /* read ID */
#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
#define STATE_CMD_RESET        0x0000000C /* reset */
#define STATE_CMD_MASK         0x0000000F /* command states mask */

/* After an address is input, the simulator goes to one of these states */
#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
#define STATE_ADDR_ZERO        0x00000030 /* one byte zero address was accepted */
#define STATE_ADDR_MASK        0x00000030 /* address states mask */

/* Durind data input/output the simulator is in these states */
#define STATE_DATAIN           0x00000100 /* waiting for data input */
#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */

#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */

/* Previous operation is done, ready to accept new requests */
#define STATE_READY            0x00000000

/* This state is used to mark that the next state isn't known yet */
#define STATE_UNKNOWN          0x10000000

/* Simulator's actions bit masks */
#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
#define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
#define ACTION_SECERASE  0x00300000 /* erase sector */
#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
#define ACTION_MASK      0x00700000 /* action mask */

#define NS_OPER_NUM      12 /* Number of operations supported by the simulator */
#define NS_OPER_STATES   6  /* Maximum number of states in operation */

#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
#define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
#define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
#define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
#define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
#define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */

/* Remove action bits ftom state */
#define NS_STATE(x) ((x) & ~ACTION_MASK)

/*
 * Maximum previous states which need to be saved. Currently saving is
 * only needed for page programm operation with preceeded read command
 * (which is only valid for 512-byte pages).
 */
#define NS_MAX_PREVSTATES 1

/*
 * A union to represent flash memory contents and flash buffer.
 */
union ns_mem {
	u_char *byte;    /* for byte access */
	uint16_t *word;  /* for 16-bit word access */
};

/*
 * The structure which describes all the internal simulator data.
 */
struct nandsim {
	struct mtd_partition partitions[MAX_MTD_DEVICES];
	unsigned int nbparts;

	uint busw;              /* flash chip bus width (8 or 16) */
	u_char ids[4];          /* chip's ID bytes */
	uint32_t options;       /* chip's characteristic bits */
	uint32_t state;         /* current chip state */
	uint32_t nxstate;       /* next expected state */

	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
	uint16_t npstates;      /* number of previous states saved */
	uint16_t stateidx;      /* current state index */

	/* The simulated NAND flash pages array */
	union ns_mem *pages;

	/* Internal buffer of page + OOB size bytes */
	union ns_mem buf;

	/* NAND flash "geometry" */
	struct nandsin_geometry {
		uint64_t totsz;     /* total flash size, bytes */
		uint32_t secsz;     /* flash sector (erase block) size, bytes */
		uint pgsz;          /* NAND flash page size, bytes */
		uint oobsz;         /* page OOB area size, bytes */
		uint64_t totszoob;  /* total flash size including OOB, bytes */
		uint pgszoob;       /* page size including OOB , bytes*/
		uint secszoob;      /* sector size including OOB, bytes */
		uint pgnum;         /* total number of pages */
		uint pgsec;         /* number of pages per sector */
		uint secshift;      /* bits number in sector size */
		uint pgshift;       /* bits number in page size */
		uint oobshift;      /* bits number in OOB size */
		uint pgaddrbytes;   /* bytes per page address */
		uint secaddrbytes;  /* bytes per sector address */
		uint idbytes;       /* the number ID bytes that this chip outputs */
	} geom;

	/* NAND flash internal registers */
	struct nandsim_regs {
		unsigned command; /* the command register */
		u_char   status;  /* the status register */
		uint     row;     /* the page number */
		uint     column;  /* the offset within page */
		uint     count;   /* internal counter */
		uint     num;     /* number of bytes which must be processed */
		uint     off;     /* fixed page offset */
	} regs;

	/* NAND flash lines state */
        struct ns_lines_status {
                int ce;  /* chip Enable */
                int cle; /* command Latch Enable */
                int ale; /* address Latch Enable */
                int wp;  /* write Protect */
        } lines;
};

/*
 * Operations array. To perform any operation the simulator must pass
 * through the correspondent states chain.
 */
static struct nandsim_operations {
	uint32_t reqopts;  /* options which are required to perform the operation */
	uint32_t states[NS_OPER_STATES]; /* operation's states */
} ops[NS_OPER_NUM] = {
	/* Read page + OOB from the beginning */
	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
			STATE_DATAOUT, STATE_READY}},
	/* Read page + OOB from the second half */
	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
			STATE_DATAOUT, STATE_READY}},
	/* Read OOB */
	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
			STATE_DATAOUT, STATE_READY}},
	/* Programm page starting from the beginning */
	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
	/* Programm page starting from the beginning */
	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
	/* Programm page starting from the second half */
	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
	/* Programm OOB */
	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
	/* Erase sector */
	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
	/* Read status */
	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
	/* Read multi-plane status */
	{OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
	/* Read ID */
	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
	/* Large page devices read page */
	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
			       STATE_DATAOUT, STATE_READY}}
};

struct weak_block {
	struct list_head list;
	unsigned int erase_block_no;
	unsigned int max_erases;
	unsigned int erases_done;
};

static LIST_HEAD(weak_blocks);

struct weak_page {
	struct list_head list;
	unsigned int page_no;
	unsigned int max_writes;
	unsigned int writes_done;
};

static LIST_HEAD(weak_pages);

struct grave_page {
	struct list_head list;
	unsigned int page_no;
	unsigned int max_reads;
	unsigned int reads_done;
};

static LIST_HEAD(grave_pages);

static unsigned long *erase_block_wear = NULL;
static unsigned int wear_eb_count = 0;
static unsigned long total_wear = 0;
static unsigned int rptwear_cnt = 0;

/* MTD structure for NAND controller */
static struct mtd_info *nsmtd;

static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];

/*
 * Allocate array of page pointers and initialize the array to NULL
 * pointers.
 *
 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
 */
static int alloc_device(struct nandsim *ns)
{
	int i;

	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
	if (!ns->pages) {
		NS_ERR("alloc_map: unable to allocate page array\n");
		return -ENOMEM;
	}
	for (i = 0; i < ns->geom.pgnum; i++) {
		ns->pages[i].byte = NULL;
	}

	return 0;
}

/*
 * Free any allocated pages, and free the array of page pointers.
 */
static void free_device(struct nandsim *ns)
{
	int i;

	if (ns->pages) {
		for (i = 0; i < ns->geom.pgnum; i++) {
			if (ns->pages[i].byte)
				kfree(ns->pages[i].byte);
		}
		vfree(ns->pages);
	}
}

static char *get_partition_name(int i)
{
	char buf[64];
	sprintf(buf, "NAND simulator partition %d", i);
	return kstrdup(buf, GFP_KERNEL);
}

static u_int64_t divide(u_int64_t n, u_int32_t d)
{
	do_div(n, d);
	return n;
}

/*
 * Initialize the nandsim structure.
 *
 * RETURNS: 0 if success, -ERRNO if failure.
 */
static int init_nandsim(struct mtd_info *mtd)
{
	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
	struct nandsim   *ns   = (struct nandsim *)(chip->priv);
	int i, ret = 0;
	u_int64_t remains;
	u_int64_t next_offset;

	if (NS_IS_INITIALIZED(ns)) {
		NS_ERR("init_nandsim: nandsim is already initialized\n");
		return -EIO;
	}

	/* Force mtd to not do delays */
	chip->chip_delay = 0;

	/* Initialize the NAND flash parameters */
	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
	ns->geom.totsz    = mtd->size;
	ns->geom.pgsz     = mtd->writesize;
	ns->geom.oobsz    = mtd->oobsize;
	ns->geom.secsz    = mtd->erasesize;
	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
	ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
	ns->geom.pgshift  = chip->page_shift;
	ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
	ns->options = 0;

	if (ns->geom.pgsz == 256) {
		ns->options |= OPT_PAGE256;
	}
	else if (ns->geom.pgsz == 512) {
		ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
		if (ns->busw == 8)
			ns->options |= OPT_PAGE512_8BIT;
	} else if (ns->geom.pgsz == 2048) {
		ns->options |= OPT_PAGE2048;
	} else {
		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
		return -EIO;
	}

	if (ns->options & OPT_SMALLPAGE) {
		if (ns->geom.totsz <= (32 << 20)) {
			ns->geom.pgaddrbytes  = 3;
			ns->geom.secaddrbytes = 2;
		} else {
			ns->geom.pgaddrbytes  = 4;
			ns->geom.secaddrbytes = 3;
		}
	} else {
		if (ns->geom.totsz <= (128 << 20)) {
			ns->geom.pgaddrbytes  = 4;
			ns->geom.secaddrbytes = 2;
		} else {
			ns->geom.pgaddrbytes  = 5;
			ns->geom.secaddrbytes = 3;
		}
	}

	/* Fill the partition_info structure */
	if (parts_num > ARRAY_SIZE(ns->partitions)) {
		NS_ERR("too many partitions.\n");
		ret = -EINVAL;
		goto error;
	}
	remains = ns->geom.totsz;
	next_offset = 0;
	for (i = 0; i < parts_num; ++i) {
		u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz;

		if (!part_sz || part_sz > remains) {
			NS_ERR("bad partition size.\n");
			ret = -EINVAL;
			goto error;
		}
		ns->partitions[i].name   = get_partition_name(i);
		ns->partitions[i].offset = next_offset;
		ns->partitions[i].size   = part_sz;
		next_offset += ns->partitions[i].size;
		remains -= ns->partitions[i].size;
	}
	ns->nbparts = parts_num;
	if (remains) {
		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
			NS_ERR("too many partitions.\n");
			ret = -EINVAL;
			goto error;
		}
		ns->partitions[i].name   = get_partition_name(i);
		ns->partitions[i].offset = next_offset;
		ns->partitions[i].size   = remains;
		ns->nbparts += 1;
	}

	/* Detect how many ID bytes the NAND chip outputs */
        for (i = 0; nand_flash_ids[i].name != NULL; i++) {
                if (second_id_byte != nand_flash_ids[i].id)
                        continue;
		if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
			ns->options |= OPT_AUTOINCR;
	}

	if (ns->busw == 16)
		NS_WARN("16-bit flashes support wasn't tested\n");

	printk("flash size: %llu MiB\n",        ns->geom.totsz >> 20);
	printk("page size: %u bytes\n",         ns->geom.pgsz);
	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
	printk("pages number: %u\n",            ns->geom.pgnum);
	printk("pages per sector: %u\n",        ns->geom.pgsec);
	printk("bus width: %u\n",               ns->busw);
	printk("bits in sector size: %u\n",     ns->geom.secshift);
	printk("bits in page size: %u\n",       ns->geom.pgshift);
	printk("bits in OOB size: %u\n",        ns->geom.oobshift);
	printk("flash size with OOB: %llu KiB\n", ns->geom.totszoob >> 10);
	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
	printk("options: %#x\n",                ns->options);

	if ((ret = alloc_device(ns)) != 0)
		goto error;

	/* Allocate / initialize the internal buffer */
	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
	if (!ns->buf.byte) {
		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
			ns->geom.pgszoob);
		ret = -ENOMEM;
		goto error;
	}
	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);

	return 0;

error:
	free_device(ns);

	return ret;
}

/*
 * Free the nandsim structure.
 */
static void free_nandsim(struct nandsim *ns)
{
	kfree(ns->buf.byte);
	free_device(ns);

	return;
}

static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
{
	char *w;
	int zero_ok;
	unsigned int erase_block_no;
	loff_t offset;

	if (!badblocks)
		return 0;
	w = badblocks;
	do {
		zero_ok = (*w == '0' ? 1 : 0);
		erase_block_no = simple_strtoul(w, &w, 0);
		if (!zero_ok && !erase_block_no) {
			NS_ERR("invalid badblocks.\n");
			return -EINVAL;
		}
		offset = erase_block_no * ns->geom.secsz;
		if (mtd->block_markbad(mtd, offset)) {
			NS_ERR("invalid badblocks.\n");
			return -EINVAL;
		}
		if (*w == ',')
			w += 1;
	} while (*w);
	return 0;
}

static int parse_weakblocks(void)
{
	char *w;
	int zero_ok;
	unsigned int erase_block_no;
	unsigned int max_erases;
	struct weak_block *wb;

	if (!weakblocks)
		return 0;
	w = weakblocks;
	do {
		zero_ok = (*w == '0' ? 1 : 0);
		erase_block_no = simple_strtoul(w, &w, 0);
		if (!zero_ok && !erase_block_no) {
			NS_ERR("invalid weakblocks.\n");
			return -EINVAL;
		}
		max_erases = 3;
		if (*w == ':') {
			w += 1;
			max_erases = simple_strtoul(w, &w, 0);
		}
		if (*w == ',')
			w += 1;
		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
		if (!wb) {
			NS_ERR("unable to allocate memory.\n");
			return -ENOMEM;
		}
		wb->erase_block_no = erase_block_no;
		wb->max_erases = max_erases;
		list_add(&wb->list, &weak_blocks);
	} while (*w);
	return 0;
}

static int erase_error(unsigned int erase_block_no)
{
	struct weak_block *wb;

	list_for_each_entry(wb, &weak_blocks, list)
		if (wb->erase_block_no == erase_block_no) {
			if (wb->erases_done >= wb->max_erases)
				return 1;
			wb->erases_done += 1;
			return 0;
		}
	return 0;
}

static int parse_weakpages(void)
{
	char *w;
	int zero_ok;
	unsigned int page_no;
	unsigned int max_writes;
	struct weak_page *wp;

	if (!weakpages)
		return 0;
	w = weakpages;
	do {
		zero_ok = (*w == '0' ? 1 : 0);
		page_no = simple_strtoul(w, &w, 0);
		if (!zero_ok && !page_no) {
			NS_ERR("invalid weakpagess.\n");
			return -EINVAL;
		}
		max_writes = 3;
		if (*w == ':') {
			w += 1;
			max_writes = simple_strtoul(w, &w, 0);
		}
		if (*w == ',')
			w += 1;
		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
		if (!wp) {
			NS_ERR("unable to allocate memory.\n");
			return -ENOMEM;
		}
		wp->page_no = page_no;
		wp->max_writes = max_writes;
		list_add(&wp->list, &weak_pages);
	} while (*w);
	return 0;
}

static int write_error(unsigned int page_no)
{
	struct weak_page *wp;

	list_for_each_entry(wp, &weak_pages, list)
		if (wp->page_no == page_no) {
			if (wp->writes_done >= wp->max_writes)
				return 1;
			wp->writes_done += 1;
			return 0;
		}
	return 0;
}

static int parse_gravepages(void)
{
	char *g;
	int zero_ok;
	unsigned int page_no;
	unsigned int max_reads;
	struct grave_page *gp;

	if (!gravepages)
		return 0;
	g = gravepages;
	do {
		zero_ok = (*g == '0' ? 1 : 0);
		page_no = simple_strtoul(g, &g, 0);
		if (!zero_ok && !page_no) {
			NS_ERR("invalid gravepagess.\n");
			return -EINVAL;
		}
		max_reads = 3;
		if (*g == ':') {
			g += 1;
			max_reads = simple_strtoul(g, &g, 0);
		}
		if (*g == ',')
			g += 1;
		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
		if (!gp) {
			NS_ERR("unable to allocate memory.\n");
			return -ENOMEM;
		}
		gp->page_no = page_no;
		gp->max_reads = max_reads;
		list_add(&gp->list, &grave_pages);
	} while (*g);
	return 0;
}

static int read_error(unsigned int page_no)
{
	struct grave_page *gp;

	list_for_each_entry(gp, &grave_pages, list)
		if (gp->page_no == page_no) {
			if (gp->reads_done >= gp->max_reads)
				return 1;
			gp->reads_done += 1;
			return 0;
		}
	return 0;
}

static void free_lists(void)
{
	struct list_head *pos, *n;
	list_for_each_safe(pos, n, &weak_blocks) {
		list_del(pos);
		kfree(list_entry(pos, struct weak_block, list));
	}
	list_for_each_safe(pos, n, &weak_pages) {
		list_del(pos);
		kfree(list_entry(pos, struct weak_page, list));
	}
	list_for_each_safe(pos, n, &grave_pages) {
		list_del(pos);
		kfree(list_entry(pos, struct grave_page, list));
	}
	kfree(erase_block_wear);
}

static int setup_wear_reporting(struct mtd_info *mtd)
{
	size_t mem;

	if (!rptwear)
		return 0;
	wear_eb_count = divide(mtd->size, mtd->erasesize);
	mem = wear_eb_count * sizeof(unsigned long);
	if (mem / sizeof(unsigned long) != wear_eb_count) {
		NS_ERR("Too many erase blocks for wear reporting\n");
		return -ENOMEM;
	}
	erase_block_wear = kzalloc(mem, GFP_KERNEL);
	if (!erase_block_wear) {
		NS_ERR("Too many erase blocks for wear reporting\n");
		return -ENOMEM;
	}
	return 0;
}

static void update_wear(unsigned int erase_block_no)
{
	unsigned long wmin = -1, wmax = 0, avg;
	unsigned long deciles[10], decile_max[10], tot = 0;
	unsigned int i;

	if (!erase_block_wear)
		return;
	total_wear += 1;
	if (total_wear == 0)
		NS_ERR("Erase counter total overflow\n");
	erase_block_wear[erase_block_no] += 1;
	if (erase_block_wear[erase_block_no] == 0)
		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
	rptwear_cnt += 1;
	if (rptwear_cnt < rptwear)
		return;
	rptwear_cnt = 0;
	/* Calc wear stats */
	for (i = 0; i < wear_eb_count; ++i) {
		unsigned long wear = erase_block_wear[i];
		if (wear < wmin)
			wmin = wear;
		if (wear > wmax)
			wmax = wear;
		tot += wear;
	}
	for (i = 0; i < 9; ++i) {
		deciles[i] = 0;
		decile_max[i] = (wmax * (i + 1) + 5) / 10;
	}
	deciles[9] = 0;
	decile_max[9] = wmax;
	for (i = 0; i < wear_eb_count; ++i) {
		int d;
		unsigned long wear = erase_block_wear[i];
		for (d = 0; d < 10; ++d)
			if (wear <= decile_max[d]) {
				deciles[d] += 1;
				break;
			}
	}
	avg = tot / wear_eb_count;
	/* Output wear report */
	NS_INFO("*** Wear Report ***\n");
	NS_INFO("Total numbers of erases:  %lu\n", tot);
	NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
	NS_INFO("Average number of erases: %lu\n", avg);
	NS_INFO("Maximum number of erases: %lu\n", wmax);
	NS_INFO("Minimum number of erases: %lu\n", wmin);
	for (i = 0; i < 10; ++i) {
		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
		if (from > decile_max[i])
			continue;
		NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
			from,
			decile_max[i],
			deciles[i]);
	}
	NS_INFO("*** End of Wear Report ***\n");
}

/*
 * Returns the string representation of 'state' state.
 */
static char *get_state_name(uint32_t state)
{
	switch (NS_STATE(state)) {
		case STATE_CMD_READ0:
			return "STATE_CMD_READ0";
		case STATE_CMD_READ1:
			return "STATE_CMD_READ1";
		case STATE_CMD_PAGEPROG:
			return "STATE_CMD_PAGEPROG";
		case STATE_CMD_READOOB:
			return "STATE_CMD_READOOB";
		case STATE_CMD_READSTART:
			return "STATE_CMD_READSTART";
		case STATE_CMD_ERASE1:
			return "STATE_CMD_ERASE1";
		case STATE_CMD_STATUS:
			return "STATE_CMD_STATUS";
		case STATE_CMD_STATUS_M:
			return "STATE_CMD_STATUS_M";
		case STATE_CMD_SEQIN:
			return "STATE_CMD_SEQIN";
		case STATE_CMD_READID:
			return "STATE_CMD_READID";
		case STATE_CMD_ERASE2:
			return "STATE_CMD_ERASE2";
		case STATE_CMD_RESET:
			return "STATE_CMD_RESET";
		case STATE_ADDR_PAGE:
			return "STATE_ADDR_PAGE";
		case STATE_ADDR_SEC:
			return "STATE_ADDR_SEC";
		case STATE_ADDR_ZERO:
			return "STATE_ADDR_ZERO";
		case STATE_DATAIN:
			return "STATE_DATAIN";
		case STATE_DATAOUT:
			return "STATE_DATAOUT";
		case STATE_DATAOUT_ID:
			return "STATE_DATAOUT_ID";
		case STATE_DATAOUT_STATUS:
			return "STATE_DATAOUT_STATUS";
		case STATE_DATAOUT_STATUS_M:
			return "STATE_DATAOUT_STATUS_M";
		case STATE_READY:
			return "STATE_READY";
		case STATE_UNKNOWN:
			return "STATE_UNKNOWN";
	}

	NS_ERR("get_state_name: unknown state, BUG\n");
	return NULL;
}

/*
 * Check if command is valid.
 *
 * RETURNS: 1 if wrong command, 0 if right.
 */
static int check_command(int cmd)
{
	switch (cmd) {

	case NAND_CMD_READ0:
	case NAND_CMD_READSTART:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_READOOB:
	case NAND_CMD_ERASE1:
	case NAND_CMD_STATUS:
	case NAND_CMD_SEQIN:
	case NAND_CMD_READID:
	case NAND_CMD_ERASE2:
	case NAND_CMD_RESET:
	case NAND_CMD_READ1:
		return 0;

	case NAND_CMD_STATUS_MULTI:
	default:
		return 1;
	}
}

/*
 * Returns state after command is accepted by command number.
 */
static uint32_t get_state_by_command(unsigned command)
{
	switch (command) {
		case NAND_CMD_READ0:
			return STATE_CMD_READ0;
		case NAND_CMD_READ1:
			return STATE_CMD_READ1;
		case NAND_CMD_PAGEPROG:
			return STATE_CMD_PAGEPROG;
		case NAND_CMD_READSTART:
			return STATE_CMD_READSTART;
		case NAND_CMD_READOOB:
			return STATE_CMD_READOOB;
		case NAND_CMD_ERASE1:
			return STATE_CMD_ERASE1;
		case NAND_CMD_STATUS:
			return STATE_CMD_STATUS;
		case NAND_CMD_STATUS_MULTI:
			return STATE_CMD_STATUS_M;
		case NAND_CMD_SEQIN:
			return STATE_CMD_SEQIN;
		case NAND_CMD_READID:
			return STATE_CMD_READID;
		case NAND_CMD_ERASE2:
			return STATE_CMD_ERASE2;
		case NAND_CMD_RESET:
			return STATE_CMD_RESET;
	}

	NS_ERR("get_state_by_command: unknown command, BUG\n");
	return 0;
}

/*
 * Move an address byte to the correspondent internal register.
 */
static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
{
	uint byte = (uint)bt;

	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
		ns->regs.column |= (byte << 8 * ns->regs.count);
	else {
		ns->regs.row |= (byte << 8 * (ns->regs.count -
						ns->geom.pgaddrbytes +
						ns->geom.secaddrbytes));
	}

	return;
}

/*
 * Switch to STATE_READY state.
 */
static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
{
	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));

	ns->state       = STATE_READY;
	ns->nxstate     = STATE_UNKNOWN;
	ns->op          = NULL;
	ns->npstates    = 0;
	ns->stateidx    = 0;
	ns->regs.num    = 0;
	ns->regs.count  = 0;
	ns->regs.off    = 0;
	ns->regs.row    = 0;
	ns->regs.column = 0;
	ns->regs.status = status;
}

/*
 * If the operation isn't known yet, try to find it in the global array
 * of supported operations.
 *
 * Operation can be unknown because of the following.
 *   1. New command was accepted and this is the firs call to find the
 *      correspondent states chain. In this case ns->npstates = 0;
 *   2. There is several operations which begin with the same command(s)
 *      (for example program from the second half and read from the
 *      second half operations both begin with the READ1 command). In this
 *      case the ns->pstates[] array contains previous states.
 *
 * Thus, the function tries to find operation containing the following
 * states (if the 'flag' parameter is 0):
 *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
 *
 * If (one and only one) matching operation is found, it is accepted (
 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
 * zeroed).
 *
 * If there are several maches, the current state is pushed to the
 * ns->pstates.
 *
 * The operation can be unknown only while commands are input to the chip.
 * As soon as address command is accepted, the operation must be known.
 * In such situation the function is called with 'flag' != 0, and the
 * operation is searched using the following pattern:
 *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
 *
 * It is supposed that this pattern must either match one operation on
 * none. There can't be ambiguity in that case.
 *
 * If no matches found, the functions does the following:
 *   1. if there are saved states present, try to ignore them and search
 *      again only using the last command. If nothing was found, switch
 *      to the STATE_READY state.
 *   2. if there are no saved states, switch to the STATE_READY state.
 *
 * RETURNS: -2 - no matched operations found.
 *          -1 - several matches.
 *           0 - operation is found.
 */
static int find_operation(struct nandsim *ns, uint32_t flag)
{
	int opsfound = 0;
	int i, j, idx = 0;

	for (i = 0; i < NS_OPER_NUM; i++) {

		int found = 1;

		if (!(ns->options & ops[i].reqopts))
			/* Ignore operations we can't perform */
			continue;

		if (flag) {
			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
				continue;
		} else {
			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
				continue;
		}

		for (j = 0; j < ns->npstates; j++)
			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
				&& (ns->options & ops[idx].reqopts)) {
				found = 0;
				break;
			}

		if (found) {
			idx = i;
			opsfound += 1;
		}
	}

	if (opsfound == 1) {
		/* Exact match */
		ns->op = &ops[idx].states[0];
		if (flag) {
			/*
			 * In this case the find_operation function was
			 * called when address has just began input. But it isn't
			 * yet fully input and the current state must
			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
			 * state must be the next state (ns->nxstate).
			 */
			ns->stateidx = ns->npstates - 1;
		} else {
			ns->stateidx = ns->npstates;
		}
		ns->npstates = 0;
		ns->state = ns->op[ns->stateidx];
		ns->nxstate = ns->op[ns->stateidx + 1];
		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
		return 0;
	}

	if (opsfound == 0) {
		/* Nothing was found. Try to ignore previous commands (if any) and search again */
		if (ns->npstates != 0) {
			NS_DBG("find_operation: no operation found, try again with state %s\n",
					get_state_name(ns->state));
			ns->npstates = 0;
			return find_operation(ns, 0);

		}
		NS_DBG("find_operation: no operations found\n");
		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
		return -2;
	}

	if (flag) {
		/* This shouldn't happen */
		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
		return -2;
	}

	NS_DBG("find_operation: there is still ambiguity\n");

	ns->pstates[ns->npstates++] = ns->state;

	return -1;
}

/*
 * Returns a pointer to the current page.
 */
static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
{
	return &(ns->pages[ns->regs.row]);
}

/*
 * Retuns a pointer to the current byte, within the current page.
 */
static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
{
	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
}

/*
 * Fill the NAND buffer with data read from the specified page.
 */
static void read_page(struct nandsim *ns, int num)
{
	union ns_mem *mypage;

	mypage = NS_GET_PAGE(ns);
	if (mypage->byte == NULL) {
		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
		memset(ns->buf.byte, 0xFF, num);
	} else {
		unsigned int page_no = ns->regs.row;
		NS_DBG("read_page: page %d allocated, reading from %d\n",
			ns->regs.row, ns->regs.column + ns->regs.off);
		if (read_error(page_no)) {
			int i;
			memset(ns->buf.byte, 0xFF, num);
			for (i = 0; i < num; ++i)
				ns->buf.byte[i] = random32();
			NS_WARN("simulating read error in page %u\n", page_no);
			return;
		}
		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
		if (bitflips && random32() < (1 << 22)) {
			int flips = 1;
			if (bitflips > 1)
				flips = (random32() % (int) bitflips) + 1;
			while (flips--) {
				int pos = random32() % (num * 8);
				ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
				NS_WARN("read_page: flipping bit %d in page %d "
					"reading from %d ecc: corrected=%u failed=%u\n",
					pos, ns->regs.row, ns->regs.column + ns->regs.off,
					nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
			}
		}
	}
}

/*
 * Erase all pages in the specified sector.
 */
static void erase_sector(struct nandsim *ns)
{
	union ns_mem *mypage;
	int i;

	mypage = NS_GET_PAGE(ns);
	for (i = 0; i < ns->geom.pgsec; i++) {
		if (mypage->byte != NULL) {
			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
			kfree(mypage->byte);
			mypage->byte = NULL;
		}
		mypage++;
	}
}

/*
 * Program the specified page with the contents from the NAND buffer.
 */
static int prog_page(struct nandsim *ns, int num)
{
	int i;
	union ns_mem *mypage;
	u_char *pg_off;

	mypage = NS_GET_PAGE(ns);
	if (mypage->byte == NULL) {
		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
		/*
		 * We allocate memory with GFP_NOFS because a flash FS may
		 * utilize this. If it is holding an FS lock, then gets here,
		 * then kmalloc runs writeback which goes to the FS again
		 * and deadlocks. This was seen in practice.
		 */
		mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS);
		if (mypage->byte == NULL) {
			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
			return -1;
		}
		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
	}

	pg_off = NS_PAGE_BYTE_OFF(ns);
	for (i = 0; i < num; i++)
		pg_off[i] &= ns->buf.byte[i];

	return 0;
}

/*
 * If state has any action bit, perform this action.
 *
 * RETURNS: 0 if success, -1 if error.
 */
static int do_state_action(struct nandsim *ns, uint32_t action)
{
	int num;
	int busdiv = ns->busw == 8 ? 1 : 2;
	unsigned int erase_block_no, page_no;

	action &= ACTION_MASK;

	/* Check that page address input is correct */
	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
		return -1;
	}

	switch (action) {

	case ACTION_CPY:
		/*
		 * Copy page data to the internal buffer.
		 */

		/* Column shouldn't be very large */
		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
			NS_ERR("do_state_action: column number is too large\n");
			break;
		}
		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
		read_page(ns, num);

		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
			num, NS_RAW_OFFSET(ns) + ns->regs.off);

		if (ns->regs.off == 0)
			NS_LOG("read page %d\n", ns->regs.row);
		else if (ns->regs.off < ns->geom.pgsz)
			NS_LOG("read page %d (second half)\n", ns->regs.row);
		else
			NS_LOG("read OOB of page %d\n", ns->regs.row);

		NS_UDELAY(access_delay);
		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);

		break;

	case ACTION_SECERASE:
		/*
		 * Erase sector.
		 */

		if (ns->lines.wp) {
			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
			return -1;
		}

		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
			return -1;
		}

		ns->regs.row = (ns->regs.row <<
				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
		ns->regs.column = 0;

		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);

		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
				ns->regs.row, NS_RAW_OFFSET(ns));
		NS_LOG("erase sector %u\n", erase_block_no);

		erase_sector(ns);

		NS_MDELAY(erase_delay);

		if (erase_block_wear)
			update_wear(erase_block_no);

		if (erase_error(erase_block_no)) {
			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
			return -1;
		}

		break;

	case ACTION_PRGPAGE:
		/*
		 * Programm page - move internal buffer data to the page.
		 */

		if (ns->lines.wp) {
			NS_WARN("do_state_action: device is write-protected, programm\n");
			return -1;
		}

		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
		if (num != ns->regs.count) {
			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
					ns->regs.count, num);
			return -1;
		}

		if (prog_page(ns, num) == -1)
			return -1;

		page_no = ns->regs.row;

		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
		NS_LOG("programm page %d\n", ns->regs.row);

		NS_UDELAY(programm_delay);
		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);

		if (write_error(page_no)) {
			NS_WARN("simulating write failure in page %u\n", page_no);
			return -1;
		}

		break;

	case ACTION_ZEROOFF:
		NS_DBG("do_state_action: set internal offset to 0\n");
		ns->regs.off = 0;
		break;

	case ACTION_HALFOFF:
		if (!(ns->options & OPT_PAGE512_8BIT)) {
			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
				"byte page size 8x chips\n");
			return -1;
		}
		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
		ns->regs.off = ns->geom.pgsz/2;
		break;

	case ACTION_OOBOFF:
		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
		ns->regs.off = ns->geom.pgsz;
		break;

	default:
		NS_DBG("do_state_action: BUG! unknown action\n");
	}

	return 0;
}

/*
 * Switch simulator's state.
 */
static void switch_state(struct nandsim *ns)
{
	if (ns->op) {
		/*
		 * The current operation have already been identified.
		 * Just follow the states chain.
		 */

		ns->stateidx += 1;
		ns->state = ns->nxstate;
		ns->nxstate = ns->op[ns->stateidx + 1];

		NS_DBG("switch_state: operation is known, switch to the next state, "
			"state: %s, nxstate: %s\n",
			get_state_name(ns->state), get_state_name(ns->nxstate));

		/* See, whether we need to do some action */
		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
			return;
		}

	} else {
		/*
		 * We don't yet know which operation we perform.
		 * Try to identify it.
		 */

		/*
		 *  The only event causing the switch_state function to
		 *  be called with yet unknown operation is new command.
		 */
		ns->state = get_state_by_command(ns->regs.command);

		NS_DBG("switch_state: operation is unknown, try to find it\n");

		if (find_operation(ns, 0) != 0)
			return;

		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
			return;
		}
	}

	/* For 16x devices column means the page offset in words */
	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
		NS_DBG("switch_state: double the column number for 16x device\n");
		ns->regs.column <<= 1;
	}

	if (NS_STATE(ns->nxstate) == STATE_READY) {
		/*
		 * The current state is the last. Return to STATE_READY
		 */

		u_char status = NS_STATUS_OK(ns);

		/* In case of data states, see if all bytes were input/output */
		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
			&& ns->regs.count != ns->regs.num) {
			NS_WARN("switch_state: not all bytes were processed, %d left\n",
					ns->regs.num - ns->regs.count);
			status = NS_STATUS_FAILED(ns);
		}

		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");

		switch_to_ready_state(ns, status);

		return;
	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
		/*
		 * If the next state is data input/output, switch to it now
		 */

		ns->state      = ns->nxstate;
		ns->nxstate    = ns->op[++ns->stateidx + 1];
		ns->regs.num   = ns->regs.count = 0;

		NS_DBG("switch_state: the next state is data I/O, switch, "
			"state: %s, nxstate: %s\n",
			get_state_name(ns->state), get_state_name(ns->nxstate));

		/*
		 * Set the internal register to the count of bytes which
		 * are expected to be input or output
		 */
		switch (NS_STATE(ns->state)) {
			case STATE_DATAIN:
			case STATE_DATAOUT:
				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
				break;

			case STATE_DATAOUT_ID:
				ns->regs.num = ns->geom.idbytes;
				break;

			case STATE_DATAOUT_STATUS:
			case STATE_DATAOUT_STATUS_M:
				ns->regs.count = ns->regs.num = 0;
				break;

			default:
				NS_ERR("switch_state: BUG! unknown data state\n");
		}

	} else if (ns->nxstate & STATE_ADDR_MASK) {
		/*
		 * If the next state is address input, set the internal
		 * register to the number of expected address bytes
		 */

		ns->regs.count = 0;

		switch (NS_STATE(ns->nxstate)) {
			case STATE_ADDR_PAGE:
				ns->regs.num = ns->geom.pgaddrbytes;

				break;
			case STATE_ADDR_SEC:
				ns->regs.num = ns->geom.secaddrbytes;
				break;

			case STATE_ADDR_ZERO:
				ns->regs.num = 1;
				break;

			default:
				NS_ERR("switch_state: BUG! unknown address state\n");
		}
	} else {
		/*
		 * Just reset internal counters.
		 */

		ns->regs.num = 0;
		ns->regs.count = 0;
	}
}

static u_char ns_nand_read_byte(struct mtd_info *mtd)
{
        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
	u_char outb = 0x00;

	/* Sanity and correctness checks */
	if (!ns->lines.ce) {
		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
		return outb;
	}
	if (ns->lines.ale || ns->lines.cle) {
		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
		return outb;
	}
	if (!(ns->state & STATE_DATAOUT_MASK)) {
		NS_WARN("read_byte: unexpected data output cycle, state is %s "
			"return %#x\n", get_state_name(ns->state), (uint)outb);
		return outb;
	}

	/* Status register may be read as many times as it is wanted */
	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
		return ns->regs.status;
	}

	/* Check if there is any data in the internal buffer which may be read */
	if (ns->regs.count == ns->regs.num) {
		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
		return outb;
	}

	switch (NS_STATE(ns->state)) {
		case STATE_DATAOUT:
			if (ns->busw == 8) {
				outb = ns->buf.byte[ns->regs.count];
				ns->regs.count += 1;
			} else {
				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
				ns->regs.count += 2;
			}
			break;
		case STATE_DATAOUT_ID:
			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
			outb = ns->ids[ns->regs.count];
			ns->regs.count += 1;
			break;
		default:
			BUG();
	}

	if (ns->regs.count == ns->regs.num) {
		NS_DBG("read_byte: all bytes were read\n");

		/*
		 * The OPT_AUTOINCR allows to read next conseqitive pages without
		 * new read operation cycle.
		 */
		if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
			ns->regs.count = 0;
			if (ns->regs.row + 1 < ns->geom.pgnum)
				ns->regs.row += 1;
			NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
			do_state_action(ns, ACTION_CPY);
		}
		else if (NS_STATE(ns->nxstate) == STATE_READY)
			switch_state(ns);

	}

	return outb;
}

static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
{
        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;

	/* Sanity and correctness checks */
	if (!ns->lines.ce) {
		NS_ERR("write_byte: chip is disabled, ignore write\n");
		return;
	}
	if (ns->lines.ale && ns->lines.cle) {
		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
		return;
	}

	if (ns->lines.cle == 1) {
		/*
		 * The byte written is a command.
		 */

		if (byte == NAND_CMD_RESET) {
			NS_LOG("reset chip\n");
			switch_to_ready_state(ns, NS_STATUS_OK(ns));
			return;
		}

		/*
		 * Chip might still be in STATE_DATAOUT
		 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
		 * STATE_DATAOUT_STATUS_M state. If so, switch state.
		 */
		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
			|| NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
			|| ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
			switch_state(ns);

		/* Check if chip is expecting command */
		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
			/*
			 * We are in situation when something else (not command)
			 * was expected but command was input. In this case ignore
			 * previous command(s)/state(s) and accept the last one.
			 */
			NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
				"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
		}

		/* Check that the command byte is correct */
		if (check_command(byte)) {
			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
			return;
		}

		NS_DBG("command byte corresponding to %s state accepted\n",
			get_state_name(get_state_by_command(byte)));
		ns->regs.command = byte;
		switch_state(ns);

	} else if (ns->lines.ale == 1) {
		/*
		 * The byte written is an address.
		 */

		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {

			NS_DBG("write_byte: operation isn't known yet, identify it\n");

			if (find_operation(ns, 1) < 0)
				return;

			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
				return;
			}

			ns->regs.count = 0;
			switch (NS_STATE(ns->nxstate)) {
				case STATE_ADDR_PAGE:
					ns->regs.num = ns->geom.pgaddrbytes;
					break;
				case STATE_ADDR_SEC:
					ns->regs.num = ns->geom.secaddrbytes;
					break;
				case STATE_ADDR_ZERO:
					ns->regs.num = 1;
					break;
				default:
					BUG();
			}
		}

		/* Check that chip is expecting address */
		if (!(ns->nxstate & STATE_ADDR_MASK)) {
			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
			return;
		}

		/* Check if this is expected byte */
		if (ns->regs.count == ns->regs.num) {
			NS_ERR("write_byte: no more address bytes expected\n");
			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
			return;
		}

		accept_addr_byte(ns, byte);

		ns->regs.count += 1;

		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
				(uint)byte, ns->regs.count, ns->regs.num);

		if (ns->regs.count == ns->regs.num) {
			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
			switch_state(ns);
		}

	} else {
		/*
		 * The byte written is an input data.
		 */

		/* Check that chip is expecting data input */
		if (!(ns->state & STATE_DATAIN_MASK)) {
			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
				"switch to %s\n", (uint)byte,
				get_state_name(ns->state), get_state_name(STATE_READY));
			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
			return;
		}

		/* Check if this is expected byte */
		if (ns->regs.count == ns->regs.num) {
			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
					ns->regs.num);
			return;
		}

		if (ns->busw == 8) {
			ns->buf.byte[ns->regs.count] = byte;
			ns->regs.count += 1;
		} else {
			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
			ns->regs.count += 2;
		}
	}

	return;
}

static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
{
	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;

	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;

	if (cmd != NAND_CMD_NONE)
		ns_nand_write_byte(mtd, cmd);
}

static int ns_device_ready(struct mtd_info *mtd)
{
	NS_DBG("device_ready\n");
	return 1;
}

static uint16_t ns_nand_read_word(struct mtd_info *mtd)
{
	struct nand_chip *chip = (struct nand_chip *)mtd->priv;

	NS_DBG("read_word\n");

	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
}

static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;

	/* Check that chip is expecting data input */
	if (!(ns->state & STATE_DATAIN_MASK)) {
		NS_ERR("write_buf: data input isn't expected, state is %s, "
			"switch to STATE_READY\n", get_state_name(ns->state));
		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
		return;
	}

	/* Check if these are expected bytes */
	if (ns->regs.count + len > ns->regs.num) {
		NS_ERR("write_buf: too many input bytes\n");
		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
		return;
	}

	memcpy(ns->buf.byte + ns->regs.count, buf, len);
	ns->regs.count += len;

	if (ns->regs.count == ns->regs.num) {
		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
	}
}

static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;

	/* Sanity and correctness checks */
	if (!ns->lines.ce) {
		NS_ERR("read_buf: chip is disabled\n");
		return;
	}
	if (ns->lines.ale || ns->lines.cle) {
		NS_ERR("read_buf: ALE or CLE pin is high\n");
		return;
	}
	if (!(ns->state & STATE_DATAOUT_MASK)) {
		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
			get_state_name(ns->state));
		return;
	}

	if (NS_STATE(ns->state) != STATE_DATAOUT) {
		int i;

		for (i = 0; i < len; i++)
			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);

		return;
	}

	/* Check if these are expected bytes */
	if (ns->regs.count + len > ns->regs.num) {
		NS_ERR("read_buf: too many bytes to read\n");
		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
		return;
	}

	memcpy(buf, ns->buf.byte + ns->regs.count, len);
	ns->regs.count += len;

	if (ns->regs.count == ns->regs.num) {
		if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
			ns->regs.count = 0;
			if (ns->regs.row + 1 < ns->geom.pgnum)
				ns->regs.row += 1;
			NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
			do_state_action(ns, ACTION_CPY);
		}
		else if (NS_STATE(ns->nxstate) == STATE_READY)
			switch_state(ns);
	}

	return;
}

static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);

	if (!memcmp(buf, &ns_verify_buf[0], len)) {
		NS_DBG("verify_buf: the buffer is OK\n");
		return 0;
	} else {
		NS_DBG("verify_buf: the buffer is wrong\n");
		return -EFAULT;
	}
}

/*
 * Module initialization function
 */
static int __init ns_init_module(void)
{
	struct nand_chip *chip;
	struct nandsim *nand;
	int retval = -ENOMEM, i;

	if (bus_width != 8 && bus_width != 16) {
		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
		return -EINVAL;
	}

	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
	nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
				+ sizeof(struct nandsim), GFP_KERNEL);
	if (!nsmtd) {
		NS_ERR("unable to allocate core structures.\n");
		return -ENOMEM;
	}
	chip        = (struct nand_chip *)(nsmtd + 1);
        nsmtd->priv = (void *)chip;
	nand        = (struct nandsim *)(chip + 1);
	chip->priv  = (void *)nand;

	/*
	 * Register simulator's callbacks.
	 */
	chip->cmd_ctrl	 = ns_hwcontrol;
	chip->read_byte  = ns_nand_read_byte;
	chip->dev_ready  = ns_device_ready;
	chip->write_buf  = ns_nand_write_buf;
	chip->read_buf   = ns_nand_read_buf;
	chip->verify_buf = ns_nand_verify_buf;
	chip->read_word  = ns_nand_read_word;
	chip->ecc.mode   = NAND_ECC_SOFT;
	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
	/* and 'badblocks' parameters to work */
	chip->options   |= NAND_SKIP_BBTSCAN;

	/*
	 * Perform minimum nandsim structure initialization to handle
	 * the initial ID read command correctly
	 */
	if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
		nand->geom.idbytes = 4;
	else
		nand->geom.idbytes = 2;
	nand->regs.status = NS_STATUS_OK(nand);
	nand->nxstate = STATE_UNKNOWN;
	nand->options |= OPT_PAGE256; /* temporary value */
	nand->ids[0] = first_id_byte;
	nand->ids[1] = second_id_byte;
	nand->ids[2] = third_id_byte;
	nand->ids[3] = fourth_id_byte;
	if (bus_width == 16) {
		nand->busw = 16;
		chip->options |= NAND_BUSWIDTH_16;
	}

	nsmtd->owner = THIS_MODULE;

	if ((retval = parse_weakblocks()) != 0)
		goto error;

	if ((retval = parse_weakpages()) != 0)
		goto error;

	if ((retval = parse_gravepages()) != 0)
		goto error;

	if ((retval = nand_scan(nsmtd, 1)) != 0) {
		NS_ERR("can't register NAND Simulator\n");
		if (retval > 0)
			retval = -ENXIO;
		goto error;
	}

	if (overridesize) {
		u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize;
		if (new_size >> overridesize != nsmtd->erasesize) {
			NS_ERR("overridesize is too big\n");
			goto err_exit;
		}
		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
		nsmtd->size = new_size;
		chip->chipsize = new_size;
		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
	}

	if ((retval = setup_wear_reporting(nsmtd)) != 0)
		goto err_exit;

	if ((retval = init_nandsim(nsmtd)) != 0)
		goto err_exit;

	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
		goto err_exit;

	if ((retval = nand_default_bbt(nsmtd)) != 0)
		goto err_exit;

	/* Register NAND partitions */
	if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
		goto err_exit;

        return 0;

err_exit:
	free_nandsim(nand);
	nand_release(nsmtd);
	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
		kfree(nand->partitions[i].name);
error:
	kfree(nsmtd);
	free_lists();

	return retval;
}

module_init(ns_init_module);

/*
 * Module clean-up function
 */
static void __exit ns_cleanup_module(void)
{
	struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
	int i;

	free_nandsim(ns);    /* Free nandsim private resources */
	nand_release(nsmtd); /* Unregister driver */
	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
		kfree(ns->partitions[i].name);
	kfree(nsmtd);        /* Free other structures */
	free_lists();
}

module_exit(ns_cleanup_module);

MODULE_LICENSE ("GPL");
MODULE_AUTHOR ("Artem B. Bityuckiy");
MODULE_DESCRIPTION ("The NAND flash simulator");