aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/input/misc/hp_sdc_rtc.c
blob: daa9d4220331b06e68b9100caad9c5e98065a48f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
/*
 * HP i8042 SDC + MSM-58321 BBRTC driver.
 *
 * Copyright (c) 2001 Brian S. Julin
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * Alternatively, this software may be distributed under the terms of the
 * GNU General Public License ("GPL").
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 *
 * References:
 * System Device Controller Microprocessor Firmware Theory of Operation
 *      for Part Number 1820-4784 Revision B.  Dwg No. A-1820-4784-2
 * efirtc.c by Stephane Eranian/Hewlett Packard
 *
 */

#include <linux/hp_sdc.h>
#include <linux/errno.h>
#include <linux/smp_lock.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/time.h>
#include <linux/miscdevice.h>
#include <linux/proc_fs.h>
#include <linux/poll.h>
#include <linux/rtc.h>
#include <linux/semaphore.h>

MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
MODULE_LICENSE("Dual BSD/GPL");

#define RTC_VERSION "1.10d"

static unsigned long epoch = 2000;

static struct semaphore i8042tregs;

static hp_sdc_irqhook hp_sdc_rtc_isr;

static struct fasync_struct *hp_sdc_rtc_async_queue;

static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);

static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
			       size_t count, loff_t *ppos);

static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
			    unsigned int cmd, unsigned long arg);

static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);

static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
static int hp_sdc_rtc_release(struct inode *inode, struct file *file);
static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);

static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
				int count, int *eof, void *data);

static void hp_sdc_rtc_isr (int irq, void *dev_id, 
			    uint8_t status, uint8_t data) 
{
	return;
}

static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
{
	struct semaphore tsem;
	hp_sdc_transaction t;
	uint8_t tseq[91];
	int i;
	
	i = 0;
	while (i < 91) {
		tseq[i++] = HP_SDC_ACT_DATAREG |
			HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
		tseq[i++] = 0x01;			/* write i8042[0x70] */
	  	tseq[i]   = i / 7;			/* BBRTC reg address */
		i++;
		tseq[i++] = HP_SDC_CMD_DO_RTCR;		/* Trigger command   */
		tseq[i++] = 2;		/* expect 1 stat/dat pair back.   */
		i++; i++;               /* buffer for stat/dat pair       */
	}
	tseq[84] |= HP_SDC_ACT_SEMAPHORE;
	t.endidx =		91;
	t.seq =			tseq;
	t.act.semaphore =	&tsem;
	init_MUTEX_LOCKED(&tsem);
	
	if (hp_sdc_enqueue_transaction(&t)) return -1;
	
	down_interruptible(&tsem);  /* Put ourselves to sleep for results. */
	
	/* Check for nonpresence of BBRTC */
	if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
	       tseq[55] | tseq[62] | tseq[34] | tseq[41] |
	       tseq[20] | tseq[27] | tseq[6]  | tseq[13]) & 0x0f))
		return -1;

	memset(rtctm, 0, sizeof(struct rtc_time));
	rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
	rtctm->tm_mon  = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
	rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
	rtctm->tm_wday = (tseq[48] & 0x0f);
	rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
	rtctm->tm_min  = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
	rtctm->tm_sec  = (tseq[6]  & 0x0f) + (tseq[13] & 0x0f) * 10;
	
	return 0;
}

static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
{
	struct rtc_time tm, tm_last;
	int i = 0;

	/* MSM-58321 has no read latch, so must read twice and compare. */

	if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
	if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;

	while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
		if (i++ > 4) return -1;
		memcpy(&tm_last, &tm, sizeof(struct rtc_time));
		if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
	}

	memcpy(rtctm, &tm, sizeof(struct rtc_time));

	return 0;
}


static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
{
	hp_sdc_transaction t;
	uint8_t tseq[26] = {
		HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
		0,
		HP_SDC_CMD_READ_T1, 2, 0, 0,
		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 
		HP_SDC_CMD_READ_T2, 2, 0, 0,
		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 
		HP_SDC_CMD_READ_T3, 2, 0, 0,
		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 
		HP_SDC_CMD_READ_T4, 2, 0, 0,
		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 
		HP_SDC_CMD_READ_T5, 2, 0, 0
	};

	t.endidx = numreg * 5;

	tseq[1] = loadcmd;
	tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */

	t.seq =			tseq;
	t.act.semaphore =	&i8042tregs;

	down_interruptible(&i8042tregs);  /* Sleep if output regs in use. */

	if (hp_sdc_enqueue_transaction(&t)) return -1;
	
	down_interruptible(&i8042tregs);  /* Sleep until results come back. */
	up(&i8042tregs);

	return (tseq[5] | 
		((uint64_t)(tseq[10]) << 8)  | ((uint64_t)(tseq[15]) << 16) |
		((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
}


/* Read the i8042 real-time clock */
static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
	int64_t raw;
	uint32_t tenms; 
	unsigned int days;

	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
	if (raw < 0) return -1;

	tenms = (uint32_t)raw & 0xffffff;
	days  = (unsigned int)(raw >> 24) & 0xffff;

	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
	res->tv_sec =  (time_t)(tenms / 100) + days * 86400;

	return 0;
}


/* Read the i8042 fast handshake timer */
static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
	uint64_t raw;
	unsigned int tenms;

	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
	if (raw < 0) return -1;

	tenms = (unsigned int)raw & 0xffff;

	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
	res->tv_sec  = (time_t)(tenms / 100);

	return 0;
}


/* Read the i8042 match timer (a.k.a. alarm) */
static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
	int64_t raw;	
	uint32_t tenms; 

	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
	if (raw < 0) return -1;

	tenms = (uint32_t)raw & 0xffffff;

	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
	res->tv_sec  = (time_t)(tenms / 100);

	return 0;
}


/* Read the i8042 delay timer */
static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
	int64_t raw;
	uint32_t tenms;

	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
	if (raw < 0) return -1;

	tenms = (uint32_t)raw & 0xffffff;

	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
	res->tv_sec  = (time_t)(tenms / 100);

	return 0;
}


/* Read the i8042 cycle timer (a.k.a. periodic) */
static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
	int64_t raw;
	uint32_t tenms;

	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
	if (raw < 0) return -1;

	tenms = (uint32_t)raw & 0xffffff;

	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
	res->tv_sec  = (time_t)(tenms / 100);

	return 0;
}


/* Set the i8042 real-time clock */
static int hp_sdc_rtc_set_rt (struct timeval *setto)
{
	uint32_t tenms;
	unsigned int days;
	hp_sdc_transaction t;
	uint8_t tseq[11] = {
		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
		HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
		HP_SDC_CMD_SET_RTD, 2, 0, 0 
	};

	t.endidx = 10;

	if (0xffff < setto->tv_sec / 86400) return -1;
	days = setto->tv_sec / 86400;
	if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
	days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
	if (days > 0xffff) return -1;

	if (0xffffff < setto->tv_sec) return -1;
	tenms  = setto->tv_sec * 100;
	if (0xffffff < setto->tv_usec / 10000) return -1;
	tenms += setto->tv_usec / 10000;
	if (tenms > 0xffffff) return -1;

	tseq[3] = (uint8_t)(tenms & 0xff);
	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
	tseq[5] = (uint8_t)((tenms >> 16) & 0xff);

	tseq[9] = (uint8_t)(days & 0xff);
	tseq[10] = (uint8_t)((days >> 8) & 0xff);

	t.seq =	tseq;

	if (hp_sdc_enqueue_transaction(&t)) return -1;
	return 0;
}

/* Set the i8042 fast handshake timer */
static int hp_sdc_rtc_set_fhs (struct timeval *setto)
{
	uint32_t tenms;
	hp_sdc_transaction t;
	uint8_t tseq[5] = {
		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
		HP_SDC_CMD_SET_FHS, 2, 0, 0
	};

	t.endidx = 4;

	if (0xffff < setto->tv_sec) return -1;
	tenms  = setto->tv_sec * 100;
	if (0xffff < setto->tv_usec / 10000) return -1;
	tenms += setto->tv_usec / 10000;
	if (tenms > 0xffff) return -1;

	tseq[3] = (uint8_t)(tenms & 0xff);
	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);

	t.seq =	tseq;

	if (hp_sdc_enqueue_transaction(&t)) return -1;
	return 0;
}


/* Set the i8042 match timer (a.k.a. alarm) */
#define hp_sdc_rtc_set_mt (setto) \
	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)

/* Set the i8042 delay timer */
#define hp_sdc_rtc_set_dt (setto) \
	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)

/* Set the i8042 cycle timer (a.k.a. periodic) */
#define hp_sdc_rtc_set_ct (setto) \
	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)

/* Set one of the i8042 3-byte wide timers */
static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
{
	uint32_t tenms;
	hp_sdc_transaction t;
	uint8_t tseq[6] = {
		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
		0, 3, 0, 0, 0
	};

	t.endidx = 6;

	if (0xffffff < setto->tv_sec) return -1;
	tenms  = setto->tv_sec * 100;
	if (0xffffff < setto->tv_usec / 10000) return -1;
	tenms += setto->tv_usec / 10000;
	if (tenms > 0xffffff) return -1;

	tseq[1] = setcmd;
	tseq[3] = (uint8_t)(tenms & 0xff);
	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
	tseq[5] = (uint8_t)((tenms >> 16)  & 0xff);

	t.seq =			tseq;

	if (hp_sdc_enqueue_transaction(&t)) { 
		return -1;
	}
	return 0;
}

static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
			       size_t count, loff_t *ppos) {
	ssize_t retval;

        if (count < sizeof(unsigned long))
                return -EINVAL;

	retval = put_user(68, (unsigned long __user *)buf);
	return retval;
}

static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
{
        unsigned long l;

	l = 0;
        if (l != 0)
                return POLLIN | POLLRDNORM;
        return 0;
}

static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
{
	cycle_kernel_lock();
        return 0;
}

static int hp_sdc_rtc_release(struct inode *inode, struct file *file)
{
	/* Turn off interrupts? */

        if (file->f_flags & FASYNC) {
                hp_sdc_rtc_fasync (-1, file, 0);
        }

        return 0;
}

static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
{
        return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
}

static int hp_sdc_rtc_proc_output (char *buf)
{
#define YN(bit) ("no")
#define NY(bit) ("yes")
        char *p;
        struct rtc_time tm;
	struct timeval tv;

	memset(&tm, 0, sizeof(struct rtc_time));

	p = buf;

	if (hp_sdc_rtc_read_bbrtc(&tm)) {
		p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
	} else {
		p += sprintf(p,
			     "rtc_time\t: %02d:%02d:%02d\n"
			     "rtc_date\t: %04d-%02d-%02d\n"
			     "rtc_epoch\t: %04lu\n",
			     tm.tm_hour, tm.tm_min, tm.tm_sec,
			     tm.tm_year + 1900, tm.tm_mon + 1, 
			     tm.tm_mday, epoch);
	}

	if (hp_sdc_rtc_read_rt(&tv)) {
		p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
	} else {
		p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n", 
			     tv.tv_sec, tv.tv_usec/1000);
	}

	if (hp_sdc_rtc_read_fhs(&tv)) {
		p += sprintf(p, "handshake\t: READ FAILED!\n");
	} else {
        	p += sprintf(p, "handshake\t: %ld.%02d seconds\n", 
			     tv.tv_sec, tv.tv_usec/1000);
	}

	if (hp_sdc_rtc_read_mt(&tv)) {
		p += sprintf(p, "alarm\t\t: READ FAILED!\n");
	} else {
		p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n", 
			     tv.tv_sec, tv.tv_usec/1000);
	}

	if (hp_sdc_rtc_read_dt(&tv)) {
		p += sprintf(p, "delay\t\t: READ FAILED!\n");
	} else {
		p += sprintf(p, "delay\t\t: %ld.%02d seconds\n", 
			     tv.tv_sec, tv.tv_usec/1000);
	}

	if (hp_sdc_rtc_read_ct(&tv)) {
		p += sprintf(p, "periodic\t: READ FAILED!\n");
	} else {
		p += sprintf(p, "periodic\t: %ld.%02d seconds\n", 
			     tv.tv_sec, tv.tv_usec/1000);
	}

        p += sprintf(p,
                     "DST_enable\t: %s\n"
                     "BCD\t\t: %s\n"
                     "24hr\t\t: %s\n"
                     "square_wave\t: %s\n"
                     "alarm_IRQ\t: %s\n"
                     "update_IRQ\t: %s\n"
                     "periodic_IRQ\t: %s\n"
		     "periodic_freq\t: %ld\n"
                     "batt_status\t: %s\n",
                     YN(RTC_DST_EN),
                     NY(RTC_DM_BINARY),
                     YN(RTC_24H),
                     YN(RTC_SQWE),
                     YN(RTC_AIE),
                     YN(RTC_UIE),
                     YN(RTC_PIE),
                     1UL,
                     1 ? "okay" : "dead");

        return  p - buf;
#undef YN
#undef NY
}

static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
                         int count, int *eof, void *data)
{
	int len = hp_sdc_rtc_proc_output (page);
        if (len <= off+count) *eof = 1;
        *start = page + off;
        len -= off;
        if (len>count) len = count;
        if (len<0) len = 0;
        return len;
}

static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file, 
			    unsigned int cmd, unsigned long arg)
{
#if 1
	return -EINVAL;
#else
	
        struct rtc_time wtime; 
	struct timeval ttime;
	int use_wtime = 0;

	/* This needs major work. */

        switch (cmd) {

        case RTC_AIE_OFF:       /* Mask alarm int. enab. bit    */
        case RTC_AIE_ON:        /* Allow alarm interrupts.      */
	case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
        case RTC_PIE_ON:        /* Allow periodic ints          */
        case RTC_UIE_ON:        /* Allow ints for RTC updates.  */
        case RTC_UIE_OFF:       /* Allow ints for RTC updates.  */
        {
		/* We cannot mask individual user timers and we
		   cannot tell them apart when they occur, so it 
		   would be disingenuous to succeed these IOCTLs */
		return -EINVAL;
        }
        case RTC_ALM_READ:      /* Read the present alarm time */
        {
		if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
		if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;

		wtime.tm_hour = ttime.tv_sec / 3600;  ttime.tv_sec %= 3600;
		wtime.tm_min  = ttime.tv_sec / 60;    ttime.tv_sec %= 60;
		wtime.tm_sec  = ttime.tv_sec;
                
		break;
        }
        case RTC_IRQP_READ:     /* Read the periodic IRQ rate.  */
        {
                return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
        }
        case RTC_IRQP_SET:      /* Set periodic IRQ rate.       */
        {
                /* 
                 * The max we can do is 100Hz.
		 */

                if ((arg < 1) || (arg > 100)) return -EINVAL;
		ttime.tv_sec = 0;
		ttime.tv_usec = 1000000 / arg;
		if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
		hp_sdc_rtc_freq = arg;
                return 0;
        }
        case RTC_ALM_SET:       /* Store a time into the alarm */
        {
                /*
                 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
                 * "don't care" or "match all" for PC timers.  The HP SDC
		 * does not support that perk, but it could be emulated fairly
		 * easily.  Only the tm_hour, tm_min and tm_sec are used.
		 * We could do it with 10ms accuracy with the HP SDC, if the 
		 * rtc interface left us a way to do that.
                 */
                struct hp_sdc_rtc_time alm_tm;

                if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
                                   sizeof(struct hp_sdc_rtc_time)))
                       return -EFAULT;

                if (alm_tm.tm_hour > 23) return -EINVAL;
		if (alm_tm.tm_min  > 59) return -EINVAL;
		if (alm_tm.tm_sec  > 59) return -EINVAL;  

		ttime.sec = alm_tm.tm_hour * 3600 + 
		  alm_tm.tm_min * 60 + alm_tm.tm_sec;
		ttime.usec = 0;
		if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
                return 0;
        }
        case RTC_RD_TIME:       /* Read the time/date from RTC  */
        {
		if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
                break;
        }
        case RTC_SET_TIME:      /* Set the RTC */
        {
                struct rtc_time hp_sdc_rtc_tm;
                unsigned char mon, day, hrs, min, sec, leap_yr;
                unsigned int yrs;

                if (!capable(CAP_SYS_TIME))
                        return -EACCES;
		if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
                                   sizeof(struct rtc_time)))
                        return -EFAULT;

                yrs = hp_sdc_rtc_tm.tm_year + 1900;
                mon = hp_sdc_rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
                day = hp_sdc_rtc_tm.tm_mday;
                hrs = hp_sdc_rtc_tm.tm_hour;
                min = hp_sdc_rtc_tm.tm_min;
                sec = hp_sdc_rtc_tm.tm_sec;

                if (yrs < 1970)
                        return -EINVAL;

                leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));

                if ((mon > 12) || (day == 0))
                        return -EINVAL;
                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
                        return -EINVAL;
		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
                        return -EINVAL;

                if ((yrs -= eH) > 255)    /* They are unsigned */
                        return -EINVAL;


                return 0;
        }
        case RTC_EPOCH_READ:    /* Read the epoch.      */
        {
                return put_user (epoch, (unsigned long *)arg);
        }
        case RTC_EPOCH_SET:     /* Set the epoch.       */
        {
                /* 
                 * There were no RTC clocks before 1900.
                 */
                if (arg < 1900)
		  return -EINVAL;
		if (!capable(CAP_SYS_TIME))
		  return -EACCES;
		
                epoch = arg;
                return 0;
        }
        default:
                return -EINVAL;
        }
        return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
#endif
}

static const struct file_operations hp_sdc_rtc_fops = {
        .owner =	THIS_MODULE,
        .llseek =	no_llseek,
        .read =		hp_sdc_rtc_read,
        .poll =		hp_sdc_rtc_poll,
        .ioctl =	hp_sdc_rtc_ioctl,
        .open =		hp_sdc_rtc_open,
        .release =	hp_sdc_rtc_release,
        .fasync =	hp_sdc_rtc_fasync,
};

static struct miscdevice hp_sdc_rtc_dev = {
        .minor =	RTC_MINOR,
        .name =		"rtc_HIL",
        .fops =		&hp_sdc_rtc_fops
};

static int __init hp_sdc_rtc_init(void)
{
	int ret;

#ifdef __mc68000__
	if (!MACH_IS_HP300)
		return -ENODEV;
#endif

	init_MUTEX(&i8042tregs);

	if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
		return ret;
	if (misc_register(&hp_sdc_rtc_dev) != 0)
		printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");

        create_proc_read_entry ("driver/rtc", 0, NULL,
				hp_sdc_rtc_read_proc, NULL);

	printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
			 "(RTC v " RTC_VERSION ")\n");

	return 0;
}

static void __exit hp_sdc_rtc_exit(void)
{
	remove_proc_entry ("driver/rtc", NULL);
        misc_deregister(&hp_sdc_rtc_dev);
	hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
        printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
}

module_init(hp_sdc_rtc_init);
module_exit(hp_sdc_rtc_exit);