aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/edac/sb_edac.c
blob: 1dc118d83cc6a25ddb0be845677574e393d6492b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor family Sandy Bridge.
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2011 by:
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
#include <asm/processor.h>
#include <asm/mce.h>

#include "edac_core.h"

/* Static vars */
static LIST_HEAD(sbridge_edac_list);
static DEFINE_MUTEX(sbridge_edac_lock);
static int probed;

/*
 * Alter this version for the module when modifications are made
 */
#define SBRIDGE_REVISION    " Ver: 1.0.0 "
#define EDAC_MOD_STR      "sbridge_edac"

/*
 * Debug macros
 */
#define sbridge_printk(level, fmt, arg...)			\
	edac_printk(level, "sbridge", fmt, ##arg)

#define sbridge_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi)	\
	(((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))

/*
 * sbridge Memory Controller Registers
 */

/*
 * FIXME: For now, let's order by device function, as it makes
 * easier for driver's development proccess. This table should be
 * moved to pci_id.h when submitted upstream
 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */

	/*
	 * Currently, unused, but will be needed in the future
	 * implementations, as they hold the error counters
	 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */

/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
static const u32 dram_rule[] = {
	0x80, 0x88, 0x90, 0x98, 0xa0,
	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};
#define MAX_SAD		ARRAY_SIZE(dram_rule)

#define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
#define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
#define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)

static char *get_dram_attr(u32 reg)
{
	switch(DRAM_ATTR(reg)) {
		case 0:
			return "DRAM";
		case 1:
			return "MMCFG";
		case 2:
			return "NXM";
		default:
			return "unknown";
	}
}

static const u32 interleave_list[] = {
	0x84, 0x8c, 0x94, 0x9c, 0xa4,
	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};
#define MAX_INTERLEAVE	ARRAY_SIZE(interleave_list)

#define SAD_PKG0(reg)		GET_BITFIELD(reg, 0, 2)
#define SAD_PKG1(reg)		GET_BITFIELD(reg, 3, 5)
#define SAD_PKG2(reg)		GET_BITFIELD(reg, 8, 10)
#define SAD_PKG3(reg)		GET_BITFIELD(reg, 11, 13)
#define SAD_PKG4(reg)		GET_BITFIELD(reg, 16, 18)
#define SAD_PKG5(reg)		GET_BITFIELD(reg, 19, 21)
#define SAD_PKG6(reg)		GET_BITFIELD(reg, 24, 26)
#define SAD_PKG7(reg)		GET_BITFIELD(reg, 27, 29)

static inline int sad_pkg(u32 reg, int interleave)
{
	switch (interleave) {
	case 0:
		return SAD_PKG0(reg);
	case 1:
		return SAD_PKG1(reg);
	case 2:
		return SAD_PKG2(reg);
	case 3:
		return SAD_PKG3(reg);
	case 4:
		return SAD_PKG4(reg);
	case 5:
		return SAD_PKG5(reg);
	case 6:
		return SAD_PKG6(reg);
	case 7:
		return SAD_PKG7(reg);
	default:
		return -EINVAL;
	}
}

/* Devices 12 Function 7 */

#define TOLM		0x80
#define	TOHM		0x84

#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)

/* Device 13 Function 6 */

#define SAD_TARGET	0xf0

#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)

#define SAD_CONTROL	0xf4

#define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2)

/* Device 14 function 0 */

static const u32 tad_dram_rule[] = {
	0x40, 0x44, 0x48, 0x4c,
	0x50, 0x54, 0x58, 0x5c,
	0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)

#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)

/* Device 15, function 0 */

#define MCMTR			0x7c

#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)

/* Device 15, function 1 */

#define RASENABLES		0xac
#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)

/* Device 15, functions 2-5 */

static const int mtr_regs[] = {
	0x80, 0x84, 0x88,
};

#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)

static const u32 tad_ch_nilv_offset[] = {
	0x90, 0x94, 0x98, 0x9c,
	0xa0, 0xa4, 0xa8, 0xac,
	0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)

static const u32 rir_way_limit[] = {
	0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)

#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
#define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff)

#define MAX_RIR_WAY	8

static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};

#define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
#define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)

/* Device 16, functions 2-7 */

/*
 * FIXME: Implement the error count reads directly
 */

static const u32 correrrcnt[] = {
	0x104, 0x108, 0x10c, 0x110,
};

#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)

static const u32 correrrthrsld[] = {
	0x11c, 0x120, 0x124, 0x128,
};

#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)


/* Device 17, function 0 */

#define RANK_CFG_A		0x0328

#define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11)

/*
 * sbridge structs
 */

#define NUM_CHANNELS	4
#define MAX_DIMMS	3		/* Max DIMMS per channel */

struct sbridge_info {
	u32	mcmtr;
};

struct sbridge_channel {
	u32		ranks;
	u32		dimms;
};

struct pci_id_descr {
	int			dev;
	int			func;
	int 			dev_id;
	int			optional;
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
	int				n_devs;
};

struct sbridge_dev {
	struct list_head	list;
	u8			bus, mc;
	u8			node_id, source_id;
	struct pci_dev		**pdev;
	int			n_devs;
	struct mem_ctl_info	*mci;
};

struct sbridge_pvt {
	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
	struct pci_dev		*pci_sad0, *pci_sad1, *pci_ha0;
	struct pci_dev		*pci_br;
	struct pci_dev		*pci_tad[NUM_CHANNELS];

	struct sbridge_dev	*sbridge_dev;

	struct sbridge_info	info;
	struct sbridge_channel	channel[NUM_CHANNELS];

	int 			csrow_map[NUM_CHANNELS][MAX_DIMMS];

	/* Memory type detection */
	bool			is_mirrored, is_lockstep, is_close_pg;

	/* Fifo double buffers */
	struct mce		mce_entry[MCE_LOG_LEN];
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;

	/* Memory description */
	u64			tolm, tohm;
};

#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

static const struct pci_id_descr pci_dev_descr_sbridge[] = {
		/* Processor Home Agent */
	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)		},

		/* Memory controller */
	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)		},
	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS)		},
	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0)	},
	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1)	},
	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2)	},
	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3)	},
	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO)	},

		/* System Address Decoder */
	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0)		},
	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1)		},

		/* Broadcast Registers */
	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR)		},
};

#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
	{0,}			/* 0 terminated list. */
};

/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id sbridge_pci_tbl[] __devinitdata = {
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
	{0,}			/* 0 terminated list. */
};


/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

static inline int numrank(u32 mtr)
{
	int ranks = (1 << RANK_CNT_BITS(mtr));

	if (ranks > 4) {
		debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
			ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
		return -EINVAL;
	}

	return ranks;
}

static inline int numrow(u32 mtr)
{
	int rows = (RANK_WIDTH_BITS(mtr) + 12);

	if (rows < 13 || rows > 18) {
		debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
			rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
		return -EINVAL;
	}

	return 1 << rows;
}

static inline int numcol(u32 mtr)
{
	int cols = (COL_WIDTH_BITS(mtr) + 10);

	if (cols > 12) {
		debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
			cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
		return -EINVAL;
	}

	return 1 << cols;
}

static struct sbridge_dev *get_sbridge_dev(u8 bus)
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->bus == bus)
			return sbridge_dev;
	}

	return NULL;
}

static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
					   const struct pci_id_table *table)
{
	struct sbridge_dev *sbridge_dev;

	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
	if (!sbridge_dev)
		return NULL;

	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!sbridge_dev->pdev) {
		kfree(sbridge_dev);
		return NULL;
	}

	sbridge_dev->bus = bus;
	sbridge_dev->n_devs = table->n_devs;
	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);

	return sbridge_dev;
}

static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
	list_del(&sbridge_dev->list);
	kfree(sbridge_dev->pdev);
	kfree(sbridge_dev);
}

/****************************************************************************
			Memory check routines
 ****************************************************************************/
static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
					  unsigned func)
{
	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
	int i;

	if (!sbridge_dev)
		return NULL;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		if (!sbridge_dev->pdev[i])
			continue;

		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
			debugf1("Associated %02x.%02x.%d with %p\n",
				bus, slot, func, sbridge_dev->pdev[i]);
			return sbridge_dev->pdev[i];
		}
	}

	return NULL;
}

/**
 * sbridge_get_active_channels() - gets the number of channels and csrows
 * bus:		Device bus
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket, identified
 * by the associated PCI bus.
 * this is used in order to properly allocate the size of mci components.
 * Note: one csrow is one dimm.
 */
static int sbridge_get_active_channels(const u8 bus, unsigned *channels,
				      unsigned *csrows)
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 mcmtr;

	*channels = 0;
	*csrows = 0;

	pdev = get_pdev_slot_func(bus, 15, 0);
	if (!pdev) {
		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
					"%2x.%02d.%d!!!\n",
					bus, 15, 0);
		return -ENODEV;
	}

	pci_read_config_dword(pdev, MCMTR, &mcmtr);
	if (!IS_ECC_ENABLED(mcmtr)) {
		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
		return -ENODEV;
	}

	for (i = 0; i < NUM_CHANNELS; i++) {
		u32 mtr;

		/* Device 15 functions 2 - 5  */
		pdev = get_pdev_slot_func(bus, 15, 2 + i);
		if (!pdev) {
			sbridge_printk(KERN_ERR, "Couldn't find PCI device "
						 "%2x.%02d.%d!!!\n",
						 bus, 15, 2 + i);
			return -ENODEV;
		}
		(*channels)++;

		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
			pci_read_config_dword(pdev, mtr_regs[j], &mtr);
			debugf1("Bus#%02x channel #%d  MTR%d = %x\n", bus, i, j, mtr);
			if (IS_DIMM_PRESENT(mtr))
				(*csrows)++;
		}
	}

	debugf0("Number of active channels: %d, number of active dimms: %d\n",
		*channels, *csrows);

	return 0;
}

static int get_dimm_config(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct csrow_info *csr;
	int i, j, banks, ranks, rows, cols, size, npages;
	int csrow = 0;
	unsigned long last_page = 0;
	u32 reg;
	enum edac_type mode;
	enum mem_type mtype;

	pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
	pvt->sbridge_dev->source_id = SOURCE_ID(reg);

	pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
	pvt->sbridge_dev->node_id = NODE_ID(reg);
	debugf0("mc#%d: Node ID: %d, source ID: %d\n",
		pvt->sbridge_dev->mc,
		pvt->sbridge_dev->node_id,
		pvt->sbridge_dev->source_id);

	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
	if (IS_MIRROR_ENABLED(reg)) {
		debugf0("Memory mirror is enabled\n");
		pvt->is_mirrored = true;
	} else {
		debugf0("Memory mirror is disabled\n");
		pvt->is_mirrored = false;
	}

	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
		debugf0("Lockstep is enabled\n");
		mode = EDAC_S8ECD8ED;
		pvt->is_lockstep = true;
	} else {
		debugf0("Lockstep is disabled\n");
		mode = EDAC_S4ECD4ED;
		pvt->is_lockstep = false;
	}
	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
		debugf0("address map is on closed page mode\n");
		pvt->is_close_pg = true;
	} else {
		debugf0("address map is on open page mode\n");
		pvt->is_close_pg = false;
	}

	pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, &reg);
	if (IS_RDIMM_ENABLED(reg)) {
		/* FIXME: Can also be LRDIMM */
		debugf0("Memory is registered\n");
		mtype = MEM_RDDR3;
	} else {
		debugf0("Memory is unregistered\n");
		mtype = MEM_DDR3;
	}

	/* On all supported DDR3 DIMM types, there are 8 banks available */
	banks = 8;

	for (i = 0; i < NUM_CHANNELS; i++) {
		u32 mtr;

		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      mtr_regs[j], &mtr);
			debugf4("Channel #%d  MTR%d = %x\n", i, j, mtr);
			if (IS_DIMM_PRESENT(mtr)) {
				pvt->channel[i].dimms++;

				ranks = numrank(mtr);
				rows = numrow(mtr);
				cols = numcol(mtr);

				/* DDR3 has 8 I/O banks */
				size = (rows * cols * banks * ranks) >> (20 - 3);
				npages = MiB_TO_PAGES(size);

				debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
					pvt->sbridge_dev->mc, i, j,
					size, npages,
					banks, ranks, rows, cols);
				csr = &mci->csrows[csrow];

				csr->first_page = last_page;
				csr->last_page = last_page + npages - 1;
				csr->page_mask = 0UL;	/* Unused */
				csr->nr_pages = npages;
				csr->grain = 32;
				csr->csrow_idx = csrow;
				csr->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
				csr->ce_count = 0;
				csr->ue_count = 0;
				csr->mtype = mtype;
				csr->edac_mode = mode;
				csr->nr_channels = 1;
				csr->channels[0].chan_idx = i;
				csr->channels[0].ce_count = 0;
				pvt->csrow_map[i][j] = csrow;
				snprintf(csr->channels[0].label,
					 sizeof(csr->channels[0].label),
					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
					 pvt->sbridge_dev->source_id, i, j);
				last_page += npages;
				csrow++;
			}
		}
	}

	return 0;
}

static void get_memory_layout(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i, j, k, n_sads, n_tads, sad_interl;
	u32 reg;
	u64 limit, prv = 0;
	u64 tmp_mb;
	u32 rir_way;

	/*
	 * Step 1) Get TOLM/TOHM ranges
	 */

	/* Address range is 32:28 */
	pci_read_config_dword(pvt->pci_sad1, TOLM,
			      &reg);
	pvt->tolm = GET_TOLM(reg);
	tmp_mb = (1 + pvt->tolm) >> 20;

	debugf0("TOLM: %Lu.%03Lu GB (0x%016Lx)\n",
		tmp_mb / 1000, tmp_mb % 1000, (u64)pvt->tolm);

	/* Address range is already 45:25 */
	pci_read_config_dword(pvt->pci_sad1, TOHM,
			      &reg);
	pvt->tohm = GET_TOHM(reg);
	tmp_mb = (1 + pvt->tohm) >> 20;

	debugf0("TOHM: %Lu.%03Lu GB (0x%016Lx)",
		tmp_mb / 1000, tmp_mb % 1000, (u64)pvt->tohm);

	/*
	 * Step 2) Get SAD range and SAD Interleave list
	 * TAD registers contain the interleave wayness. However, it
	 * seems simpler to just discover it indirectly, with the
	 * algorithm bellow.
	 */
	prv = 0;
	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
		/* SAD_LIMIT Address range is 45:26 */
		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
				      &reg);
		limit = SAD_LIMIT(reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		if (limit <= prv)
			break;

		tmp_mb = (limit + 1) >> 20;
		debugf0("SAD#%d %s up to %Lu.%03Lu GB (0x%016Lx) %s reg=0x%08x\n",
			n_sads,
			get_dram_attr(reg),
			tmp_mb / 1000, tmp_mb % 1000,
			((u64)tmp_mb) << 20L,
			INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
			reg);
		prv = limit;

		pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
				      &reg);
		sad_interl = sad_pkg(reg, 0);
		for (j = 0; j < 8; j++) {
			if (j > 0 && sad_interl == sad_pkg(reg, j))
				break;

			debugf0("SAD#%d, interleave #%d: %d\n",
			n_sads, j, sad_pkg(reg, j));
		}
	}

	/*
	 * Step 3) Get TAD range
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
				      &reg);
		limit = TAD_LIMIT(reg);
		if (limit <= prv)
			break;
		tmp_mb = (limit + 1) >> 20;

		debugf0("TAD#%d: up to %Lu.%03Lu GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
			n_tads, tmp_mb / 1000, tmp_mb % 1000,
			((u64)tmp_mb) << 20L,
			(u32)TAD_SOCK(reg),
			(u32)TAD_CH(reg),
			(u32)TAD_TGT0(reg),
			(u32)TAD_TGT1(reg),
			(u32)TAD_TGT2(reg),
			(u32)TAD_TGT3(reg),
			reg);
		prv = tmp_mb;
	}

	/*
	 * Step 4) Get TAD offsets, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < n_tads; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      tad_ch_nilv_offset[j],
					      &reg);
			tmp_mb = TAD_OFFSET(reg) >> 20;
			debugf0("TAD CH#%d, offset #%d: %Lu.%03Lu GB (0x%016Lx), reg=0x%08x\n",
				i, j,
				tmp_mb / 1000, tmp_mb % 1000,
				((u64)tmp_mb) << 20L,
				reg);
		}
	}

	/*
	 * Step 6) Get RIR Wayness/Limit, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < MAX_RIR_RANGES; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      rir_way_limit[j],
					      &reg);

			if (!IS_RIR_VALID(reg))
				continue;

			tmp_mb = RIR_LIMIT(reg) >> 20;
			rir_way = 1 << RIR_WAY(reg);
			debugf0("CH#%d RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d, reg=0x%08x\n",
				i, j,
				tmp_mb / 1000, tmp_mb % 1000,
				((u64)tmp_mb) << 20L,
				rir_way,
				reg);

			for (k = 0; k < rir_way; k++) {
				pci_read_config_dword(pvt->pci_tad[i],
						      rir_offset[j][k],
						      &reg);
				tmp_mb = RIR_OFFSET(reg) << 6;

				debugf0("CH#%d RIR#%d INTL#%d, offset %Lu.%03Lu GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
					i, j, k,
					tmp_mb / 1000, tmp_mb % 1000,
					((u64)tmp_mb) << 20L,
					(u32)RIR_RNK_TGT(reg),
					reg);
			}
		}
	}
}

struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->node_id == node_id)
			return sbridge_dev->mci;
	}
	return NULL;
}

static int get_memory_error_data(struct mem_ctl_info *mci,
				 u64 addr,
				 u8 *socket,
				 long *channel_mask,
				 u8 *rank,
				 char *area_type)
{
	struct mem_ctl_info	*new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
	char			msg[256];
	int 			n_rir, n_sads, n_tads, sad_way, sck_xch;
	int			sad_interl, idx, base_ch;
	int			interleave_mode;
	unsigned		sad_interleave[MAX_INTERLEAVE];
	u32			reg;
	u8			ch_way,sck_way;
	u32			tad_offset;
	u32			rir_way;
	u64			ch_addr, offset, limit, prv = 0;


	/*
	 * Step 0) Check if the address is at special memory ranges
	 * The check bellow is probably enough to fill all cases where
	 * the error is not inside a memory, except for the legacy
	 * range (e. g. VGA addresses). It is unlikely, however, that the
	 * memory controller would generate an error on that range.
	 */
	if ((addr > (u64) pvt->tolm) && (addr < (1L << 32))) {
		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
		edac_mc_handle_ce_no_info(mci, msg);
		return -EINVAL;
	}
	if (addr >= (u64)pvt->tohm) {
		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
		edac_mc_handle_ce_no_info(mci, msg);
		return -EINVAL;
	}

	/*
	 * Step 1) Get socket
	 */
	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
				      &reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		limit = SAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory socket");
			edac_mc_handle_ce_no_info(mci, msg);
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
	if (n_sads == MAX_SAD) {
		sprintf(msg, "Can't discover the memory socket");
		edac_mc_handle_ce_no_info(mci, msg);
		return -EINVAL;
	}
	area_type = get_dram_attr(reg);
	interleave_mode = INTERLEAVE_MODE(reg);

	pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
			      &reg);
	sad_interl = sad_pkg(reg, 0);
	for (sad_way = 0; sad_way < 8; sad_way++) {
		if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
			break;
		sad_interleave[sad_way] = sad_pkg(reg, sad_way);
		debugf0("SAD interleave #%d: %d\n",
			sad_way, sad_interleave[sad_way]);
	}
	debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
		pvt->sbridge_dev->mc,
		n_sads,
		addr,
		limit,
		sad_way + 7,
		INTERLEAVE_MODE(reg) ? "" : "XOR[18:16]");
	if (interleave_mode)
		idx = ((addr >> 6) ^ (addr >> 16)) & 7;
	else
		idx = (addr >> 6) & 7;
	switch (sad_way) {
	case 1:
		idx = 0;
		break;
	case 2:
		idx = idx & 1;
		break;
	case 4:
		idx = idx & 3;
		break;
	case 8:
		break;
	default:
		sprintf(msg, "Can't discover socket interleave");
		edac_mc_handle_ce_no_info(mci, msg);
		return -EINVAL;
	}
	*socket = sad_interleave[idx];
	debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
		idx, sad_way, *socket);

	/*
	 * Move to the proper node structure, in order to access the
	 * right PCI registers
	 */
	new_mci = get_mci_for_node_id(*socket);
	if (!new_mci) {
		sprintf(msg, "Struct for socket #%u wasn't initialized",
			*socket);
		edac_mc_handle_ce_no_info(mci, msg);
		return -EINVAL;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	/*
	 * Step 2) Get memory channel
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
				      &reg);
		limit = TAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory channel");
			edac_mc_handle_ce_no_info(mci, msg);
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
	ch_way = TAD_CH(reg) + 1;
	sck_way = TAD_SOCK(reg) + 1;
	/*
	 * FIXME: Is it right to always use channel 0 for offsets?
	 */
	pci_read_config_dword(pvt->pci_tad[0],
				tad_ch_nilv_offset[n_tads],
				&tad_offset);

	if (ch_way == 3)
		idx = addr >> 6;
	else
		idx = addr >> (6 + sck_way);
	idx = idx % ch_way;

	/*
	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
	 */
	switch (idx) {
	case 0:
		base_ch = TAD_TGT0(reg);
		break;
	case 1:
		base_ch = TAD_TGT1(reg);
		break;
	case 2:
		base_ch = TAD_TGT2(reg);
		break;
	case 3:
		base_ch = TAD_TGT3(reg);
		break;
	default:
		sprintf(msg, "Can't discover the TAD target");
		edac_mc_handle_ce_no_info(mci, msg);
		return -EINVAL;
	}
	*channel_mask = 1 << base_ch;

	if (pvt->is_mirrored) {
		*channel_mask |= 1 << ((base_ch + 2) % 4);
		switch(ch_way) {
		case 2:
		case 4:
			sck_xch = 1 << sck_way * (ch_way >> 1);
			break;
		default:
			sprintf(msg, "Invalid mirror set. Can't decode addr");
			edac_mc_handle_ce_no_info(mci, msg);
			return -EINVAL;
		}
	} else
		sck_xch = (1 << sck_way) * ch_way;

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((base_ch + 1) % 4);

	offset = TAD_OFFSET(tad_offset);

	debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
		n_tads,
		addr,
		limit,
		(u32)TAD_SOCK(reg),
		ch_way,
		offset,
		idx,
		base_ch,
		*channel_mask);

	/* Calculate channel address */
	/* Remove the TAD offset */

	if (offset > addr) {
		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
			offset, addr);
		edac_mc_handle_ce_no_info(mci, msg);
		return -EINVAL;
	}
	addr -= offset;
	/* Store the low bits [0:6] of the addr */
	ch_addr = addr & 0x7f;
	/* Remove socket wayness and remove 6 bits */
	addr >>= 6;
	addr /= sck_xch;
#if 0
	/* Divide by channel way */
	addr = addr / ch_way;
#endif
	/* Recover the last 6 bits */
	ch_addr |= addr << 6;

	/*
	 * Step 3) Decode rank
	 */
	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
		pci_read_config_dword(pvt->pci_tad[base_ch],
				      rir_way_limit[n_rir],
				      &reg);

		if (!IS_RIR_VALID(reg))
			continue;

		limit = RIR_LIMIT(reg);

		debugf0("RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d\n",
			n_rir,
			(limit >> 20) / 1000, (limit >> 20) % 1000,
			limit,
			1 << RIR_WAY(reg));
		if  (ch_addr <= limit)
			break;
	}
	if (n_rir == MAX_RIR_RANGES) {
		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
			ch_addr);
		edac_mc_handle_ce_no_info(mci, msg);
		return -EINVAL;
	}
	rir_way = RIR_WAY(reg);
	if (pvt->is_close_pg)
		idx = (ch_addr >> 6);
	else
		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
	idx %= 1 << rir_way;

	pci_read_config_dword(pvt->pci_tad[base_ch],
			      rir_offset[n_rir][idx],
			      &reg);
	*rank = RIR_RNK_TGT(reg);

	debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
		n_rir,
		ch_addr,
		limit,
		rir_way,
		idx);

	return 0;
}

/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	sbridge_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
	int i;

	debugf0(__FILE__ ": %s()\n", __func__);
	for (i = 0; i < sbridge_dev->n_devs; i++) {
		struct pci_dev *pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
}

static void sbridge_put_all_devices(void)
{
	struct sbridge_dev *sbridge_dev, *tmp;

	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
		sbridge_put_devices(sbridge_dev);
		free_sbridge_dev(sbridge_dev);
	}
}

/*
 *	sbridge_get_all_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
static int sbridge_get_onedevice(struct pci_dev **prev,
				 u8 *num_mc,
				 const struct pci_id_table *table,
				 const unsigned devno)
{
	struct sbridge_dev *sbridge_dev;
	const struct pci_id_descr *dev_descr = &table->descr[devno];

	struct pci_dev *pdev = NULL;
	u8 bus = 0;

	sbridge_printk(KERN_INFO,
		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
		dev_descr->dev, dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

		if (devno == 0)
			return -ENODEV;

		sbridge_printk(KERN_INFO,
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;

	sbridge_dev = get_sbridge_dev(bus);
	if (!sbridge_dev) {
		sbridge_dev = alloc_sbridge_dev(bus, table);
		if (!sbridge_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		(*num_mc)++;
	}

	if (sbridge_dev->pdev[devno]) {
		sbridge_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%d.%d PCI ID %04x:%04x\n",
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

	sbridge_dev->pdev[devno] = pdev;

	/* Sanity check */
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
		sbridge_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			bus, dev_descr->dev, dev_descr->func);
		return -ENODEV;
	}

	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		sbridge_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%d.%d PCI ID %04x:%04x\n",
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

	debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
		bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

static int sbridge_get_all_devices(u8 *num_mc)
{
	int i, rc;
	struct pci_dev *pdev = NULL;
	const struct pci_id_table *table = pci_dev_descr_sbridge_table;

	while (table && table->descr) {
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
				rc = sbridge_get_onedevice(&pdev, num_mc,
							   table, i);
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					sbridge_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
		table++;
	}

	return 0;
}

static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	int i, func, slot;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
		slot = PCI_SLOT(pdev->devfn);
		func = PCI_FUNC(pdev->devfn);
		switch (slot) {
		case 12:
			switch (func) {
			case 6:
				pvt->pci_sad0 = pdev;
				break;
			case 7:
				pvt->pci_sad1 = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 13:
			switch (func) {
			case 6:
				pvt->pci_br = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 14:
			switch (func) {
			case 0:
				pvt->pci_ha0 = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 15:
			switch (func) {
			case 0:
				pvt->pci_ta = pdev;
				break;
			case 1:
				pvt->pci_ras = pdev;
				break;
			case 2:
			case 3:
			case 4:
			case 5:
				pvt->pci_tad[func - 2] = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 17:
			switch (func) {
			case 0:
				pvt->pci_ddrio = pdev;
				break;
			default:
				goto error;
			}
			break;
		default:
			goto error;
		}

		debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
			sbridge_dev->bus,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta ||
	    !pvt->pci_ddrio)
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
}

/****************************************************************************
			Error check routines
 ****************************************************************************/

/*
 * While Sandy Bridge has error count registers, SMI BIOS read values from
 * and resets the counters. So, they are not reliable for the OS to read
 * from them. So, we have no option but to just trust on whatever MCE is
 * telling us about the errors.
 */
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
	char *type, *optype, *msg, *recoverable_msg;
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
	bool recoverable = GET_BITFIELD(m->status, 56, 56);
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 channel = GET_BITFIELD(m->status, 0, 3);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	long channel_mask, first_channel;
	u8  rank, socket;
	int csrow, rc, dimm;
	char *area_type = "Unknown";

	if (ripv)
		type = "NON_FATAL";
	else
		type = "FATAL";

	/*
	 * According with Table 15-9 of the Intel Archictecture spec vol 3A,
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (! ((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
			optype = "generic undef request";
			break;
		case 1:
			optype = "memory read";
			break;
		case 2:
			optype = "memory write";
			break;
		case 3:
			optype = "addr/cmd";
			break;
		case 4:
			optype = "memory scrubbing";
			break;
		default:
			optype = "reserved";
			break;
		}
	}

	rc = get_memory_error_data(mci, m->addr, &socket,
				   &channel_mask, &rank, area_type);
	if (rc < 0)
		return;
	new_mci = get_mci_for_node_id(socket);
	if (!new_mci) {
		edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!");
		return;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);

	if (rank < 4)
		dimm = 0;
	else if (rank < 8)
		dimm = 1;
	else
		dimm = 2;

	csrow = pvt->csrow_map[first_channel][dimm];

	if (uncorrected_error && recoverable)
		recoverable_msg = " recoverable";
	else
		recoverable_msg = "";

	/*
	 * FIXME: What should we do with "channel" information on mcelog?
	 * Probably, we can just discard it, as the channel information
	 * comes from the get_memory_error_data() address decoding
	 */
	msg = kasprintf(GFP_ATOMIC,
			"%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), "
			"addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n",
			core_err_cnt,
			area_type,
			optype,
			type,
			recoverable_msg,
			overflow ? "OVERFLOW" : "",
			m->cpu,
			mscod, errcode,
			channel,		/* 1111b means not specified */
			(long long) m->addr,
			socket,
			first_channel,		/* This is the real channel on SB */
			channel_mask,
			rank);

	debugf0("%s", msg);

	/* Call the helper to output message */
	if (uncorrected_error)
		edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg);
	else
		edac_mc_handle_fbd_ce(mci, csrow, 0, msg);

	kfree(msg);
}

/*
 *	sbridge_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void sbridge_check_error(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
	struct mce *m;

	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
	if (!count)
		return;

	m = pvt->mce_outentry;
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;

		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}

	/*
	 * MCE second step: parse errors and display
	 */
	for (i = 0; i < count; i++)
		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
}

/*
 * sbridge_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by sbridge_check_error.
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
 */
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
				   void *data)
{
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	struct sbridge_pvt *pvt;

	mci = get_mci_for_node_id(mce->socketid);
	if (!mci)
		return NOTIFY_BAD;
	pvt = mci->pvt_info;

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
		return NOTIFY_DONE;

	printk("sbridge: HANDLING MCE MEMORY ERROR\n");

	printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
	       mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
	printk("TSC %llx ", mce->tsc);
	printk("ADDR %llx ", mce->addr);
	printk("MISC %llx ", mce->misc);

	printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
		mce->cpuvendor, mce->cpuid, mce->time,
		mce->socketid, mce->apicid);

	/* Only handle if it is the right mc controller */
	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
		return NOTIFY_DONE;

	smp_rmb();
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
		smp_wmb();
		pvt->mce_overrun++;
		return NOTIFY_DONE;
	}

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
	smp_wmb();
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;

	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		sbridge_check_error(mci);

	/* Advice mcelog that the error were handled */
	return NOTIFY_STOP;
}

static struct notifier_block sbridge_mce_dec = {
	.notifier_call      = sbridge_mce_check_error,
};

/****************************************************************************
			EDAC register/unregister logic
 ****************************************************************************/

static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci = sbridge_dev->mci;
	struct sbridge_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &sbridge_dev->pdev[0]->dev);

		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &sbridge_dev->pdev[0]->dev);

	mce_unregister_decode_chain(&sbridge_mce_dec);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
}

static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci;
	struct sbridge_pvt *pvt;
	int rc, channels, csrows;

	/* Check the number of active and not disabled channels */
	rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows);
	if (unlikely(rc < 0))
		return rc;

	/* allocate a new MC control structure */
	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc);
	if (unlikely(!mci))
		return -ENOMEM;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &sbridge_dev->pdev[0]->dev);

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associate sbridge_dev and mci for future usage */
	pvt->sbridge_dev = sbridge_dev;
	sbridge_dev->mci = mci;

	mci->mtype_cap = MEM_FLAG_DDR3;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "sbridge_edac.c";
	mci->mod_ver = SBRIDGE_REVISION;
	mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
	mci->dev_name = pci_name(sbridge_dev->pdev[0]);
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = sbridge_check_error;

	/* Store pci devices at mci for faster access */
	rc = mci_bind_devs(mci, sbridge_dev);
	if (unlikely(rc < 0))
		goto fail0;

	/* Get dimm basic config and the memory layout */
	get_dimm_config(mci);
	get_memory_layout(mci);

	/* record ptr to the generic device */
	mci->dev = &sbridge_dev->pdev[0]->dev;

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		rc = -EINVAL;
		goto fail0;
	}

	mce_register_decode_chain(&sbridge_mce_dec);
	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
	return rc;
}

/*
 *	sbridge_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

static int __devinit sbridge_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int rc;
	u8 mc, num_mc = 0;
	struct sbridge_dev *sbridge_dev;

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&sbridge_edac_lock);

	/*
	 * All memory controllers are allocated at the first pass.
	 */
	if (unlikely(probed >= 1)) {
		mutex_unlock(&sbridge_edac_lock);
		return -ENODEV;
	}
	probed++;

	rc = sbridge_get_all_devices(&num_mc);
	if (unlikely(rc < 0))
		goto fail0;
	mc = 0;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc);
		sbridge_dev->mc = mc++;
		rc = sbridge_register_mci(sbridge_dev);
		if (unlikely(rc < 0))
			goto fail1;
	}

	sbridge_printk(KERN_INFO, "Driver loaded.\n");

	mutex_unlock(&sbridge_edac_lock);
	return 0;

fail1:
	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	sbridge_put_all_devices();
fail0:
	mutex_unlock(&sbridge_edac_lock);
	return rc;
}

/*
 *	sbridge_remove	destructor for one instance of device
 *
 */
static void __devexit sbridge_remove(struct pci_dev *pdev)
{
	struct sbridge_dev *sbridge_dev;

	debugf0(__FILE__ ": %s()\n", __func__);

	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */

	mutex_lock(&sbridge_edac_lock);

	if (unlikely(!probed)) {
		mutex_unlock(&sbridge_edac_lock);
		return;
	}

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	/* Release PCI resources */
	sbridge_put_all_devices();

	probed--;

	mutex_unlock(&sbridge_edac_lock);
}

MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);

/*
 *	sbridge_driver	pci_driver structure for this module
 *
 */
static struct pci_driver sbridge_driver = {
	.name     = "sbridge_edac",
	.probe    = sbridge_probe,
	.remove   = __devexit_p(sbridge_remove),
	.id_table = sbridge_pci_tbl,
};

/*
 *	sbridge_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init sbridge_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	pci_rc = pci_register_driver(&sbridge_driver);

	if (pci_rc >= 0)
		return 0;

	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
}

/*
 *	sbridge_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit sbridge_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&sbridge_driver);
}

module_init(sbridge_init);
module_exit(sbridge_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
		   SBRIDGE_REVISION);