1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
/*
* Fence mechanism for dma-buf and to allow for asynchronous dma access
*
* Copyright (C) 2012 Canonical Ltd
* Copyright (C) 2012 Texas Instruments
*
* Authors:
* Rob Clark <robdclark@gmail.com>
* Maarten Lankhorst <maarten.lankhorst@canonical.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/atomic.h>
#include <linux/fence.h>
#define CREATE_TRACE_POINTS
#include <trace/events/fence.h>
EXPORT_TRACEPOINT_SYMBOL(fence_annotate_wait_on);
EXPORT_TRACEPOINT_SYMBOL(fence_emit);
/**
* fence context counter: each execution context should have its own
* fence context, this allows checking if fences belong to the same
* context or not. One device can have multiple separate contexts,
* and they're used if some engine can run independently of another.
*/
static atomic_t fence_context_counter = ATOMIC_INIT(0);
/**
* fence_context_alloc - allocate an array of fence contexts
* @num: [in] amount of contexts to allocate
*
* This function will return the first index of the number of fences allocated.
* The fence context is used for setting fence->context to a unique number.
*/
unsigned fence_context_alloc(unsigned num)
{
BUG_ON(!num);
return atomic_add_return(num, &fence_context_counter) - num;
}
EXPORT_SYMBOL(fence_context_alloc);
/**
* fence_signal_locked - signal completion of a fence
* @fence: the fence to signal
*
* Signal completion for software callbacks on a fence, this will unblock
* fence_wait() calls and run all the callbacks added with
* fence_add_callback(). Can be called multiple times, but since a fence
* can only go from unsignaled to signaled state, it will only be effective
* the first time.
*
* Unlike fence_signal, this function must be called with fence->lock held.
*/
int fence_signal_locked(struct fence *fence)
{
struct fence_cb *cur, *tmp;
int ret = 0;
if (WARN_ON(!fence))
return -EINVAL;
if (!ktime_to_ns(fence->timestamp)) {
fence->timestamp = ktime_get();
smp_mb__before_atomic();
}
if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
ret = -EINVAL;
/*
* we might have raced with the unlocked fence_signal,
* still run through all callbacks
*/
} else
trace_fence_signaled(fence);
list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
list_del_init(&cur->node);
cur->func(fence, cur);
}
return ret;
}
EXPORT_SYMBOL(fence_signal_locked);
/**
* fence_signal - signal completion of a fence
* @fence: the fence to signal
*
* Signal completion for software callbacks on a fence, this will unblock
* fence_wait() calls and run all the callbacks added with
* fence_add_callback(). Can be called multiple times, but since a fence
* can only go from unsignaled to signaled state, it will only be effective
* the first time.
*/
int fence_signal(struct fence *fence)
{
unsigned long flags;
if (!fence)
return -EINVAL;
if (!ktime_to_ns(fence->timestamp)) {
fence->timestamp = ktime_get();
smp_mb__before_atomic();
}
if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
return -EINVAL;
trace_fence_signaled(fence);
if (test_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
struct fence_cb *cur, *tmp;
spin_lock_irqsave(fence->lock, flags);
list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
list_del_init(&cur->node);
cur->func(fence, cur);
}
spin_unlock_irqrestore(fence->lock, flags);
}
return 0;
}
EXPORT_SYMBOL(fence_signal);
/**
* fence_wait_timeout - sleep until the fence gets signaled
* or until timeout elapses
* @fence: [in] the fence to wait on
* @intr: [in] if true, do an interruptible wait
* @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
*
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
* remaining timeout in jiffies on success. Other error values may be
* returned on custom implementations.
*
* Performs a synchronous wait on this fence. It is assumed the caller
* directly or indirectly (buf-mgr between reservation and committing)
* holds a reference to the fence, otherwise the fence might be
* freed before return, resulting in undefined behavior.
*/
signed long
fence_wait_timeout(struct fence *fence, bool intr, signed long timeout)
{
signed long ret;
if (WARN_ON(timeout < 0))
return -EINVAL;
trace_fence_wait_start(fence);
ret = fence->ops->wait(fence, intr, timeout);
trace_fence_wait_end(fence);
return ret;
}
EXPORT_SYMBOL(fence_wait_timeout);
void fence_release(struct kref *kref)
{
struct fence *fence =
container_of(kref, struct fence, refcount);
trace_fence_destroy(fence);
BUG_ON(!list_empty(&fence->cb_list));
if (fence->ops->release)
fence->ops->release(fence);
else
fence_free(fence);
}
EXPORT_SYMBOL(fence_release);
void fence_free(struct fence *fence)
{
kfree(fence);
}
EXPORT_SYMBOL(fence_free);
/**
* fence_enable_sw_signaling - enable signaling on fence
* @fence: [in] the fence to enable
*
* this will request for sw signaling to be enabled, to make the fence
* complete as soon as possible
*/
void fence_enable_sw_signaling(struct fence *fence)
{
unsigned long flags;
if (!test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags) &&
!test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
trace_fence_enable_signal(fence);
spin_lock_irqsave(fence->lock, flags);
if (!fence->ops->enable_signaling(fence))
fence_signal_locked(fence);
spin_unlock_irqrestore(fence->lock, flags);
}
}
EXPORT_SYMBOL(fence_enable_sw_signaling);
/**
* fence_add_callback - add a callback to be called when the fence
* is signaled
* @fence: [in] the fence to wait on
* @cb: [in] the callback to register
* @func: [in] the function to call
*
* cb will be initialized by fence_add_callback, no initialization
* by the caller is required. Any number of callbacks can be registered
* to a fence, but a callback can only be registered to one fence at a time.
*
* Note that the callback can be called from an atomic context. If
* fence is already signaled, this function will return -ENOENT (and
* *not* call the callback)
*
* Add a software callback to the fence. Same restrictions apply to
* refcount as it does to fence_wait, however the caller doesn't need to
* keep a refcount to fence afterwards: when software access is enabled,
* the creator of the fence is required to keep the fence alive until
* after it signals with fence_signal. The callback itself can be called
* from irq context.
*
*/
int fence_add_callback(struct fence *fence, struct fence_cb *cb,
fence_func_t func)
{
unsigned long flags;
int ret = 0;
bool was_set;
if (WARN_ON(!fence || !func))
return -EINVAL;
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
INIT_LIST_HEAD(&cb->node);
return -ENOENT;
}
spin_lock_irqsave(fence->lock, flags);
was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
ret = -ENOENT;
else if (!was_set) {
trace_fence_enable_signal(fence);
if (!fence->ops->enable_signaling(fence)) {
fence_signal_locked(fence);
ret = -ENOENT;
}
}
if (!ret) {
cb->func = func;
list_add_tail(&cb->node, &fence->cb_list);
} else
INIT_LIST_HEAD(&cb->node);
spin_unlock_irqrestore(fence->lock, flags);
return ret;
}
EXPORT_SYMBOL(fence_add_callback);
/**
* fence_remove_callback - remove a callback from the signaling list
* @fence: [in] the fence to wait on
* @cb: [in] the callback to remove
*
* Remove a previously queued callback from the fence. This function returns
* true if the callback is succesfully removed, or false if the fence has
* already been signaled.
*
* *WARNING*:
* Cancelling a callback should only be done if you really know what you're
* doing, since deadlocks and race conditions could occur all too easily. For
* this reason, it should only ever be done on hardware lockup recovery,
* with a reference held to the fence.
*/
bool
fence_remove_callback(struct fence *fence, struct fence_cb *cb)
{
unsigned long flags;
bool ret;
spin_lock_irqsave(fence->lock, flags);
ret = !list_empty(&cb->node);
if (ret)
list_del_init(&cb->node);
spin_unlock_irqrestore(fence->lock, flags);
return ret;
}
EXPORT_SYMBOL(fence_remove_callback);
struct default_wait_cb {
struct fence_cb base;
struct task_struct *task;
};
static void
fence_default_wait_cb(struct fence *fence, struct fence_cb *cb)
{
struct default_wait_cb *wait =
container_of(cb, struct default_wait_cb, base);
wake_up_state(wait->task, TASK_NORMAL);
}
/**
* fence_default_wait - default sleep until the fence gets signaled
* or until timeout elapses
* @fence: [in] the fence to wait on
* @intr: [in] if true, do an interruptible wait
* @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
*
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
* remaining timeout in jiffies on success.
*/
signed long
fence_default_wait(struct fence *fence, bool intr, signed long timeout)
{
struct default_wait_cb cb;
unsigned long flags;
signed long ret = timeout;
bool was_set;
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
return timeout;
spin_lock_irqsave(fence->lock, flags);
if (intr && signal_pending(current)) {
ret = -ERESTARTSYS;
goto out;
}
was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
goto out;
if (!was_set) {
trace_fence_enable_signal(fence);
if (!fence->ops->enable_signaling(fence)) {
fence_signal_locked(fence);
goto out;
}
}
cb.base.func = fence_default_wait_cb;
cb.task = current;
list_add(&cb.base.node, &fence->cb_list);
while (!test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
if (intr)
__set_current_state(TASK_INTERRUPTIBLE);
else
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irqrestore(fence->lock, flags);
ret = schedule_timeout(ret);
spin_lock_irqsave(fence->lock, flags);
if (ret > 0 && intr && signal_pending(current))
ret = -ERESTARTSYS;
}
if (!list_empty(&cb.base.node))
list_del(&cb.base.node);
__set_current_state(TASK_RUNNING);
out:
spin_unlock_irqrestore(fence->lock, flags);
return ret;
}
EXPORT_SYMBOL(fence_default_wait);
/**
* fence_init - Initialize a custom fence.
* @fence: [in] the fence to initialize
* @ops: [in] the fence_ops for operations on this fence
* @lock: [in] the irqsafe spinlock to use for locking this fence
* @context: [in] the execution context this fence is run on
* @seqno: [in] a linear increasing sequence number for this context
*
* Initializes an allocated fence, the caller doesn't have to keep its
* refcount after committing with this fence, but it will need to hold a
* refcount again if fence_ops.enable_signaling gets called. This can
* be used for other implementing other types of fence.
*
* context and seqno are used for easy comparison between fences, allowing
* to check which fence is later by simply using fence_later.
*/
void
fence_init(struct fence *fence, const struct fence_ops *ops,
spinlock_t *lock, unsigned context, unsigned seqno)
{
BUG_ON(!lock);
BUG_ON(!ops || !ops->wait || !ops->enable_signaling ||
!ops->get_driver_name || !ops->get_timeline_name);
kref_init(&fence->refcount);
fence->ops = ops;
INIT_LIST_HEAD(&fence->cb_list);
fence->lock = lock;
fence->context = context;
fence->seqno = seqno;
fence->flags = 0UL;
trace_fence_init(fence);
}
EXPORT_SYMBOL(fence_init);
|