aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/fc4/socal.c
blob: f52d1e5bd5a5b0cd68711db46e32a6ce1c4c18b5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
/* socal.c: Sparc SUNW,socal (SOC+) Fibre Channel Sbus adapter support.
 *
 * Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
 *
 * Sources:
 *	Fibre Channel Physical & Signaling Interface (FC-PH), dpANS, 1994
 *	dpANS Fibre Channel Protocol for SCSI (X3.269-199X), Rev. 012, 1995
 *	SOC+ Programming Guide 0.1
 *	Fibre Channel Arbitrated Loop (FC-AL), dpANS rev. 4.5, 1995
 *
 * Supported hardware:
 *      On-board SOC+ adapters of Ultra Enterprise servers and sun4d.
 */

static char *version =
        "socal.c: SOC+ driver v1.1 9/Feb/99 Jakub Jelinek (jj@ultra.linux.cz)\n";

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/errno.h>
#include <asm/byteorder.h>

#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/pgtable.h>
#include <asm/irq.h>

/* #define SOCALDEBUG */
/* #define HAVE_SOCAL_UCODE */
/* #define USE_64BIT_MODE */

#include "fcp_impl.h"
#include "socal.h"
#ifdef HAVE_SOCAL_UCODE
#include "socal_asm.h"
#endif

#define socal_printk printk ("socal%d: ", s->socal_no); printk 

#ifdef SOCALDEBUG
#define SOD(x)  socal_printk x;
#else
#define SOD(x)
#endif

#define for_each_socal(s) for (s = socals; s; s = s->next)
struct socal *socals = NULL;

static void socal_copy_from_xram(void *d, void __iomem *xram, long size)
{
	u32 *dp = (u32 *) d;
	while (size) {
		*dp++ = sbus_readl(xram);
		xram += sizeof(u32);
		size -= sizeof(u32);
	}
}

static void socal_copy_to_xram(void __iomem *xram, void *s, long size)
{
	u32 *sp = (u32 *) s;
	while (size) {
		u32 val = *sp++;
		sbus_writel(val, xram);
		xram += sizeof(u32);
		size -= sizeof(u32);
	}
}

#ifdef HAVE_SOCAL_UCODE
static void socal_bzero(unsigned long xram, int size)
{
	while (size) {
		sbus_writel(0, xram);
		xram += sizeof(u32);
		size -= sizeof(u32);
	}
}
#endif

static inline void socal_disable(struct socal *s)
{
	sbus_writel(0, s->regs + IMASK);
	sbus_writel(SOCAL_CMD_SOFT_RESET, s->regs + CMD);
}

static inline void socal_enable(struct socal *s)
{
	SOD(("enable %08x\n", s->cfg))
	sbus_writel(0, s->regs + SAE);
	sbus_writel(s->cfg, s->regs + CFG);
	sbus_writel(SOCAL_CMD_RSP_QALL, s->regs + CMD);
	SOCAL_SETIMASK(s, SOCAL_IMASK_RSP_QALL | SOCAL_IMASK_SAE);
	SOD(("imask %08x %08x\n", s->imask, sbus_readl(s->regs + IMASK)));
}

static void socal_reset(fc_channel *fc)
{
	socal_port *port = (socal_port *)fc;
	struct socal *s = port->s;
	
	/* FIXME */
	socal_disable(s);
	s->req[0].seqno = 1;
	s->req[1].seqno = 1;
	s->rsp[0].seqno = 1;
	s->rsp[1].seqno = 1;
	s->req[0].in = 0;
	s->req[1].in = 0;
	s->rsp[0].in = 0;
	s->rsp[1].in = 0;
	s->req[0].out = 0;
	s->req[1].out = 0;
	s->rsp[0].out = 0;
	s->rsp[1].out = 0;

	/* FIXME */
	socal_enable(s);
}

static inline void socal_solicited(struct socal *s, unsigned long qno)
{
	socal_rsp *hwrsp;
	socal_cq *sw_cq;
	int token;
	int status;
	fc_channel *fc;

	sw_cq = &s->rsp[qno];

	/* Finally an improvement against old SOC :) */
	sw_cq->in = sbus_readb(s->regs + RESP + qno);
	SOD (("socal_solicited, %d packets arrived\n",
	      (sw_cq->in - sw_cq->out) & sw_cq->last))
	for (;;) {
		hwrsp = (socal_rsp *)sw_cq->pool + sw_cq->out;
		SOD(("hwrsp %p out %d\n", hwrsp, sw_cq->out))
		
#if defined(SOCALDEBUG) && 0
		{
		u32 *u = (u32 *)hwrsp;
		SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
		     u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
		u += 8;
		SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
		     u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
		u = (u32 *)s->xram;
		while (u < ((u32 *)s->regs)) {
			if (sbus_readl(&u[0]) == 0x00003000 ||
			    sbus_readl(&u[0]) == 0x00003801) {
			SOD(("Found at %04lx\n",
			     (unsigned long)u - (unsigned long)s->xram))
			SOD(("  %08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
			     sbus_readl(&u[0]), sbus_readl(&u[1]),
			     sbus_readl(&u[2]), sbus_readl(&u[3]),
			     sbus_readl(&u[4]), sbus_readl(&u[5]),
			     sbus_readl(&u[6]), sbus_readl(&u[7])))
			u += 8;
			SOD(("  %08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
			     sbus_readl(&u[0]), sbus_readl(&u[1]),
			     sbus_readl(&u[2]), sbus_readl(&u[3]),
			     sbus_readl(&u[4]), sbus_readl(&u[5]),
			     sbus_readl(&u[6]), sbus_readl(&u[7])))
			u -= 8;
			}
			u++;
		}
		}
#endif

		token = hwrsp->shdr.token;
		status = hwrsp->status;
		fc = (fc_channel *)(&s->port[(token >> 11) & 1]);
		
		SOD(("Solicited token %08x status %08x\n", token, status))
		if (status == SOCAL_OK) {
			fcp_receive_solicited(fc, token >> 12,
					      token & ((1 << 11) - 1),
					      FC_STATUS_OK, NULL);
		} else {
			/* We have intentionally defined FC_STATUS_* constants
			 * to match SOCAL_* constants, otherwise we'd have to
			 * translate status.
			 */
			fcp_receive_solicited(fc, token >> 12,
					      token & ((1 << 11) - 1), status, &hwrsp->fchdr);
		}
			
		if (++sw_cq->out > sw_cq->last) {
			sw_cq->seqno++;
			sw_cq->out = 0;
		}
		
		if (sw_cq->out == sw_cq->in) {
			sw_cq->in = sbus_readb(s->regs + RESP + qno);
			if (sw_cq->out == sw_cq->in) {
				/* Tell the hardware about it */
				sbus_writel((sw_cq->out << 24) |
					    (SOCAL_CMD_RSP_QALL &
					     ~(SOCAL_CMD_RSP_Q0 << qno)),
					    s->regs + CMD);

				/* Read it, so that we're sure it has been updated */
				sbus_readl(s->regs + CMD);
				sw_cq->in = sbus_readb(s->regs + RESP + qno);
				if (sw_cq->out == sw_cq->in)
					break;
			}
		}
	}
}

static inline void socal_request (struct socal *s, u32 cmd)
{
	SOCAL_SETIMASK(s, s->imask & ~(cmd & SOCAL_CMD_REQ_QALL));
	SOD(("imask %08x %08x\n", s->imask, sbus_readl(s->regs + IMASK)));

	SOD(("Queues available %08x OUT %X\n", cmd, s->regs->reqpr[0]))
	if (s->port[s->curr_port].fc.state != FC_STATE_OFFLINE) {
		fcp_queue_empty ((fc_channel *)&(s->port[s->curr_port]));
		if (((s->req[1].in + 1) & s->req[1].last) != (s->req[1].out))
			fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port]));
	} else {
		fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port]));
	}
	if (s->port[1 - s->curr_port].fc.state != FC_STATE_OFFLINE)
		s->curr_port ^= 1;
}

static inline void socal_unsolicited (struct socal *s, unsigned long qno)
{
	socal_rsp *hwrsp, *hwrspc;
	socal_cq *sw_cq;
	int count;
	int status;
	int flags;
	fc_channel *fc;

	sw_cq = &s->rsp[qno];

	sw_cq->in = sbus_readb(s->regs + RESP + qno);
	SOD (("socal_unsolicited, %d packets arrived, in %d\n",
	      (sw_cq->in - sw_cq->out) & sw_cq->last, sw_cq->in))
	while (sw_cq->in != sw_cq->out) {
		/* ...real work per entry here... */
		hwrsp = (socal_rsp *)sw_cq->pool + sw_cq->out;
		SOD(("hwrsp %p out %d\n", hwrsp, sw_cq->out))

#if defined(SOCALDEBUG) && 0
		{
		u32 *u = (u32 *)hwrsp;
		SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
		     u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
		u += 8;
		SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
		     u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
		}
#endif

		hwrspc = NULL;
		flags = hwrsp->shdr.flags;
		count = hwrsp->count;
		fc = (fc_channel *)&s->port[flags & SOCAL_PORT_B];
		SOD(("FC %08lx\n", (long)fc))
		
		if (count != 1) {
			/* Ugh, continuation entries */
			u8 in;

			if (count != 2) {
				printk("%s: Too many continuations entries %d\n",
				       fc->name, count);
				goto update_out;
			}
			
			in = sw_cq->in;
			if (in < sw_cq->out)
				in += sw_cq->last + 1;
			if (in < sw_cq->out + 2) {
				/* Ask the hardware if they haven't arrived yet. */
				sbus_writel((sw_cq->out << 24) |
					    (SOCAL_CMD_RSP_QALL &
					     ~(SOCAL_CMD_RSP_Q0 << qno)),
					    s->regs + CMD);

				/* Read it, so that we're sure it has been updated */
				sbus_readl(s->regs + CMD);
				sw_cq->in = sbus_readb(s->regs + RESP + qno);
				in = sw_cq->in;
				if (in < sw_cq->out)
					in += sw_cq->last + 1;
				if (in < sw_cq->out + 2) /* Nothing came, let us wait */
					return;
			}
			if (sw_cq->out == sw_cq->last)
				hwrspc = (socal_rsp *)sw_cq->pool;
			else
				hwrspc = hwrsp + 1;
		}
		
		switch (flags & ~SOCAL_PORT_B) {
		case SOCAL_STATUS:
			status = hwrsp->status;
			switch (status) {
			case SOCAL_ONLINE:
				SOD(("State change to ONLINE\n"));
				fcp_state_change(fc, FC_STATE_ONLINE);
				break;
			case SOCAL_ONLINE_LOOP:
				SOD(("State change to ONLINE_LOOP\n"));
				fcp_state_change(fc, FC_STATE_ONLINE);
				break;
			case SOCAL_OFFLINE:
				SOD(("State change to OFFLINE\n"));
				fcp_state_change(fc, FC_STATE_OFFLINE);
				break;
			default:
				printk ("%s: Unknown STATUS no %d\n",
					fc->name, status);
				break;
			};

			break;
		case (SOCAL_UNSOLICITED|SOCAL_FC_HDR):
			{
				int r_ctl = *((u8 *)&hwrsp->fchdr);
				unsigned len;
				
				if ((r_ctl & 0xf0) == R_CTL_EXTENDED_SVC) {
					len = hwrsp->shdr.bytecnt;
					if (len < 4 || !hwrspc) {
						printk ("%s: Invalid R_CTL %02x "
							"continuation entries\n",
							fc->name, r_ctl);
					} else {
						if (len > 60)
							len = 60;
						if (*(u32 *)hwrspc == LS_DISPLAY) {
							int i;
							
							for (i = 4; i < len; i++)
								if (((u8 *)hwrspc)[i] == '\n')
									((u8 *)hwrspc)[i] = ' ';
							((u8 *)hwrspc)[len] = 0;
							printk ("%s message: %s\n",
								fc->name, ((u8 *)hwrspc) + 4);
						} else {
							printk ("%s: Unknown LS_CMD "
								"%08x\n", fc->name,
								*(u32 *)hwrspc);
						}
					}
				} else {
					printk ("%s: Unsolicited R_CTL %02x "
						"not handled\n", fc->name, r_ctl);
				}
			}
			break;
		default:
			printk ("%s: Unexpected flags %08x\n", fc->name, flags);
			break;
		};
update_out:
		if (++sw_cq->out > sw_cq->last) {
			sw_cq->seqno++;
			sw_cq->out = 0;
		}
		
		if (hwrspc) {
			if (++sw_cq->out > sw_cq->last) {
				sw_cq->seqno++;
				sw_cq->out = 0;
			}
		}
		
		if (sw_cq->out == sw_cq->in) {
			sw_cq->in = sbus_readb(s->regs + RESP + qno);
			if (sw_cq->out == sw_cq->in) {
				/* Tell the hardware about it */
				sbus_writel((sw_cq->out << 24) |
					    (SOCAL_CMD_RSP_QALL &
					     ~(SOCAL_CMD_RSP_Q0 << qno)),
					    s->regs + CMD);

				/* Read it, so that we're sure it has been updated */
				sbus_readl(s->regs + CMD);
				sw_cq->in = sbus_readb(s->regs + RESP + qno);
			}
		}
	}
}

static irqreturn_t socal_intr(int irq, void *dev_id, struct pt_regs *regs)
{
	u32 cmd;
	unsigned long flags;
	register struct socal *s = (struct socal *)dev_id;

	spin_lock_irqsave(&s->lock, flags);
	cmd = sbus_readl(s->regs + CMD);
	for (; (cmd = SOCAL_INTR (s, cmd)); cmd = sbus_readl(s->regs + CMD)) {
#ifdef SOCALDEBUG
		static int cnt = 0;
		if (cnt++ < 50)
			printk("soc_intr %08x\n", cmd);
#endif	
		if (cmd & SOCAL_CMD_RSP_Q2)
			socal_unsolicited (s, SOCAL_UNSOLICITED_RSP_Q);
		if (cmd & SOCAL_CMD_RSP_Q1)
			socal_unsolicited (s, SOCAL_SOLICITED_BAD_RSP_Q);
		if (cmd & SOCAL_CMD_RSP_Q0)
			socal_solicited (s, SOCAL_SOLICITED_RSP_Q);
		if (cmd & SOCAL_CMD_REQ_QALL)
			socal_request (s, cmd);
	}
	spin_unlock_irqrestore(&s->lock, flags);

	return IRQ_HANDLED;
}

#define TOKEN(proto, port, token) (((proto)<<12)|(token)|(port))

static int socal_hw_enque (fc_channel *fc, fcp_cmnd *fcmd)
{
	socal_port *port = (socal_port *)fc;
	struct socal *s = port->s;
	unsigned long qno;
	socal_cq *sw_cq;
	int cq_next_in;
	socal_req *request;
	fc_hdr *fch;
	int i;

	if (fcmd->proto == TYPE_SCSI_FCP)
		qno = 1;
	else
		qno = 0;
	SOD(("Putting a FCP packet type %d into hw queue %d\n", fcmd->proto, qno))
	if (s->imask & (SOCAL_IMASK_REQ_Q0 << qno)) {
		SOD(("EIO %08x\n", s->imask))
		return -EIO;
	}
	sw_cq = s->req + qno;
	cq_next_in = (sw_cq->in + 1) & sw_cq->last;
	
	if (cq_next_in == sw_cq->out &&
	    cq_next_in == (sw_cq->out = sbus_readb(s->regs + REQP + qno))) {
		SOD(("%d IN %d OUT %d LAST %d\n",
		     qno, sw_cq->in,
		     sw_cq->out, sw_cq->last))
		SOCAL_SETIMASK(s, s->imask | (SOCAL_IMASK_REQ_Q0 << qno));
		SOD(("imask %08x %08x\n", s->imask, sbus_readl(s->regs + IMASK)));

		/* If queue is full, just say NO. */
		return -EBUSY;
	}
	
	request = sw_cq->pool + sw_cq->in;
	fch = &request->fchdr;
	
	switch (fcmd->proto) {
	case TYPE_SCSI_FCP:
		request->shdr.token = TOKEN(TYPE_SCSI_FCP, port->mask, fcmd->token); 
		request->data[0].base = fc->dma_scsi_cmd + fcmd->token * sizeof(fcp_cmd);
		request->data[0].count = sizeof(fcp_cmd);
		request->data[1].base = fc->dma_scsi_rsp + fcmd->token * fc->rsp_size;
		request->data[1].count = fc->rsp_size;
		if (fcmd->data) {
			request->shdr.segcnt = 3;
			i = fc->scsi_cmd_pool[fcmd->token].fcp_data_len;
			request->shdr.bytecnt = i;
			request->data[2].base = fcmd->data;
			request->data[2].count = i;
			request->type = (fc->scsi_cmd_pool[fcmd->token].fcp_cntl & FCP_CNTL_WRITE) ?
				SOCAL_CQTYPE_IO_WRITE : SOCAL_CQTYPE_IO_READ;
		} else {
			request->shdr.segcnt = 2;
			request->shdr.bytecnt = 0;
			request->data[2].base = 0;
			request->data[2].count = 0;
			request->type = SOCAL_CQTYPE_SIMPLE;
		}
		FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fcmd->did);
		FILL_FCHDR_SID(fch, fc->sid);
		FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
		FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
		FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
		fch->param = 0;
		request->shdr.flags = port->flags;
		request->shdr.class = fc->posmap ? 3 : 2;
		break;
		
	case PROTO_OFFLINE:
		memset (request, 0, sizeof(*request));
		request->shdr.token = TOKEN(PROTO_OFFLINE, port->mask, fcmd->token); 
		request->type = SOCAL_CQTYPE_OFFLINE;
		FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fcmd->did);
		FILL_FCHDR_SID(fch, fc->sid);
		FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
		FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
		FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
		request->shdr.flags = port->flags;
		break;
		
	case PROTO_REPORT_AL_MAP:
		memset (request, 0, sizeof(*request));
		request->shdr.token = TOKEN(PROTO_REPORT_AL_MAP, port->mask, fcmd->token); 
		request->type = SOCAL_CQTYPE_REPORT_MAP;
		request->shdr.flags = port->flags;
		request->shdr.segcnt = 1;
		request->shdr.bytecnt = sizeof(fc_al_posmap);
		request->data[0].base = fcmd->cmd;
		request->data[0].count = sizeof(fc_al_posmap);
		break;

	default: 
		request->shdr.token = TOKEN(fcmd->proto, port->mask, fcmd->token);
		request->shdr.class = fc->posmap ? 3 : 2;
		request->shdr.flags = port->flags;
		memcpy (fch, &fcmd->fch, sizeof(fc_hdr));
		request->data[0].count = fcmd->cmdlen;
		request->data[1].count = fcmd->rsplen;
		request->type = fcmd->class;
		switch (fcmd->class) {
		case FC_CLASS_OUTBOUND:
			request->data[0].base = fcmd->cmd;
			request->data[0].count = fcmd->cmdlen;
			request->type = SOCAL_CQTYPE_OUTBOUND;
			request->shdr.bytecnt = fcmd->cmdlen;
			request->shdr.segcnt = 1;
			break;
		case FC_CLASS_INBOUND:
			request->data[0].base = fcmd->rsp;
			request->data[0].count = fcmd->rsplen;
			request->type = SOCAL_CQTYPE_INBOUND;
			request->shdr.bytecnt = 0;
			request->shdr.segcnt = 1;
			break;
		case FC_CLASS_SIMPLE:
			request->data[0].base = fcmd->cmd;
			request->data[1].base = fcmd->rsp;
			request->data[0].count = fcmd->cmdlen;
			request->data[1].count = fcmd->rsplen;
			request->type = SOCAL_CQTYPE_SIMPLE;
			request->shdr.bytecnt = fcmd->cmdlen;
			request->shdr.segcnt = 2;
			break;
		case FC_CLASS_IO_READ:
		case FC_CLASS_IO_WRITE:
			request->data[0].base = fcmd->cmd;
			request->data[1].base = fcmd->rsp;
			request->data[0].count = fcmd->cmdlen;
			request->data[1].count = fcmd->rsplen;
			request->type = (fcmd->class == FC_CLASS_IO_READ) ? SOCAL_CQTYPE_IO_READ : SOCAL_CQTYPE_IO_WRITE;
			if (fcmd->data) {
				request->data[2].base = fcmd->data;
				request->data[2].count = fcmd->datalen;
				request->shdr.bytecnt = fcmd->datalen;
				request->shdr.segcnt = 3;
			} else {
				request->shdr.bytecnt = 0;
				request->shdr.segcnt = 2;
			}
			break;
		}
		break;
	}

	request->count = 1;
	request->flags = 0;
	request->seqno = sw_cq->seqno;
	
	SOD(("queueing token %08x\n", request->shdr.token))
	
	/* And now tell the SOCAL about it */

	if (++sw_cq->in > sw_cq->last) {
		sw_cq->in = 0;
		sw_cq->seqno++;
	}
	
	SOD(("Putting %08x into cmd\n", SOCAL_CMD_RSP_QALL | (sw_cq->in << 24) | (SOCAL_CMD_REQ_Q0 << qno)))
	
	sbus_writel(SOCAL_CMD_RSP_QALL | (sw_cq->in << 24) | (SOCAL_CMD_REQ_Q0 << qno),
		    s->regs + CMD);

	/* Read so that command is completed */	
	sbus_readl(s->regs + CMD);
	
	return 0;
}

static inline void socal_download_fw(struct socal *s)
{
#ifdef HAVE_SOCAL_UCODE
	SOD(("Loading %ld bytes from %p to %p\n", sizeof(socal_ucode), socal_ucode, s->xram))
	socal_copy_to_xram(s->xram, socal_ucode, sizeof(socal_ucode));
	SOD(("Clearing the rest of memory\n"))
	socal_bzero (s->xram + sizeof(socal_ucode), 65536 - sizeof(socal_ucode));
	SOD(("Done\n"))
#endif
}

/* Check for what the best SBUS burst we can use happens
 * to be on this machine.
 */
static inline void socal_init_bursts(struct socal *s, struct sbus_dev *sdev)
{
	int bsizes, bsizes_more;
	u32 cfg;

	bsizes = (prom_getintdefault(sdev->prom_node,"burst-sizes",0xff) & 0xff);
	bsizes_more = (prom_getintdefault(sdev->bus->prom_node, "burst-sizes", 0xff) & 0xff);
	bsizes &= bsizes_more;
#ifdef USE_64BIT_MODE
#ifdef __sparc_v9__
	mmu_set_sbus64(sdev, bsizes >> 16);
#endif
#endif
	if ((bsizes & 0x7f) == 0x7f)
		cfg = SOCAL_CFG_BURST_64;
	else if ((bsizes & 0x3f) == 0x3f) 
		cfg = SOCAL_CFG_BURST_32;
	else if ((bsizes & 0x1f) == 0x1f)
		cfg = SOCAL_CFG_BURST_16;
	else
		cfg = SOCAL_CFG_BURST_4;
#ifdef USE_64BIT_MODE
#ifdef __sparc_v9__
	/* What is BURST_128? -jj */
	if ((bsizes & 0x780000) == 0x780000)
		cfg |= (SOCAL_CFG_BURST_64 << 8) | SOCAL_CFG_SBUS_ENHANCED;
	else if ((bsizes & 0x380000) == 0x380000) 
		cfg |= (SOCAL_CFG_BURST_32 << 8) | SOCAL_CFG_SBUS_ENHANCED;
	else if ((bsizes & 0x180000) == 0x180000)
		cfg |= (SOCAL_CFG_BURST_16 << 8) | SOCAL_CFG_SBUS_ENHANCED;
	else
		cfg |= (SOCAL_CFG_BURST_8 << 8) | SOCAL_CFG_SBUS_ENHANCED;
#endif
#endif		
	s->cfg = cfg;
}

static inline void socal_init(struct sbus_dev *sdev, int no)
{
	unsigned char tmp[60];
	int propl;
	struct socal *s;
	static unsigned version_printed = 0;
	socal_hw_cq cq[8];
	int size, i;
	int irq, node;
	
	s = kzalloc (sizeof (struct socal), GFP_KERNEL);
	if (!s) return;
	spin_lock_init(&s->lock);
	s->socal_no = no;

	SOD(("socals %08lx socal_intr %08lx socal_hw_enque %08lx\n",
	     (long)socals, (long)socal_intr, (long)socal_hw_enque))
	if (version_printed++ == 0)
		printk (version);

	s->port[0].fc.module = THIS_MODULE;
	s->port[1].fc.module = THIS_MODULE;
                                	
	s->next = socals;
	socals = s;
	s->port[0].fc.dev = sdev;
	s->port[1].fc.dev = sdev;
	s->port[0].s = s;
	s->port[1].s = s;

	s->port[0].fc.next = &s->port[1].fc;

	/* World Wide Name of SOCAL */
	propl = prom_getproperty (sdev->prom_node, "wwn", tmp, sizeof(tmp));
	if (propl != sizeof (fc_wwn)) {
		s->wwn.naaid = NAAID_IEEE_REG;
		s->wwn.nportid = 0x123;
		s->wwn.hi = 0x1234;
		s->wwn.lo = 0x12345678;
	} else
		memcpy (&s->wwn, tmp, sizeof (fc_wwn));
	
	memcpy (&s->port[0].fc.wwn_nport, &s->wwn, sizeof (fc_wwn));
	s->port[0].fc.wwn_nport.lo++;
	memcpy (&s->port[1].fc.wwn_nport, &s->wwn, sizeof (fc_wwn));
	s->port[1].fc.wwn_nport.lo+=2;
	
	node = prom_getchild (sdev->prom_node);
	while (node && (node = prom_searchsiblings (node, "sf"))) {
		int port;
		
		port = prom_getintdefault(node, "port#", -1);
		switch (port) {
		case 0:
		case 1:
			if (prom_getproplen(node, "port-wwn") == sizeof (fc_wwn))
				prom_getproperty (node, "port-wwn", 
						  (char *)&s->port[port].fc.wwn_nport,
						  sizeof (fc_wwn));
			break;
		default:
			break;
		};

		node = prom_getsibling(node);
	}

	memcpy (&s->port[0].fc.wwn_node, &s->wwn, sizeof (fc_wwn));
	memcpy (&s->port[1].fc.wwn_node, &s->wwn, sizeof (fc_wwn));
	SOD(("Got wwns %08x%08x ports %08x%08x and %08x%08x\n", 
	     *(u32 *)&s->port[0].fc.wwn_node, s->port[0].fc.wwn_node.lo,
	     *(u32 *)&s->port[0].fc.wwn_nport, s->port[0].fc.wwn_nport.lo,
	     *(u32 *)&s->port[1].fc.wwn_nport, s->port[1].fc.wwn_nport.lo))
		
	s->port[0].fc.sid = 1;
	s->port[1].fc.sid = 17;
	s->port[0].fc.did = 2;
	s->port[1].fc.did = 18;
	
	s->port[0].fc.reset = socal_reset;
	s->port[1].fc.reset = socal_reset;
	
	if (sdev->num_registers == 1) {
		s->eeprom = sbus_ioremap(&sdev->resource[0], 0,
					 sdev->reg_addrs[0].reg_size, "socal xram");
		if (sdev->reg_addrs[0].reg_size > 0x20000)
			s->xram = s->eeprom + 0x10000UL;
		else
			s->xram = s->eeprom;
		s->regs = (s->xram + 0x10000UL);
	} else {
		/* E.g. starfire presents 3 registers for SOCAL */
		s->xram = sbus_ioremap(&sdev->resource[1], 0,
				       sdev->reg_addrs[1].reg_size, "socal xram");
		s->regs = sbus_ioremap(&sdev->resource[2], 0,
				       sdev->reg_addrs[2].reg_size, "socal regs");
	}
	
	socal_init_bursts(s, sdev);
	
	SOD(("Disabling SOCAL\n"))
	
	socal_disable (s);
	
	irq = sdev->irqs[0];

	if (request_irq (irq, socal_intr, SA_SHIRQ, "SOCAL", (void *)s)) {
		socal_printk ("Cannot order irq %d to go\n", irq);
		socals = s->next;
		return;
	}

	SOD(("SOCAL uses IRQ %d\n", irq))
	
	s->port[0].fc.irq = irq;
	s->port[1].fc.irq = irq;
	
	sprintf (s->port[0].fc.name, "socal%d port A", no);
	sprintf (s->port[1].fc.name, "socal%d port B", no);
	s->port[0].flags = SOCAL_FC_HDR | SOCAL_PORT_A;
	s->port[1].flags = SOCAL_FC_HDR | SOCAL_PORT_B;
	s->port[1].mask = (1 << 11);
	
	s->port[0].fc.hw_enque = socal_hw_enque;
	s->port[1].fc.hw_enque = socal_hw_enque;
	
	socal_download_fw (s);
	
	SOD(("Downloaded firmware\n"))

	/* Now setup xram circular queues */
	memset (cq, 0, sizeof(cq));

	size = (SOCAL_CQ_REQ0_SIZE + SOCAL_CQ_REQ1_SIZE +
		SOCAL_CQ_RSP0_SIZE + SOCAL_CQ_RSP1_SIZE +
		SOCAL_CQ_RSP2_SIZE) * sizeof(socal_req);
	s->req_cpu = sbus_alloc_consistent(sdev, size, &s->req_dvma);
	s->req[0].pool = s->req_cpu;
	cq[0].address = s->req_dvma;
	s->req[1].pool = s->req[0].pool + SOCAL_CQ_REQ0_SIZE;
	s->rsp[0].pool = s->req[1].pool + SOCAL_CQ_REQ1_SIZE;
	s->rsp[1].pool = s->rsp[0].pool + SOCAL_CQ_RSP0_SIZE;
	s->rsp[2].pool = s->rsp[1].pool + SOCAL_CQ_RSP1_SIZE;
	
	s->req[0].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_REQ_OFFSET);
	s->req[1].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_REQ_OFFSET + sizeof(socal_hw_cq));
	s->rsp[0].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_RSP_OFFSET);
	s->rsp[1].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_RSP_OFFSET + sizeof(socal_hw_cq));
	s->rsp[2].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_RSP_OFFSET + 2 * sizeof(socal_hw_cq));
	
	cq[1].address = cq[0].address + (SOCAL_CQ_REQ0_SIZE * sizeof(socal_req));
	cq[4].address = cq[1].address + (SOCAL_CQ_REQ1_SIZE * sizeof(socal_req));
	cq[5].address = cq[4].address + (SOCAL_CQ_RSP0_SIZE * sizeof(socal_req));
	cq[6].address = cq[5].address + (SOCAL_CQ_RSP1_SIZE * sizeof(socal_req));

	cq[0].last = SOCAL_CQ_REQ0_SIZE - 1;
	cq[1].last = SOCAL_CQ_REQ1_SIZE - 1;
	cq[4].last = SOCAL_CQ_RSP0_SIZE - 1;
	cq[5].last = SOCAL_CQ_RSP1_SIZE - 1;
	cq[6].last = SOCAL_CQ_RSP2_SIZE - 1;
	for (i = 0; i < 8; i++)
		cq[i].seqno = 1;
	
	s->req[0].last = SOCAL_CQ_REQ0_SIZE - 1;
	s->req[1].last = SOCAL_CQ_REQ1_SIZE - 1;
	s->rsp[0].last = SOCAL_CQ_RSP0_SIZE - 1;
	s->rsp[1].last = SOCAL_CQ_RSP1_SIZE - 1;
	s->rsp[2].last = SOCAL_CQ_RSP2_SIZE - 1;
	
	s->req[0].seqno = 1;
	s->req[1].seqno = 1;
	s->rsp[0].seqno = 1;
	s->rsp[1].seqno = 1;
	s->rsp[2].seqno = 1;
	
	socal_copy_to_xram(s->xram + SOCAL_CQ_REQ_OFFSET, cq, sizeof(cq));
	
	SOD(("Setting up params\n"))
	
	/* Make our sw copy of SOCAL service parameters */
	socal_copy_from_xram(s->serv_params, s->xram + 0x280, sizeof (s->serv_params));
	
	s->port[0].fc.common_svc = (common_svc_parm *)s->serv_params;
	s->port[0].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20);
	s->port[1].fc.common_svc = (common_svc_parm *)&s->serv_params;
	s->port[1].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20);
	
	socal_enable (s);
	
	SOD(("Enabled SOCAL\n"))
}

static int __init socal_probe(void)
{
	struct sbus_bus *sbus;
	struct sbus_dev *sdev = NULL;
	struct socal *s;
	int cards = 0;

	for_each_sbus(sbus) {
		for_each_sbusdev(sdev, sbus) {
			if(!strcmp(sdev->prom_name, "SUNW,socal")) {
				socal_init(sdev, cards);
				cards++;
			}
		}
	}
	if (!cards)
		return -EIO;

	for_each_socal(s)
		if (s->next)
			s->port[1].fc.next = &s->next->port[0].fc;
			
	fcp_init (&socals->port[0].fc);
	return 0;
}

static void __exit socal_cleanup(void)
{
	struct socal *s;
	int irq;
	struct sbus_dev *sdev;
	
	for_each_socal(s) {
		irq = s->port[0].fc.irq;
		free_irq (irq, s);

		fcp_release(&(s->port[0].fc), 2);

		sdev = s->port[0].fc.dev;
		if (sdev->num_registers == 1) {
			sbus_iounmap(s->eeprom, sdev->reg_addrs[0].reg_size);
		} else {
			sbus_iounmap(s->xram, sdev->reg_addrs[1].reg_size);
			sbus_iounmap(s->regs, sdev->reg_addrs[2].reg_size);
		}
		sbus_free_consistent(sdev,
				     (SOCAL_CQ_REQ0_SIZE + SOCAL_CQ_REQ1_SIZE +
				      SOCAL_CQ_RSP0_SIZE + SOCAL_CQ_RSP1_SIZE +
				      SOCAL_CQ_RSP2_SIZE) * sizeof(socal_req),
				     s->req_cpu, s->req_dvma);
	}
}

module_init(socal_probe);
module_exit(socal_cleanup);
MODULE_LICENSE("GPL");
ma_channel(dev); printk(", DMA %d", dev->dma); } else #endif { printk(", programmed I/O"); } /* print the ethernet address. */ printk(", MAC %pM", dev->dev_addr); dev->netdev_ops = &net_ops; dev->watchdog_timeo = HZ; printk("\n"); if (net_debug) printk("cs89x0_probe1() successful\n"); retval = register_netdev(dev); if (retval) goto out3; return 0; out3: writeword(dev->base_addr, ADD_PORT, PP_ChipID); out2: release_region(ioaddr & ~3, NETCARD_IO_EXTENT); out1: return retval; } /********************************* * This page contains DMA routines **********************************/ #if ALLOW_DMA #define dma_page_eq(ptr1, ptr2) ((long)(ptr1)>>17 == (long)(ptr2)>>17) static void get_dma_channel(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); if (lp->dma) { dev->dma = lp->dma; lp->isa_config |= ISA_RxDMA; } else { if ((lp->isa_config & ANY_ISA_DMA) == 0) return; dev->dma = lp->isa_config & DMA_NO_MASK; if (lp->chip_type == CS8900) dev->dma += 5; if (dev->dma < 5 || dev->dma > 7) { lp->isa_config &= ~ANY_ISA_DMA; return; } } return; } static void write_dma(struct net_device *dev, int chip_type, int dma) { struct net_local *lp = netdev_priv(dev); if ((lp->isa_config & ANY_ISA_DMA) == 0) return; if (chip_type == CS8900) { writereg(dev, PP_CS8900_ISADMA, dma-5); } else { writereg(dev, PP_CS8920_ISADMA, dma); } } static void set_dma_cfg(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); if (lp->use_dma) { if ((lp->isa_config & ANY_ISA_DMA) == 0) { if (net_debug > 3) printk("set_dma_cfg(): no DMA\n"); return; } if (lp->isa_config & ISA_RxDMA) { lp->curr_rx_cfg |= RX_DMA_ONLY; if (net_debug > 3) printk("set_dma_cfg(): RX_DMA_ONLY\n"); } else { lp->curr_rx_cfg |= AUTO_RX_DMA; /* not that we support it... */ if (net_debug > 3) printk("set_dma_cfg(): AUTO_RX_DMA\n"); } } } static int dma_bufcfg(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); if (lp->use_dma) return (lp->isa_config & ANY_ISA_DMA)? RX_DMA_ENBL : 0; else return 0; } static int dma_busctl(struct net_device *dev) { int retval = 0; struct net_local *lp = netdev_priv(dev); if (lp->use_dma) { if (lp->isa_config & ANY_ISA_DMA) retval |= RESET_RX_DMA; /* Reset the DMA pointer */ if (lp->isa_config & DMA_BURST) retval |= DMA_BURST_MODE; /* Does ISA config specify DMA burst ? */ if (lp->dmasize == 64) retval |= RX_DMA_SIZE_64K; /* did they ask for 64K? */ retval |= MEMORY_ON; /* we need memory enabled to use DMA. */ } return retval; } static void dma_rx(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); struct sk_buff *skb; int status, length; unsigned char *bp = lp->rx_dma_ptr; status = bp[0] + (bp[1]<<8); length = bp[2] + (bp[3]<<8); bp += 4; if (net_debug > 5) { printk( "%s: receiving DMA packet at %lx, status %x, length %x\n", dev->name, (unsigned long)bp, status, length); } if ((status & RX_OK) == 0) { count_rx_errors(status, lp); goto skip_this_frame; } /* Malloc up new buffer. */ skb = dev_alloc_skb(length + 2); if (skb == NULL) { if (net_debug) /* I don't think we want to do this to a stressed system */ printk("%s: Memory squeeze, dropping packet.\n", dev->name); lp->stats.rx_dropped++; /* AKPM: advance bp to the next frame */ skip_this_frame: bp += (length + 3) & ~3; if (bp >= lp->end_dma_buff) bp -= lp->dmasize*1024; lp->rx_dma_ptr = bp; return; } skb_reserve(skb, 2); /* longword align L3 header */ if (bp + length > lp->end_dma_buff) { int semi_cnt = lp->end_dma_buff - bp; memcpy(skb_put(skb,semi_cnt), bp, semi_cnt); memcpy(skb_put(skb,length - semi_cnt), lp->dma_buff, length - semi_cnt); } else { memcpy(skb_put(skb,length), bp, length); } bp += (length + 3) & ~3; if (bp >= lp->end_dma_buff) bp -= lp->dmasize*1024; lp->rx_dma_ptr = bp; if (net_debug > 3) { printk( "%s: received %d byte DMA packet of type %x\n", dev->name, length, (skb->data[ETH_ALEN+ETH_ALEN] << 8) | skb->data[ETH_ALEN+ETH_ALEN+1]); } skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); lp->stats.rx_packets++; lp->stats.rx_bytes += length; } #endif /* ALLOW_DMA */ static void __init reset_chip(struct net_device *dev) { #if !defined(CONFIG_MACH_MX31ADS) #if !defined(CONFIG_MACH_IXDP2351) && !defined(CONFIG_ARCH_IXDP2X01) struct net_local *lp = netdev_priv(dev); int ioaddr = dev->base_addr; #endif int reset_start_time; writereg(dev, PP_SelfCTL, readreg(dev, PP_SelfCTL) | POWER_ON_RESET); /* wait 30 ms */ msleep(30); #if !defined(CONFIG_MACH_IXDP2351) && !defined(CONFIG_ARCH_IXDP2X01) if (lp->chip_type != CS8900) { /* Hardware problem requires PNP registers to be reconfigured after a reset */ writeword(ioaddr, ADD_PORT, PP_CS8920_ISAINT); outb(dev->irq, ioaddr + DATA_PORT); outb(0, ioaddr + DATA_PORT + 1); writeword(ioaddr, ADD_PORT, PP_CS8920_ISAMemB); outb((dev->mem_start >> 16) & 0xff, ioaddr + DATA_PORT); outb((dev->mem_start >> 8) & 0xff, ioaddr + DATA_PORT + 1); } #endif /* IXDP2x01 */ /* Wait until the chip is reset */ reset_start_time = jiffies; while( (readreg(dev, PP_SelfST) & INIT_DONE) == 0 && jiffies - reset_start_time < 2) ; #endif /* !CONFIG_MACH_MX31ADS */ } static void control_dc_dc(struct net_device *dev, int on_not_off) { struct net_local *lp = netdev_priv(dev); unsigned int selfcontrol; int timenow = jiffies; /* control the DC to DC convertor in the SelfControl register. Note: This is hooked up to a general purpose pin, might not always be a DC to DC convertor. */ selfcontrol = HCB1_ENBL; /* Enable the HCB1 bit as an output */ if (((lp->adapter_cnf & A_CNF_DC_DC_POLARITY) != 0) ^ on_not_off) selfcontrol |= HCB1; else selfcontrol &= ~HCB1; writereg(dev, PP_SelfCTL, selfcontrol); /* Wait for the DC/DC converter to power up - 500ms */ while (jiffies - timenow < HZ) ; } #define DETECTED_NONE 0 #define DETECTED_RJ45H 1 #define DETECTED_RJ45F 2 #define DETECTED_AUI 3 #define DETECTED_BNC 4 static int detect_tp(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); int timenow = jiffies; int fdx; if (net_debug > 1) printk("%s: Attempting TP\n", dev->name); /* If connected to another full duplex capable 10-Base-T card the link pulses seem to be lost when the auto detect bit in the LineCTL is set. To overcome this the auto detect bit will be cleared whilst testing the 10-Base-T interface. This would not be necessary for the sparrow chip but is simpler to do it anyway. */ writereg(dev, PP_LineCTL, lp->linectl &~ AUI_ONLY); control_dc_dc(dev, 0); /* Delay for the hardware to work out if the TP cable is present - 150ms */ for (timenow = jiffies; jiffies - timenow < 15; ) ; if ((readreg(dev, PP_LineST) & LINK_OK) == 0) return DETECTED_NONE; if (lp->chip_type == CS8900) { switch (lp->force & 0xf0) { #if 0 case FORCE_AUTO: printk("%s: cs8900 doesn't autonegotiate\n",dev->name); return DETECTED_NONE; #endif /* CS8900 doesn't support AUTO, change to HALF*/ case FORCE_AUTO: lp->force &= ~FORCE_AUTO; lp->force |= FORCE_HALF; break; case FORCE_HALF: break; case FORCE_FULL: writereg(dev, PP_TestCTL, readreg(dev, PP_TestCTL) | FDX_8900); break; } fdx = readreg(dev, PP_TestCTL) & FDX_8900; } else { switch (lp->force & 0xf0) { case FORCE_AUTO: lp->auto_neg_cnf = AUTO_NEG_ENABLE; break; case FORCE_HALF: lp->auto_neg_cnf = 0; break; case FORCE_FULL: lp->auto_neg_cnf = RE_NEG_NOW | ALLOW_FDX; break; } writereg(dev, PP_AutoNegCTL, lp->auto_neg_cnf & AUTO_NEG_MASK); if ((lp->auto_neg_cnf & AUTO_NEG_BITS) == AUTO_NEG_ENABLE) { printk(KERN_INFO "%s: negotiating duplex...\n",dev->name); while (readreg(dev, PP_AutoNegST) & AUTO_NEG_BUSY) { if (jiffies - timenow > 4000) { printk(KERN_ERR "**** Full / half duplex auto-negotiation timed out ****\n"); break; } } } fdx = readreg(dev, PP_AutoNegST) & FDX_ACTIVE; } if (fdx) return DETECTED_RJ45F; else return DETECTED_RJ45H; } /* send a test packet - return true if carrier bits are ok */ static int send_test_pkt(struct net_device *dev) { char test_packet[] = { 0,0,0,0,0,0, 0,0,0,0,0,0, 0, 46, /* A 46 in network order */ 0, 0, /* DSAP=0 & SSAP=0 fields */ 0xf3, 0 /* Control (Test Req + P bit set) */ }; long timenow = jiffies; writereg(dev, PP_LineCTL, readreg(dev, PP_LineCTL) | SERIAL_TX_ON); memcpy(test_packet, dev->dev_addr, ETH_ALEN); memcpy(test_packet+ETH_ALEN, dev->dev_addr, ETH_ALEN); writeword(dev->base_addr, TX_CMD_PORT, TX_AFTER_ALL); writeword(dev->base_addr, TX_LEN_PORT, ETH_ZLEN); /* Test to see if the chip has allocated memory for the packet */ while (jiffies - timenow < 5) if (readreg(dev, PP_BusST) & READY_FOR_TX_NOW) break; if (jiffies - timenow >= 5) return 0; /* this shouldn't happen */ /* Write the contents of the packet */ writewords(dev->base_addr, TX_FRAME_PORT,test_packet,(ETH_ZLEN+1) >>1); if (net_debug > 1) printk("Sending test packet "); /* wait a couple of jiffies for packet to be received */ for (timenow = jiffies; jiffies - timenow < 3; ) ; if ((readreg(dev, PP_TxEvent) & TX_SEND_OK_BITS) == TX_OK) { if (net_debug > 1) printk("succeeded\n"); return 1; } if (net_debug > 1) printk("failed\n"); return 0; } static int detect_aui(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); if (net_debug > 1) printk("%s: Attempting AUI\n", dev->name); control_dc_dc(dev, 0); writereg(dev, PP_LineCTL, (lp->linectl &~ AUTO_AUI_10BASET) | AUI_ONLY); if (send_test_pkt(dev)) return DETECTED_AUI; else return DETECTED_NONE; } static int detect_bnc(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); if (net_debug > 1) printk("%s: Attempting BNC\n", dev->name); control_dc_dc(dev, 1); writereg(dev, PP_LineCTL, (lp->linectl &~ AUTO_AUI_10BASET) | AUI_ONLY); if (send_test_pkt(dev)) return DETECTED_BNC; else return DETECTED_NONE; } static void write_irq(struct net_device *dev, int chip_type, int irq) { int i; if (chip_type == CS8900) { /* Search the mapping table for the corresponding IRQ pin. */ for (i = 0; i != ARRAY_SIZE(cs8900_irq_map); i++) if (cs8900_irq_map[i] == irq) break; /* Not found */ if (i == ARRAY_SIZE(cs8900_irq_map)) i = 3; writereg(dev, PP_CS8900_ISAINT, i); } else { writereg(dev, PP_CS8920_ISAINT, irq); } } /* Open/initialize the board. This is called (in the current kernel) sometime after booting when the 'ifconfig' program is run. This routine should set everything up anew at each open, even registers that "should" only need to be set once at boot, so that there is non-reboot way to recover if something goes wrong. */ /* AKPM: do we need to do any locking here? */ static int net_open(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); int result = 0; int i; int ret; #if !defined(CONFIG_SH_HICOSH4) && !defined(CONFIG_ARCH_PNX010X) /* uses irq#1, so this won't work */ if (dev->irq < 2) { /* Allow interrupts to be generated by the chip */ /* Cirrus' release had this: */ #if 0 writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL)|ENABLE_IRQ ); #endif /* And 2.3.47 had this: */ writereg(dev, PP_BusCTL, ENABLE_IRQ | MEMORY_ON); for (i = 2; i < CS8920_NO_INTS; i++) { if ((1 << i) & lp->irq_map) { if (request_irq(i, net_interrupt, 0, dev->name, dev) == 0) { dev->irq = i; write_irq(dev, lp->chip_type, i); /* writereg(dev, PP_BufCFG, GENERATE_SW_INTERRUPT); */ break; } } } if (i >= CS8920_NO_INTS) { writereg(dev, PP_BusCTL, 0); /* disable interrupts. */ printk(KERN_ERR "cs89x0: can't get an interrupt\n"); ret = -EAGAIN; goto bad_out; } } else #endif { #ifndef CONFIG_CS89x0_NONISA_IRQ if (((1 << dev->irq) & lp->irq_map) == 0) { printk(KERN_ERR "%s: IRQ %d is not in our map of allowable IRQs, which is %x\n", dev->name, dev->irq, lp->irq_map); ret = -EAGAIN; goto bad_out; } #endif /* FIXME: Cirrus' release had this: */ writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL)|ENABLE_IRQ ); /* And 2.3.47 had this: */ #if 0 writereg(dev, PP_BusCTL, ENABLE_IRQ | MEMORY_ON); #endif write_irq(dev, lp->chip_type, dev->irq); ret = request_irq(dev->irq, &net_interrupt, 0, dev->name, dev); if (ret) { if (net_debug) printk(KERN_DEBUG "cs89x0: request_irq(%d) failed\n", dev->irq); goto bad_out; } } #if ALLOW_DMA if (lp->use_dma) { if (lp->isa_config & ANY_ISA_DMA) { unsigned long flags; lp->dma_buff = (unsigned char *)__get_dma_pages(GFP_KERNEL, get_order(lp->dmasize * 1024)); if (!lp->dma_buff) { printk(KERN_ERR "%s: cannot get %dK memory for DMA\n", dev->name, lp->dmasize); goto release_irq; } if (net_debug > 1) { printk( "%s: dma %lx %lx\n", dev->name, (unsigned long)lp->dma_buff, (unsigned long)isa_virt_to_bus(lp->dma_buff)); } if ((unsigned long) lp->dma_buff >= MAX_DMA_ADDRESS || !dma_page_eq(lp->dma_buff, lp->dma_buff+lp->dmasize*1024-1)) { printk(KERN_ERR "%s: not usable as DMA buffer\n", dev->name); goto release_irq; } memset(lp->dma_buff, 0, lp->dmasize * 1024); /* Why? */ if (request_dma(dev->dma, dev->name)) { printk(KERN_ERR "%s: cannot get dma channel %d\n", dev->name, dev->dma); goto release_irq; } write_dma(dev, lp->chip_type, dev->dma); lp->rx_dma_ptr = lp->dma_buff; lp->end_dma_buff = lp->dma_buff + lp->dmasize*1024; spin_lock_irqsave(&lp->lock, flags); disable_dma(dev->dma); clear_dma_ff(dev->dma); set_dma_mode(dev->dma, DMA_RX_MODE); /* auto_init as well */ set_dma_addr(dev->dma, isa_virt_to_bus(lp->dma_buff)); set_dma_count(dev->dma, lp->dmasize*1024); enable_dma(dev->dma); spin_unlock_irqrestore(&lp->lock, flags); } } #endif /* ALLOW_DMA */ /* set the Ethernet address */ for (i=0; i < ETH_ALEN/2; i++) writereg(dev, PP_IA+i*2, dev->dev_addr[i*2] | (dev->dev_addr[i*2+1] << 8)); /* while we're testing the interface, leave interrupts disabled */ writereg(dev, PP_BusCTL, MEMORY_ON); /* Set the LineCTL quintuplet based on adapter configuration read from EEPROM */ if ((lp->adapter_cnf & A_CNF_EXTND_10B_2) && (lp->adapter_cnf & A_CNF_LOW_RX_SQUELCH)) lp->linectl = LOW_RX_SQUELCH; else lp->linectl = 0; /* check to make sure that they have the "right" hardware available */ switch(lp->adapter_cnf & A_CNF_MEDIA_TYPE) { case A_CNF_MEDIA_10B_T: result = lp->adapter_cnf & A_CNF_10B_T; break; case A_CNF_MEDIA_AUI: result = lp->adapter_cnf & A_CNF_AUI; break; case A_CNF_MEDIA_10B_2: result = lp->adapter_cnf & A_CNF_10B_2; break; default: result = lp->adapter_cnf & (A_CNF_10B_T | A_CNF_AUI | A_CNF_10B_2); } #ifdef CONFIG_ARCH_PNX010X result = A_CNF_10B_T; #endif if (!result) { printk(KERN_ERR "%s: EEPROM is configured for unavailable media\n", dev->name); release_dma: #if ALLOW_DMA free_dma(dev->dma); release_irq: release_dma_buff(lp); #endif writereg(dev, PP_LineCTL, readreg(dev, PP_LineCTL) & ~(SERIAL_TX_ON | SERIAL_RX_ON)); free_irq(dev->irq, dev); ret = -EAGAIN; goto bad_out; } /* set the hardware to the configured choice */ switch(lp->adapter_cnf & A_CNF_MEDIA_TYPE) { case A_CNF_MEDIA_10B_T: result = detect_tp(dev); if (result==DETECTED_NONE) { printk(KERN_WARNING "%s: 10Base-T (RJ-45) has no cable\n", dev->name); if (lp->auto_neg_cnf & IMM_BIT) /* check "ignore missing media" bit */ result = DETECTED_RJ45H; /* Yes! I don't care if I see a link pulse */ } break; case A_CNF_MEDIA_AUI: result = detect_aui(dev); if (result==DETECTED_NONE) { printk(KERN_WARNING "%s: 10Base-5 (AUI) has no cable\n", dev->name); if (lp->auto_neg_cnf & IMM_BIT) /* check "ignore missing media" bit */ result = DETECTED_AUI; /* Yes! I don't care if I see a carrrier */ } break; case A_CNF_MEDIA_10B_2: result = detect_bnc(dev); if (result==DETECTED_NONE) { printk(KERN_WARNING "%s: 10Base-2 (BNC) has no cable\n", dev->name); if (lp->auto_neg_cnf & IMM_BIT) /* check "ignore missing media" bit */ result = DETECTED_BNC; /* Yes! I don't care if I can xmit a packet */ } break; case A_CNF_MEDIA_AUTO: writereg(dev, PP_LineCTL, lp->linectl | AUTO_AUI_10BASET); if (lp->adapter_cnf & A_CNF_10B_T) if ((result = detect_tp(dev)) != DETECTED_NONE) break; if (lp->adapter_cnf & A_CNF_AUI) if ((result = detect_aui(dev)) != DETECTED_NONE) break; if (lp->adapter_cnf & A_CNF_10B_2) if ((result = detect_bnc(dev)) != DETECTED_NONE) break; printk(KERN_ERR "%s: no media detected\n", dev->name); goto release_dma; } switch(result) { case DETECTED_NONE: printk(KERN_ERR "%s: no network cable attached to configured media\n", dev->name); goto release_dma; case DETECTED_RJ45H: printk(KERN_INFO "%s: using half-duplex 10Base-T (RJ-45)\n", dev->name); break; case DETECTED_RJ45F: printk(KERN_INFO "%s: using full-duplex 10Base-T (RJ-45)\n", dev->name); break; case DETECTED_AUI: printk(KERN_INFO "%s: using 10Base-5 (AUI)\n", dev->name); break; case DETECTED_BNC: printk(KERN_INFO "%s: using 10Base-2 (BNC)\n", dev->name); break; } /* Turn on both receive and transmit operations */ writereg(dev, PP_LineCTL, readreg(dev, PP_LineCTL) | SERIAL_RX_ON | SERIAL_TX_ON); /* Receive only error free packets addressed to this card */ lp->rx_mode = 0; writereg(dev, PP_RxCTL, DEF_RX_ACCEPT); lp->curr_rx_cfg = RX_OK_ENBL | RX_CRC_ERROR_ENBL; if (lp->isa_config & STREAM_TRANSFER) lp->curr_rx_cfg |= RX_STREAM_ENBL; #if ALLOW_DMA set_dma_cfg(dev); #endif writereg(dev, PP_RxCFG, lp->curr_rx_cfg); writereg(dev, PP_TxCFG, TX_LOST_CRS_ENBL | TX_SQE_ERROR_ENBL | TX_OK_ENBL | TX_LATE_COL_ENBL | TX_JBR_ENBL | TX_ANY_COL_ENBL | TX_16_COL_ENBL); writereg(dev, PP_BufCFG, READY_FOR_TX_ENBL | RX_MISS_COUNT_OVRFLOW_ENBL | #if ALLOW_DMA dma_bufcfg(dev) | #endif TX_COL_COUNT_OVRFLOW_ENBL | TX_UNDERRUN_ENBL); /* now that we've got our act together, enable everything */ writereg(dev, PP_BusCTL, ENABLE_IRQ | (dev->mem_start?MEMORY_ON : 0) /* turn memory on */ #if ALLOW_DMA | dma_busctl(dev) #endif ); netif_start_queue(dev); if (net_debug > 1) printk("cs89x0: net_open() succeeded\n"); return 0; bad_out: return ret; } static void net_timeout(struct net_device *dev) { /* If we get here, some higher level has decided we are broken. There should really be a "kick me" function call instead. */ if (net_debug > 0) printk("%s: transmit timed out, %s?\n", dev->name, tx_done(dev) ? "IRQ conflict ?" : "network cable problem"); /* Try to restart the adaptor. */ netif_wake_queue(dev); } static int net_send_packet(struct sk_buff *skb, struct net_device *dev) { struct net_local *lp = netdev_priv(dev); unsigned long flags; if (net_debug > 3) { printk("%s: sent %d byte packet of type %x\n", dev->name, skb->len, (skb->data[ETH_ALEN+ETH_ALEN] << 8) | skb->data[ETH_ALEN+ETH_ALEN+1]); } /* keep the upload from being interrupted, since we ask the chip to start transmitting before the whole packet has been completely uploaded. */ spin_lock_irqsave(&lp->lock, flags); netif_stop_queue(dev); /* initiate a transmit sequence */ writeword(dev->base_addr, TX_CMD_PORT, lp->send_cmd); writeword(dev->base_addr, TX_LEN_PORT, skb->len); /* Test to see if the chip has allocated memory for the packet */ if ((readreg(dev, PP_BusST) & READY_FOR_TX_NOW) == 0) { /* * Gasp! It hasn't. But that shouldn't happen since * we're waiting for TxOk, so return 1 and requeue this packet. */ spin_unlock_irqrestore(&lp->lock, flags); if (net_debug) printk("cs89x0: Tx buffer not free!\n"); return NETDEV_TX_BUSY; } /* Write the contents of the packet */ writewords(dev->base_addr, TX_FRAME_PORT,skb->data,(skb->len+1) >>1); spin_unlock_irqrestore(&lp->lock, flags); lp->stats.tx_bytes += skb->len; dev->trans_start = jiffies; dev_kfree_skb (skb); /* * We DO NOT call netif_wake_queue() here. * We also DO NOT call netif_start_queue(). * * Either of these would cause another bottom half run through * net_send_packet() before this packet has fully gone out. That causes * us to hit the "Gasp!" above and the send is rescheduled. it runs like * a dog. We just return and wait for the Tx completion interrupt handler * to restart the netdevice layer */ return NETDEV_TX_OK; } /* The typical workload of the driver: Handle the network interface interrupts. */ static irqreturn_t net_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct net_local *lp; int ioaddr, status; int handled = 0; ioaddr = dev->base_addr; lp = netdev_priv(dev); /* we MUST read all the events out of the ISQ, otherwise we'll never get interrupted again. As a consequence, we can't have any limit on the number of times we loop in the interrupt handler. The hardware guarantees that eventually we'll run out of events. Of course, if you're on a slow machine, and packets are arriving faster than you can read them off, you're screwed. Hasta la vista, baby! */ while ((status = readword(dev->base_addr, ISQ_PORT))) { if (net_debug > 4)printk("%s: event=%04x\n", dev->name, status); handled = 1; switch(status & ISQ_EVENT_MASK) { case ISQ_RECEIVER_EVENT: /* Got a packet(s). */ net_rx(dev); break; case ISQ_TRANSMITTER_EVENT: lp->stats.tx_packets++; netif_wake_queue(dev); /* Inform upper layers. */ if ((status & ( TX_OK | TX_LOST_CRS | TX_SQE_ERROR | TX_LATE_COL | TX_16_COL)) != TX_OK) { if ((status & TX_OK) == 0) lp->stats.tx_errors++; if (status & TX_LOST_CRS) lp->stats.tx_carrier_errors++; if (status & TX_SQE_ERROR) lp->stats.tx_heartbeat_errors++; if (status & TX_LATE_COL) lp->stats.tx_window_errors++; if (status & TX_16_COL) lp->stats.tx_aborted_errors++; } break; case ISQ_BUFFER_EVENT: if (status & READY_FOR_TX) { /* we tried to transmit a packet earlier, but inexplicably ran out of buffers. That shouldn't happen since we only ever load one packet. Shrug. Do the right thing anyway. */ netif_wake_queue(dev); /* Inform upper layers. */ } if (status & TX_UNDERRUN) { if (net_debug > 0) printk("%s: transmit underrun\n", dev->name); lp->send_underrun++; if (lp->send_underrun == 3) lp->send_cmd = TX_AFTER_381; else if (lp->send_underrun == 6) lp->send_cmd = TX_AFTER_ALL; /* transmit cycle is done, although frame wasn't transmitted - this avoids having to wait for the upper layers to timeout on us, in the event of a tx underrun */ netif_wake_queue(dev); /* Inform upper layers. */ } #if ALLOW_DMA if (lp->use_dma && (status & RX_DMA)) { int count = readreg(dev, PP_DmaFrameCnt); while(count) { if (net_debug > 5) printk("%s: receiving %d DMA frames\n", dev->name, count); if (net_debug > 2 && count >1) printk("%s: receiving %d DMA frames\n", dev->name, count); dma_rx(dev); if (--count == 0) count = readreg(dev, PP_DmaFrameCnt); if (net_debug > 2 && count > 0) printk("%s: continuing with %d DMA frames\n", dev->name, count); } } #endif break; case ISQ_RX_MISS_EVENT: lp->stats.rx_missed_errors += (status >>6); break; case ISQ_TX_COL_EVENT: lp->stats.collisions += (status >>6); break; } } return IRQ_RETVAL(handled); } static void count_rx_errors(int status, struct net_local *lp) { lp->stats.rx_errors++; if (status & RX_RUNT) lp->stats.rx_length_errors++; if (status & RX_EXTRA_DATA) lp->stats.rx_length_errors++; if (status & RX_CRC_ERROR) if (!(status & (RX_EXTRA_DATA|RX_RUNT))) /* per str 172 */ lp->stats.rx_crc_errors++; if (status & RX_DRIBBLE) lp->stats.rx_frame_errors++; return; } /* We have a good packet(s), get it/them out of the buffers. */ static void net_rx(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); struct sk_buff *skb; int status, length; int ioaddr = dev->base_addr; status = readword(ioaddr, RX_FRAME_PORT); length = readword(ioaddr, RX_FRAME_PORT); if ((status & RX_OK) == 0) { count_rx_errors(status, lp); return; } /* Malloc up new buffer. */ skb = dev_alloc_skb(length + 2); if (skb == NULL) { #if 0 /* Again, this seems a cruel thing to do */ printk(KERN_WARNING "%s: Memory squeeze, dropping packet.\n", dev->name); #endif lp->stats.rx_dropped++; return; } skb_reserve(skb, 2); /* longword align L3 header */ readwords(ioaddr, RX_FRAME_PORT, skb_put(skb, length), length >> 1); if (length & 1) skb->data[length-1] = readword(ioaddr, RX_FRAME_PORT); if (net_debug > 3) { printk( "%s: received %d byte packet of type %x\n", dev->name, length, (skb->data[ETH_ALEN+ETH_ALEN] << 8) | skb->data[ETH_ALEN+ETH_ALEN+1]); } skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); lp->stats.rx_packets++; lp->stats.rx_bytes += length; } #if ALLOW_DMA static void release_dma_buff(struct net_local *lp) { if (lp->dma_buff) { free_pages((unsigned long)(lp->dma_buff), get_order(lp->dmasize * 1024)); lp->dma_buff = NULL; } } #endif /* The inverse routine to net_open(). */ static int net_close(struct net_device *dev) { #if ALLOW_DMA struct net_local *lp = netdev_priv(dev); #endif netif_stop_queue(dev); writereg(dev, PP_RxCFG, 0); writereg(dev, PP_TxCFG, 0); writereg(dev, PP_BufCFG, 0); writereg(dev, PP_BusCTL, 0); free_irq(dev->irq, dev); #if ALLOW_DMA if (lp->use_dma && lp->dma) { free_dma(dev->dma); release_dma_buff(lp); } #endif /* Update the statistics here. */ return 0; } /* Get the current statistics. This may be called with the card open or closed. */ static struct net_device_stats * net_get_stats(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&lp->lock, flags); /* Update the statistics from the device registers. */ lp->stats.rx_missed_errors += (readreg(dev, PP_RxMiss) >> 6); lp->stats.collisions += (readreg(dev, PP_TxCol) >> 6); spin_unlock_irqrestore(&lp->lock, flags); return &lp->stats; } static void set_multicast_list(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&lp->lock, flags); if(dev->flags&IFF_PROMISC) { lp->rx_mode = RX_ALL_ACCEPT; } else if((dev->flags&IFF_ALLMULTI)||dev->mc_list) { /* The multicast-accept list is initialized to accept-all, and we rely on higher-level filtering for now. */ lp->rx_mode = RX_MULTCAST_ACCEPT; } else lp->rx_mode = 0; writereg(dev, PP_RxCTL, DEF_RX_ACCEPT | lp->rx_mode); /* in promiscuous mode, we accept errored packets, so we have to enable interrupts on them also */ writereg(dev, PP_RxCFG, lp->curr_rx_cfg | (lp->rx_mode == RX_ALL_ACCEPT? (RX_CRC_ERROR_ENBL|RX_RUNT_ENBL|RX_EXTRA_DATA_ENBL) : 0)); spin_unlock_irqrestore(&lp->lock, flags); } static int set_mac_address(struct net_device *dev, void *p) { int i; struct sockaddr *addr = p; if (netif_running(dev)) return -EBUSY; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); if (net_debug) printk("%s: Setting MAC address to %pM.\n", dev->name, dev->dev_addr); /* set the Ethernet address */ for (i=0; i < ETH_ALEN/2; i++) writereg(dev, PP_IA+i*2, dev->dev_addr[i*2] | (dev->dev_addr[i*2+1] << 8)); return 0; } #ifdef MODULE static struct net_device *dev_cs89x0; /* * Support the 'debug' module parm even if we're compiled for non-debug to * avoid breaking someone's startup scripts */ static int io; static int irq; static int debug; static char media[8]; static int duplex=-1; static int use_dma; /* These generate unused var warnings if ALLOW_DMA = 0 */ static int dma; static int dmasize=16; /* or 64 */ module_param(io, int, 0); module_param(irq, int, 0); module_param(debug, int, 0); module_param_string(media, media, sizeof(media), 0); module_param(duplex, int, 0); module_param(dma , int, 0); module_param(dmasize , int, 0); module_param(use_dma , int, 0); MODULE_PARM_DESC(io, "cs89x0 I/O base address"); MODULE_PARM_DESC(irq, "cs89x0 IRQ number"); #if DEBUGGING MODULE_PARM_DESC(debug, "cs89x0 debug level (0-6)"); #else MODULE_PARM_DESC(debug, "(ignored)"); #endif MODULE_PARM_DESC(media, "Set cs89x0 adapter(s) media type(s) (rj45,bnc,aui)"); /* No other value than -1 for duplex seems to be currently interpreted */ MODULE_PARM_DESC(duplex, "(ignored)"); #if ALLOW_DMA MODULE_PARM_DESC(dma , "cs89x0 ISA DMA channel; ignored if use_dma=0"); MODULE_PARM_DESC(dmasize , "cs89x0 DMA size in kB (16,64); ignored if use_dma=0"); MODULE_PARM_DESC(use_dma , "cs89x0 using DMA (0-1)"); #else MODULE_PARM_DESC(dma , "(ignored)"); MODULE_PARM_DESC(dmasize , "(ignored)"); MODULE_PARM_DESC(use_dma , "(ignored)"); #endif MODULE_AUTHOR("Mike Cruse, Russwll Nelson <nelson@crynwr.com>, Andrew Morton"); MODULE_LICENSE("GPL"); /* * media=t - specify media type or media=2 or media=aui or medai=auto * duplex=0 - specify forced half/full/autonegotiate duplex * debug=# - debug level * Default Chip Configuration: * DMA Burst = enabled * IOCHRDY Enabled = enabled * UseSA = enabled * CS8900 defaults to half-duplex if not specified on command-line * CS8920 defaults to autoneg if not specified on command-line * Use reset defaults for other config parameters * Assumptions: * media type specified is supported (circuitry is present) * if memory address is > 1MB, then required mem decode hw is present * if 10B-2, then agent other than driver will enable DC/DC converter (hw or software util) */ int __init init_module(void) { struct net_device *dev = alloc_etherdev(sizeof(struct net_local)); struct net_local *lp; int ret = 0; #if DEBUGGING net_debug = debug; #else debug = 0; #endif if (!dev) return -ENOMEM; dev->irq = irq; dev->base_addr = io; lp = netdev_priv(dev); #if ALLOW_DMA if (use_dma) { lp->use_dma = use_dma; lp->dma = dma; lp->dmasize = dmasize; } #endif spin_lock_init(&lp->lock); /* boy, they'd better get these right */ if (!strcmp(media, "rj45")) lp->adapter_cnf = A_CNF_MEDIA_10B_T | A_CNF_10B_T; else if (!strcmp(media, "aui")) lp->adapter_cnf = A_CNF_MEDIA_AUI | A_CNF_AUI; else if (!strcmp(media, "bnc")) lp->adapter_cnf = A_CNF_MEDIA_10B_2 | A_CNF_10B_2; else lp->adapter_cnf = A_CNF_MEDIA_10B_T | A_CNF_10B_T; if (duplex==-1) lp->auto_neg_cnf = AUTO_NEG_ENABLE; if (io == 0) { printk(KERN_ERR "cs89x0.c: Module autoprobing not allowed.\n"); printk(KERN_ERR "cs89x0.c: Append io=0xNNN\n"); ret = -EPERM; goto out; } else if (io <= 0x1ff) { ret = -ENXIO; goto out; } #if ALLOW_DMA if (use_dma && dmasize != 16 && dmasize != 64) { printk(KERN_ERR "cs89x0.c: dma size must be either 16K or 64K, not %dK\n", dmasize); ret = -EPERM; goto out; } #endif ret = cs89x0_probe1(dev, io, 1); if (ret) goto out; dev_cs89x0 = dev; return 0; out: free_netdev(dev); return ret; } void __exit cleanup_module(void) { unregister_netdev(dev_cs89x0); writeword(dev_cs89x0->base_addr, ADD_PORT, PP_ChipID); release_region(dev_cs89x0->base_addr, NETCARD_IO_EXTENT); free_netdev(dev_cs89x0); } #endif /* MODULE */ /* * Local variables: * version-control: t * kept-new-versions: 5 * c-indent-level: 8 * tab-width: 8 * End: * */