/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_da_btree.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_alloc.h" #include "xfs_btree.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_inode_item.h" #include "xfs_bmap.h" #include "xfs_attr.h" #include "xfs_attr_leaf.h" #include "xfs_error.h" #include "xfs_trace.h" /* * xfs_attr_leaf.c * * Routines to implement leaf blocks of attributes as Btrees of hashed names. */ /*======================================================================== * Function prototypes for the kernel. *========================================================================*/ /* * Routines used for growing the Btree. */ STATIC int xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t which_block, xfs_dabuf_t **bpp); STATIC int xfs_attr_leaf_add_work(xfs_dabuf_t *leaf_buffer, xfs_da_args_t *args, int freemap_index); STATIC void xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *leaf_buffer); STATIC void xfs_attr_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1, xfs_da_state_blk_t *blk2); STATIC int xfs_attr_leaf_figure_balance(xfs_da_state_t *state, xfs_da_state_blk_t *leaf_blk_1, xfs_da_state_blk_t *leaf_blk_2, int *number_entries_in_blk1, int *number_usedbytes_in_blk1); /* * Routines used for shrinking the Btree. */ STATIC int xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp, int level); STATIC int xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp); STATIC int xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dablk_t blkno, int blkcnt); /* * Utility routines. */ STATIC void xfs_attr_leaf_moveents(xfs_attr_leafblock_t *src_leaf, int src_start, xfs_attr_leafblock_t *dst_leaf, int dst_start, int move_count, xfs_mount_t *mp); STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); /*======================================================================== * Namespace helper routines *========================================================================*/ /* * If namespace bits don't match return 0. * If all match then return 1. */ STATIC int xfs_attr_namesp_match(int arg_flags, int ondisk_flags) { return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags); } /*======================================================================== * External routines when attribute fork size < XFS_LITINO(mp). *========================================================================*/ /* * Query whether the requested number of additional bytes of extended * attribute space will be able to fit inline. * Returns zero if not, else the di_forkoff fork offset to be used in the * literal area for attribute data once the new bytes have been added. * * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value; * special case for dev/uuid inodes, they have fixed size data forks. */ int xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes) { int offset; int minforkoff; /* lower limit on valid forkoff locations */ int maxforkoff; /* upper limit on valid forkoff locations */ int dsize; xfs_mount_t *mp = dp->i_mount; offset = (XFS_LITINO(mp) - bytes) >> 3; /* rounded down */ switch (dp->i_d.di_format) { case XFS_DINODE_FMT_DEV: minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; return (offset >= minforkoff) ? minforkoff : 0; case XFS_DINODE_FMT_UUID: minforkoff = roundup(sizeof(uuid_t), 8) >> 3; return (offset >= minforkoff) ? minforkoff : 0; } if (!(mp->m_flags & XFS_MOUNT_ATTR2)) { if (bytes <= XFS_IFORK_ASIZE(dp)) return dp->i_d.di_forkoff; return 0; } dsize = dp->i_df.if_bytes; switch (dp->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: /* * If there is no attr fork and the data fork is extents, * determine if creating the default attr fork will result * in the extents form migrating to btree. If so, the * minimum offset only needs to be the space required for * the btree root. */ if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > xfs_default_attroffset(dp)) dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); break; case XFS_DINODE_FMT_BTREE: /* * If have data btree then keep forkoff if we have one, * otherwise we are adding a new attr, so then we set * minforkoff to where the btree root can finish so we have * plenty of room for attrs */ if (dp->i_d.di_forkoff) { if (offset < dp->i_d.di_forkoff) return 0; else return dp->i_d.di_forkoff; } else dsize = XFS_BMAP_BROOT_SPACE(dp->i_df.if_broot); break; } /* * A data fork btree root must have space for at least * MINDBTPTRS key/ptr pairs if the data fork is small or empty. */ minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); minforkoff = roundup(minforkoff, 8) >> 3; /* attr fork btree root can have at least this many key/ptr pairs */ maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); maxforkoff = maxforkoff >> 3; /* rounded down */ if (offset >= minforkoff && offset < maxforkoff) return offset; if (offset >= maxforkoff) return maxforkoff; return 0; } /* * Switch on the ATTR2 superblock bit (implies also FEATURES2) */ STATIC void xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp) { if ((mp->m_flags & XFS_MOUNT_ATTR2) && !(xfs_sb_version_hasattr2(&mp->m_sb))) { spin_lock(&mp->m_sb_lock); if (!xfs_sb_version_hasattr2(&mp->m_sb)) { xfs_sb_version_addattr2(&mp->m_sb); spin_unlock(&mp->m_sb_lock); xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2); } else spin_unlock(&mp->m_sb_lock); } } /* * Create the initial contents of a shortform attribute list. */ void xfs_attr_shortform_create(xfs_da_args_t *args) { xfs_attr_sf_hdr_t *hdr; xfs_inode_t *dp; xfs_ifork_t *ifp; dp = args->dp; ASSERT(dp != NULL); ifp = dp->i_afp; ASSERT(ifp != NULL); ASSERT(ifp->if_bytes == 0); if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) { ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */ dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL; ifp->if_flags |= XFS_IFINLINE; } else { ASSERT(ifp->if_flags & XFS_IFINLINE); } xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data; hdr->count = 0; hdr->totsize = cpu_to_be16(sizeof(*hdr)); xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); } /* * Add a name/value pair to the shortform attribute list. * Overflow from the inode has already been checked for. */ void xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff) { xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; int i, offset, size; xfs_mount_t *mp; xfs_inode_t *dp; xfs_ifork_t *ifp; dp = args->dp; mp = dp->i_mount; dp->i_d.di_forkoff = forkoff; dp->i_df.if_ext_max = XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t); dp->i_afp->if_ext_max = XFS_IFORK_ASIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t); ifp = dp->i_afp; ASSERT(ifp->if_flags & XFS_IFINLINE); sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; sfe = &sf->list[0]; for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { #ifdef DEBUG if (sfe->namelen != args->namelen) continue; if (memcmp(args->name, sfe->nameval, args->namelen) != 0) continue; if (!xfs_attr_namesp_match(args->flags, sfe->flags)) continue; ASSERT(0); #endif } offset = (char *)sfe - (char *)sf; size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); xfs_idata_realloc(dp, size, XFS_ATTR_FORK); sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset); sfe->namelen = args->namelen; sfe->valuelen = args->valuelen; sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags); memcpy(sfe->nameval, args->name, args->namelen); memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); sf->hdr.count++; be16_add_cpu(&sf->hdr.totsize, size); xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); xfs_sbversion_add_attr2(mp, args->trans); } /* * After the last attribute is removed revert to original inode format, * making all literal area available to the data fork once more. */ STATIC void xfs_attr_fork_reset( struct xfs_inode *ip, struct xfs_trans *tp) { xfs_idestroy_fork(ip, XFS_ATTR_FORK); ip->i_d.di_forkoff = 0; ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; ASSERT(ip->i_d.di_anextents == 0); ASSERT(ip->i_afp == NULL); ip->i_df.if_ext_max = XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); } /* * Remove an attribute from the shortform attribute list structure. */ int xfs_attr_shortform_remove(xfs_da_args_t *args) { xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; int base, size=0, end, totsize, i; xfs_mount_t *mp; xfs_inode_t *dp; dp = args->dp; mp = dp->i_mount; base = sizeof(xfs_attr_sf_hdr_t); sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; sfe = &sf->list[0]; end = sf->hdr.count; for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), base += size, i++) { size = XFS_ATTR_SF_ENTSIZE(sfe); if (sfe->namelen != args->namelen) continue; if (memcmp(sfe->nameval, args->name, args->namelen) != 0) continue; if (!xfs_attr_namesp_match(args->flags, sfe->flags)) continue; break; } if (i == end) return(XFS_ERROR(ENOATTR)); /* * Fix up the attribute fork data, covering the hole */ end = base + size; totsize = be16_to_cpu(sf->hdr.totsize); if (end != totsize) memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); sf->hdr.count--; be16_add_cpu(&sf->hdr.totsize, -size); /* * Fix up the start offset of the attribute fork */ totsize -= size; if (totsize == sizeof(xfs_attr_sf_hdr_t) && (mp->m_flags & XFS_MOUNT_ATTR2) && (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && !(args->op_flags & XFS_DA_OP_ADDNAME)) { xfs_attr_fork_reset(dp, args->trans); } else { xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); ASSERT(dp->i_d.di_forkoff); ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || (args->op_flags & XFS_DA_OP_ADDNAME) || !(mp->m_flags & XFS_MOUNT_ATTR2) || dp->i_d.di_format == XFS_DINODE_FMT_BTREE); dp->i_afp->if_ext_max = XFS_IFORK_ASIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t); dp->i_df.if_ext_max = XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t); xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); } xfs_sbversion_add_attr2(mp, args->trans); return(0); } /* * Look up a name in a shortform attribute list structure. */ /*ARGSUSED*/ int xfs_attr_shortform_lookup(xfs_da_args_t *args) { xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; int i; xfs_ifork_t *ifp; ifp = args->dp->i_afp; ASSERT(ifp->if_flags & XFS_IFINLINE); sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; sfe = &sf->list[0]; for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { if (sfe->namelen != args->namelen) continue; if (memcmp(args->name, sfe->nameval, args->namelen) != 0) continue; if (!xfs_attr_namesp_match(args->flags, sfe->flags)) continue; return(XFS_ERROR(EEXIST)); } return(XFS_ERROR(ENOATTR)); } /* * Look up a name in a shortform attribute list structure. */ /*ARGSUSED*/ int xfs_attr_shortform_getvalue(xfs_da_args_t *args) { xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; int i; ASSERT(args->dp->i_d.di_aformat == XFS_IFINLINE); sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data; sfe = &sf->list[0]; for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { if (sfe->namelen != args->namelen) continue; if (memcmp(args->name, sfe->nameval, args->namelen) != 0) continue; if (!xfs_attr_namesp_match(args->flags, sfe->flags)) continue; if (args->flags & ATTR_KERNOVAL) { args->valuelen = sfe->valuelen; return(XFS_ERROR(EEXIST)); } if (args->valuelen < sfe->valuelen) { args->valuelen = sfe->valuelen; return(XFS_ERROR(ERANGE)); } args->valuelen = sfe->valuelen; memcpy(args->value, &sfe->nameval[args->namelen], args->valuelen); return(XFS_ERROR(EEXIST)); } return(XFS_ERROR(ENOATTR)); } /* * Convert from using the shortform to the leaf. */ int xfs_attr_shortform_to_leaf(xfs_da_args_t *args) { xfs_inode_t *dp; xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; xfs_da_args_t nargs; char *tmpbuffer; int error, i, size; xfs_dablk_t blkno; xfs_dabuf_t *bp; xfs_ifork_t *ifp; dp = args->dp; ifp = dp->i_afp; sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; size = be16_to_cpu(sf->hdr.totsize); tmpbuffer = kmem_alloc(size, KM_SLEEP); ASSERT(tmpbuffer != NULL); memcpy(tmpbuffer, ifp->if_u1.if_data, size); sf = (xfs_attr_shortform_t *)tmpbuffer; xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); bp = NULL; error = xfs_da_grow_inode(args, &blkno); if (error) { /* * If we hit an IO error middle of the transaction inside * grow_inode(), we may have inconsistent data. Bail out. */ if (error == EIO) goto out; xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */ memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */ goto out; } ASSERT(blkno == 0); error = xfs_attr_leaf_create(args, blkno, &bp); if (error) { error = xfs_da_shrink_inode(args, 0, bp); bp = NULL; if (error) goto out; xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */ memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */ goto out; } memset((char *)&nargs, 0, sizeof(nargs)); nargs.dp = dp; nargs.firstblock = args->firstblock; nargs.flist = args->flist; nargs.total = args->total; nargs.whichfork = XFS_ATTR_FORK; nargs.trans = args->trans; nargs.op_flags = XFS_DA_OP_OKNOENT; sfe = &sf->list[0]; for (i = 0; i < sf->hdr.count; i++) { nargs.name = sfe->nameval; nargs.namelen = sfe->namelen; nargs.value = &sfe->nameval[nargs.namelen]; nargs.valuelen = sfe->valuelen; nargs.hashval = xfs_da_hashname(sfe->nameval, sfe->namelen); nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags); error = xfs_attr_leaf_lookup_int(bp, &nargs); /* set a->index */ ASSERT(error == ENOATTR); error = xfs_attr_leaf_add(bp, &nargs); ASSERT(error != ENOSPC); if (error) goto out; sfe = XFS_ATTR_SF_NEXTENTRY(sfe); } error = 0; out: if(bp) xfs_da_buf_done(bp); kmem_free(tmpbuffer); return(error); } STATIC int xfs_attr_shortform_compare(const void *a, const void *b) { xfs_attr_sf_sort_t *sa, *sb; sa = (xfs_attr_sf_sort_t *)a; sb = (xfs_attr_sf_sort_t *)b; if (sa->hash < sb->hash) { return(-1); } else if (sa->hash > sb->hash) { return(1); } else { return(sa->entno - sb->entno); } } #define XFS_ISRESET_CURSOR(cursor) \ (!((cursor)->initted) && !((cursor)->hashval) && \ !((cursor)->blkno) && !((cursor)->offset)) /* * Copy out entries of shortform attribute lists for attr_list(). * Shortform attribute lists are not stored in hashval sorted order. * If the output buffer is not large enough to hold them all, then we * we have to calculate each entries' hashvalue and sort them before * we can begin returning them to the user. */ /*ARGSUSED*/ int xfs_attr_shortform_list(xfs_attr_list_context_t *context) { attrlist_cursor_kern_t *cursor; xfs_attr_sf_sort_t *sbuf, *sbp; xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; xfs_inode_t *dp; int sbsize, nsbuf, count, i; int error; ASSERT(context != NULL); dp = context->dp; ASSERT(dp != NULL); ASSERT(dp->i_afp != NULL); sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; ASSERT(sf != NULL); if (!sf->hdr.count) return(0); cursor = context->cursor; ASSERT(cursor != NULL); trace_xfs_attr_list_sf(context); /* * If the buffer is large enough and the cursor is at the start, * do not bother with sorting since we will return everything in * one buffer and another call using the cursor won't need to be * made. * Note the generous fudge factor of 16 overhead bytes per entry. * If bufsize is zero then put_listent must be a search function * and can just scan through what we have. */ if (context->bufsize == 0 || (XFS_ISRESET_CURSOR(cursor) && (dp->i_afp->if_bytes + sf->hdr.count * 16) < context->bufsize)) { for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) { error = context->put_listent(context, sfe->flags, sfe->nameval, (int)sfe->namelen, (int)sfe->valuelen, &sfe->nameval[sfe->namelen]); /* * Either search callback finished early or * didn't fit it all in the buffer after all. */ if (context->seen_enough) break; if (error) return error; sfe = XFS_ATTR_SF_NEXTENTRY(sfe); } trace_xfs_attr_list_sf_all(context); return(0); } /* do no more for a search callback */ if (context->bufsize == 0) return 0; /* * It didn't all fit, so we have to sort everything on hashval. */ sbsize = sf->hdr.count * sizeof(*sbuf); sbp = sbuf = kmem_alloc(sbsize, KM_SLEEP | KM_NOFS); /* * Scan the attribute list for the rest of the entries, storing * the relevant info from only those that match into a buffer. */ nsbuf = 0; for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) { if (unlikely( ((char *)sfe < (char *)sf) || ((char *)sfe >= ((char *)sf + dp->i_afp->if_bytes)))) { XFS_CORRUPTION_ERROR("xfs_attr_shortform_list", XFS_ERRLEVEL_LOW, context->dp->i_mount, sfe); kmem_free(sbuf); return XFS_ERROR(EFSCORRUPTED); } sbp->entno = i; sbp->hash = xfs_da_hashname(sfe->nameval, sfe->namelen); sbp->name = sfe->nameval; sbp->namelen = sfe->namelen; /* These are bytes, and both on-disk, don't endian-flip */ sbp->valuelen = sfe->valuelen; sbp->flags = sfe->flags; sfe = XFS_ATTR_SF_NEXTENTRY(sfe); sbp++; nsbuf++; } /* * Sort the entries on hash then entno. */ xfs_sort(sbuf, nsbuf, sizeof(*sbuf), xfs_attr_shortform_compare); /* * Re-find our place IN THE SORTED LIST. */ count = 0; cursor->initted = 1; cursor->blkno = 0; for (sbp = sbuf, i = 0; i < nsbuf; i++, sbp++) { if (sbp->hash == cursor->hashval) { if (cursor->offset == count) { break; } count++; } else if (sbp->hash > cursor->hashval) { break; } } if (i == nsbuf) { kmem_free(sbuf); return(0); } /* * Loop putting entries into the user buffer. */ for ( ; i < nsbuf; i++, sbp++) { if (cursor->hashval != sbp->hash) { cursor->hashval = sbp->hash; cursor->offset = 0; } error = context->put_listent(context, sbp->flags, sbp->name, sbp->namelen, sbp->valuelen, &sbp->name[sbp->namelen]); if (error) return error; if (context->seen_enough) break; cursor->offset++; } kmem_free(sbuf); return(0); } /* * Check a leaf attribute block to see if all the entries would fit into * a shortform attribute list. */ int xfs_attr_shortform_allfit(xfs_dabuf_t *bp, xfs_inode_t *dp) { xfs_attr_leafblock_t *leaf; xfs_attr_leaf_entry_t *entry; xfs_attr_leaf_name_local_t *name_loc; int bytes, i; leaf = bp->data; ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); entry = &leaf->entries[0]; bytes = sizeof(struct xfs_attr_sf_hdr); for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { if (entry->flags & XFS_ATTR_INCOMPLETE) continue; /* don't copy partial entries */ if (!(entry->flags & XFS_ATTR_LOCAL)) return(0); name_loc = xfs_attr_leaf_name_local(leaf, i); if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) return(0); if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) return(0); bytes += sizeof(struct xfs_attr_sf_entry)-1 + name_loc->namelen + be16_to_cpu(name_loc->valuelen); } if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) && (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && (bytes == sizeof(struct xfs_attr_sf_hdr))) return(-1); return(xfs_attr_shortform_bytesfit(dp, bytes)); } /* * Convert a leaf attribute list to shortform attribute list */ int xfs_attr_leaf_to_shortform(xfs_dabuf_t *bp, xfs_da_args_t *args, int forkoff) { xfs_attr_leafblock_t *leaf; xfs_attr_leaf_entry_t *entry; xfs_attr_leaf_name_local_t *name_loc; xfs_da_args_t nargs; xfs_inode_t *dp; char *tmpbuffer; int error, i; dp = args->dp; tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP); ASSERT(tmpbuffer != NULL); ASSERT(bp != NULL); memcpy(tmpbuffer, bp->data, XFS_LBSIZE(dp->i_mount)); leaf = (xfs_attr_leafblock_t *)tmpbuffer; ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); memset(bp->data, 0, XFS_LBSIZE(dp->i_mount)); /* * Clean out the prior contents of the attribute list. */ error = xfs_da_shrink_inode(args, 0, bp); if (error) goto out; if (forkoff == -1) { ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2); ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE); xfs_attr_fork_reset(dp, args->trans); goto out; } xfs_attr_shortform_create(args); /* * Copy the attributes */ memset((char *)&nargs, 0, sizeof(nargs)); nargs.dp = dp; nargs.firstblock = args->firstblock; nargs.flist = args->flist; nargs.total = args->total; nargs.whichfork = XFS_ATTR_FORK; nargs.trans = args->trans; nargs.op_flags = XFS_DA_OP_OKNOENT; entry = &leaf->entries[0]; for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { if (entry->flags & XFS_ATTR_INCOMPLETE) continue; /* don't copy partial entries */ if (!entry->nameidx) continue; ASSERT(entry->flags & XFS_ATTR_LOCAL); name_loc = xfs_attr_leaf_name_local(leaf, i); nargs.name = name_loc->nameval; nargs.namelen = name_loc->namelen; nargs.value = &name_loc->nameval[nargs.namelen]; nargs.valuelen = be16_to_cpu(name_loc->valuelen); nargs.hashval = be32_to_cpu(entry->hashval); nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags); xfs_attr_shortform_add(&nargs, forkoff); } error = 0; out: kmem_free(tmpbuffer); return(error); } /* * Convert from using a single leaf to a root node and a leaf. */ int xfs_attr_leaf_to_node(xfs_da_args_t *args) { xfs_attr_leafblock_t *leaf; xfs_da_intnode_t *node; xfs_inode_t *dp; xfs_dabuf_t *bp1, *bp2; xfs_dablk_t blkno; int error; dp = args->dp; bp1 = bp2 = NULL; error = xfs_da_grow_inode(args, &blkno); if (error) goto out; error = xfs_da_read_buf(args->trans, args->dp, 0, -1, &bp1, XFS_ATTR_FORK); if (error) goto out; ASSERT(bp1 != NULL); bp2 = NULL; error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp2, XFS_ATTR_FORK); if (error) goto out; ASSERT(bp2 != NULL); memcpy(bp2->data, bp1->data, XFS_LBSIZE(dp->i_mount)); xfs_da_buf_done(bp1); bp1 = NULL; xfs_da_log_buf(args->trans, bp2, 0, XFS_LBSIZE(dp->i_mount) - 1); /* * Set up the new root node. */ error = xfs_da_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); if (error) goto out; node = bp1->data; leaf = bp2->data; ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); /* both on-disk, don't endian-flip twice */ node->btree[0].hashval = leaf->entries[be16_to_cpu(leaf->hdr.count)-1 ].hashval; node->btree[0].before = cpu_to_be32(blkno); node->hdr.count = cpu_to_be16(1); xfs_da_log_buf(args->trans, bp1, 0, XFS_LBSIZE(dp->i_mount) - 1); error = 0; out: if (bp1) xfs_da_buf_done(bp1); if (bp2) xfs_da_buf_done(bp2); return(error); } /*======================================================================== * Routines used for growing the Btree. *========================================================================*/ /* * Create the initial contents of a leaf attribute list * or a leaf in a node attribute list. */ STATIC int xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t blkno, xfs_dabuf_t **bpp) { xfs_attr_leafblock_t *leaf; xfs_attr_leaf_hdr_t *hdr; xfs_inode_t *dp; xfs_dabuf_t *bp; int error; dp = args->dp; ASSERT(dp != NULL); error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp, XFS_ATTR_FORK); if (error) return(error); ASSERT(bp != NULL); leaf = bp->data; memset((char *)leaf, 0, XFS_LBSIZE(dp->i_mount)); hdr = &leaf->hdr; hdr->info.magic = cpu_to_be16(XFS_ATTR_LEAF_MAGIC); hdr->firstused = cpu_to_be16(XFS_LBSIZE(dp->i_mount)); if (!hdr->firstused) { hdr->firstused = cpu_to_be16( XFS_LBSIZE(dp->i_mount) - XFS_ATTR_LEAF_NAME_ALIGN); } hdr->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t)); hdr->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr->firstused) - sizeof(xfs_attr_leaf_hdr_t)); xfs_da_log_buf(args->trans, bp, 0, XFS_LBSIZE(dp->i_mount) - 1); *bpp = bp; return(0); } /* * Split the leaf node, rebalance, then add the new entry. */ int xfs_attr_leaf_split(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk, xfs_da_state_blk_t *newblk) { xfs_dablk_t blkno; int error; /* * Allocate space for a new leaf node. */ ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); error = xfs_da_grow_inode(state->args, &blkno); if (error) return(error); error = xfs_attr_leaf_create(state->args, blkno, &newblk->bp); if (error) return(error); newblk->blkno = blkno; newblk->magic = XFS_ATTR_LEAF_MAGIC; /* * Rebalance the entries across the two leaves. * NOTE: rebalance() currently depends on the 2nd block being empty. */ xfs_attr_leaf_rebalance(state, oldblk, newblk); error = xfs_da_blk_link(state, oldblk, newblk); if (error) return(error); /* * Save info on "old" attribute for "atomic rename" ops, leaf_add() * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the * "new" attrs info. Will need the "old" info to remove it later. * * Insert the "new" entry in the correct block. */ if (state->inleaf) error = xfs_attr_leaf_add(oldblk->bp, state->args); else error = xfs_attr_leaf_add(newblk->bp, state->args); /* * Update last hashval in each block since we added the name. */ oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); return(error); } /* * Add a name to the leaf attribute list structure. */ int xfs_attr_leaf_add(xfs_dabuf_t *bp, xfs_da_args_t *args) { xfs_attr_leafblock_t *leaf; xfs_attr_leaf_hdr_t *hdr; xfs_attr_leaf_map_t *map; int tablesize, entsize, sum, tmp, i; leaf = bp->data; ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); ASSERT((args->index >= 0) && (args->index <= be16_to_cpu(leaf->hdr.count))); hdr = &leaf->hdr; entsize = xfs_attr_leaf_newentsize(args->namelen, args->valuelen, args->trans->t_mountp->m_sb.sb_blocksize, NULL); /* * Search through freemap for first-fit on new name length. * (may need to figure in size of entry struct too) */ tablesize = (be16_to_cpu(hdr->count) + 1) * sizeof(xfs_attr_leaf_entry_t) + sizeof(xfs_attr_leaf_hdr_t); map = &hdr->freemap[XFS_ATTR_LEAF_MAPSIZE-1]; for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE-1; i >= 0; map--, i--) { if (tablesize > be16_to_cpu(hdr->firstused)) { sum += be16_to_cpu(map->size); continue; } if (!map->size) continue; /* no space in this map */ tmp = entsize; if (be16_to_cpu(map->base) < be16_to_cpu(hdr->firstused)) tmp += sizeof(xfs_attr_leaf_entry_t); if (be16_to_cpu(map->size) >= tmp) { tmp = xfs_attr_leaf_add_work(bp, args, i); return(tmp); } sum += be16_to_cpu(map->size); } /* * If there are no holes in the address space of the block, * and we don't have enough freespace, then compaction will do us * no good and we should just give up. */ if (!hdr->holes && (sum < entsize)) return(XFS_ERROR(ENOSPC)); /* * Compact the entries to coalesce free space. * This may change the hdr->count via dropping INCOMPLETE entries. */ xfs_attr_leaf_compact(args->trans, bp); /* * After compaction, the block is guaranteed to have only one * free region, in freemap[0]. If it is not big enough, give up. */ if (be16_to_cpu(hdr->freemap[0].size) < (entsize + sizeof(xfs_attr_leaf_entry_t))) return(XFS_ERROR(ENOSPC)); return(xfs_attr_leaf_add_work(bp, args, 0)); } /* * Add a name to a leaf attribute list structure. */ STATIC int xfs_attr_leaf_add_work(xfs_dabuf_t *bp, xfs_da_args_t *args, int mapindex) { xfs_attr_leafblock_t *leaf; xfs_attr_leaf_hdr_t *hdr; xfs_attr_leaf_entry_t *entry; xfs_attr_leaf_name_local_t *name_loc; xfs_attr_leaf_name_remote_t *name_rmt; xfs_attr_leaf_map_t *map; xfs_mount_t *mp; int tmp, i; leaf = bp->data; ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); hdr = &leaf->hdr; ASSERT((mapindex >= 0) && (mapindex < XFS_ATTR_LEAF_MAPSIZE)); ASSERT((args->index >= 0) && (args->index <= be16_to_cpu(hdr->count))); /* * Force open some space in the entry array and fill it in. */ entry = &leaf->entries[args->index]; if (args->index < be16_to_cpu(hdr->count)) { tmp = be16_to_cpu(hdr->count) - args->index; tmp *= sizeof(xfs_attr_leaf_entry_t); memmove((char *)(entry+1), (char *)entry, tmp); xfs_da_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); } be16_add_cpu(&hdr->count, 1); /* * Allocate space for the new string (at the end of the run). */ map = &hdr->freemap[mapindex]; mp = args->trans->t_mountp; ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp)); ASSERT((be16_to_cpu(map->base) & 0x3) == 0); ASSERT(be16_to_cpu(map->size) >= xfs_attr_leaf_newentsize(args->namelen, args->valuelen, mp->m_sb.sb_blocksize, NULL)); ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp)); ASSERT((be16_to_cpu(map->size) & 0x3) == 0); be16_add_cpu(&map->size, -xfs_attr_leaf_newentsize(args->namelen, args->valuelen, mp->m_sb.sb_blocksize, &tmp)); entry->nameidx = cpu_to_be16(be16_to_cpu(map->base) + be16_to_cpu(map->size)); entry->hashval = cpu_to_be32(args->hashval); entry->flags = tmp ? XFS_ATTR_LOCAL : 0; entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags); if (args->op_flags & XFS_DA_OP_RENAME) { entry->flags |= XFS_ATTR_INCOMPLETE; if ((args->blkno2 == args->blkno) && (args->index2 <= args->index)) { args->index2++; } } xfs_da_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); ASSERT((args->index == 0) || (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); ASSERT((args->index == be16_to_cpu(hdr->count)-1) || (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); /* * Copy the attribute name and value into the new space. * * For "remote" attribute values, simply note that we need to * allocate space for the "remote" value. We can't actually * allocate the extents in this transaction, and we can't decide * which blocks they should be as we might allocate more blocks * as part of this transaction (a split operation for example). */ if (entry->flags & XFS_ATTR_LOCAL) { name_loc = xfs_attr_leaf_name_local(leaf, args->index); name_loc->namelen = args->namelen; name_loc->valuelen = cpu_to_be16(args->valuelen); memcpy((char *)name_loc->nameval, args->name, args->namelen); memcpy((char *)&name_loc->nameval[args->namelen], args->value, be16_to_cpu(name_loc->valuelen)); } else { name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); name_rmt->namelen = args->namelen; memcpy((char *)name_rmt->name, args->name, args->namelen); entry->flags |= XFS_ATTR_INCOMPLETE; /* just in case */ name_rmt->valuelen = 0; name_rmt->valueblk = 0; args->rmtblkno = 1; args->rmtblkcnt = XFS_B_TO_FSB(mp, args->valuelen); } xfs_da_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, xfs_attr_leaf_name(leaf, args->index), xfs_attr_leaf_entsize(leaf, args->index))); /* * Update the control info for this leaf node */ if (be16_to_cpu(entry->nameidx) < be16_to_cpu(hdr->firstused)) { /* both on-disk, don't endian-flip twice */ hdr->firstused = entry->nameidx; } ASSERT(be16_to_cpu(hdr->firstused) >= ((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr))); tmp = (be16_to_cpu(hdr->count)-1) * sizeof(xfs_attr_leaf_entry_t) + sizeof(xfs_attr_leaf_hdr_t); map = &hdr->freemap[0]; for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) { if (be16_to_cpu(map->base) == tmp) { be16_add_cpu(&map->base, sizeof(xfs_attr_leaf_entry_t)); be16_add_cpu(&map->size, -((int)sizeof(xfs_attr_leaf_entry_t))); } } be16_add_cpu(&hdr->usedbytes, xfs_attr_leaf_entsize(leaf, args->index)); xfs_da_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr))); return(0); } /* * Garbage collect a leaf attribute list block by copying it to a new buffer. */ STATIC void xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *bp) { xfs_attr_leafblock_t *leaf_s, *leaf_d; xfs_attr_leaf_hdr_t *hdr_s, *hdr_d; xfs_mount_t *mp; char *tmpbuffer; mp = trans->t_mountp; tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP); ASSERT(tmpbuffer != NULL); memcpy(tmpbuffer, bp->data, XFS_LBSIZE(mp)); memset(bp->data, 0, XFS_LBSIZE(mp)); /* * Copy basic information */ leaf_s = (xfs_attr_leafblock_t *)tmpbuffer; leaf_d = bp->data; hdr_s = &leaf_s->hdr; hdr_d = &leaf_d->hdr; hdr_d->info = hdr_s->info; /* struct copy */ hdr_d->firstused = cpu_to_be16(XFS_LBSIZE(mp)); /* handle truncation gracefully */ if (!hdr_d->firstused) { hdr_d->firstused = cpu_to_be16( XFS_LBSIZE(mp) - XFS_ATTR_LEAF_NAME_ALIGN); } hdr_d->usedbytes = 0; hdr_d->count = 0; hdr_d->holes = 0; hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t)); hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused) - sizeof(xfs_attr_leaf_hdr_t)); /* * Copy all entry's in the same (sorted) order, * but allocate name/value pairs packed and in sequence. */ xfs_attr_leaf_moveents(leaf_s, 0, leaf_d, 0, be16_to_cpu(hdr_s->count), mp); xfs_da_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1); kmem_free(tmpbuffer); } /* * Redistribute the attribute list entries between two leaf nodes, * taking into account the size of the new entry. * * NOTE: if new block is empty, then it will get the upper half of the * old block. At present, all (one) callers pass in an empty second block. * * This code adjusts the args->index/blkno and args->index2/blkno2 fields * to match what it is doing in splitting the attribute leaf block. Those * values are used in "atomic rename" operations on attributes. Note that * the "new" and "old" values can end up in different blocks. */ STATIC void xfs_attr_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1, xfs_da_state_blk_t *blk2) { xfs_da_args_t *args; xfs_da_state_blk_t *tmp_blk; xfs_attr_leafblock_t *leaf1, *leaf2; xfs_attr_leaf_hdr_t *hdr1, *hdr2; int count, totallen, max, space, swap; /* * Set up environment. */ ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); leaf1 = blk1->bp->data; leaf2 = blk2->bp->data; ASSERT(leaf1->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); ASSERT(leaf2->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); args = state->args; /* * Check ordering of blocks, reverse if it makes things simpler. * * NOTE: Given that all (current) callers pass in an empty * second block, this code should never set "swap". */ swap = 0; if (xfs_attr_leaf_order(blk1->bp, blk2->bp)) { tmp_blk = blk1; blk1 = blk2; blk2 = tmp_blk; leaf1 = blk1->bp->data; leaf2 = blk2->bp->data; swap = 1; } hdr1 = &leaf1->hdr; hdr2 = &leaf2->hdr; /* * Examine entries until we reduce the absolute difference in * byte usage between the two blocks to a minimum. Then get * the direction to copy and the number of elements to move. * * "inleaf" is true if the new entry should be inserted into blk1. * If "swap" is also true, then reverse the sense of "inleaf". */ state->inleaf = xfs_attr_leaf_figure_balance(state, blk1, blk2, &count, &totallen); if (swap) state->inleaf = !state->inleaf; /* * Move any entries required from leaf to leaf: */ if (count < be16_to_cpu(hdr1->count)) { /* * Figure the total bytes to be added to the destination leaf. */ /* number entries being moved */ count = be16_to_cpu(hdr1->count) - count; space = be16_to_cpu(hdr1->usedbytes) - totallen; space += count * sizeof(xfs_attr_leaf_entry_t); /* * leaf2 is the destination, compact it if it looks tight. */ max = be16_to_cpu(hdr2->firstused) - sizeof(xfs_attr_leaf_hdr_t); max -= be16_to_cpu(hdr2->count) * sizeof(xfs_attr_leaf_entry_t); if (space > max) { xfs_attr_leaf_compact(args->trans, blk2->bp); } /* * Move high entries from leaf1 to low end of leaf2. */ xfs_attr_leaf_moveents(leaf1, be16_to_cpu(hdr1->count) - count, leaf2, 0, count, state->mp); xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1); xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1); } else if (count > be16_to_cpu(hdr1->count)) { /* * I assert that since all callers pass in an empty * second buffer, this code should never execute. */ /* * Figure the total bytes to be added to the destination leaf. */ /* number entries being moved */ count -= be16_to_cpu(hdr1->count); space = totallen - be16_to_cpu(hdr1->usedbytes); space += count * sizeof(xfs_attr_leaf_entry_t); /* * leaf1 is the destination, compact it if it looks tight. */ max = be16_to_cpu(hdr1->firstused) - sizeof(xfs_attr_leaf_hdr_t); max -= be16_to_cpu(hdr1->count) * sizeof(xfs_attr_leaf_entry_t); if (space > max) { xfs_attr_leaf_compact(args->trans, blk1->bp); } /* * Move low entries from leaf2 to high end of leaf1. */ xfs_attr_leaf_moveents(leaf2, 0, leaf1, be16_to_cpu(hdr1->count), count, state->mp); xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1); xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1); } /* * Copy out last hashval in each block for B-tree code. */ blk1->hashval = be32_to_cpu( leaf1->entries[be16_to_cpu(leaf1->hdr.count)-1].hashval); blk2->hashval = be32_to_cpu( leaf2->entries[be16_to_cpu(leaf2->hdr.count)-1].hashval); /* * Adjust the expected index for insertion. * NOTE: this code depends on the (current) situation that the * second block was originally empty. * * If the insertion point moved to the 2nd block, we must adjust * the index. We must also track the entry just following the * new entry for use in an "atomic rename" operation, that entry * is always the "old" entry and the "new" entry is what we are * inserting. The index/blkno fields refer to the "old" entry, * while the index2/blkno2 fields refer to the "new" entry. */ if (blk1->index > be16_to_cpu(leaf1->hdr.count)) { ASSERT(state->inleaf == 0); blk2->index = blk1->index - be16_to_cpu(leaf1->hdr.count); args->index = args->index2 = blk2->index; args->blkno = args->blkno2 = blk2->blkno; } else if (blk1->index == be16_to_cpu(leaf1->hdr.count)) { if (state->inleaf) { args->index = blk1->index; args->blkno = blk1->blkno; args->index2 = 0; args->blkno2 = blk2->blkno; } else { blk2->index = blk1->index - be16_to_cpu(leaf1->hdr.count); args->index = args->index2 = blk2->index; args->blkno = args->blkno2 = blk2->blkno; } } else { ASSERT(state->inleaf == 1); args->index = args->index2 = blk1->index; args->blkno = args->blkno2 = blk1->blkno; } } /* * Examine entries until we reduce the absolute difference in * byte usage between the two blocks to a minimum. * GROT: Is this really necessary? With other than a 512 byte blocksize, * GROT: there will always be enough room in either block for a new entry. * GROT: Do a double-split for this case? */ STATIC int xfs_attr_leaf_figure_balance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1, xfs_da_state_blk_t *blk2, int *countarg, int *usedbytesarg) { xfs_attr_leafblock_t *leaf1, *leaf2; xfs_attr_leaf_hdr_t *hdr1, *hdr2; xfs_attr_leaf_entry_t *entry; int count, max, index, totallen, half; int lastdelta, foundit, tmp; /* * Set up environment. */ leaf1 = blk1->bp->data; leaf2 = blk2->bp->data; hdr1 = &leaf1->hdr; hdr2 = &leaf2->hdr; foundit = 0; totallen = 0; /* * Examine entries until we reduce the absolute difference in * byte usage between the two blocks to a minimum. */ max = be16_to_cpu(hdr1->count) + be16_to_cpu(hdr2->count); half = (max+1) * sizeof(*entry); half += be16_to_cpu(hdr1->usedbytes) + be16_to_cpu(hdr2->usedbytes) + xfs_attr_leaf_newentsize( state->args->namelen, state->args->valuelen, state->blocksize, NULL); half /= 2; lastdelta = state->blocksize; entry = &leaf1->entries[0]; for (count = index = 0; count < max; entry++, index++, count++) { #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) /* * The new entry is in the first block, account for it. */ if (count == blk1->index) { tmp = totallen + sizeof(*entry) + xfs_attr_leaf_newentsize( state->args->namelen, state->args->valuelen, state->blocksize, NULL); if (XFS_ATTR_ABS(half - tmp) > lastdelta) break; lastdelta = XFS_ATTR_ABS(half - tmp); totallen = tmp; foundit = 1; } /* * Wrap around into the second block if necessary. */ if (count == be16_to_cpu(hdr1->count)) { leaf1 = leaf2; entry = &leaf1->entries[0]; index = 0; } /* * Figure out if next leaf entry would be too much. */ tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, index); if (XFS_ATTR_ABS(half - tmp) > lastdelta) break; lastdelta = XFS_ATTR_ABS(half - tmp); totallen = tmp; #undef XFS_ATTR_ABS } /* * Calculate the number of usedbytes that will end up in lower block. * If new entry not in lower block, fix up the count. */ totallen -= count * sizeof(*entry); if (foundit) { totallen -= sizeof(*entry) + xfs_attr_leaf_newentsize( state->args->namelen, state->args->valuelen, state->blocksize, NULL); } *countarg = count; *usedbytesarg = totallen; return(foundit); } /*======================================================================== * Routines used for shrinking the Btree. *========================================================================*/ /* * Check a leaf block and its neighbors to see if the block should be * collapsed into one or the other neighbor. Always keep the block * with the smaller block number. * If the current block is over 50% full, don't try to join it, return 0. * If the block is empty, fill in the state structure and return 2. * If it can be collapsed, fill in the state structure and return 1. * If nothing can be done, return 0. * * GROT: allow for INCOMPLETE entries in calculation. */ int xfs_attr_leaf_toosmall(xfs_da_state_t *state, int *action) { xfs_attr_leafblock_t *leaf; xfs_da_state_blk_t *blk; xfs_da_blkinfo_t *info; int count, bytes, forward, error, retval, i; xfs_dablk_t blkno; xfs_dabuf_t *bp; /* * Check for the degenerate case of the block being over 50% full. * If so, it's not worth even looking to see if we might be able * to coalesce with a sibling. */ blk = &state->path.blk[ state->path.active-1 ]; info = blk->bp->data; ASSERT(info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)); leaf = (xfs_attr_leafblock_t *)info; count = be16_to_cpu(leaf->hdr.count); bytes = sizeof(xfs_attr_leaf_hdr_t) + count * sizeof(xfs_attr_leaf_entry_t) + be16_to_cpu(leaf->hdr.usedbytes); if (bytes > (state->blocksize >> 1)) { *act/* -*- linux-c -*- * drivers/char/viotape.c * * iSeries Virtual Tape * * Authors: Dave Boutcher <boutcher@us.ibm.com> * Ryan Arnold <ryanarn@us.ibm.com> * Colin Devilbiss <devilbis@us.ibm.com> * Stephen Rothwell <sfr@au1.ibm.com> * * (C) Copyright 2000-2004 IBM Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) anyu later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * This routine provides access to tape drives owned and managed by an OS/400 * partition running on the same box as this Linux partition. * * All tape operations are performed by sending messages back and forth to * the OS/400 partition. The format of the messages is defined in * iseries/vio.h */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/wait.h> #include <linux/spinlock.h> #include <linux/mtio.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/fs.h> #include <linux/cdev.h> #include <linux/major.h> #include <linux/completion.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <asm/uaccess.h> #include <asm/ioctls.h> #include <asm/firmware.h> #include <asm/vio.h> #include <asm/iseries/vio.h> #include <asm/iseries/hv_lp_event.h> #include <asm/iseries/hv_call_event.h> #include <asm/iseries/hv_lp_config.h> #define VIOTAPE_VERSION "1.2" #define VIOTAPE_MAXREQ 1 #define VIOTAPE_KERN_WARN KERN_WARNING "viotape: " #define VIOTAPE_KERN_INFO KERN_INFO "viotape: " static int viotape_numdev; /* * The minor number follows the conventions of the SCSI tape drives. The * rewind and mode are encoded in the minor #. We use this struct to break * them out */ struct viot_devinfo_struct { int devno; int mode; int rewind; }; #define VIOTAPOP_RESET 0 #define VIOTAPOP_FSF 1 #define VIOTAPOP_BSF 2 #define VIOTAPOP_FSR 3 #define VIOTAPOP_BSR 4 #define VIOTAPOP_WEOF 5 #define VIOTAPOP_REW 6 #define VIOTAPOP_NOP 7 #define VIOTAPOP_EOM 8 #define VIOTAPOP_ERASE 9 #define VIOTAPOP_SETBLK 10 #define VIOTAPOP_SETDENSITY 11 #define VIOTAPOP_SETPOS 12 #define VIOTAPOP_GETPOS 13 #define VIOTAPOP_SETPART 14 #define VIOTAPOP_UNLOAD 15 enum viotaperc { viotape_InvalidRange = 0x0601, viotape_InvalidToken = 0x0602, viotape_DMAError = 0x0603, viotape_UseError = 0x0604, viotape_ReleaseError = 0x0605, viotape_InvalidTape = 0x0606, viotape_InvalidOp = 0x0607, viotape_TapeErr = 0x0608, viotape_AllocTimedOut = 0x0640, viotape_BOTEnc = 0x0641, viotape_BlankTape = 0x0642, viotape_BufferEmpty = 0x0643, viotape_CleanCartFound = 0x0644, viotape_CmdNotAllowed = 0x0645, viotape_CmdNotSupported = 0x0646, viotape_DataCheck = 0x0647, viotape_DecompressErr = 0x0648, viotape_DeviceTimeout = 0x0649, viotape_DeviceUnavail = 0x064a, viotape_DeviceBusy = 0x064b, viotape_EndOfMedia = 0x064c, viotape_EndOfTape = 0x064d, viotape_EquipCheck = 0x064e, viotape_InsufficientRs = 0x064f, viotape_InvalidLogBlk = 0x0650, viotape_LengthError = 0x0651, viotape_LibDoorOpen = 0x0652, viotape_LoadFailure = 0x0653, viotape_NotCapable = 0x0654, viotape_NotOperational = 0x0655, viotape_NotReady = 0x0656, viotape_OpCancelled = 0x0657, viotape_PhyLinkErr = 0x0658, viotape_RdyNotBOT = 0x0659, viotape_TapeMark = 0x065a, viotape_WriteProt = 0x065b }; static const struct vio_error_entry viotape_err_table[] = { { viotape_InvalidRange, EIO, "Internal error" }, { viotape_InvalidToken, EIO, "Internal error" }, { viotape_DMAError, EIO, "DMA error" }, { viotape_UseError, EIO, "Internal error" }, { viotape_ReleaseError, EIO, "Internal error" }, { viotape_InvalidTape, EIO, "Invalid tape device" }, { viotape_InvalidOp, EIO, "Invalid operation" }, { viotape_TapeErr, EIO, "Tape error" }, { viotape_AllocTimedOut, EBUSY, "Allocate timed out" }, { viotape_BOTEnc, EIO, "Beginning of tape encountered" }, { viotape_BlankTape, EIO, "Blank tape" }, { viotape_BufferEmpty, EIO, "Buffer empty" }, { viotape_CleanCartFound, ENOMEDIUM, "Cleaning cartridge found" }, { viotape_CmdNotAllowed, EIO, "Command not allowed" }, { viotape_CmdNotSupported, EIO, "Command not supported" }, { viotape_DataCheck, EIO, "Data check" }, { viotape_DecompressErr, EIO, "Decompression error" }, { viotape_DeviceTimeout, EBUSY, "Device timeout" }, { viotape_DeviceUnavail, EIO, "Device unavailable" }, { viotape_DeviceBusy, EBUSY, "Device busy" }, { viotape_EndOfMedia, ENOSPC, "End of media" }, { viotape_EndOfTape, ENOSPC, "End of tape" }, { viotape_EquipCheck, EIO, "Equipment check" }, { viotape_InsufficientRs, EOVERFLOW, "Insufficient tape resources" }, { viotape_InvalidLogBlk, EIO, "Invalid logical block location" }, { viotape_LengthError, EOVERFLOW, "Length error" }, { viotape_LibDoorOpen, EBUSY, "Door open" }, { viotape_LoadFailure, ENOMEDIUM, "Load failure" }, { viotape_NotCapable, EIO, "Not capable" }, { viotape_NotOperational, EIO, "Not operational" }, { viotape_NotReady, EIO, "Not ready" }, { viotape_OpCancelled, EIO, "Operation cancelled" }, { viotape_PhyLinkErr, EIO, "Physical link error" }, { viotape_RdyNotBOT, EIO, "Ready but not beginning of tape" }, { viotape_TapeMark, EIO, "Tape mark" }, { viotape_WriteProt, EROFS, "Write protection error" }, { 0, 0, NULL }, }; /* Maximum number of tapes we support */ #define VIOTAPE_MAX_TAPE HVMAXARCHITECTEDVIRTUALTAPES #define MAX_PARTITIONS 4 /* defines for current tape state */ #define VIOT_IDLE 0 #define VIOT_READING 1 #define VIOT_WRITING 2 /* Our info on the tapes */ static struct { const char *rsrcname; const char *type; const char *model; } viotape_unitinfo[VIOTAPE_MAX_TAPE]; static struct mtget viomtget[VIOTAPE_MAX_TAPE]; static struct class *tape_class; static struct device *tape_device[VIOTAPE_MAX_TAPE]; /* * maintain the current state of each tape (and partition) * so that we know when to write EOF marks. */ static struct { unsigned char cur_part; unsigned char part_stat_rwi[MAX_PARTITIONS]; } state[VIOTAPE_MAX_TAPE]; /* We single-thread */ static struct semaphore reqSem; /* * When we send a request, we use this struct to get the response back * from the interrupt handler */ struct op_struct { void *buffer; dma_addr_t dmaaddr; size_t count; int rc; int non_blocking; struct completion com; struct device *dev; struct op_struct *next; }; static spinlock_t op_struct_list_lock; static struct op_struct *op_struct_list; /* forward declaration to resolve interdependence */ static int chg_state(int index, unsigned char new_state, struct file *file); /* procfs support */ static int proc_viotape_show(struct seq_file *m, void *v) { int i; seq_printf(m, "viotape driver version " VIOTAPE_VERSION "\n"); for (i = 0; i < viotape_numdev; i++) { seq_printf(m, "viotape device %d is iSeries resource %10.10s" "type %4.4s, model %3.3s\n", i, viotape_unitinfo[i].rsrcname, viotape_unitinfo[i].type, viotape_unitinfo[i].model); } return 0; } static int proc_viotape_open(struct inode *inode, struct file *file) { return single_open(file, proc_viotape_show, NULL); } static const struct file_operations proc_viotape_operations = { .owner = THIS_MODULE, .open = proc_viotape_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* Decode the device minor number into its parts */ void get_dev_info(struct inode *ino, struct viot_devinfo_struct *devi) { devi->devno = iminor(ino) & 0x1F; devi->mode = (iminor(ino) & 0x60) >> 5; /* if bit is set in the minor, do _not_ rewind automatically */ devi->rewind = (iminor(ino) & 0x80) == 0; } /* This is called only from the exit and init paths, so no need for locking */ static void clear_op_struct_pool(void) { while (op_struct_list) { struct op_struct *toFree = op_struct_list; op_struct_list = op_struct_list->next; kfree(toFree); } } /* Likewise, this is only called from the init path */ static int add_op_structs(int structs) { int i; for (i = 0; i < structs; ++i) { struct op_struct *new_struct = kmalloc(sizeof(*new_struct), GFP_KERNEL); if (!new_struct) { clear_op_struct_pool(); return -ENOMEM; } new_struct->next = op_struct_list; op_struct_list = new_struct; } return 0; } /* Allocate an op structure from our pool */ static struct op_struct *get_op_struct(void) { struct op_struct *retval; unsigned long flags; spin_lock_irqsave(&op_struct_list_lock, flags); retval = op_struct_list; if (retval) op_struct_list = retval->next; spin_unlock_irqrestore(&op_struct_list_lock, flags); if (retval) { memset(retval, 0, sizeof(*retval)); init_completion(&retval->com); } return retval; } /* Return an op structure to our pool */ static void free_op_struct(struct op_struct *op_struct) { unsigned long flags; spin_lock_irqsave(&op_struct_list_lock, flags); op_struct->next = op_struct_list; op_struct_list = op_struct; spin_unlock_irqrestore(&op_struct_list_lock, flags); } /* Map our tape return codes to errno values */ int tape_rc_to_errno(int tape_rc, char *operation, int tapeno) { const struct vio_error_entry *err; if (tape_rc == 0) return 0; err = vio_lookup_rc(viotape_err_table, tape_rc); printk(VIOTAPE_KERN_WARN "error(%s) 0x%04x on Device %d (%-10s): %s\n", operation, tape_rc, tapeno, viotape_unitinfo[tapeno].rsrcname, err->msg); return -err->errno; } /* Write */ static ssize_t viotap_write(struct file *file, const char *buf, size_t count, loff_t * ppos) { HvLpEvent_Rc hvrc; unsigned short flags = file->f_flags; int noblock = ((flags & O_NONBLOCK) != 0); ssize_t ret; struct viot_devinfo_struct devi; struct op_struct *op = get_op_struct(); if (op == NULL) return -ENOMEM; get_dev_info(file->f_path.dentry->d_inode, &devi); /* * We need to make sure we can send a request. We use * a semaphore to keep track of # requests in use. If * we are non-blocking, make sure we don't block on the * semaphore */ if (noblock) { if (down_trylock(&reqSem)) { ret = -EWOULDBLOCK; goto free_op; } } else down(&reqSem); /* Allocate a DMA buffer */ op->dev = tape_device[devi.devno]; op->buffer = dma_alloc_coherent(op->dev, count, &op->dmaaddr, GFP_ATOMIC); if (op->buffer == NULL) { printk(VIOTAPE_KERN_WARN "error allocating dma buffer for len %ld\n", count); ret = -EFAULT; goto up_sem; } /* Copy the data into the buffer */ if (copy_from_user(op->buffer, buf, count)) { printk(VIOTAPE_KERN_WARN "tape: error on copy from user\n"); ret = -EFAULT; goto free_dma; } op->non_blocking = noblock; init_completion(&op->com); op->count = count; hvrc = HvCallEvent_signalLpEventFast(viopath_hostLp, HvLpEvent_Type_VirtualIo, viomajorsubtype_tape | viotapewrite, HvLpEvent_AckInd_DoAck, HvLpEvent_AckType_ImmediateAck, viopath_sourceinst(viopath_hostLp), viopath_targetinst(viopath_hostLp), (u64)(unsigned long)op, VIOVERSION << 16, ((u64)devi.devno << 48) | op->dmaaddr, count, 0, 0); if (hvrc != HvLpEvent_Rc_Good) { printk(VIOTAPE_KERN_WARN "hv error on op %d\n", (int)hvrc); ret = -EIO; goto free_dma; } if (noblock) return count; wait_for_completion(&op->com); if (op->rc) ret = tape_rc_to_errno(op->rc, &qu