aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/misc/ibmasm/module.c
blob: a234d965243bcb8b1e42024a41259955dc7b7347 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

/*
 * IBM ASM Service Processor Device Driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2004
 *
 * Author: Max Asböck <amax@us.ibm.com>
 *
 * This driver is based on code originally written by Pete Reynolds
 * and others.
 *
 */

/*
 * The ASM device driver does the following things:
 *
 * 1) When loaded it sends a message to the service processor,
 * indicating that an OS is * running. This causes the service processor
 * to send periodic heartbeats to the OS.
 *
 * 2) Answers the periodic heartbeats sent by the service processor.
 * Failure to do so would result in system reboot.
 *
 * 3) Acts as a pass through for dot commands sent from user applications.
 * The interface for this is the ibmasmfs file system.
 *
 * 4) Allows user applications to register for event notification. Events
 * are sent to the driver through interrupts. They can be read from user
 * space through the ibmasmfs file system.
 *
 * 5) Allows user space applications to send heartbeats to the service
 * processor (aka reverse heartbeats). Again this happens through ibmasmfs.
 *
 * 6) Handles remote mouse and keyboard event interrupts and makes them
 * available to user applications through ibmasmfs.
 *
 */

#include <linux/pci.h>
#include <linux/init.h>
#include <linux/slab.h>
#include "ibmasm.h"
#include "lowlevel.h"
#include "remote.h"

int ibmasm_debug = 0;
module_param(ibmasm_debug, int , S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(ibmasm_debug, " Set debug mode on or off");


static int __devinit ibmasm_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
	int result;
	struct service_processor *sp;

	if ((result = pci_enable_device(pdev))) {
		dev_err(&pdev->dev, "Failed to enable PCI device\n");
		return result;
	}
	if ((result = pci_request_regions(pdev, DRIVER_NAME))) {
		dev_err(&pdev->dev, "Failed to allocate PCI resources\n");
		goto error_resources;
	}
	/* vnc client won't work without bus-mastering */
	pci_set_master(pdev);

	sp = kzalloc(sizeof(struct service_processor), GFP_KERNEL);
	if (sp == NULL) {
		dev_err(&pdev->dev, "Failed to allocate memory\n");
		result = -ENOMEM;
		goto error_kmalloc;
	}

	spin_lock_init(&sp->lock);
	INIT_LIST_HEAD(&sp->command_queue);

	pci_set_drvdata(pdev, (void *)sp);
	sp->dev = &pdev->dev;
	sp->number = pdev->bus->number;
	snprintf(sp->dirname, IBMASM_NAME_SIZE, "%d", sp->number);
	snprintf(sp->devname, IBMASM_NAME_SIZE, "%s%d", DRIVER_NAME, sp->number);

	if (ibmasm_event_buffer_init(sp)) {
		dev_err(sp->dev, "Failed to allocate event buffer\n");
		goto error_eventbuffer;
	}

	if (ibmasm_heartbeat_init(sp)) {
		dev_err(sp->dev, "Failed to allocate heartbeat command\n");
		goto error_heartbeat;
	}

	sp->irq = pdev->irq;
	sp->base_address = pci_ioremap_bar(pdev, 0);
	if (!sp->base_address) {
		dev_err(sp->dev, "Failed to ioremap pci memory\n");
		result =  -ENODEV;
		goto error_ioremap;
	}

	result = request_irq(sp->irq, ibmasm_interrupt_handler, IRQF_SHARED, sp->devname, (void*)sp);
	if (result) {
		dev_err(sp->dev, "Failed to register interrupt handler\n");
		goto error_request_irq;
	}

	enable_sp_interrupts(sp->base_address);

	result = ibmasm_init_remote_input_dev(sp);
	if (result) {
		dev_err(sp->dev, "Failed to initialize remote queue\n");
		goto error_send_message;
	}

	result = ibmasm_send_driver_vpd(sp);
	if (result) {
		dev_err(sp->dev, "Failed to send driver VPD to service processor\n");
		goto error_send_message;
	}
	result = ibmasm_send_os_state(sp, SYSTEM_STATE_OS_UP);
	if (result) {
		dev_err(sp->dev, "Failed to send OS state to service processor\n");
		goto error_send_message;
	}
	ibmasmfs_add_sp(sp);

	ibmasm_register_uart(sp);

	return 0;

error_send_message:
	disable_sp_interrupts(sp->base_address);
	ibmasm_free_remote_input_dev(sp);
	free_irq(sp->irq, (void *)sp);
error_request_irq:
	iounmap(sp->base_address);
error_ioremap:
	ibmasm_heartbeat_exit(sp);
error_heartbeat:
	ibmasm_event_buffer_exit(sp);
error_eventbuffer:
	pci_set_drvdata(pdev, NULL);
	kfree(sp);
error_kmalloc:
        pci_release_regions(pdev);
error_resources:
        pci_disable_device(pdev);

	return result;
}

static void __devexit ibmasm_remove_one(struct pci_dev *pdev)
{
	struct service_processor *sp = (struct service_processor *)pci_get_drvdata(pdev);

	dbg("Unregistering UART\n");
	ibmasm_unregister_uart(sp);
	dbg("Sending OS down message\n");
	if (ibmasm_send_os_state(sp, SYSTEM_STATE_OS_DOWN))
		err("failed to get repsonse to 'Send OS State' command\n");
	dbg("Disabling heartbeats\n");
	ibmasm_heartbeat_exit(sp);
	dbg("Disabling interrupts\n");
	disable_sp_interrupts(sp->base_address);
	dbg("Freeing SP irq\n");
	free_irq(sp->irq, (void *)sp);
	dbg("Cleaning up\n");
	ibmasm_free_remote_input_dev(sp);
	iounmap(sp->base_address);
	ibmasm_event_buffer_exit(sp);
	pci_set_drvdata(pdev, NULL);
	kfree(sp);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
}

static struct pci_device_id ibmasm_pci_table[] =
{
	{ PCI_DEVICE(VENDORID_IBM, DEVICEID_RSA) },
	{},
};

static struct pci_driver ibmasm_driver = {
	.name		= DRIVER_NAME,
	.id_table	= ibmasm_pci_table,
	.probe		= ibmasm_init_one,
	.remove		= __devexit_p(ibmasm_remove_one),
};

static void __exit ibmasm_exit (void)
{
	ibmasm_unregister_panic_notifier();
	ibmasmfs_unregister();
	pci_unregister_driver(&ibmasm_driver);
	info(DRIVER_DESC " version " DRIVER_VERSION " unloaded");
}

static int __init ibmasm_init(void)
{
	int result;

	result = ibmasmfs_register();
	if (result) {
		err("Failed to register ibmasmfs file system");
		return result;
	}
	result = pci_register_driver(&ibmasm_driver);
	if (result) {
		ibmasmfs_unregister();
		return result;
	}
	ibmasm_register_panic_notifier();
	info(DRIVER_DESC " version " DRIVER_VERSION " loaded");
	return 0;
}

module_init(ibmasm_init);
module_exit(ibmasm_exit);

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, ibmasm_pci_table);

a id='n963' href='#n963'>963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/*
 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <chripell@evolware.org>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the version 2 of the GNU General Public License
 * as published by the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 *
 * Your platform definition file should specify something like:
 *
 * static struct mcp251x_platform_data mcp251x_info = {
 *         .oscillator_frequency = 8000000,
 *         .board_specific_setup = &mcp251x_setup,
 *         .power_enable = mcp251x_power_enable,
 *         .transceiver_enable = NULL,
 * };
 *
 * static struct spi_board_info spi_board_info[] = {
 *         {
 *                 .modalias = "mcp2510",
 *			// or "mcp2515" depending on your controller
 *                 .platform_data = &mcp251x_info,
 *                 .irq = IRQ_EINT13,
 *                 .max_speed_hz = 2*1000*1000,
 *                 .chip_select = 2,
 *         },
 * };
 *
 * Please see mcp251x.h for a description of the fields in
 * struct mcp251x_platform_data.
 *
 */

#include <linux/can/core.h>
#include <linux/can/dev.h>
#include <linux/can/platform/mcp251x.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/uaccess.h>

/* SPI interface instruction set */
#define INSTRUCTION_WRITE	0x02
#define INSTRUCTION_READ	0x03
#define INSTRUCTION_BIT_MODIFY	0x05
#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET	0xC0

/* MPC251x registers */
#define CANSTAT	      0x0e
#define CANCTRL	      0x0f
#  define CANCTRL_REQOP_MASK	    0xe0
#  define CANCTRL_REQOP_CONF	    0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP	    0x20
#  define CANCTRL_REQOP_NORMAL	    0x00
#  define CANCTRL_OSM		    0x08
#  define CANCTRL_ABAT		    0x10
#define TEC	      0x1c
#define REC	      0x1d
#define CNF1	      0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2	      0x29
#  define CNF2_BTLMODE	   0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3	      0x28
#  define CNF3_SOF	   0x08
#  define CNF3_WAKFIL	   0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE	      0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF	      0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
#define EFLG	      0x2d
#  define EFLG_EWARN	0x01
#  define EFLG_RXWAR	0x02
#  define EFLG_TXWAR	0x04
#  define EFLG_RXEP	0x08
#  define EFLG_TXEP	0x10
#  define EFLG_TXBO	0x20
#  define EFLG_RX0OVR	0x40
#  define EFLG_RX1OVR	0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF	0x40
#  define TXBCTRL_MLOA	0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT	0x04
#  define RXBCTRL_RXM0	0x20
#  define RXBCTRL_RXM1	0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
#  define RXBSIDL_SRR   0x10
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
#define RXFSIDH(n) ((n) * 4)
#define RXFSIDL(n) ((n) * 4 + 1)
#define RXFEID8(n) ((n) * 4 + 2)
#define RXFEID0(n) ((n) * 4 + 3)
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)

#define GET_BYTE(val, byte)			\
	(((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)			\
	(((val) & 0xff) << ((byte) * 8))

/*
 * Buffer size required for the largest SPI transfer (i.e., reading a
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN	8
#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS	128

#define TX_ECHO_SKB_MAX	1

#define DEVICE_NAME "mcp251x"

static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
module_param(mcp251x_enable_dma, int, S_IRUGO);
MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");

static struct can_bittiming_const mcp251x_bittiming_const = {
	.name = DEVICE_NAME,
	.tseg1_min = 3,
	.tseg1_max = 16,
	.tseg2_min = 2,
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 64,
	.brp_inc = 1,
};

enum mcp251x_model {
	CAN_MCP251X_MCP2510	= 0x2510,
	CAN_MCP251X_MCP2515	= 0x2515,
};

struct mcp251x_priv {
	struct can_priv	   can;
	struct net_device *net;
	struct spi_device *spi;
	enum mcp251x_model model;

	struct mutex mcp_lock; /* SPI device lock */

	u8 *spi_tx_buf;
	u8 *spi_rx_buf;
	dma_addr_t spi_tx_dma;
	dma_addr_t spi_rx_dma;

	struct sk_buff *tx_skb;
	int tx_len;

	struct workqueue_struct *wq;
	struct work_struct tx_work;
	struct work_struct restart_work;

	int force_quit;
	int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
	int restart_tx;
};

#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
	return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);
MCP251X_IS(2515);

static void mcp251x_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	if (priv->tx_skb || priv->tx_len)
		net->stats.tx_errors++;
	if (priv->tx_skb)
		dev_kfree_skb(priv->tx_skb);
	if (priv->tx_len)
		can_free_echo_skb(priv->net, 0);
	priv->tx_skb = NULL;
	priv->tx_len = 0;
}

/*
 * Note about handling of error return of mcp251x_spi_trans: accessing
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	struct spi_transfer t = {
		.tx_buf = priv->spi_tx_buf,
		.rx_buf = priv->spi_rx_buf,
		.len = len,
		.cs_change = 0,
	};
	struct spi_message m;
	int ret;

	spi_message_init(&m);

	if (mcp251x_enable_dma) {
		t.tx_dma = priv->spi_tx_dma;
		t.rx_dma = priv->spi_rx_dma;
		m.is_dma_mapped = 1;
	}

	spi_message_add_tail(&t, &m);

	ret = spi_sync(spi, &m);
	if (ret)
		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
	return ret;
}

static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	u8 val = 0;

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 3);
	val = priv->spi_rx_buf[2];

	return val;
}

static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
		uint8_t *v1, uint8_t *v2)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 4);

	*v1 = priv->spi_rx_buf[2];
	*v2 = priv->spi_rx_buf[3];
}

static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = val;

	mcp251x_spi_trans(spi, 3);
}

static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
			       u8 mask, uint8_t val)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = mask;
	priv->spi_tx_buf[3] = val;

	mcp251x_spi_trans(spi, 4);
}

static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
				int len, int tx_buf_idx)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

	if (mcp251x_is_2510(spi)) {
		int i;

		for (i = 1; i < TXBDAT_OFF + len; i++)
			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
					  buf[i]);
	} else {
		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
	}
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
			  int tx_buf_idx)
{
	u32 sid, eid, exide, rtr;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
	if (exide)
		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
	else
		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
		(exide << SIDL_EXIDE_SHIFT) |
		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
	mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
				int buf_idx)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

	if (mcp251x_is_2510(spi)) {
		int i, len;

		for (i = 1; i < RXBDAT_OFF; i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);

		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
		for (; i < (RXBDAT_OFF + len); i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
	} else {
		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
	}
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	struct sk_buff *skb;
	struct can_frame *frame;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	skb = alloc_can_skb(priv->net, &frame);
	if (!skb) {
		dev_err(&spi->dev, "cannot allocate RX skb\n");
		priv->net->stats.rx_dropped++;
		return;
	}

	mcp251x_hw_rx_frame(spi, buf, buf_idx);
	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
		/* Extended ID format */
		frame->can_id = CAN_EFF_FLAG;
		frame->can_id |=
			/* Extended ID part */
			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
			SET_BYTE(buf[RXBEID8_OFF], 1) |
			SET_BYTE(buf[RXBEID0_OFF], 0) |
			/* Standard ID part */
			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
		/* Remote transmission request */
		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
			frame->can_id |= CAN_RTR_FLAG;
	} else {
		/* Standard ID format */
		frame->can_id =
			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
			frame->can_id |= CAN_RTR_FLAG;
	}
	/* Data length */
	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);

	priv->net->stats.rx_packets++;
	priv->net->stats.rx_bytes += frame->can_dlc;
	netif_rx_ni(skb);
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	if (priv->tx_skb || priv->tx_len) {
		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
		return NETDEV_TX_BUSY;
	}

	if (can_dropped_invalid_skb(net, skb))
		return NETDEV_TX_OK;

	netif_stop_queue(net);
	priv->tx_skb = skb;
	queue_work(priv->wq, &priv->tx_work);

	return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	switch (mode) {
	case CAN_MODE_START:
		mcp251x_clean(net);
		/* We have to delay work since SPI I/O may sleep */
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
		priv->restart_tx = 1;
		if (priv->can.restart_ms == 0)
			priv->after_suspend = AFTER_SUSPEND_RESTART;
		queue_work(priv->wq, &priv->restart_work);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static int mcp251x_set_normal_mode(struct spi_device *spi)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	unsigned long timeout;

	/* Enable interrupts */
	mcp251x_write_reg(spi, CANINTE,
			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);

	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* Put device into loopback mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* Put device into listen-only mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
	} else {
		/* Put device into normal mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);

		/* Wait for the device to enter normal mode */
		timeout = jiffies + HZ;
		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
			schedule();
			if (time_after(jiffies, timeout)) {
				dev_err(&spi->dev, "MCP251x didn't"
					" enter in normal mode\n");
				return -EBUSY;
			}
		}
	}
	priv->can.state = CAN_STATE_ERROR_ACTIVE;
	return 0;
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct can_bittiming *bt = &priv->can.bittiming;
	struct spi_device *spi = priv->spi;

	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
			  (bt->brp - 1));
	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
			   CNF2_SAM : 0) |
			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
			  (bt->prop_seg - 1));
	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
			   (bt->phase_seg2 - 1));
	dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
		 mcp251x_read_reg(spi, CNF1),
		 mcp251x_read_reg(spi, CNF2),
		 mcp251x_read_reg(spi, CNF3));

	return 0;
}

static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
			 struct spi_device *spi)
{
	mcp251x_do_set_bittiming(net);

	mcp251x_write_reg(spi, RXBCTRL(0),
			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
	mcp251x_write_reg(spi, RXBCTRL(1),
			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
	return 0;
}

static int mcp251x_hw_reset(struct spi_device *spi)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	int ret;
	unsigned long timeout;

	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
	ret = spi_write(spi, priv->spi_tx_buf, 1);
	if (ret) {
		dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
		return -EIO;
	}

	/* Wait for reset to finish */
	timeout = jiffies + HZ;
	mdelay(10);
	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
	       != CANCTRL_REQOP_CONF) {
		schedule();
		if (time_after(jiffies, timeout)) {
			dev_err(&spi->dev, "MCP251x didn't"
				" enter in conf mode after reset\n");
			return -EBUSY;
		}
	}
	return 0;
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
	int st1, st2;

	mcp251x_hw_reset(spi);

	/*
	 * Please note that these are "magic values" based on after
	 * reset defaults taken from data sheet which allows us to see
	 * if we really have a chip on the bus (we avoid common all
	 * zeroes or all ones situations)
	 */
	st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
	st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;

	dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);

	/* Check for power up default values */
	return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
}

static void mcp251x_open_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;

	free_irq(spi->irq, priv);
	mcp251x_hw_sleep(spi);
	if (pdata->transceiver_enable)
		pdata->transceiver_enable(0);
	close_candev(net);
}

static int mcp251x_stop(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;

	close_candev(net);

	priv->force_quit = 1;
	free_irq(spi->irq, priv);
	destroy_workqueue(priv->wq);
	priv->wq = NULL;

	mutex_lock(&priv->mcp_lock);

	/* Disable and clear pending interrupts */
	mcp251x_write_reg(spi, CANINTE, 0x00);
	mcp251x_write_reg(spi, CANINTF, 0x00);

	mcp251x_write_reg(spi, TXBCTRL(0), 0);
	mcp251x_clean(net);

	mcp251x_hw_sleep(spi);

	if (pdata->transceiver_enable)
		pdata->transceiver_enable(0);

	priv->can.state = CAN_STATE_STOPPED;

	mutex_unlock(&priv->mcp_lock);

	return 0;
}

static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_err_skb(net, &frame);
	if (skb) {
		frame->can_id |= can_id;
		frame->data[1] = data1;
		netif_rx_ni(skb);
	} else {
		dev_err(&net->dev,
			"cannot allocate error skb\n");
	}
}

static void mcp251x_tx_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 tx_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
	struct can_frame *frame;

	mutex_lock(&priv->mcp_lock);
	if (priv->tx_skb) {
		if (priv->can.state == CAN_STATE_BUS_OFF) {
			mcp251x_clean(net);
		} else {
			frame = (struct can_frame *)priv->tx_skb->data;

			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
			mcp251x_hw_tx(spi, frame, 0);
			priv->tx_len = 1 + frame->can_dlc;
			can_put_echo_skb(priv->tx_skb, net, 0);
			priv->tx_skb = NULL;
		}
	}
	mutex_unlock(&priv->mcp_lock);
}

static void mcp251x_restart_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 restart_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

	mutex_lock(&priv->mcp_lock);
	if (priv->after_suspend) {
		mdelay(10);
		mcp251x_hw_reset(spi);
		mcp251x_setup(net, priv, spi);
		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
			mcp251x_set_normal_mode(spi);
		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
			netif_device_attach(net);
			mcp251x_clean(net);
			mcp251x_set_normal_mode(spi);
			netif_wake_queue(net);
		} else {
			mcp251x_hw_sleep(spi);
		}
		priv->after_suspend = 0;
		priv->force_quit = 0;
	}

	if (priv->restart_tx) {
		priv->restart_tx = 0;
		mcp251x_write_reg(spi, TXBCTRL(0), 0);
		mcp251x_clean(net);
		netif_wake_queue(net);
		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
	}
	mutex_unlock(&priv->mcp_lock);
}

static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
{
	struct mcp251x_priv *priv = dev_id;
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

	mutex_lock(&priv->mcp_lock);
	while (!priv->force_quit) {
		enum can_state new_state;
		u8 intf, eflag;
		u8 clear_intf = 0;
		int can_id = 0, data1 = 0;

		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

		/* mask out flags we don't care about */
		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

		/* receive buffer 0 */
		if (intf & CANINTF_RX0IF) {
			mcp251x_hw_rx(spi, 0);
			/*
			 * Free one buffer ASAP
			 * (The MCP2515 does this automatically.)
			 */
			if (mcp251x_is_2510(spi))
				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
		}

		/* receive buffer 1 */
		if (intf & CANINTF_RX1IF) {
			mcp251x_hw_rx(spi, 1);
			/* the MCP2515 does this automatically */
			if (mcp251x_is_2510(spi))
				clear_intf |= CANINTF_RX1IF;
		}

		/* any error or tx interrupt we need to clear? */
		if (intf & (CANINTF_ERR | CANINTF_TX))
			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
		if (clear_intf)
			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);

		if (eflag)
			mcp251x_write_bits(spi, EFLG, eflag, 0x00);

		/* Update can state */
		if (eflag & EFLG_TXBO) {
			new_state = CAN_STATE_BUS_OFF;
			can_id |= CAN_ERR_BUSOFF;
		} else if (eflag & EFLG_TXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
		} else if (eflag & EFLG_RXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
		} else if (eflag & EFLG_TXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_WARNING;
		} else if (eflag & EFLG_RXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_WARNING;
		} else {
			new_state = CAN_STATE_ERROR_ACTIVE;
		}

		/* Update can state statistics */
		switch (priv->can.state) {
		case CAN_STATE_ERROR_ACTIVE:
			if (new_state >= CAN_STATE_ERROR_WARNING &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_warning++;
		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_passive++;
			break;
		default:
			break;
		}
		priv->can.state = new_state;

		if (intf & CANINTF_ERRIF) {
			/* Handle overflow counters */
			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
				if (eflag & EFLG_RX0OVR) {
					net->stats.rx_over_errors++;
					net->stats.rx_errors++;
				}
				if (eflag & EFLG_RX1OVR) {
					net->stats.rx_over_errors++;
					net->stats.rx_errors++;
				}
				can_id |= CAN_ERR_CRTL;
				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
			}
			mcp251x_error_skb(net, can_id, data1);
		}

		if (priv->can.state == CAN_STATE_BUS_OFF) {
			if (priv->can.restart_ms == 0) {
				priv->force_quit = 1;
				can_bus_off(net);
				mcp251x_hw_sleep(spi);
				break;
			}
		}

		if (intf == 0)
			break;

		if (intf & CANINTF_TX) {
			net->stats.tx_packets++;
			net->stats.tx_bytes += priv->tx_len - 1;
			if (priv->tx_len) {
				can_get_echo_skb(net, 0);
				priv->tx_len = 0;
			}
			netif_wake_queue(net);
		}

	}
	mutex_unlock(&priv->mcp_lock);
	return IRQ_HANDLED;
}

static int mcp251x_open(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	int ret;

	ret = open_candev(net);
	if (ret) {
		dev_err(&spi->dev, "unable to set initial baudrate!\n");
		return ret;
	}

	mutex_lock(&priv->mcp_lock);
	if (pdata->transceiver_enable)
		pdata->transceiver_enable(1);

	priv->force_quit = 0;
	priv->tx_skb = NULL;
	priv->tx_len = 0;

	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
			  IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
	if (ret) {
		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
		if (pdata->transceiver_enable)
			pdata->transceiver_enable(0);
		close_candev(net);
		goto open_unlock;
	}

	priv->wq = create_freezeable_workqueue("mcp251x_wq");
	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

	ret = mcp251x_hw_reset(spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
	ret = mcp251x_setup(net, priv, spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
	ret = mcp251x_set_normal_mode(spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
	netif_wake_queue(net);

open_unlock:
	mutex_unlock(&priv->mcp_lock);
	return ret;
}

static const struct net_device_ops mcp251x_netdev_ops = {
	.ndo_open = mcp251x_open,
	.ndo_stop = mcp251x_stop,
	.ndo_start_xmit = mcp251x_hard_start_xmit,
};

static int __devinit mcp251x_can_probe(struct spi_device *spi)
{
	struct net_device *net;
	struct mcp251x_priv *priv;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	int ret = -ENODEV;

	if (!pdata)
		/* Platform data is required for osc freq */
		goto error_out;

	/* Allocate can/net device */
	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
	if (!net) {
		ret = -ENOMEM;
		goto error_alloc;
	}

	net->netdev_ops = &mcp251x_netdev_ops;
	net->flags |= IFF_ECHO;

	priv = netdev_priv(net);
	priv->can.bittiming_const = &mcp251x_bittiming_const;
	priv->can.do_set_mode = mcp251x_do_set_mode;
	priv->can.clock.freq = pdata->oscillator_frequency / 2;
	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
	priv->model = spi_get_device_id(spi)->driver_data;
	priv->net = net;
	dev_set_drvdata(&spi->dev, priv);

	priv->spi = spi;
	mutex_init(&priv->mcp_lock);

	/* If requested, allocate DMA buffers */
	if (mcp251x_enable_dma) {
		spi->dev.coherent_dma_mask = ~0;

		/*
		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
		 * that much and share it between Tx and Rx DMA buffers.
		 */
		priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
						      PAGE_SIZE,
						      &priv->spi_tx_dma,
						      GFP_DMA);

		if (priv->spi_tx_buf) {
			priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
						  (PAGE_SIZE / 2));
			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
							(PAGE_SIZE / 2));
		} else {
			/* Fall back to non-DMA */
			mcp251x_enable_dma = 0;
		}
	}

	/* Allocate non-DMA buffers */
	if (!mcp251x_enable_dma) {
		priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
		if (!priv->spi_tx_buf) {
			ret = -ENOMEM;
			goto error_tx_buf;
		}
		priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
		if (!priv->spi_rx_buf) {
			ret = -ENOMEM;
			goto error_rx_buf;
		}
	}

	if (pdata->power_enable)
		pdata->power_enable(1);

	/* Call out to platform specific setup */
	if (pdata->board_specific_setup)
		pdata->board_specific_setup(spi);

	SET_NETDEV_DEV(net, &spi->dev);

	/* Configure the SPI bus */
	spi->mode = SPI_MODE_0;
	spi->bits_per_word = 8;
	spi_setup(spi);

	/* Here is OK to not lock the MCP, no one knows about it yet */
	if (!mcp251x_hw_probe(spi)) {
		dev_info(&spi->dev, "Probe failed\n");
		goto error_probe;
	}
	mcp251x_hw_sleep(spi);

	if (pdata->transceiver_enable)
		pdata->transceiver_enable(0);

	ret = register_candev(net);
	if (!ret) {
		dev_info(&spi->dev, "probed\n");
		return ret;
	}
error_probe:
	if (!mcp251x_enable_dma)
		kfree(priv->spi_rx_buf);
error_rx_buf:
	if (!mcp251x_enable_dma)
		kfree(priv->spi_tx_buf);
error_tx_buf:
	free_candev(net);
	if (mcp251x_enable_dma)
		dma_free_coherent(&spi->dev, PAGE_SIZE,
				  priv->spi_tx_buf, priv->spi_tx_dma);
error_alloc:
	if (pdata->power_enable)
		pdata->power_enable(0);
	dev_err(&spi->dev, "probe failed\n");
error_out:
	return ret;
}

static int __devexit mcp251x_can_remove(struct spi_device *spi)
{
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	struct net_device *net = priv->net;

	unregister_candev(net);
	free_candev(net);

	if (mcp251x_enable_dma) {
		dma_free_coherent(&spi->dev, PAGE_SIZE,
				  priv->spi_tx_buf, priv->spi_tx_dma);
	} else {
		kfree(priv->spi_tx_buf);
		kfree(priv->spi_rx_buf);
	}

	if (pdata->power_enable)
		pdata->power_enable(0);

	return 0;
}

#ifdef CONFIG_PM
static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
{
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	struct net_device *net = priv->net;

	priv->force_quit = 1;
	disable_irq(spi->irq);
	/*
	 * Note: at this point neither IST nor workqueues are running.
	 * open/stop cannot be called anyway so locking is not needed
	 */
	if (netif_running(net)) {
		netif_device_detach(net);

		mcp251x_hw_sleep(spi);
		if (pdata->transceiver_enable)
			pdata->transceiver_enable(0);
		priv->after_suspend = AFTER_SUSPEND_UP;
	} else {
		priv->after_suspend = AFTER_SUSPEND_DOWN;
	}

	if (pdata->power_enable) {
		pdata->power_enable(0);
		priv->after_suspend |= AFTER_SUSPEND_POWER;
	}

	return 0;
}

static int mcp251x_can_resume(struct spi_device *spi)
{
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

	if (priv->after_suspend & AFTER_SUSPEND_POWER) {
		pdata->power_enable(1);
		queue_work(priv->wq, &priv->restart_work);
	} else {
		if (priv->after_suspend & AFTER_SUSPEND_UP) {
			if (pdata->transceiver_enable)
				pdata->transceiver_enable(1);
			queue_work(priv->wq, &priv->restart_work);
		} else {
			priv->after_suspend = 0;
		}
	}
	priv->force_quit = 0;
	enable_irq(spi->irq);
	return 0;
}
#else
#define mcp251x_can_suspend NULL
#define mcp251x_can_resume NULL
#endif

static const struct spi_device_id mcp251x_id_table[] = {
	{ "mcp2510",	CAN_MCP251X_MCP2510 },
	{ "mcp2515",	CAN_MCP251X_MCP2515 },
	{ },
};

MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

static struct spi_driver mcp251x_can_driver = {
	.driver = {
		.name = DEVICE_NAME,
		.bus = &spi_bus_type,
		.owner = THIS_MODULE,
	},

	.id_table = mcp251x_id_table,
	.probe = mcp251x_can_probe,
	.remove = __devexit_p(mcp251x_can_remove),
	.suspend = mcp251x_can_suspend,
	.resume = mcp251x_can_resume,
};

static int __init mcp251x_can_init(void)
{
	return spi_register_driver(&mcp251x_can_driver);
}

static void __exit mcp251x_can_exit(void)
{
	spi_unregister_driver(&mcp251x_can_driver);
}

module_init(mcp251x_can_init);
module_exit(mcp251x_can_exit);

MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
	      "Christian Pellegrin <chripell@evolware.org>");
MODULE_DESCRIPTION("Microchip 251x CAN driver");
MODULE_LICENSE("GPL v2");