aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/ccm.c
blob: c36d654cf56a0f08ef9ef4e4cd42eaa85047a6cd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
 * CCM: Counter with CBC-MAC
 *
 * (C) Copyright IBM Corp. 2007 - Joy Latten <latten@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>

#include "internal.h"

struct ccm_instance_ctx {
	struct crypto_skcipher_spawn ctr;
	struct crypto_spawn cipher;
};

struct crypto_ccm_ctx {
	struct crypto_cipher *cipher;
	struct crypto_ablkcipher *ctr;
};

struct crypto_rfc4309_ctx {
	struct crypto_aead *child;
	u8 nonce[3];
};

struct crypto_ccm_req_priv_ctx {
	u8 odata[16];
	u8 idata[16];
	u8 auth_tag[16];
	u32 ilen;
	u32 flags;
	struct scatterlist src[2];
	struct scatterlist dst[2];
	struct ablkcipher_request abreq;
};

static inline struct crypto_ccm_req_priv_ctx *crypto_ccm_reqctx(
	struct aead_request *req)
{
	unsigned long align = crypto_aead_alignmask(crypto_aead_reqtfm(req));

	return (void *)PTR_ALIGN((u8 *)aead_request_ctx(req), align + 1);
}

static int set_msg_len(u8 *block, unsigned int msglen, int csize)
{
	__be32 data;

	memset(block, 0, csize);
	block += csize;

	if (csize >= 4)
		csize = 4;
	else if (msglen > (1 << (8 * csize)))
		return -EOVERFLOW;

	data = cpu_to_be32(msglen);
	memcpy(block - csize, (u8 *)&data + 4 - csize, csize);

	return 0;
}

static int crypto_ccm_setkey(struct crypto_aead *aead, const u8 *key,
			     unsigned int keylen)
{
	struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead);
	struct crypto_ablkcipher *ctr = ctx->ctr;
	struct crypto_cipher *tfm = ctx->cipher;
	int err = 0;

	crypto_ablkcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK);
	crypto_ablkcipher_set_flags(ctr, crypto_aead_get_flags(aead) &
				    CRYPTO_TFM_REQ_MASK);
	err = crypto_ablkcipher_setkey(ctr, key, keylen);
	crypto_aead_set_flags(aead, crypto_ablkcipher_get_flags(ctr) &
			      CRYPTO_TFM_RES_MASK);
	if (err)
		goto out;

	crypto_cipher_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
	crypto_cipher_set_flags(tfm, crypto_aead_get_flags(aead) &
				    CRYPTO_TFM_REQ_MASK);
	err = crypto_cipher_setkey(tfm, key, keylen);
	crypto_aead_set_flags(aead, crypto_cipher_get_flags(tfm) &
			      CRYPTO_TFM_RES_MASK);

out:
	return err;
}

static int crypto_ccm_setauthsize(struct crypto_aead *tfm,
				  unsigned int authsize)
{
	switch (authsize) {
	case 4:
	case 6:
	case 8:
	case 10:
	case 12:
	case 14:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int format_input(u8 *info, struct aead_request *req,
			unsigned int cryptlen)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	unsigned int lp = req->iv[0];
	unsigned int l = lp + 1;
	unsigned int m;

	m = crypto_aead_authsize(aead);

	memcpy(info, req->iv, 16);

	/* format control info per RFC 3610 and
	 * NIST Special Publication 800-38C
	 */
	*info |= (8 * ((m - 2) / 2));
	if (req->assoclen)
		*info |= 64;

	return set_msg_len(info + 16 - l, cryptlen, l);
}

static int format_adata(u8 *adata, unsigned int a)
{
	int len = 0;

	/* add control info for associated data
	 * RFC 3610 and NIST Special Publication 800-38C
	 */
	if (a < 65280) {
		*(__be16 *)adata = cpu_to_be16(a);
		len = 2;
	} else  {
		*(__be16 *)adata = cpu_to_be16(0xfffe);
		*(__be32 *)&adata[2] = cpu_to_be32(a);
		len = 6;
	}

	return len;
}

static void compute_mac(struct crypto_cipher *tfm, u8 *data, int n,
		       struct crypto_ccm_req_priv_ctx *pctx)
{
	unsigned int bs = 16;
	u8 *odata = pctx->odata;
	u8 *idata = pctx->idata;
	int datalen, getlen;

	datalen = n;

	/* first time in here, block may be partially filled. */
	getlen = bs - pctx->ilen;
	if (datalen >= getlen) {
		memcpy(idata + pctx->ilen, data, getlen);
		crypto_xor(odata, idata, bs);
		crypto_cipher_encrypt_one(tfm, odata, odata);
		datalen -= getlen;
		data += getlen;
		pctx->ilen = 0;
	}

	/* now encrypt rest of data */
	while (datalen >= bs) {
		crypto_xor(odata, data, bs);
		crypto_cipher_encrypt_one(tfm, odata, odata);

		datalen -= bs;
		data += bs;
	}

	/* check and see if there's leftover data that wasn't
	 * enough to fill a block.
	 */
	if (datalen) {
		memcpy(idata + pctx->ilen, data, datalen);
		pctx->ilen += datalen;
	}
}

static void get_data_to_compute(struct crypto_cipher *tfm,
			       struct crypto_ccm_req_priv_ctx *pctx,
			       struct scatterlist *sg, unsigned int len)
{
	struct scatter_walk walk;
	u8 *data_src;
	int n;

	scatterwalk_start(&walk, sg);

	while (len) {
		n = scatterwalk_clamp(&walk, len);
		if (!n) {
			scatterwalk_start(&walk, sg_next(walk.sg));
			n = scatterwalk_clamp(&walk, len);
		}
		data_src = scatterwalk_map(&walk, 0);

		compute_mac(tfm, data_src, n, pctx);
		len -= n;

		scatterwalk_unmap(data_src, 0);
		scatterwalk_advance(&walk, n);
		scatterwalk_done(&walk, 0, len);
		if (len)
			crypto_yield(pctx->flags);
	}

	/* any leftover needs padding and then encrypted */
	if (pctx->ilen) {
		int padlen;
		u8 *odata = pctx->odata;
		u8 *idata = pctx->idata;

		padlen = 16 - pctx->ilen;
		memset(idata + pctx->ilen, 0, padlen);
		crypto_xor(odata, idata, 16);
		crypto_cipher_encrypt_one(tfm, odata, odata);
		pctx->ilen = 0;
	}
}

static int crypto_ccm_auth(struct aead_request *req, struct scatterlist *plain,
			   unsigned int cryptlen)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead);
	struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
	struct crypto_cipher *cipher = ctx->cipher;
	unsigned int assoclen = req->assoclen;
	u8 *odata = pctx->odata;
	u8 *idata = pctx->idata;
	int err;

	/* format control data for input */
	err = format_input(odata, req, cryptlen);
	if (err)
		goto out;

	/* encrypt first block to use as start in computing mac  */
	crypto_cipher_encrypt_one(cipher, odata, odata);

	/* format associated data and compute into mac */
	if (assoclen) {
		pctx->ilen = format_adata(idata, assoclen);
		get_data_to_compute(cipher, pctx, req->assoc, req->assoclen);
	} else {
		pctx->ilen = 0;
	}

	/* compute plaintext into mac */
	get_data_to_compute(cipher, pctx, plain, cryptlen);

out:
	return err;
}

static void crypto_ccm_encrypt_done(struct crypto_async_request *areq, int err)
{
	struct aead_request *req = areq->data;
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
	u8 *odata = pctx->odata;

	if (!err)
		scatterwalk_map_and_copy(odata, req->dst, req->cryptlen,
					 crypto_aead_authsize(aead), 1);
	aead_request_complete(req, err);
}

static inline int crypto_ccm_check_iv(const u8 *iv)
{
	/* 2 <= L <= 8, so 1 <= L' <= 7. */
	if (1 > iv[0] || iv[0] > 7)
		return -EINVAL;

	return 0;
}

static int crypto_ccm_encrypt(struct aead_request *req)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead);
	struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
	struct ablkcipher_request *abreq = &pctx->abreq;
	struct scatterlist *dst;
	unsigned int cryptlen = req->cryptlen;
	u8 *odata = pctx->odata;
	u8 *iv = req->iv;
	int err;

	err = crypto_ccm_check_iv(iv);
	if (err)
		return err;

	pctx->flags = aead_request_flags(req);

	err = crypto_ccm_auth(req, req->src, cryptlen);
	if (err)
		return err;

	 /* Note: rfc 3610 and NIST 800-38C require counter of
	 * zero to encrypt auth tag.
	 */
	memset(iv + 15 - iv[0], 0, iv[0] + 1);

	sg_init_table(pctx->src, 2);
	sg_set_buf(pctx->src, odata, 16);
	scatterwalk_sg_chain(pctx->src, 2, req->src);

	dst = pctx->src;
	if (req->src != req->dst) {
		sg_init_table(pctx->dst, 2);
		sg_set_buf(pctx->dst, odata, 16);
		scatterwalk_sg_chain(pctx->dst, 2, req->dst);
		dst = pctx->dst;
	}

	ablkcipher_request_set_tfm(abreq, ctx->ctr);
	ablkcipher_request_set_callback(abreq, pctx->flags,
					crypto_ccm_encrypt_done, req);
	ablkcipher_request_set_crypt(abreq, pctx->src, dst, cryptlen + 16, iv);
	err = crypto_ablkcipher_encrypt(abreq);
	if (err)
		return err;

	/* copy authtag to end of dst */
	scatterwalk_map_and_copy(odata, req->dst, cryptlen,
				 crypto_aead_authsize(aead), 1);
	return err;
}

static void crypto_ccm_decrypt_done(struct crypto_async_request *areq,
				   int err)
{
	struct aead_request *req = areq->data;
	struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	unsigned int authsize = crypto_aead_authsize(aead);
	unsigned int cryptlen = req->cryptlen - authsize;

	if (!err) {
		err = crypto_ccm_auth(req, req->dst, cryptlen);
		if (!err && memcmp(pctx->auth_tag, pctx->odata, authsize))
			err = -EBADMSG;
	}
	aead_request_complete(req, err);
}

static int crypto_ccm_decrypt(struct aead_request *req)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead);
	struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req);
	struct ablkcipher_request *abreq = &pctx->abreq;
	struct scatterlist *dst;
	unsigned int authsize = crypto_aead_authsize(aead);
	unsigned int cryptlen = req->cryptlen;
	u8 *authtag = pctx->auth_tag;
	u8 *odata = pctx->odata;
	u8 *iv = req->iv;
	int err;

	if (cryptlen < authsize)
		return -EINVAL;
	cryptlen -= authsize;

	err = crypto_ccm_check_iv(iv);
	if (err)
		return err;

	pctx->flags = aead_request_flags(req);

	scatterwalk_map_and_copy(authtag, req->src, cryptlen, authsize, 0);

	memset(iv + 15 - iv[0], 0, iv[0] + 1);

	sg_init_table(pctx->src, 2);
	sg_set_buf(pctx->src, authtag, 16);
	scatterwalk_sg_chain(pctx->src, 2, req->src);

	dst = pctx->src;
	if (req->src != req->dst) {
		sg_init_table(pctx->dst, 2);
		sg_set_buf(pctx->dst, authtag, 16);
		scatterwalk_sg_chain(pctx->dst, 2, req->dst);
		dst = pctx->dst;
	}

	ablkcipher_request_set_tfm(abreq, ctx->ctr);
	ablkcipher_request_set_callback(abreq, pctx->flags,
					crypto_ccm_decrypt_done, req);
	ablkcipher_request_set_crypt(abreq, pctx->src, dst, cryptlen + 16, iv);
	err = crypto_ablkcipher_decrypt(abreq);
	if (err)
		return err;

	err = crypto_ccm_auth(req, req->dst, cryptlen);
	if (err)
		return err;

	/* verify */
	if (memcmp(authtag, odata, authsize))
		return -EBADMSG;

	return err;
}

static int crypto_ccm_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = (void *)tfm->__crt_alg;
	struct ccm_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_ccm_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_cipher *cipher;
	struct crypto_ablkcipher *ctr;
	unsigned long align;
	int err;

	cipher = crypto_spawn_cipher(&ictx->cipher);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctr = crypto_spawn_skcipher(&ictx->ctr);
	err = PTR_ERR(ctr);
	if (IS_ERR(ctr))
		goto err_free_cipher;

	ctx->cipher = cipher;
	ctx->ctr = ctr;

	align = crypto_tfm_alg_alignmask(tfm);
	align &= ~(crypto_tfm_ctx_alignment() - 1);
	tfm->crt_aead.reqsize = align +
				sizeof(struct crypto_ccm_req_priv_ctx) +
				crypto_ablkcipher_reqsize(ctr);

	return 0;

err_free_cipher:
	crypto_free_cipher(cipher);
	return err;
}

static void crypto_ccm_exit_tfm(struct crypto_tfm *tfm)
{
	struct crypto_ccm_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_cipher(ctx->cipher);
	crypto_free_ablkcipher(ctx->ctr);
}

static struct crypto_instance *crypto_ccm_alloc_common(struct rtattr **tb,
						       const char *full_name,
						       const char *ctr_name,
						       const char *cipher_name)
{
	struct crypto_attr_type *algt;
	struct crypto_instance *inst;
	struct crypto_alg *ctr;
	struct crypto_alg *cipher;
	struct ccm_instance_ctx *ictx;
	int err;

	algt = crypto_get_attr_type(tb);
	err = PTR_ERR(algt);
	if (IS_ERR(algt))
		return ERR_PTR(err);

	if ((algt->type ^ CRYPTO_ALG_TYPE_AEAD) & algt->mask)
		return ERR_PTR(-EINVAL);

	cipher = crypto_alg_mod_lookup(cipher_name,  CRYPTO_ALG_TYPE_CIPHER,
				       CRYPTO_ALG_TYPE_MASK);
	err = PTR_ERR(cipher);
	if (IS_ERR(cipher))
		return ERR_PTR(err);

	err = -EINVAL;
	if (cipher->cra_blocksize != 16)
		goto out_put_cipher;

	inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
	err = -ENOMEM;
	if (!inst)
		goto out_put_cipher;

	ictx = crypto_instance_ctx(inst);

	err = crypto_init_spawn(&ictx->cipher, cipher, inst,
				CRYPTO_ALG_TYPE_MASK);
	if (err)
		goto err_free_inst;

	crypto_set_skcipher_spawn(&ictx->ctr, inst);
	err = crypto_grab_skcipher(&ictx->ctr, ctr_name, 0,
				   crypto_requires_sync(algt->type,
							algt->mask));
	if (err)
		goto err_drop_cipher;

	ctr = crypto_skcipher_spawn_alg(&ictx->ctr);

	/* Not a stream cipher? */
	err = -EINVAL;
	if (ctr->cra_blocksize != 1)
		goto err_drop_ctr;

	/* We want the real thing! */
	if (ctr->cra_ablkcipher.ivsize != 16)
		goto err_drop_ctr;

	err = -ENAMETOOLONG;
	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
		     "ccm_base(%s,%s)", ctr->cra_driver_name,
		     cipher->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
		goto err_drop_ctr;

	memcpy(inst->alg.cra_name, full_name, CRYPTO_MAX_ALG_NAME);

	inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD;
	inst->alg.cra_flags |= ctr->cra_flags & CRYPTO_ALG_ASYNC;
	inst->alg.cra_priority = cipher->cra_priority + ctr->cra_priority;
	inst->alg.cra_blocksize = 1;
	inst->alg.cra_alignmask = cipher->cra_alignmask | ctr->cra_alignmask |
				  (__alignof__(u32) - 1);
	inst->alg.cra_type = &crypto_aead_type;
	inst->alg.cra_aead.ivsize = 16;
	inst->alg.cra_aead.maxauthsize = 16;
	inst->alg.cra_ctxsize = sizeof(struct crypto_ccm_ctx);
	inst->alg.cra_init = crypto_ccm_init_tfm;
	inst->alg.cra_exit = crypto_ccm_exit_tfm;
	inst->alg.cra_aead.setkey = crypto_ccm_setkey;
	inst->alg.cra_aead.setauthsize = crypto_ccm_setauthsize;
	inst->alg.cra_aead.encrypt = crypto_ccm_encrypt;
	inst->alg.cra_aead.decrypt = crypto_ccm_decrypt;

out:
	crypto_mod_put(cipher);
	return inst;

err_drop_ctr:
	crypto_drop_skcipher(&ictx->ctr);
err_drop_cipher:
	crypto_drop_spawn(&ictx->cipher);
err_free_inst:
	kfree(inst);
out_put_cipher:
	inst = ERR_PTR(err);
	goto out;
}

static struct crypto_instance *crypto_ccm_alloc(struct rtattr **tb)
{
	int err;
	const char *cipher_name;
	char ctr_name[CRYPTO_MAX_ALG_NAME];
	char full_name[CRYPTO_MAX_ALG_NAME];

	cipher_name = crypto_attr_alg_name(tb[1]);
	err = PTR_ERR(cipher_name);
	if (IS_ERR(cipher_name))
		return ERR_PTR(err);

	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
		     cipher_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-ENAMETOOLONG);

	if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "ccm(%s)", cipher_name) >=
	    CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-ENAMETOOLONG);

	return crypto_ccm_alloc_common(tb, full_name, ctr_name, cipher_name);
}

static void crypto_ccm_free(struct crypto_instance *inst)
{
	struct ccm_instance_ctx *ctx = crypto_instance_ctx(inst);

	crypto_drop_spawn(&ctx->cipher);
	crypto_drop_skcipher(&ctx->ctr);
	kfree(inst);
}

static struct crypto_template crypto_ccm_tmpl = {
	.name = "ccm",
	.alloc = crypto_ccm_alloc,
	.free = crypto_ccm_free,
	.module = THIS_MODULE,
};

static struct crypto_instance *crypto_ccm_base_alloc(struct rtattr **tb)
{
	int err;
	const char *ctr_name;
	const char *cipher_name;
	char full_name[CRYPTO_MAX_ALG_NAME];

	ctr_name = crypto_attr_alg_name(tb[1]);
	err = PTR_ERR(ctr_name);
	if (IS_ERR(ctr_name))
		return ERR_PTR(err);

	cipher_name = crypto_attr_alg_name(tb[2]);
	err = PTR_ERR(cipher_name);
	if (IS_ERR(cipher_name))
		return ERR_PTR(err);

	if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "ccm_base(%s,%s)",
		     ctr_name, cipher_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-ENAMETOOLONG);

	return crypto_ccm_alloc_common(tb, full_name, ctr_name, cipher_name);
}

static struct crypto_template crypto_ccm_base_tmpl = {
	.name = "ccm_base",
	.alloc = crypto_ccm_base_alloc,
	.free = crypto_ccm_free,
	.module = THIS_MODULE,
};

static int crypto_rfc4309_setkey(struct crypto_aead *parent, const u8 *key,
				 unsigned int keylen)
{
	struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(parent);
	struct crypto_aead *child = ctx->child;
	int err;

	if (keylen < 3)
		return -EINVAL;

	keylen -= 3;
	memcpy(ctx->nonce, key + keylen, 3);

	crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_aead_set_flags(child, crypto_aead_get_flags(parent) &
				     CRYPTO_TFM_REQ_MASK);
	err = crypto_aead_setkey(child, key, keylen);
	crypto_aead_set_flags(parent, crypto_aead_get_flags(child) &
				      CRYPTO_TFM_RES_MASK);

	return err;
}

static int crypto_rfc4309_setauthsize(struct crypto_aead *parent,
				      unsigned int authsize)
{
	struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(parent);

	switch (authsize) {
	case 8:
	case 12:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	return crypto_aead_setauthsize(ctx->child, authsize);
}

static struct aead_request *crypto_rfc4309_crypt(struct aead_request *req)
{
	struct aead_request *subreq = aead_request_ctx(req);
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(aead);
	struct crypto_aead *child = ctx->child;
	u8 *iv = PTR_ALIGN((u8 *)(subreq + 1) + crypto_aead_reqsize(child),
			   crypto_aead_alignmask(child) + 1);

	/* L' */
	iv[0] = 3;

	memcpy(iv + 1, ctx->nonce, 3);
	memcpy(iv + 4, req->iv, 8);

	aead_request_set_tfm(subreq, child);
	aead_request_set_callback(subreq, req->base.flags, req->base.complete,
				  req->base.data);
	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, iv);
	aead_request_set_assoc(subreq, req->assoc, req->assoclen);

	return subreq;
}

static int crypto_rfc4309_encrypt(struct aead_request *req)
{
	req = crypto_rfc4309_crypt(req);

	return crypto_aead_encrypt(req);
}

static int crypto_rfc4309_decrypt(struct aead_request *req)
{
	req = crypto_rfc4309_crypt(req);

	return crypto_aead_decrypt(req);
}

static int crypto_rfc4309_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = (void *)tfm->__crt_alg;
	struct crypto_aead_spawn *spawn = crypto_instance_ctx(inst);
	struct crypto_rfc4309_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_aead *aead;
	unsigned long align;

	aead = crypto_spawn_aead(spawn);
	if (IS_ERR(aead))
		return PTR_ERR(aead);

	ctx->child = aead;

	align = crypto_aead_alignmask(aead);
	align &= ~(crypto_tfm_ctx_alignment() - 1);
	tfm->crt_aead.reqsize = sizeof(struct aead_request) +
				ALIGN(crypto_aead_reqsize(aead),
				      crypto_tfm_ctx_alignment()) +
				align + 16;

	return 0;
}

static void crypto_rfc4309_exit_tfm(struct crypto_tfm *tfm)
{
	struct crypto_rfc4309_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_aead(ctx->child);
}

static struct crypto_instance *crypto_rfc4309_alloc(struct rtattr **tb)
{
	struct crypto_attr_type *algt;
	struct crypto_instance *inst;
	struct crypto_aead_spawn *spawn;
	struct crypto_alg *alg;
	const char *ccm_name;
	int err;

	algt = crypto_get_attr_type(tb);
	err = PTR_ERR(algt);
	if (IS_ERR(algt))
		return ERR_PTR(err);

	if ((algt->type ^ CRYPTO_ALG_TYPE_AEAD) & algt->mask)
		return ERR_PTR(-EINVAL);

	ccm_name = crypto_attr_alg_name(tb[1]);
	err = PTR_ERR(ccm_name);
	if (IS_ERR(ccm_name))
		return ERR_PTR(err);

	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
	if (!inst)
		return ERR_PTR(-ENOMEM);

	spawn = crypto_instance_ctx(inst);
	crypto_set_aead_spawn(spawn, inst);
	err = crypto_grab_aead(spawn, ccm_name, 0,
			       crypto_requires_sync(algt->type, algt->mask));
	if (err)
		goto out_free_inst;

	alg = crypto_aead_spawn_alg(spawn);

	err = -EINVAL;

	/* We only support 16-byte blocks. */
	if (alg->cra_aead.ivsize != 16)
		goto out_drop_alg;

	/* Not a stream cipher? */
	if (alg->cra_blocksize != 1)
		goto out_drop_alg;

	err = -ENAMETOOLONG;
	if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME,
		     "rfc4309(%s)", alg->cra_name) >= CRYPTO_MAX_ALG_NAME ||
	    snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
		     "rfc4309(%s)", alg->cra_driver_name) >=
	    CRYPTO_MAX_ALG_NAME)
		goto out_drop_alg;

	inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD;
	inst->alg.cra_flags |= alg->cra_flags & CRYPTO_ALG_ASYNC;
	inst->alg.cra_priority = alg->cra_priority;
	inst->alg.cra_blocksize = 1;
	inst->alg.cra_alignmask = alg->cra_alignmask;
	inst->alg.cra_type = &crypto_nivaead_type;

	inst->alg.cra_aead.ivsize = 8;
	inst->alg.cra_aead.maxauthsize = 16;

	inst->alg.cra_ctxsize = sizeof(struct crypto_rfc4309_ctx);

	inst->alg.cra_init = crypto_rfc4309_init_tfm;
	inst->alg.cra_exit = crypto_rfc4309_exit_tfm;

	inst->alg.cra_aead.setkey = crypto_rfc4309_setkey;
	inst->alg.cra_aead.setauthsize = crypto_rfc4309_setauthsize;
	inst->alg.cra_aead.encrypt = crypto_rfc4309_encrypt;
	inst->alg.cra_aead.decrypt = crypto_rfc4309_decrypt;

	inst->alg.cra_aead.geniv = "seqiv";

out:
	return inst;

out_drop_alg:
	crypto_drop_aead(spawn);
out_free_inst:
	kfree(inst);
	inst = ERR_PTR(err);
	goto out;
}

static void crypto_rfc4309_free(struct crypto_instance *inst)
{
	crypto_drop_spawn(crypto_instance_ctx(inst));
	kfree(inst);
}

static struct crypto_template crypto_rfc4309_tmpl = {
	.name = "rfc4309",
	.alloc = crypto_rfc4309_alloc,
	.free = crypto_rfc4309_free,
	.module = THIS_MODULE,
};

static int __init crypto_ccm_module_init(void)
{
	int err;

	err = crypto_register_template(&crypto_ccm_base_tmpl);
	if (err)
		goto out;

	err = crypto_register_template(&crypto_ccm_tmpl);
	if (err)
		goto out_undo_base;

	err = crypto_register_template(&crypto_rfc4309_tmpl);
	if (err)
		goto out_undo_ccm;

out:
	return err;

out_undo_ccm:
	crypto_unregister_template(&crypto_ccm_tmpl);
out_undo_base:
	crypto_unregister_template(&crypto_ccm_base_tmpl);
	goto out;
}

static void __exit crypto_ccm_module_exit(void)
{
	crypto_unregister_template(&crypto_rfc4309_tmpl);
	crypto_unregister_template(&crypto_ccm_tmpl);
	crypto_unregister_template(&crypto_ccm_base_tmpl);
}

module_init(crypto_ccm_module_init);
module_exit(crypto_ccm_module_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Counter with CBC MAC");
MODULE_ALIAS("ccm_base");
MODULE_ALIAS("rfc4309");
65' href='#n3565'>3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/pci.h>
#include <linux/irq.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <linux/dmi.h>
#include <linux/dma-mapping.h>

#include "xhci.h"
#include "xhci-trace.h"

#define DRIVER_AUTHOR "Sarah Sharp"
#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"

#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)

/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
static int link_quirk;
module_param(link_quirk, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");

static unsigned int quirks;
module_param(quirks, uint, S_IRUGO);
MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");

/* TODO: copied from ehci-hcd.c - can this be refactored? */
/*
 * xhci_handshake - spin reading hc until handshake completes or fails
 * @ptr: address of hc register to be read
 * @mask: bits to look at in result of read
 * @done: value of those bits when handshake succeeds
 * @usec: timeout in microseconds
 *
 * Returns negative errno, or zero on success
 *
 * Success happens when the "mask" bits have the specified value (hardware
 * handshake done).  There are two failure modes:  "usec" have passed (major
 * hardware flakeout), or the register reads as all-ones (hardware removed).
 */
int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
		      u32 mask, u32 done, int usec)
{
	u32	result;

	do {
		result = readl(ptr);
		if (result == ~(u32)0)		/* card removed */
			return -ENODEV;
		result &= mask;
		if (result == done)
			return 0;
		udelay(1);
		usec--;
	} while (usec > 0);
	return -ETIMEDOUT;
}

/*
 * Disable interrupts and begin the xHCI halting process.
 */
void xhci_quiesce(struct xhci_hcd *xhci)
{
	u32 halted;
	u32 cmd;
	u32 mask;

	mask = ~(XHCI_IRQS);
	halted = readl(&xhci->op_regs->status) & STS_HALT;
	if (!halted)
		mask &= ~CMD_RUN;

	cmd = readl(&xhci->op_regs->command);
	cmd &= mask;
	writel(cmd, &xhci->op_regs->command);
}

/*
 * Force HC into halt state.
 *
 * Disable any IRQs and clear the run/stop bit.
 * HC will complete any current and actively pipelined transactions, and
 * should halt within 16 ms of the run/stop bit being cleared.
 * Read HC Halted bit in the status register to see when the HC is finished.
 */
int xhci_halt(struct xhci_hcd *xhci)
{
	int ret;
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
	xhci_quiesce(xhci);

	ret = xhci_handshake(xhci, &xhci->op_regs->status,
			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
	if (!ret) {
		xhci->xhc_state |= XHCI_STATE_HALTED;
		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
	} else
		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
				XHCI_MAX_HALT_USEC);
	return ret;
}

/*
 * Set the run bit and wait for the host to be running.
 */
static int xhci_start(struct xhci_hcd *xhci)
{
	u32 temp;
	int ret;

	temp = readl(&xhci->op_regs->command);
	temp |= (CMD_RUN);
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
			temp);
	writel(temp, &xhci->op_regs->command);

	/*
	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
	 * running.
	 */
	ret = xhci_handshake(xhci, &xhci->op_regs->status,
			STS_HALT, 0, XHCI_MAX_HALT_USEC);
	if (ret == -ETIMEDOUT)
		xhci_err(xhci, "Host took too long to start, "
				"waited %u microseconds.\n",
				XHCI_MAX_HALT_USEC);
	if (!ret)
		xhci->xhc_state &= ~XHCI_STATE_HALTED;
	return ret;
}

/*
 * Reset a halted HC.
 *
 * This resets pipelines, timers, counters, state machines, etc.
 * Transactions will be terminated immediately, and operational registers
 * will be set to their defaults.
 */
int xhci_reset(struct xhci_hcd *xhci)
{
	u32 command;
	u32 state;
	int ret, i;

	state = readl(&xhci->op_regs->status);
	if ((state & STS_HALT) == 0) {
		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
		return 0;
	}

	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
	command = readl(&xhci->op_regs->command);
	command |= CMD_RESET;
	writel(command, &xhci->op_regs->command);

	ret = xhci_handshake(xhci, &xhci->op_regs->command,
			CMD_RESET, 0, 10 * 1000 * 1000);
	if (ret)
		return ret;

	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			 "Wait for controller to be ready for doorbell rings");
	/*
	 * xHCI cannot write to any doorbells or operational registers other
	 * than status until the "Controller Not Ready" flag is cleared.
	 */
	ret = xhci_handshake(xhci, &xhci->op_regs->status,
			STS_CNR, 0, 10 * 1000 * 1000);

	for (i = 0; i < 2; ++i) {
		xhci->bus_state[i].port_c_suspend = 0;
		xhci->bus_state[i].suspended_ports = 0;
		xhci->bus_state[i].resuming_ports = 0;
	}

	return ret;
}

#ifdef CONFIG_PCI
static int xhci_free_msi(struct xhci_hcd *xhci)
{
	int i;

	if (!xhci->msix_entries)
		return -EINVAL;

	for (i = 0; i < xhci->msix_count; i++)
		if (xhci->msix_entries[i].vector)
			free_irq(xhci->msix_entries[i].vector,
					xhci_to_hcd(xhci));
	return 0;
}

/*
 * Set up MSI
 */
static int xhci_setup_msi(struct xhci_hcd *xhci)
{
	int ret;
	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	ret = pci_enable_msi(pdev);
	if (ret) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"failed to allocate MSI entry");
		return ret;
	}

	ret = request_irq(pdev->irq, xhci_msi_irq,
				0, "xhci_hcd", xhci_to_hcd(xhci));
	if (ret) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"disable MSI interrupt");
		pci_disable_msi(pdev);
	}

	return ret;
}

/*
 * Free IRQs
 * free all IRQs request
 */
static void xhci_free_irq(struct xhci_hcd *xhci)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
	int ret;

	/* return if using legacy interrupt */
	if (xhci_to_hcd(xhci)->irq > 0)
		return;

	ret = xhci_free_msi(xhci);
	if (!ret)
		return;
	if (pdev->irq > 0)
		free_irq(pdev->irq, xhci_to_hcd(xhci));

	return;
}

/*
 * Set up MSI-X
 */
static int xhci_setup_msix(struct xhci_hcd *xhci)
{
	int i, ret = 0;
	struct usb_hcd *hcd = xhci_to_hcd(xhci);
	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);

	/*
	 * calculate number of msi-x vectors supported.
	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
	 *   with max number of interrupters based on the xhci HCSPARAMS1.
	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
	 *   Add additional 1 vector to ensure always available interrupt.
	 */
	xhci->msix_count = min(num_online_cpus() + 1,
				HCS_MAX_INTRS(xhci->hcs_params1));

	xhci->msix_entries =
		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
				GFP_KERNEL);
	if (!xhci->msix_entries) {
		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
		return -ENOMEM;
	}

	for (i = 0; i < xhci->msix_count; i++) {
		xhci->msix_entries[i].entry = i;
		xhci->msix_entries[i].vector = 0;
	}

	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
	if (ret) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"Failed to enable MSI-X");
		goto free_entries;
	}

	for (i = 0; i < xhci->msix_count; i++) {
		ret = request_irq(xhci->msix_entries[i].vector,
				xhci_msi_irq,
				0, "xhci_hcd", xhci_to_hcd(xhci));
		if (ret)
			goto disable_msix;
	}

	hcd->msix_enabled = 1;
	return ret;

disable_msix:
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
	xhci_free_irq(xhci);
	pci_disable_msix(pdev);
free_entries:
	kfree(xhci->msix_entries);
	xhci->msix_entries = NULL;
	return ret;
}

/* Free any IRQs and disable MSI-X */
static void xhci_cleanup_msix(struct xhci_hcd *xhci)
{
	struct usb_hcd *hcd = xhci_to_hcd(xhci);
	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);

	if (xhci->quirks & XHCI_PLAT)
		return;

	xhci_free_irq(xhci);

	if (xhci->msix_entries) {
		pci_disable_msix(pdev);
		kfree(xhci->msix_entries);
		xhci->msix_entries = NULL;
	} else {
		pci_disable_msi(pdev);
	}

	hcd->msix_enabled = 0;
	return;
}

static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
{
	int i;

	if (xhci->msix_entries) {
		for (i = 0; i < xhci->msix_count; i++)
			synchronize_irq(xhci->msix_entries[i].vector);
	}
}

static int xhci_try_enable_msi(struct usb_hcd *hcd)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	struct pci_dev  *pdev;
	int ret;

	/* The xhci platform device has set up IRQs through usb_add_hcd. */
	if (xhci->quirks & XHCI_PLAT)
		return 0;

	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
	/*
	 * Some Fresco Logic host controllers advertise MSI, but fail to
	 * generate interrupts.  Don't even try to enable MSI.
	 */
	if (xhci->quirks & XHCI_BROKEN_MSI)
		goto legacy_irq;

	/* unregister the legacy interrupt */
	if (hcd->irq)
		free_irq(hcd->irq, hcd);
	hcd->irq = 0;

	ret = xhci_setup_msix(xhci);
	if (ret)
		/* fall back to msi*/
		ret = xhci_setup_msi(xhci);

	if (!ret)
		/* hcd->irq is 0, we have MSI */
		return 0;

	if (!pdev->irq) {
		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
		return -EINVAL;
	}

 legacy_irq:
	if (!strlen(hcd->irq_descr))
		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
			 hcd->driver->description, hcd->self.busnum);

	/* fall back to legacy interrupt*/
	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
			hcd->irq_descr, hcd);
	if (ret) {
		xhci_err(xhci, "request interrupt %d failed\n",
				pdev->irq);
		return ret;
	}
	hcd->irq = pdev->irq;
	return 0;
}

#else

static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
{
	return 0;
}

static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
{
}

static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
{
}

#endif

static void compliance_mode_recovery(unsigned long arg)
{
	struct xhci_hcd *xhci;
	struct usb_hcd *hcd;
	u32 temp;
	int i;

	xhci = (struct xhci_hcd *)arg;

	for (i = 0; i < xhci->num_usb3_ports; i++) {
		temp = readl(xhci->usb3_ports[i]);
		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
			/*
			 * Compliance Mode Detected. Letting USB Core
			 * handle the Warm Reset
			 */
			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
					"Compliance mode detected->port %d",
					i + 1);
			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
					"Attempting compliance mode recovery");
			hcd = xhci->shared_hcd;

			if (hcd->state == HC_STATE_SUSPENDED)
				usb_hcd_resume_root_hub(hcd);

			usb_hcd_poll_rh_status(hcd);
		}
	}

	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
		mod_timer(&xhci->comp_mode_recovery_timer,
			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
}

/*
 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 * that causes ports behind that hardware to enter compliance mode sometimes.
 * The quirk creates a timer that polls every 2 seconds the link state of
 * each host controller's port and recovers it by issuing a Warm reset
 * if Compliance mode is detected, otherwise the port will become "dead" (no
 * device connections or disconnections will be detected anymore). Becasue no
 * status event is generated when entering compliance mode (per xhci spec),
 * this quirk is needed on systems that have the failing hardware installed.
 */
static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
{
	xhci->port_status_u0 = 0;
	init_timer(&xhci->comp_mode_recovery_timer);

	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
	xhci->comp_mode_recovery_timer.expires = jiffies +
			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);

	set_timer_slack(&xhci->comp_mode_recovery_timer,
			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
	add_timer(&xhci->comp_mode_recovery_timer);
	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
			"Compliance mode recovery timer initialized");
}

/*
 * This function identifies the systems that have installed the SN65LVPE502CP
 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 * Systems:
 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 */
static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
{
	const char *dmi_product_name, *dmi_sys_vendor;

	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
	if (!dmi_product_name || !dmi_sys_vendor)
		return false;

	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
		return false;

	if (strstr(dmi_product_name, "Z420") ||
			strstr(dmi_product_name, "Z620") ||
			strstr(dmi_product_name, "Z820") ||
			strstr(dmi_product_name, "Z1 Workstation"))
		return true;

	return false;
}

static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
{
	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
}


/*
 * Initialize memory for HCD and xHC (one-time init).
 *
 * Program the PAGESIZE register, initialize the device context array, create
 * device contexts (?), set up a command ring segment (or two?), create event
 * ring (one for now).
 */
int xhci_init(struct usb_hcd *hcd)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	int retval = 0;

	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
	spin_lock_init(&xhci->lock);
	if (xhci->hci_version == 0x95 && link_quirk) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"QUIRK: Not clearing Link TRB chain bits.");
		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
	} else {
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"xHCI doesn't need link TRB QUIRK");
	}
	retval = xhci_mem_init(xhci, GFP_KERNEL);
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");

	/* Initializing Compliance Mode Recovery Data If Needed */
	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
		compliance_mode_recovery_timer_init(xhci);
	}

	return retval;
}

/*-------------------------------------------------------------------------*/


static int xhci_run_finished(struct xhci_hcd *xhci)
{
	if (xhci_start(xhci)) {
		xhci_halt(xhci);
		return -ENODEV;
	}
	xhci->shared_hcd->state = HC_STATE_RUNNING;
	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;

	if (xhci->quirks & XHCI_NEC_HOST)
		xhci_ring_cmd_db(xhci);

	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Finished xhci_run for USB3 roothub");
	return 0;
}

/*
 * Start the HC after it was halted.
 *
 * This function is called by the USB core when the HC driver is added.
 * Its opposite is xhci_stop().
 *
 * xhci_init() must be called once before this function can be called.
 * Reset the HC, enable device slot contexts, program DCBAAP, and
 * set command ring pointer and event ring pointer.
 *
 * Setup MSI-X vectors and enable interrupts.
 */
int xhci_run(struct usb_hcd *hcd)
{
	u32 temp;
	u64 temp_64;
	int ret;
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);

	/* Start the xHCI host controller running only after the USB 2.0 roothub
	 * is setup.
	 */

	hcd->uses_new_polling = 1;
	if (!usb_hcd_is_primary_hcd(hcd))
		return xhci_run_finished(xhci);

	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");

	ret = xhci_try_enable_msi(hcd);
	if (ret)
		return ret;

	xhci_dbg(xhci, "Command ring memory map follows:\n");
	xhci_debug_ring(xhci, xhci->cmd_ring);
	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
	xhci_dbg_cmd_ptrs(xhci);

	xhci_dbg(xhci, "ERST memory map follows:\n");
	xhci_dbg_erst(xhci, &xhci->erst);
	xhci_dbg(xhci, "Event ring:\n");
	xhci_debug_ring(xhci, xhci->event_ring);
	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
	temp_64 &= ~ERST_PTR_MASK;
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);

	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Set the interrupt modulation register");
	temp = readl(&xhci->ir_set->irq_control);
	temp &= ~ER_IRQ_INTERVAL_MASK;
	temp |= (u32) 160;
	writel(temp, &xhci->ir_set->irq_control);

	/* Set the HCD state before we enable the irqs */
	temp = readl(&xhci->op_regs->command);
	temp |= (CMD_EIE);
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Enable interrupts, cmd = 0x%x.", temp);
	writel(temp, &xhci->op_regs->command);

	temp = readl(&xhci->ir_set->irq_pending);
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
	xhci_print_ir_set(xhci, 0);

	if (xhci->quirks & XHCI_NEC_HOST) {
		struct xhci_command *command;
		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
		if (!command)
			return -ENOMEM;
		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
				TRB_TYPE(TRB_NEC_GET_FW));
	}
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Finished xhci_run for USB2 roothub");
	return 0;
}
EXPORT_SYMBOL_GPL(xhci_run);

static void xhci_only_stop_hcd(struct usb_hcd *hcd)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);

	spin_lock_irq(&xhci->lock);
	xhci_halt(xhci);

	/* The shared_hcd is going to be deallocated shortly (the USB core only
	 * calls this function when allocation fails in usb_add_hcd(), or
	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
	 */
	xhci->shared_hcd = NULL;
	spin_unlock_irq(&xhci->lock);
}

/*
 * Stop xHCI driver.
 *
 * This function is called by the USB core when the HC driver is removed.
 * Its opposite is xhci_run().
 *
 * Disable device contexts, disable IRQs, and quiesce the HC.
 * Reset the HC, finish any completed transactions, and cleanup memory.
 */
void xhci_stop(struct usb_hcd *hcd)
{
	u32 temp;
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);

	if (!usb_hcd_is_primary_hcd(hcd)) {
		xhci_only_stop_hcd(xhci->shared_hcd);
		return;
	}

	spin_lock_irq(&xhci->lock);
	/* Make sure the xHC is halted for a USB3 roothub
	 * (xhci_stop() could be called as part of failed init).
	 */
	xhci_halt(xhci);
	xhci_reset(xhci);
	spin_unlock_irq(&xhci->lock);

	xhci_cleanup_msix(xhci);

	/* Deleting Compliance Mode Recovery Timer */
	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
			(!(xhci_all_ports_seen_u0(xhci)))) {
		del_timer_sync(&xhci->comp_mode_recovery_timer);
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"%s: compliance mode recovery timer deleted",
				__func__);
	}

	if (xhci->quirks & XHCI_AMD_PLL_FIX)
		usb_amd_dev_put();

	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Disabling event ring interrupts");
	temp = readl(&xhci->op_regs->status);
	writel(temp & ~STS_EINT, &xhci->op_regs->status);
	temp = readl(&xhci->ir_set->irq_pending);
	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
	xhci_print_ir_set(xhci, 0);

	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
	xhci_mem_cleanup(xhci);
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"xhci_stop completed - status = %x",
			readl(&xhci->op_regs->status));
}

/*
 * Shutdown HC (not bus-specific)
 *
 * This is called when the machine is rebooting or halting.  We assume that the
 * machine will be powered off, and the HC's internal state will be reset.
 * Don't bother to free memory.
 *
 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 */
void xhci_shutdown(struct usb_hcd *hcd)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);

	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));

	spin_lock_irq(&xhci->lock);
	xhci_halt(xhci);
	/* Workaround for spurious wakeups at shutdown with HSW */
	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
		xhci_reset(xhci);
	spin_unlock_irq(&xhci->lock);

	xhci_cleanup_msix(xhci);

	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"xhci_shutdown completed - status = %x",
			readl(&xhci->op_regs->status));

	/* Yet another workaround for spurious wakeups at shutdown with HSW */
	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
}

#ifdef CONFIG_PM
static void xhci_save_registers(struct xhci_hcd *xhci)
{
	xhci->s3.command = readl(&xhci->op_regs->command);
	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
}

static void xhci_restore_registers(struct xhci_hcd *xhci)
{
	writel(xhci->s3.command, &xhci->op_regs->command);
	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
}

static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
{
	u64	val_64;

	/* step 2: initialize command ring buffer */
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
				      xhci->cmd_ring->dequeue) &
		 (u64) ~CMD_RING_RSVD_BITS) |
		xhci->cmd_ring->cycle_state;
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Setting command ring address to 0x%llx",
			(long unsigned long) val_64);
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
}

/*
 * The whole command ring must be cleared to zero when we suspend the host.
 *
 * The host doesn't save the command ring pointer in the suspend well, so we
 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 * aligned, because of the reserved bits in the command ring dequeue pointer
 * register.  Therefore, we can't just set the dequeue pointer back in the
 * middle of the ring (TRBs are 16-byte aligned).
 */
static void xhci_clear_command_ring(struct xhci_hcd *xhci)
{
	struct xhci_ring *ring;
	struct xhci_segment *seg;

	ring = xhci->cmd_ring;
	seg = ring->deq_seg;
	do {
		memset(seg->trbs, 0,
			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
			cpu_to_le32(~TRB_CYCLE);
		seg = seg->next;
	} while (seg != ring->deq_seg);

	/* Reset the software enqueue and dequeue pointers */
	ring->deq_seg = ring->first_seg;
	ring->dequeue = ring->first_seg->trbs;
	ring->enq_seg = ring->deq_seg;
	ring->enqueue = ring->dequeue;

	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
	/*
	 * Ring is now zeroed, so the HW should look for change of ownership
	 * when the cycle bit is set to 1.
	 */
	ring->cycle_state = 1;

	/*
	 * Reset the hardware dequeue pointer.
	 * Yes, this will need to be re-written after resume, but we're paranoid
	 * and want to make sure the hardware doesn't access bogus memory
	 * because, say, the BIOS or an SMI started the host without changing
	 * the command ring pointers.
	 */
	xhci_set_cmd_ring_deq(xhci);
}

static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
{
	int port_index;
	__le32 __iomem **port_array;
	unsigned long flags;
	u32 t1, t2;

	spin_lock_irqsave(&xhci->lock, flags);

	/* disble usb3 ports Wake bits*/
	port_index = xhci->num_usb3_ports;
	port_array = xhci->usb3_ports;
	while (port_index--) {
		t1 = readl(port_array[port_index]);
		t1 = xhci_port_state_to_neutral(t1);
		t2 = t1 & ~PORT_WAKE_BITS;
		if (t1 != t2)
			writel(t2, port_array[port_index]);
	}

	/* disble usb2 ports Wake bits*/
	port_index = xhci->num_usb2_ports;
	port_array = xhci->usb2_ports;
	while (port_index--) {
		t1 = readl(port_array[port_index]);
		t1 = xhci_port_state_to_neutral(t1);
		t2 = t1 & ~PORT_WAKE_BITS;
		if (t1 != t2)
			writel(t2, port_array[port_index]);
	}

	spin_unlock_irqrestore(&xhci->lock, flags);
}

/*
 * Stop HC (not bus-specific)
 *
 * This is called when the machine transition into S3/S4 mode.
 *
 */
int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
{
	int			rc = 0;
	unsigned int		delay = XHCI_MAX_HALT_USEC;
	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
	u32			command;

	if (hcd->state != HC_STATE_SUSPENDED ||
			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
		return -EINVAL;

	/* Clear root port wake on bits if wakeup not allowed. */
	if (!do_wakeup)
		xhci_disable_port_wake_on_bits(xhci);

	/* Don't poll the roothubs on bus suspend. */
	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
	del_timer_sync(&hcd->rh_timer);
	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
	del_timer_sync(&xhci->shared_hcd->rh_timer);

	spin_lock_irq(&xhci->lock);
	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
	/* step 1: stop endpoint */
	/* skipped assuming that port suspend has done */

	/* step 2: clear Run/Stop bit */
	command = readl(&xhci->op_regs->command);
	command &= ~CMD_RUN;
	writel(command, &xhci->op_regs->command);

	/* Some chips from Fresco Logic need an extraordinary delay */
	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;

	if (xhci_handshake(xhci, &xhci->op_regs->status,
		      STS_HALT, STS_HALT, delay)) {
		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
		spin_unlock_irq(&xhci->lock);
		return -ETIMEDOUT;
	}
	xhci_clear_command_ring(xhci);

	/* step 3: save registers */
	xhci_save_registers(xhci);

	/* step 4: set CSS flag */
	command = readl(&xhci->op_regs->command);
	command |= CMD_CSS;
	writel(command, &xhci->op_regs->command);
	if (xhci_handshake(xhci, &xhci->op_regs->status,
				STS_SAVE, 0, 10 * 1000)) {
		xhci_warn(xhci, "WARN: xHC save state timeout\n");
		spin_unlock_irq(&xhci->lock);
		return -ETIMEDOUT;
	}
	spin_unlock_irq(&xhci->lock);

	/*
	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
	 * is about to be suspended.
	 */
	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
			(!(xhci_all_ports_seen_u0(xhci)))) {
		del_timer_sync(&xhci->comp_mode_recovery_timer);
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"%s: compliance mode recovery timer deleted",
				__func__);
	}

	/* step 5: remove core well power */
	/* synchronize irq when using MSI-X */
	xhci_msix_sync_irqs(xhci);

	return rc;
}
EXPORT_SYMBOL_GPL(xhci_suspend);

/*
 * start xHC (not bus-specific)
 *
 * This is called when the machine transition from S3/S4 mode.
 *
 */
int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
{
	u32			command, temp = 0, status;
	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
	struct usb_hcd		*secondary_hcd;
	int			retval = 0;
	bool			comp_timer_running = false;

	/* Wait a bit if either of the roothubs need to settle from the
	 * transition into bus suspend.
	 */
	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
			time_before(jiffies,
				xhci->bus_state[1].next_statechange))
		msleep(100);

	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);

	spin_lock_irq(&xhci->lock);
	if (xhci->quirks & XHCI_RESET_ON_RESUME)
		hibernated = true;

	if (!hibernated) {
		/* step 1: restore register */
		xhci_restore_registers(xhci);
		/* step 2: initialize command ring buffer */
		xhci_set_cmd_ring_deq(xhci);
		/* step 3: restore state and start state*/
		/* step 3: set CRS flag */
		command = readl(&xhci->op_regs->command);
		command |= CMD_CRS;
		writel(command, &xhci->op_regs->command);
		if (xhci_handshake(xhci, &xhci->op_regs->status,
			      STS_RESTORE, 0, 10 * 1000)) {
			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
			spin_unlock_irq(&xhci->lock);
			return -ETIMEDOUT;
		}
		temp = readl(&xhci->op_regs->status);
	}

	/* If restore operation fails, re-initialize the HC during resume */
	if ((temp & STS_SRE) || hibernated) {

		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
				!(xhci_all_ports_seen_u0(xhci))) {
			del_timer_sync(&xhci->comp_mode_recovery_timer);
			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"Compliance Mode Recovery Timer deleted!");
		}

		/* Let the USB core know _both_ roothubs lost power. */
		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);

		xhci_dbg(xhci, "Stop HCD\n");
		xhci_halt(xhci);
		xhci_reset(xhci);
		spin_unlock_irq(&xhci->lock);
		xhci_cleanup_msix(xhci);

		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
		temp = readl(&xhci->op_regs->status);
		writel(temp & ~STS_EINT, &xhci->op_regs->status);
		temp = readl(&xhci->ir_set->irq_pending);
		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
		xhci_print_ir_set(xhci, 0);

		xhci_dbg(xhci, "cleaning up memory\n");
		xhci_mem_cleanup(xhci);
		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
			    readl(&xhci->op_regs->status));

		/* USB core calls the PCI reinit and start functions twice:
		 * first with the primary HCD, and then with the secondary HCD.
		 * If we don't do the same, the host will never be started.
		 */
		if (!usb_hcd_is_primary_hcd(hcd))
			secondary_hcd = hcd;
		else
			secondary_hcd = xhci->shared_hcd;

		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
		retval = xhci_init(hcd->primary_hcd);
		if (retval)
			return retval;
		comp_timer_running = true;

		xhci_dbg(xhci, "Start the primary HCD\n");
		retval = xhci_run(hcd->primary_hcd);
		if (!retval) {
			xhci_dbg(xhci, "Start the secondary HCD\n");
			retval = xhci_run(secondary_hcd);
		}
		hcd->state = HC_STATE_SUSPENDED;
		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
		goto done;
	}

	/* step 4: set Run/Stop bit */
	command = readl(&xhci->op_regs->command);
	command |= CMD_RUN;
	writel(command, &xhci->op_regs->command);
	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
		  0, 250 * 1000);

	/* step 5: walk topology and initialize portsc,
	 * portpmsc and portli
	 */
	/* this is done in bus_resume */

	/* step 6: restart each of the previously
	 * Running endpoints by ringing their doorbells
	 */

	spin_unlock_irq(&xhci->lock);

 done:
	if (retval == 0) {
		/* Resume root hubs only when have pending events. */
		status = readl(&xhci->op_regs->status);
		if (status & STS_EINT) {
			usb_hcd_resume_root_hub(hcd);
			usb_hcd_resume_root_hub(xhci->shared_hcd);
		}
	}

	/*
	 * If system is subject to the Quirk, Compliance Mode Timer needs to
	 * be re-initialized Always after a system resume. Ports are subject
	 * to suffer the Compliance Mode issue again. It doesn't matter if
	 * ports have entered previously to U0 before system's suspension.
	 */
	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
		compliance_mode_recovery_timer_init(xhci);

	/* Re-enable port polling. */
	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
	usb_hcd_poll_rh_status(hcd);
	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
	usb_hcd_poll_rh_status(xhci->shared_hcd);

	return retval;
}
EXPORT_SYMBOL_GPL(xhci_resume);
#endif	/* CONFIG_PM */

/*-------------------------------------------------------------------------*/

/**
 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
 * value to right shift 1 for the bitmask.
 *
 * Index  = (epnum * 2) + direction - 1,
 * where direction = 0 for OUT, 1 for IN.
 * For control endpoints, the IN index is used (OUT index is unused), so
 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
 */
unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
{
	unsigned int index;
	if (usb_endpoint_xfer_control(desc))
		index = (unsigned int) (usb_endpoint_num(desc)*2);
	else
		index = (unsigned int) (usb_endpoint_num(desc)*2) +
			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
	return index;
}

/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
 * address from the XHCI endpoint index.
 */
unsigned int xhci_get_endpoint_address(unsigned int ep_index)
{
	unsigned int number = DIV_ROUND_UP(ep_index, 2);
	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
	return direction | number;
}

/* Find the flag for this endpoint (for use in the control context).  Use the
 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
 * bit 1, etc.
 */
unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
{
	return 1 << (xhci_get_endpoint_index(desc) + 1);
}

/* Find the flag for this endpoint (for use in the control context).  Use the
 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
 * bit 1, etc.
 */
unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
{
	return 1 << (ep_index + 1);
}

/* Compute the last valid endpoint context index.  Basically, this is the
 * endpoint index plus one.  For slot contexts with more than valid endpoint,
 * we find the most significant bit set in the added contexts flags.
 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
 */
unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
{
	return fls(added_ctxs) - 1;
}

/* Returns 1 if the arguments are OK;
 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
 */
static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
		const char *func) {
	struct xhci_hcd	*xhci;
	struct xhci_virt_device	*virt_dev;

	if (!hcd || (check_ep && !ep) || !udev) {
		pr_debug("xHCI %s called with invalid args\n", func);
		return -EINVAL;
	}
	if (!udev->parent) {
		pr_debug("xHCI %s called for root hub\n", func);
		return 0;
	}

	xhci = hcd_to_xhci(hcd);
	if (check_virt_dev) {
		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
					func);
			return -EINVAL;
		}

		virt_dev = xhci->devs[udev->slot_id];
		if (virt_dev->udev != udev) {
			xhci_dbg(xhci, "xHCI %s called with udev and "
					  "virt_dev does not match\n", func);
			return -EINVAL;
		}
	}

	if (xhci->xhc_state & XHCI_STATE_HALTED)
		return -ENODEV;

	return 1;
}

static int xhci_configure_endpoint(struct xhci_hcd *xhci,
		struct usb_device *udev, struct xhci_command *command,
		bool ctx_change, bool must_succeed);

/*
 * Full speed devices may have a max packet size greater than 8 bytes, but the
 * USB core doesn't know that until it reads the first 8 bytes of the
 * descriptor.  If the usb_device's max packet size changes after that point,
 * we need to issue an evaluate context command and wait on it.
 */
static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
		unsigned int ep_index, struct urb *urb)
{
	struct xhci_container_ctx *out_ctx;
	struct xhci_input_control_ctx *ctrl_ctx;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_command *command;
	int max_packet_size;
	int hw_max_packet_size;
	int ret = 0;

	out_ctx = xhci->devs[slot_id]->out_ctx;
	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
	if (hw_max_packet_size != max_packet_size) {
		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
				"Max Packet Size for ep 0 changed.");
		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
				"Max packet size in usb_device = %d",
				max_packet_size);
		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
				"Max packet size in xHCI HW = %d",
				hw_max_packet_size);
		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
				"Issuing evaluate context command.");

		/* Set up the input context flags for the command */
		/* FIXME: This won't work if a non-default control endpoint
		 * changes max packet sizes.
		 */

		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
		if (!command)
			return -ENOMEM;

		command->in_ctx = xhci->devs[slot_id]->in_ctx;
		ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
		if (!ctrl_ctx) {
			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
					__func__);
			ret = -ENOMEM;
			goto command_cleanup;
		}
		/* Set up the modified control endpoint 0 */
		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
				xhci->devs[slot_id]->out_ctx, ep_index);

		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));

		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
		ctrl_ctx->drop_flags = 0;

		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
		xhci_dbg_ctx(xhci, out_ctx, ep_index);

		ret = xhci_configure_endpoint(xhci, urb->dev, command,
				true, false);

		/* Clean up the input context for later use by bandwidth
		 * functions.
		 */
		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
command_cleanup:
		kfree(command->completion);
		kfree(command);
	}
	return ret;
}

/*
 * non-error returns are a promise to giveback() the urb later
 * we drop ownership so next owner (or urb unlink) can get it
 */
int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	struct xhci_td *buffer;
	unsigned long flags;
	int ret = 0;
	unsigned int slot_id, ep_index;
	struct urb_priv	*urb_priv;
	int size, i;

	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
					true, true, __func__) <= 0)
		return -EINVAL;

	slot_id = urb->dev->slot_id;
	ep_index = xhci_get_endpoint_index(&urb->ep->desc);

	if (!HCD_HW_ACCESSIBLE(hcd)) {
		if (!in_interrupt())
			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
		ret = -ESHUTDOWN;
		goto exit;
	}

	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
		size = urb->number_of_packets;
	else
		size = 1;

	urb_priv = kzalloc(sizeof(struct urb_priv) +
				  size * sizeof(struct xhci_td *), mem_flags);
	if (!urb_priv)
		return -ENOMEM;

	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
	if (!buffer) {
		kfree(urb_priv);
		return -ENOMEM;
	}

	for (i = 0; i < size; i++) {
		urb_priv->td[i] = buffer;
		buffer++;
	}

	urb_priv->length = size;
	urb_priv->td_cnt = 0;
	urb->hcpriv = urb_priv;

	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
		/* Check to see if the max packet size for the default control
		 * endpoint changed during FS device enumeration
		 */
		if (urb->dev->speed == USB_SPEED_FULL) {
			ret = xhci_check_maxpacket(xhci, slot_id,
					ep_index, urb);
			if (ret < 0) {
				xhci_urb_free_priv(xhci, urb_priv);
				urb->hcpriv = NULL;
				return ret;
			}
		}

		/* We have a spinlock and interrupts disabled, so we must pass
		 * atomic context to this function, which may allocate memory.
		 */
		spin_lock_irqsave(&xhci->lock, flags);
		if (xhci->xhc_state & XHCI_STATE_DYING)
			goto dying;
		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
				slot_id, ep_index);
		if (ret)
			goto free_priv;
		spin_unlock_irqrestore(&xhci->lock, flags);
	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
		spin_lock_irqsave(&xhci->lock, flags);
		if (xhci->xhc_state & XHCI_STATE_DYING)
			goto dying;
		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
				EP_GETTING_STREAMS) {
			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
					"is transitioning to using streams.\n");
			ret = -EINVAL;
		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
				EP_GETTING_NO_STREAMS) {
			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
					"is transitioning to "
					"not having streams.\n");
			ret = -EINVAL;
		} else {
			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
					slot_id, ep_index);
		}
		if (ret)
			goto free_priv;
		spin_unlock_irqrestore(&xhci->lock, flags);
	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
		spin_lock_irqsave(&xhci->lock, flags);
		if (xhci->xhc_state & XHCI_STATE_DYING)
			goto dying;
		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
				slot_id, ep_index);
		if (ret)
			goto free_priv;
		spin_unlock_irqrestore(&xhci->lock, flags);
	} else {
		spin_lock_irqsave(&xhci->lock, flags);
		if (xhci->xhc_state & XHCI_STATE_DYING)
			goto dying;
		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
				slot_id, ep_index);
		if (ret)
			goto free_priv;
		spin_unlock_irqrestore(&xhci->lock, flags);
	}
exit:
	return ret;
dying:
	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
			"non-responsive xHCI host.\n",
			urb->ep->desc.bEndpointAddress, urb);
	ret = -ESHUTDOWN;
free_priv:
	xhci_urb_free_priv(xhci, urb_priv);
	urb->hcpriv = NULL;
	spin_unlock_irqrestore(&xhci->lock, flags);
	return ret;
}

/* Get the right ring for the given URB.
 * If the endpoint supports streams, boundary check the URB's stream ID.
 * If the endpoint doesn't support streams, return the singular endpoint ring.
 */
static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
		struct urb *urb)
{
	unsigned int slot_id;
	unsigned int ep_index;
	unsigned int stream_id;
	struct xhci_virt_ep *ep;

	slot_id = urb->dev->slot_id;
	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
	stream_id = urb->stream_id;
	ep = &xhci->devs[slot_id]->eps[ep_index];
	/* Common case: no streams */
	if (!(ep->ep_state & EP_HAS_STREAMS))
		return ep->ring;

	if (stream_id == 0) {
		xhci_warn(xhci,
				"WARN: Slot ID %u, ep index %u has streams, "
				"but URB has no stream ID.\n",
				slot_id, ep_index);
		return NULL;
	}

	if (stream_id < ep->stream_info->num_streams)
		return ep->stream_info->stream_rings[stream_id];

	xhci_warn(xhci,
			"WARN: Slot ID %u, ep index %u has "
			"stream IDs 1 to %u allocated, "
			"but stream ID %u is requested.\n",
			slot_id, ep_index,
			ep->stream_info->num_streams - 1,
			stream_id);
	return NULL;
}

/*
 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
 * should pick up where it left off in the TD, unless a Set Transfer Ring
 * Dequeue Pointer is issued.
 *
 * The TRBs that make up the buffers for the canceled URB will be "removed" from
 * the ring.  Since the ring is a contiguous structure, they can't be physically
 * removed.  Instead, there are two options:
 *
 *  1) If the HC is in the middle of processing the URB to be canceled, we
 *     simply move the ring's dequeue pointer past those TRBs using the Set
 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
 *     when drivers timeout on the last submitted URB and attempt to cancel.
 *
 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
 *     HC will need to invalidate the any TRBs it has cached after the stop
 *     endpoint command, as noted in the xHCI 0.95 errata.
 *
 *  3) The TD may have completed by the time the Stop Endpoint Command
 *     completes, so software needs to handle that case too.
 *
 * This function should protect against the TD enqueueing code ringing the
 * doorbell while this code is waiting for a Stop Endpoint command to complete.
 * It also needs to account for multiple cancellations on happening at the same
 * time for the same endpoint.
 *
 * Note that this function can be called in any context, or so says
 * usb_hcd_unlink_urb()
 */
int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
	unsigned long flags;
	int ret, i;
	u32 temp;
	struct xhci_hcd *xhci;
	struct urb_priv	*urb_priv;
	struct xhci_td *td;
	unsigned int ep_index;
	struct xhci_ring *ep_ring;
	struct xhci_virt_ep *ep;
	struct xhci_command *command;

	xhci = hcd_to_xhci(hcd);
	spin_lock_irqsave(&xhci->lock, flags);
	/* Make sure the URB hasn't completed or been unlinked already */
	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
	if (ret || !urb->hcpriv)
		goto done;
	temp = readl(&xhci->op_regs->status);
	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
				"HW died, freeing TD.");
		urb_priv = urb->hcpriv;
		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
			td = urb_priv->td[i];
			if (!list_empty(&td->td_list))
				list_del_init(&td->td_list);
			if (!list_empty(&td->cancelled_td_list))
				list_del_init(&td->cancelled_td_list);
		}

		usb_hcd_unlink_urb_from_ep(hcd, urb);
		spin_unlock_irqrestore(&xhci->lock, flags);
		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
		xhci_urb_free_priv(xhci, urb_priv);
		return ret;
	}
	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
			(xhci->xhc_state & XHCI_STATE_HALTED)) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
				"Ep 0x%x: URB %p to be canceled on "
				"non-responsive xHCI host.",
				urb->ep->desc.bEndpointAddress, urb);
		/* Let the stop endpoint command watchdog timer (which set this
		 * state) finish cleaning up the endpoint TD lists.  We must
		 * have caught it in the middle of dropping a lock and giving
		 * back an URB.
		 */
		goto done;
	}

	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
	if (!ep_ring) {
		ret = -EINVAL;
		goto done;
	}

	urb_priv = urb->hcpriv;
	i = urb_priv->td_cnt;
	if (i < urb_priv->length)
		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
				"Cancel URB %p, dev %s, ep 0x%x, "
				"starting at offset 0x%llx",
				urb, urb->dev->devpath,
				urb->ep->desc.bEndpointAddress,
				(unsigned long long) xhci_trb_virt_to_dma(
					urb_priv->td[i]->start_seg,
					urb_priv->td[i]->first_trb));

	for (; i < urb_priv->length; i++) {
		td = urb_priv->td[i];
		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
	}

	/* Queue a stop endpoint command, but only if this is
	 * the first cancellation to be handled.
	 */
	if (!(ep->ep_state & EP_HALT_PENDING)) {
		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
		if (!command) {
			ret = -ENOMEM;
			goto done;
		}
		ep->ep_state |= EP_HALT_PENDING;
		ep->stop_cmds_pending++;
		ep->stop_cmd_timer.expires = jiffies +
			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
		add_timer(&ep->stop_cmd_timer);
		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
					 ep_index, 0);
		xhci_ring_cmd_db(xhci);
	}
done:
	spin_unlock_irqrestore(&xhci->lock, flags);
	return ret;
}

/* Drop an endpoint from a new bandwidth configuration for this device.
 * Only one call to this function is allowed per endpoint before
 * check_bandwidth() or reset_bandwidth() must be called.
 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
 * add the endpoint to the schedule with possibly new parameters denoted by a
 * different endpoint descriptor in usb_host_endpoint.
 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
 * not allowed.
 *
 * The USB core will not allow URBs to be queued to an endpoint that is being
 * disabled, so there's no need for mutual exclusion to protect
 * the xhci->devs[slot_id] structure.
 */
int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	struct xhci_hcd *xhci;
	struct xhci_container_ctx *in_ctx, *out_ctx;
	struct xhci_input_control_ctx *ctrl_ctx;
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	u32 drop_flag;
	u32 new_add_flags, new_drop_flags;
	int ret;

	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
	if (ret <= 0)
		return ret;
	xhci = hcd_to_xhci(hcd);
	if (xhci->xhc_state & XHCI_STATE_DYING)
		return -ENODEV;

	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
	drop_flag = xhci_get_endpoint_flag(&ep->desc);
	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
				__func__, drop_flag);
		return 0;
	}

	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
	if (!ctrl_ctx) {
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		return 0;
	}

	ep_index = xhci_get_endpoint_index(&ep->desc);
	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	/* If the HC already knows the endpoint is disabled,
	 * or the HCD has noted it is disabled, ignore this request
	 */
	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
	     cpu_to_le32(EP_STATE_DISABLED)) ||
	    le32_to_cpu(ctrl_ctx->drop_flags) &
	    xhci_get_endpoint_flag(&ep->desc)) {
		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
				__func__, ep);
		return 0;
	}

	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);

	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);

	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);

	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
			(unsigned int) ep->desc.bEndpointAddress,
			udev->slot_id,
			(unsigned int) new_drop_flags,
			(unsigned int) new_add_flags);
	return 0;
}

/* Add an endpoint to a new possible bandwidth configuration for this device.
 * Only one call to this function is allowed per endpoint before
 * check_bandwidth() or reset_bandwidth() must be called.
 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
 * add the endpoint to the schedule with possibly new parameters denoted by a
 * different endpoint descriptor in usb_host_endpoint.
 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
 * not allowed.
 *
 * The USB core will not allow URBs to be queued to an endpoint until the
 * configuration or alt setting is installed in the device, so there's no need
 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
 */
int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	struct xhci_hcd *xhci;
	struct xhci_container_ctx *in_ctx, *out_ctx;
	unsigned int ep_index;
	struct xhci_input_control_ctx *ctrl_ctx;
	u32 added_ctxs;
	u32 new_add_flags, new_drop_flags;
	struct xhci_virt_device *virt_dev;
	int ret = 0;

	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
	if (ret <= 0) {
		/* So we won't queue a reset ep command for a root hub */
		ep->hcpriv = NULL;
		return ret;
	}
	xhci = hcd_to_xhci(hcd);
	if (xhci->xhc_state & XHCI_STATE_DYING)
		return -ENODEV;

	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
		/* FIXME when we have to issue an evaluate endpoint command to
		 * deal with ep0 max packet size changing once we get the
		 * descriptors
		 */
		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
				__func__, added_ctxs);
		return 0;
	}

	virt_dev = xhci->devs[udev->slot_id];
	in_ctx = virt_dev->in_ctx;
	out_ctx = virt_dev->out_ctx;
	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
	if (!ctrl_ctx) {
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		return 0;
	}

	ep_index = xhci_get_endpoint_index(&ep->desc);
	/* If this endpoint is already in use, and the upper layers are trying
	 * to add it again without dropping it, reject the addition.
	 */
	if (virt_dev->eps[ep_index].ring &&
			!(le32_to_cpu(ctrl_ctx->drop_flags) &
				xhci_get_endpoint_flag(&ep->desc))) {
		xhci_warn(xhci, "Trying to add endpoint 0x%x "
				"without dropping it.\n",
				(unsigned int) ep->desc.bEndpointAddress);
		return -EINVAL;
	}

	/* If the HCD has already noted the endpoint is enabled,
	 * ignore this request.
	 */
	if (le32_to_cpu(ctrl_ctx->add_flags) &
	    xhci_get_endpoint_flag(&ep->desc)) {
		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
				__func__, ep);
		return 0;
	}

	/*
	 * Configuration and alternate setting changes must be done in
	 * process context, not interrupt context (or so documenation
	 * for usb_set_interface() and usb_set_configuration() claim).
	 */
	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
				__func__, ep->desc.bEndpointAddress);
		return -ENOMEM;
	}

	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);

	/* If xhci_endpoint_disable() was called for this endpoint, but the
	 * xHC hasn't been notified yet through the check_bandwidth() call,
	 * this re-adds a new state for the endpoint from the new endpoint
	 * descriptors.  We must drop and re-add this endpoint, so we leave the
	 * drop flags alone.
	 */
	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);

	/* Store the usb_device pointer for later use */
	ep->hcpriv = udev;

	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
			(unsigned int) ep->desc.bEndpointAddress,
			udev->slot_id,
			(unsigned int) new_drop_flags,
			(unsigned int) new_add_flags);
	return 0;
}

static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
{
	struct xhci_input_control_ctx *ctrl_ctx;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_slot_ctx *slot_ctx;
	int i;

	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
	if (!ctrl_ctx) {
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		return;
	}

	/* When a device's add flag and drop flag are zero, any subsequent
	 * configure endpoint command will leave that endpoint's state
	 * untouched.  Make sure we don't leave any old state in the input
	 * endpoint contexts.
	 */
	ctrl_ctx->drop_flags = 0;
	ctrl_ctx->add_flags = 0;
	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
	/* Endpoint 0 is always valid */
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
	for (i = 1; i < 31; ++i) {
		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
		ep_ctx->ep_info = 0;
		ep_ctx->ep_info2 = 0;
		ep_ctx->deq = 0;
		ep_ctx->tx_info = 0;
	}
}

static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
		struct usb_device *udev, u32 *cmd_status)
{
	int ret;

	switch (*cmd_status) {
	case COMP_CMD_ABORT:
	case COMP_CMD_STOP:
		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
		ret = -ETIME;
		break;
	case COMP_ENOMEM:
		dev_warn(&udev->dev,
			 "Not enough host controller resources for new device state.\n");
		ret = -ENOMEM;
		/* FIXME: can we allocate more resources for the HC? */
		break;
	case COMP_BW_ERR:
	case COMP_2ND_BW_ERR:
		dev_warn(&udev->dev,
			 "Not enough bandwidth for new device state.\n");
		ret = -ENOSPC;
		/* FIXME: can we go back to the old state? */
		break;
	case COMP_TRB_ERR:
		/* the HCD set up something wrong */
		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
				"add flag = 1, "
				"and endpoint is not disabled.\n");
		ret = -EINVAL;
		break;
	case COMP_DEV_ERR:
		dev_warn(&udev->dev,
			 "ERROR: Incompatible device for endpoint configure command.\n");
		ret = -ENODEV;
		break;
	case COMP_SUCCESS:
		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
				"Successful Endpoint Configure command");
		ret = 0;
		break;
	default:
		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
				*cmd_status);
		ret = -EINVAL;
		break;
	}
	return ret;
}

static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
		struct usb_device *udev, u32 *cmd_status)
{
	int ret;
	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];

	switch (*cmd_status) {
	case COMP_CMD_ABORT:
	case COMP_CMD_STOP:
		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
		ret = -ETIME;
		break;
	case COMP_EINVAL:
		dev_warn(&udev->dev,
			 "WARN: xHCI driver setup invalid evaluate context command.\n");
		ret = -EINVAL;
		break;
	case COMP_EBADSLT:
		dev_warn(&udev->dev,
			"WARN: slot not enabled for evaluate context command.\n");
		ret = -EINVAL;
		break;
	case COMP_CTX_STATE:
		dev_warn(&udev->dev,
			"WARN: invalid context state for evaluate context command.\n");
		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
		ret = -EINVAL;
		break;
	case COMP_DEV_ERR:
		dev_warn(&udev->dev,
			"ERROR: Incompatible device for evaluate context command.\n");
		ret = -ENODEV;
		break;
	case COMP_MEL_ERR:
		/* Max Exit Latency too large error */
		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
		ret = -EINVAL;
		break;
	case COMP_SUCCESS:
		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
				"Successful evaluate context command");
		ret = 0;
		break;
	default:
		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
			*cmd_status);
		ret = -EINVAL;
		break;
	}
	return ret;
}

static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
		struct xhci_input_control_ctx *ctrl_ctx)
{
	u32 valid_add_flags;
	u32 valid_drop_flags;

	/* Ignore the slot flag (bit 0), and the default control endpoint flag
	 * (bit 1).  The default control endpoint is added during the Address
	 * Device command and is never removed until the slot is disabled.
	 */
	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;

	/* Use hweight32 to count the number of ones in the add flags, or
	 * number of endpoints added.  Don't count endpoints that are changed
	 * (both added and dropped).
	 */
	return hweight32(valid_add_flags) -
		hweight32(valid_add_flags & valid_drop_flags);
}

static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
		struct xhci_input_control_ctx *ctrl_ctx)
{
	u32 valid_add_flags;
	u32 valid_drop_flags;

	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;

	return hweight32(valid_drop_flags) -
		hweight32(valid_add_flags & valid_drop_flags);
}

/*
 * We need to reserve the new number of endpoints before the configure endpoint
 * command completes.  We can't subtract the dropped endpoints from the number
 * of active endpoints until the command completes because we can oversubscribe
 * the host in this case:
 *
 *  - the first configure endpoint command drops more endpoints than it adds
 *  - a second configure endpoint command that adds more endpoints is queued
 *  - the first configure endpoint command fails, so the config is unchanged
 *  - the second command may succeed, even though there isn't enough resources
 *
 * Must be called with xhci->lock held.
 */
static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
		struct xhci_input_control_ctx *ctrl_ctx)
{
	u32 added_eps;

	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"Not enough ep ctxs: "
				"%u active, need to add %u, limit is %u.",
				xhci->num_active_eps, added_eps,
				xhci->limit_active_eps);
		return -ENOMEM;
	}
	xhci->num_active_eps += added_eps;
	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
			"Adding %u ep ctxs, %u now active.", added_eps,
			xhci->num_active_eps);
	return 0;
}

/*
 * The configure endpoint was failed by the xHC for some other reason, so we
 * need to revert the resources that failed configuration would have used.
 *
 * Must be called with xhci->lock held.
 */
static void xhci_free_host_resources(struct xhci_hcd *xhci,
		struct xhci_input_control_ctx *ctrl_ctx)
{
	u32 num_failed_eps;

	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
	xhci->num_active_eps -= num_failed_eps;
	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
			"Removing %u failed ep ctxs, %u now active.",
			num_failed_eps,
			xhci->num_active_eps);
}

/*
 * Now that the command has completed, clean up the active endpoint count by
 * subtracting out the endpoints that were dropped (but not changed).
 *
 * Must be called with xhci->lock held.
 */
static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
		struct xhci_input_control_ctx *ctrl_ctx)
{
	u32 num_dropped_eps;

	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
	xhci->num_active_eps -= num_dropped_eps;
	if (num_dropped_eps)
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"Removing %u dropped ep ctxs, %u now active.",
				num_dropped_eps,
				xhci->num_active_eps);
}

static unsigned int xhci_get_block_size(struct usb_device *udev)
{
	switch (udev->speed) {
	case USB_SPEED_LOW:
	case USB_SPEED_FULL:
		return FS_BLOCK;
	case USB_SPEED_HIGH:
		return HS_BLOCK;
	case USB_SPEED_SUPER:
		return SS_BLOCK;
	case USB_SPEED_UNKNOWN:
	case USB_SPEED_WIRELESS:
	default:
		/* Should never happen */
		return 1;
	}
}

static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
{
	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
		return LS_OVERHEAD;
	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
		return FS_OVERHEAD;
	return HS_OVERHEAD;
}

/* If we are changing a LS/FS device under a HS hub,
 * make sure (if we are activating a new TT) that the HS bus has enough
 * bandwidth for this new TT.
 */
static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		int old_active_eps)
{
	struct xhci_interval_bw_table *bw_table;
	struct xhci_tt_bw_info *tt_info;

	/* Find the bandwidth table for the root port this TT is attached to. */
	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
	tt_info = virt_dev->tt_info;
	/* If this TT already had active endpoints, the bandwidth for this TT
	 * has already been added.  Removing all periodic endpoints (and thus
	 * making the TT enactive) will only decrease the bandwidth used.
	 */
	if (old_active_eps)
		return 0;
	if (old_active_eps == 0 && tt_info->active_eps != 0) {
		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
			return -ENOMEM;
		return 0;
	}
	/* Not sure why we would have no new active endpoints...
	 *
	 * Maybe because of an Evaluate Context change for a hub update or a
	 * control endpoint 0 max packet size change?
	 * FIXME: skip the bandwidth calculation in that case.
	 */
	return 0;
}

static int xhci_check_ss_bw(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev)
{
	unsigned int bw_reserved;

	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
		return -ENOMEM;

	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
		return -ENOMEM;

	return 0;
}

/*
 * This algorithm is a very conservative estimate of the worst-case scheduling
 * scenario for any one interval.  The hardware dynamically schedules the
 * packets, so we can't tell which microframe could be the limiting factor in
 * the bandwidth scheduling.  This only takes into account periodic endpoints.
 *
 * Obviously, we can't solve an NP complete problem to find the minimum worst
 * case scenario.  Instead, we come up with an estimate that is no less than
 * the worst case bandwidth used for any one microframe, but may be an
 * over-estimate.
 *
 * We walk the requirements for each endpoint by interval, starting with the
 * smallest interval, and place packets in the schedule where there is only one
 * possible way to schedule packets for that interval.  In order to simplify
 * this algorithm, we record the largest max packet size for each interval, and
 * assume all packets will be that size.
 *
 * For interval 0, we obviously must schedule all packets for each interval.
 * The bandwidth for interval 0 is just the amount of data to be transmitted
 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
 * the number of packets).
 *
 * For interval 1, we have two possible microframes to schedule those packets
 * in.  For this algorithm, if we can schedule the same number of packets for
 * each possible scheduling opportunity (each microframe), we will do so.  The
 * remaining number of packets will be saved to be transmitted in the gaps in
 * the next interval's scheduling sequence.
 *
 * As we move those remaining packets to be scheduled with interval 2 packets,
 * we have to double the number of remaining packets to transmit.  This is
 * because the intervals are actually powers of 2, and we would be transmitting
 * the previous interval's packets twice in this interval.  We also have to be
 * sure that when we look at the largest max packet size for this interval, we
 * also look at the largest max packet size for the remaining packets and take
 * the greater of the two.
 *
 * The algorithm continues to evenly distribute packets in each scheduling
 * opportunity, and push the remaining packets out, until we get to the last
 * interval.  Then those packets and their associated overhead are just added
 * to the bandwidth used.
 */
static int xhci_check_bw_table(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		int old_active_eps)
{
	unsigned int bw_reserved;
	unsigned int max_bandwidth;
	unsigned int bw_used;
	unsigned int block_size;
	struct xhci_interval_bw_table *bw_table;
	unsigned int packet_size = 0;
	unsigned int overhead = 0;
	unsigned int packets_transmitted = 0;
	unsigned int packets_remaining = 0;
	unsigned int i;

	if (virt_dev->udev->speed == USB_SPEED_SUPER)
		return xhci_check_ss_bw(xhci, virt_dev);

	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
		max_bandwidth = HS_BW_LIMIT;
		/* Convert percent of bus BW reserved to blocks reserved */
		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
	} else {
		max_bandwidth = FS_BW_LIMIT;
		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
	}

	bw_table = virt_dev->bw_table;
	/* We need to translate the max packet size and max ESIT payloads into
	 * the units the hardware uses.
	 */
	block_size = xhci_get_block_size(virt_dev->udev);

	/* If we are manipulating a LS/FS device under a HS hub, double check
	 * that the HS bus has enough bandwidth if we are activing a new TT.
	 */
	if (virt_dev->tt_info) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"Recalculating BW for rootport %u",
				virt_dev->real_port);
		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
					"newly activated TT.\n");
			return -ENOMEM;
		}
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"Recalculating BW for TT slot %u port %u",
				virt_dev->tt_info->slot_id,
				virt_dev->tt_info->ttport);
	} else {
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"Recalculating BW for rootport %u",
				virt_dev->real_port);
	}

	/* Add in how much bandwidth will be used for interval zero, or the
	 * rounded max ESIT payload + number of packets * largest overhead.
	 */
	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
		bw_table->interval_bw[0].num_packets *
		xhci_get_largest_overhead(&bw_table->interval_bw[0]);

	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
		unsigned int bw_added;
		unsigned int largest_mps;
		unsigned int interval_overhead;

		/*
		 * How many packets could we transmit in this interval?
		 * If packets didn't fit in the previous interval, we will need
		 * to transmit that many packets twice within this interval.
		 */
		packets_remaining = 2 * packets_remaining +
			bw_table->interval_bw[i].num_packets;

		/* Find the largest max packet size of this or the previous
		 * interval.
		 */
		if (list_empty(&bw_table->interval_bw[i].endpoints))
			largest_mps = 0;
		else {
			struct xhci_virt_ep *virt_ep;
			struct list_head *ep_entry;

			ep_entry = bw_table->interval_bw[i].endpoints.next;
			virt_ep = list_entry(ep_entry,
					struct xhci_virt_ep, bw_endpoint_list);
			/* Convert to blocks, rounding up */
			largest_mps = DIV_ROUND_UP(
					virt_ep->bw_info.max_packet_size,
					block_size);
		}
		if (largest_mps > packet_size)
			packet_size = largest_mps;

		/* Use the larger overhead of this or the previous interval. */
		interval_overhead = xhci_get_largest_overhead(
				&bw_table->interval_bw[i]);
		if (interval_overhead > overhead)
			overhead = interval_overhead;

		/* How many packets can we evenly distribute across
		 * (1 << (i + 1)) possible scheduling opportunities?
		 */
		packets_transmitted = packets_remaining >> (i + 1);

		/* Add in the bandwidth used for those scheduled packets */
		bw_added = packets_transmitted * (overhead + packet_size);

		/* How many packets do we have remaining to transmit? */
		packets_remaining = packets_remaining % (1 << (i + 1));

		/* What largest max packet size should those packets have? */
		/* If we've transmitted all packets, don't carry over the
		 * largest packet size.
		 */
		if (packets_remaining == 0) {
			packet_size = 0;
			overhead = 0;
		} else if (packets_transmitted > 0) {
			/* Otherwise if we do have remaining packets, and we've
			 * scheduled some packets in this interval, take the
			 * largest max packet size from endpoints with this
			 * interval.
			 */
			packet_size = largest_mps;
			overhead = interval_overhead;
		}
		/* Otherwise carry over packet_size and overhead from the last
		 * time we had a remainder.
		 */
		bw_used += bw_added;
		if (bw_used > max_bandwidth) {
			xhci_warn(xhci, "Not enough bandwidth. "
					"Proposed: %u, Max: %u\n",
				bw_used, max_bandwidth);
			return -ENOMEM;
		}
	}
	/*
	 * Ok, we know we have some packets left over after even-handedly
	 * scheduling interval 15.  We don't know which microframes they will
	 * fit into, so we over-schedule and say they will be scheduled every
	 * microframe.
	 */
	if (packets_remaining > 0)
		bw_used += overhead + packet_size;

	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
		unsigned int port_index = virt_dev->real_port - 1;

		/* OK, we're manipulating a HS device attached to a
		 * root port bandwidth domain.  Include the number of active TTs
		 * in the bandwidth used.
		 */
		bw_used += TT_HS_OVERHEAD *
			xhci->rh_bw[port_index].num_active_tts;
	}

	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
		"Available: %u " "percent",
		bw_used, max_bandwidth, bw_reserved,
		(max_bandwidth - bw_used - bw_reserved) * 100 /
		max_bandwidth);

	bw_used += bw_reserved;
	if (bw_used > max_bandwidth) {
		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
				bw_used, max_bandwidth);
		return -ENOMEM;
	}

	bw_table->bw_used = bw_used;
	return 0;
}

static bool xhci_is_async_ep(unsigned int ep_type)
{
	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
					ep_type != ISOC_IN_EP &&
					ep_type != INT_IN_EP);
}

static bool xhci_is_sync_in_ep(unsigned int ep_type)
{
	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
}

static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
{
	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);

	if (ep_bw->ep_interval == 0)
		return SS_OVERHEAD_BURST +
			(ep_bw->mult * ep_bw->num_packets *
					(SS_OVERHEAD + mps));
	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
				1 << ep_bw->ep_interval);

}

void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
		struct xhci_bw_info *ep_bw,
		struct xhci_interval_bw_table *bw_table,
		struct usb_device *udev,
		struct xhci_virt_ep *virt_ep,
		struct xhci_tt_bw_info *tt_info)
{
	struct xhci_interval_bw	*interval_bw;
	int normalized_interval;

	if (xhci_is_async_ep(ep_bw->type))
		return;

	if (udev->speed == USB_SPEED_SUPER) {
		if (xhci_is_sync_in_ep(ep_bw->type))
			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
				xhci_get_ss_bw_consumed(ep_bw);
		else
			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
				xhci_get_ss_bw_consumed(ep_bw);
		return;
	}

	/* SuperSpeed endpoints never get added to intervals in the table, so
	 * this check is only valid for HS/FS/LS devices.
	 */
	if (list_empty(&virt_ep->bw_endpoint_list))
		return;
	/* For LS/FS devices, we need to translate the interval expressed in
	 * microframes to frames.
	 */
	if (udev->speed == USB_SPEED_HIGH)
		normalized_interval = ep_bw->ep_interval;
	else
		normalized_interval = ep_bw->ep_interval - 3;

	if (normalized_interval == 0)
		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
	interval_bw = &bw_table->interval_bw[normalized_interval];
	interval_bw->num_packets -= ep_bw->num_packets;
	switch (udev->speed) {
	case USB_SPEED_LOW:
		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
		break;
	case USB_SPEED_FULL:
		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
		break;
	case USB_SPEED_HIGH:
		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
		break;
	case USB_SPEED_SUPER:
	case USB_SPEED_UNKNOWN:
	case USB_SPEED_WIRELESS:
		/* Should never happen because only LS/FS/HS endpoints will get
		 * added to the endpoint list.
		 */
		return;
	}
	if (tt_info)
		tt_info->active_eps -= 1;
	list_del_init(&virt_ep->bw_endpoint_list);
}

static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
		struct xhci_bw_info *ep_bw,
		struct xhci_interval_bw_table *bw_table,
		struct usb_device *udev,
		struct xhci_virt_ep *virt_ep,
		struct xhci_tt_bw_info *tt_info)
{
	struct xhci_interval_bw	*interval_bw;
	struct xhci_virt_ep *smaller_ep;
	int normalized_interval;

	if (xhci_is_async_ep(ep_bw->type))
		return;

	if (udev->speed == USB_SPEED_SUPER) {
		if (xhci_is_sync_in_ep(ep_bw->type))
			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
				xhci_get_ss_bw_consumed(ep_bw);
		else
			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
				xhci_get_ss_bw_consumed(ep_bw);
		return;
	}

	/* For LS/FS devices, we need to translate the interval expressed in
	 * microframes to frames.
	 */
	if (udev->speed == USB_SPEED_HIGH)
		normalized_interval = ep_bw->ep_interval;
	else
		normalized_interval = ep_bw->ep_interval - 3;

	if (normalized_interval == 0)
		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
	interval_bw = &bw_table->interval_bw[normalized_interval];
	interval_bw->num_packets += ep_bw->num_packets;
	switch (udev->speed) {
	case USB_SPEED_LOW:
		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
		break;
	case USB_SPEED_FULL:
		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
		break;
	case USB_SPEED_HIGH:
		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
		break;
	case USB_SPEED_SUPER:
	case USB_SPEED_UNKNOWN:
	case USB_SPEED_WIRELESS:
		/* Should never happen because only LS/FS/HS endpoints will get
		 * added to the endpoint list.
		 */
		return;
	}

	if (tt_info)
		tt_info->active_eps += 1;
	/* Insert the endpoint into the list, largest max packet size first. */
	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
			bw_endpoint_list) {
		if (ep_bw->max_packet_size >=
				smaller_ep->bw_info.max_packet_size) {
			/* Add the new ep before the smaller endpoint */
			list_add_tail(&virt_ep->bw_endpoint_list,
					&smaller_ep->bw_endpoint_list);
			return;
		}
	}
	/* Add the new endpoint at the end of the list. */
	list_add_tail(&virt_ep->bw_endpoint_list,
			&interval_bw->endpoints);
}

void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		int old_active_eps)
{
	struct xhci_root_port_bw_info *rh_bw_info;
	if (!virt_dev->tt_info)
		return;

	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
	if (old_active_eps == 0 &&
				virt_dev->tt_info->active_eps != 0) {
		rh_bw_info->num_active_tts += 1;
		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
	} else if (old_active_eps != 0 &&
				virt_dev->tt_info->active_eps == 0) {
		rh_bw_info->num_active_tts -= 1;
		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
	}
}

static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct xhci_container_ctx *in_ctx)
{
	struct xhci_bw_info ep_bw_info[31];
	int i;
	struct xhci_input_control_ctx *ctrl_ctx;
	int old_active_eps = 0;

	if (virt_dev->tt_info)
		old_active_eps = virt_dev->tt_info->active_eps;

	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
	if (!ctrl_ctx) {
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		return -ENOMEM;
	}

	for (i = 0; i < 31; i++) {
		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
			continue;

		/* Make a copy of the BW info in case we need to revert this */
		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
				sizeof(ep_bw_info[i]));
		/* Drop the endpoint from the interval table if the endpoint is
		 * being dropped or changed.
		 */
		if (EP_IS_DROPPED(ctrl_ctx, i))
			xhci_drop_ep_from_interval_table(xhci,
					&virt_dev->eps[i].bw_info,
					virt_dev->bw_table,
					virt_dev->udev,
					&virt_dev->eps[i],
					virt_dev->tt_info);
	}
	/* Overwrite the information stored in the endpoints' bw_info */
	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
	for (i = 0; i < 31; i++) {
		/* Add any changed or added endpoints to the interval table */
		if (EP_IS_ADDED(ctrl_ctx, i))
			xhci_add_ep_to_interval_table(xhci,
					&virt_dev->eps[i].bw_info,
					virt_dev->bw_table,
					virt_dev->udev,
					&virt_dev->eps[i],
					virt_dev->tt_info);
	}

	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
		/* Ok, this fits in the bandwidth we have.
		 * Update the number of active TTs.
		 */
		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
		return 0;
	}

	/* We don't have enough bandwidth for this, revert the stored info. */
	for (i = 0; i < 31; i++) {
		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
			continue;

		/* Drop the new copies of any added or changed endpoints from
		 * the interval table.
		 */
		if (EP_IS_ADDED(ctrl_ctx, i)) {
			xhci_drop_ep_from_interval_table(xhci,
					&virt_dev->eps[i].bw_info,
					virt_dev->bw_table,
					virt_dev->udev,
					&virt_dev->eps[i],
					virt_dev->tt_info);
		}
		/* Revert the endpoint back to its old information */
		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
				sizeof(ep_bw_info[i]));
		/* Add any changed or dropped endpoints back into the table */
		if (EP_IS_DROPPED(ctrl_ctx, i))
			xhci_add_ep_to_interval_table(xhci,
					&virt_dev->eps[i].bw_info,
					virt_dev->bw_table,
					virt_dev->udev,
					&virt_dev->eps[i],
					virt_dev->tt_info);
	}
	return -ENOMEM;
}


/* Issue a configure endpoint command or evaluate context command
 * and wait for it to finish.
 */
static int xhci_configure_endpoint(struct xhci_hcd *xhci,
		struct usb_device *udev,
		struct xhci_command *command,
		bool ctx_change, bool must_succeed)
{
	int ret;
	unsigned long flags;
	struct xhci_input_control_ctx *ctrl_ctx;
	struct xhci_virt_device *virt_dev;

	if (!command)
		return -EINVAL;

	spin_lock_irqsave(&xhci->lock, flags);
	virt_dev = xhci->devs[udev->slot_id];

	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
	if (!ctrl_ctx) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		return -ENOMEM;
	}

	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_warn(xhci, "Not enough host resources, "
				"active endpoint contexts = %u\n",
				xhci->num_active_eps);
		return -ENOMEM;
	}
	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
			xhci_free_host_resources(xhci, ctrl_ctx);
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_warn(xhci, "Not enough bandwidth\n");
		return -ENOMEM;
	}

	if (!ctx_change)
		ret = xhci_queue_configure_endpoint(xhci, command,
				command->in_ctx->dma,
				udev->slot_id, must_succeed);
	else
		ret = xhci_queue_evaluate_context(xhci, command,
				command->in_ctx->dma,
				udev->slot_id, must_succeed);
	if (ret < 0) {
		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
			xhci_free_host_resources(xhci, ctrl_ctx);
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
				"FIXME allocate a new ring segment");
		return -ENOMEM;
	}
	xhci_ring_cmd_db(xhci);
	spin_unlock_irqrestore(&xhci->lock, flags);

	/* Wait for the configure endpoint command to complete */
	wait_for_completion(command->completion);

	if (!ctx_change)
		ret = xhci_configure_endpoint_result(xhci, udev,
						     &command->status);
	else
		ret = xhci_evaluate_context_result(xhci, udev,
						   &command->status);

	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
		spin_lock_irqsave(&xhci->lock, flags);
		/* If the command failed, remove the reserved resources.
		 * Otherwise, clean up the estimate to include dropped eps.
		 */
		if (ret)
			xhci_free_host_resources(xhci, ctrl_ctx);
		else
			xhci_finish_resource_reservation(xhci, ctrl_ctx);
		spin_unlock_irqrestore(&xhci->lock, flags);
	}
	return ret;
}

static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
	struct xhci_virt_device *vdev, int i)
{
	struct xhci_virt_ep *ep = &vdev->eps[i];

	if (ep->ep_state & EP_HAS_STREAMS) {
		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
				xhci_get_endpoint_address(i));
		xhci_free_stream_info(xhci, ep->stream_info);
		ep->stream_info = NULL;
		ep->ep_state &= ~EP_HAS_STREAMS;
	}
}

/* Called after one or more calls to xhci_add_endpoint() or
 * xhci_drop_endpoint().  If this call fails, the USB core is expected
 * to call xhci_reset_bandwidth().
 *
 * Since we are in the middle of changing either configuration or
 * installing a new alt setting, the USB core won't allow URBs to be
 * enqueued for any endpoint on the old config or interface.  Nothing
 * else should be touching the xhci->devs[slot_id] structure, so we
 * don't need to take the xhci->lock for manipulating that.
 */
int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
{
	int i;
	int ret = 0;
	struct xhci_hcd *xhci;
	struct xhci_virt_device	*virt_dev;
	struct xhci_input_control_ctx *ctrl_ctx;
	struct xhci_slot_ctx *slot_ctx;
	struct xhci_command *command;

	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
	if (ret <= 0)
		return ret;
	xhci = hcd_to_xhci(hcd);
	if (xhci->xhc_state & XHCI_STATE_DYING)
		return -ENODEV;

	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
	virt_dev = xhci->devs[udev->slot_id];

	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
	if (!command)
		return -ENOMEM;

	command->in_ctx = virt_dev->in_ctx;

	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
	if (!ctrl_ctx) {
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		ret = -ENOMEM;
		goto command_cleanup;
	}
	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));

	/* Don't issue the command if there's no endpoints to update. */
	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
	    ctrl_ctx->drop_flags == 0) {
		ret = 0;
		goto command_cleanup;
	}
	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
	for (i = 31; i >= 1; i--) {
		__le32 le32 = cpu_to_le32(BIT(i));

		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
		    || (ctrl_ctx->add_flags & le32) || i == 1) {
			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
			break;
		}
	}
	xhci_dbg(xhci, "New Input Control Context:\n");
	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));

	ret = xhci_configure_endpoint(xhci, udev, command,
			false, false);
	if (ret)
		/* Callee should call reset_bandwidth() */
		goto command_cleanup;

	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));

	/* Free any rings that were dropped, but not changed. */
	for (i = 1; i < 31; ++i) {
		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
		}
	}
	xhci_zero_in_ctx(xhci, virt_dev);
	/*
	 * Install any rings for completely new endpoints or changed endpoints,
	 * and free or cache any old rings from changed endpoints.
	 */
	for (i = 1; i < 31; ++i) {
		if (!virt_dev->eps[i].new_ring)
			continue;
		/* Only cache or free the old ring if it exists.
		 * It may not if this is the first add of an endpoint.
		 */
		if (virt_dev->eps[i].ring) {
			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
		}
		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
		virt_dev->eps[i].new_ring = NULL;
	}
command_cleanup:
	kfree(command->completion);
	kfree(command);

	return ret;
}

void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
{
	struct xhci_hcd *xhci;
	struct xhci_virt_device	*virt_dev;
	int i, ret;

	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
	if (ret <= 0)
		return;
	xhci = hcd_to_xhci(hcd);

	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
	virt_dev = xhci->devs[udev->slot_id];
	/* Free any rings allocated for added endpoints */
	for (i = 0; i < 31; ++i) {
		if (virt_dev->eps[i].new_ring) {
			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
			virt_dev->eps[i].new_ring = NULL;
		}
	}
	xhci_zero_in_ctx(xhci, virt_dev);
}

static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		struct xhci_input_control_ctx *ctrl_ctx,
		u32 add_flags, u32 drop_flags)
{
	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
	xhci_slot_copy(xhci, in_ctx, out_ctx);
	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);

	xhci_dbg(xhci, "Input Context:\n");
	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
}

static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
		unsigned int slot_id, unsigned int ep_index,
		struct xhci_dequeue_state *deq_state)
{
	struct xhci_input_control_ctx *ctrl_ctx;
	struct xhci_container_ctx *in_ctx;
	struct xhci_ep_ctx *ep_ctx;
	u32 added_ctxs;
	dma_addr_t addr;

	in_ctx = xhci->devs[slot_id]->in_ctx;
	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
	if (!ctrl_ctx) {
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		return;
	}

	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
			xhci->devs[slot_id]->out_ctx, ep_index);
	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
			deq_state->new_deq_ptr);
	if (addr == 0) {
		xhci_warn(xhci, "WARN Cannot submit config ep after "
				"reset ep command\n");
		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
				deq_state->new_deq_seg,
				deq_state->new_deq_ptr);
		return;
	}
	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);

	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
			added_ctxs, added_ctxs);
}

void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
		struct usb_device *udev, unsigned int ep_index)
{
	struct xhci_dequeue_state deq_state;
	struct xhci_virt_ep *ep;

	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
			"Cleaning up stalled endpoint ring");
	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
	/* We need to move the HW's dequeue pointer past this TD,
	 * or it will attempt to resend it on the next doorbell ring.
	 */
	xhci_find_new_dequeue_state(xhci, udev->slot_id,
			ep_index, ep->stopped_stream, ep->stopped_td,
			&deq_state);

	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
		return;

	/* HW with the reset endpoint quirk will use the saved dequeue state to
	 * issue a configure endpoint command later.
	 */
	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
				"Queueing new dequeue state");
		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
				ep_index, ep->stopped_stream, &deq_state);
	} else {
		/* Better hope no one uses the input context between now and the
		 * reset endpoint completion!
		 * XXX: No idea how this hardware will react when stream rings
		 * are enabled.
		 */
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"Setting up input context for "
				"configure endpoint command");
		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
				ep_index, &deq_state);
	}
}

/* Called when clearing halted device. The core should have sent the control
 * message to clear the device halt condition. The host side of the halt should
 * already be cleared with a reset endpoint command issued when the STALL tx
 * event was received.
 *
 * Context: in_interrupt
 */

void xhci_endpoint_reset(struct usb_hcd *hcd,
		struct usb_host_endpoint *ep)
{
	struct xhci_hcd *xhci;

	xhci = hcd_to_xhci(hcd);

	/*
	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
	 * The Reset Endpoint Command may only be issued to endpoints in the
	 * Halted state. If software wishes reset the Data Toggle or Sequence
	 * Number of an endpoint that isn't in the Halted state, then software
	 * may issue a Configure Endpoint Command with the Drop and Add bits set
	 * for the target endpoint. that is in the Stopped state.
	 */

	/* For now just print debug to follow the situation */
	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
		 ep->desc.bEndpointAddress);
}

static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
		struct usb_device *udev, struct usb_host_endpoint *ep,
		unsigned int slot_id)
{
	int ret;
	unsigned int ep_index;
	unsigned int ep_state;

	if (!ep)
		return -EINVAL;
	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
	if (ret <= 0)
		return -EINVAL;
	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
				" descriptor for ep 0x%x does not support streams\n",
				ep->desc.bEndpointAddress);
		return -EINVAL;
	}

	ep_index = xhci_get_endpoint_index(&ep->desc);
	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
	if (ep_state & EP_HAS_STREAMS ||
			ep_state & EP_GETTING_STREAMS) {
		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
				"already has streams set up.\n",
				ep->desc.bEndpointAddress);
		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
				"dynamic stream context array reallocation.\n");
		return -EINVAL;
	}
	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
				"endpoint 0x%x; URBs are pending.\n",
				ep->desc.bEndpointAddress);
		return -EINVAL;
	}
	return 0;
}

static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
		unsigned int *num_streams, unsigned int *num_stream_ctxs)
{
	unsigned int max_streams;

	/* The stream context array size must be a power of two */
	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
	/*
	 * Find out how many primary stream array entries the host controller
	 * supports.  Later we may use secondary stream arrays (similar to 2nd
	 * level page entries), but that's an optional feature for xHCI host
	 * controllers. xHCs must support at least 4 stream IDs.
	 */
	max_streams = HCC_MAX_PSA(xhci->hcc_params);
	if (*num_stream_ctxs > max_streams) {
		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
				max_streams);
		*num_stream_ctxs = max_streams;
		*num_streams = max_streams;
	}
}

/* Returns an error code if one of the endpoint already has streams.
 * This does not change any data structures, it only checks and gathers
 * information.
 */
static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
		struct usb_device *udev,
		struct usb_host_endpoint **eps, unsigned int num_eps,
		unsigned int *num_streams, u32 *changed_ep_bitmask)
{
	unsigned int max_streams;
	unsigned int endpoint_flag;
	int i;
	int ret;

	for (i = 0; i < num_eps; i++) {
		ret = xhci_check_streams_endpoint(xhci, udev,
				eps[i], udev->slot_id);
		if (ret < 0)
			return ret;

		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
		if (max_streams < (*num_streams - 1)) {
			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
					eps[i]->desc.bEndpointAddress,
					max_streams);
			*num_streams = max_streams+1;
		}

		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
		if (*changed_ep_bitmask & endpoint_flag)
			return -EINVAL;
		*changed_ep_bitmask |= endpoint_flag;
	}
	return 0;
}

static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
		struct usb_device *udev,
		struct usb_host_endpoint **eps, unsigned int num_eps)
{
	u32 changed_ep_bitmask = 0;
	unsigned int slot_id;
	unsigned int ep_index;
	unsigned int ep_state;
	int i;

	slot_id = udev->slot_id;
	if (!xhci->devs[slot_id])
		return 0;

	for (i = 0; i < num_eps; i++) {
		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
		/* Are streams already being freed for the endpoint? */
		if (ep_state & EP_GETTING_NO_STREAMS) {
			xhci_warn(xhci, "WARN Can't disable streams for "
					"endpoint 0x%x, "
					"streams are being disabled already\n",
					eps[i]->desc.bEndpointAddress);
			return 0;
		}
		/* Are there actually any streams to free? */
		if (!(ep_state & EP_HAS_STREAMS) &&
				!(ep_state & EP_GETTING_STREAMS)) {
			xhci_warn(xhci, "WARN Can't disable streams for "
					"endpoint 0x%x, "
					"streams are already disabled!\n",
					eps[i]->desc.bEndpointAddress);
			xhci_warn(xhci, "WARN xhci_free_streams() called "
					"with non-streams endpoint\n");
			return 0;
		}
		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
	}
	return changed_ep_bitmask;
}

/*
 * The USB device drivers use this function (though the HCD interface in USB
 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
 * coordinate mass storage command queueing across multiple endpoints (basically
 * a stream ID == a task ID).
 *
 * Setting up streams involves allocating the same size stream context array
 * for each endpoint and issuing a configure endpoint command for all endpoints.
 *
 * Don't allow the call to succeed if one endpoint only supports one stream
 * (which means it doesn't support streams at all).
 *
 * Drivers may get less stream IDs than they asked for, if the host controller
 * hardware or endpoints claim they can't support the number of requested
 * stream IDs.
 */
int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
		struct usb_host_endpoint **eps, unsigned int num_eps,
		unsigned int num_streams, gfp_t mem_flags)
{
	int i, ret;
	struct xhci_hcd *xhci;
	struct xhci_virt_device *vdev;
	struct xhci_command *config_cmd;
	struct xhci_input_control_ctx *ctrl_ctx;
	unsigned int ep_index;
	unsigned int num_stream_ctxs;
	unsigned long flags;
	u32 changed_ep_bitmask = 0;

	if (!eps)
		return -EINVAL;

	/* Add one to the number of streams requested to account for
	 * stream 0 that is reserved for xHCI usage.
	 */
	num_streams += 1;
	xhci = hcd_to_xhci(hcd);
	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
			num_streams);

	/* MaxPSASize value 0 (2 streams) means streams are not supported */
	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
			HCC_MAX_PSA(xhci->hcc_params) < 4) {
		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
		return -ENOSYS;
	}

	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
	if (!config_cmd) {
		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
		return -ENOMEM;
	}
	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
	if (!ctrl_ctx) {
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		xhci_free_command(xhci, config_cmd);
		return -ENOMEM;
	}

	/* Check to make sure all endpoints are not already configured for
	 * streams.  While we're at it, find the maximum number of streams that
	 * all the endpoints will support and check for duplicate endpoints.
	 */
	spin_lock_irqsave(&xhci->lock, flags);
	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
			num_eps, &num_streams, &changed_ep_bitmask);
	if (ret < 0) {
		xhci_free_command(xhci, config_cmd);
		spin_unlock_irqrestore(&xhci->lock, flags);
		return ret;
	}
	if (num_streams <= 1) {
		xhci_warn(xhci, "WARN: endpoints can't handle "
				"more than one stream.\n");
		xhci_free_command(xhci, config_cmd);
		spin_unlock_irqrestore(&xhci->lock, flags);
		return -EINVAL;
	}
	vdev = xhci->devs[udev->slot_id];
	/* Mark each endpoint as being in transition, so
	 * xhci_urb_enqueue() will reject all URBs.
	 */
	for (i = 0; i < num_eps; i++) {
		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
	}
	spin_unlock_irqrestore(&xhci->lock, flags);

	/* Setup internal data structures and allocate HW data structures for
	 * streams (but don't install the HW structures in the input context
	 * until we're sure all memory allocation succeeded).
	 */
	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
			num_stream_ctxs, num_streams);

	for (i = 0; i < num_eps; i++) {
		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
				num_stream_ctxs,
				num_streams, mem_flags);
		if (!vdev->eps[ep_index].stream_info)
			goto cleanup;
		/* Set maxPstreams in endpoint context and update deq ptr to
		 * point to stream context array. FIXME
		 */
	}

	/* Set up the input context for a configure endpoint command. */
	for (i = 0; i < num_eps; i++) {
		struct xhci_ep_ctx *ep_ctx;

		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);

		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
				vdev->out_ctx, ep_index);
		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
				vdev->eps[ep_index].stream_info);
	}
	/* Tell the HW to drop its old copy of the endpoint context info
	 * and add the updated copy from the input context.
	 */
	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
			vdev->out_ctx, ctrl_ctx,
			changed_ep_bitmask, changed_ep_bitmask);

	/* Issue and wait for the configure endpoint command */
	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
			false, false);

	/* xHC rejected the configure endpoint command for some reason, so we
	 * leave the old ring intact and free our internal streams data
	 * structure.
	 */
	if (ret < 0)
		goto cleanup;

	spin_lock_irqsave(&xhci->lock, flags);
	for (i = 0; i < num_eps; i++) {
		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
			 udev->slot_id, ep_index);
		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
	}
	xhci_free_command(xhci, config_cmd);
	spin_unlock_irqrestore(&xhci->lock, flags);

	/* Subtract 1 for stream 0, which drivers can't use */
	return num_streams - 1;

cleanup:
	/* If it didn't work, free the streams! */
	for (i = 0; i < num_eps; i++) {
		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
		vdev->eps[ep_index].stream_info = NULL;
		/* FIXME Unset maxPstreams in endpoint context and
		 * update deq ptr to point to normal string ring.
		 */
		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
		xhci_endpoint_zero(xhci, vdev, eps[i]);
	}
	xhci_free_command(xhci, config_cmd);
	return -ENOMEM;
}

/* Transition the endpoint from using streams to being a "normal" endpoint
 * without streams.
 *
 * Modify the endpoint context state, submit a configure endpoint command,
 * and free all endpoint rings for streams if that completes successfully.
 */
int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
		struct usb_host_endpoint **eps, unsigned int num_eps,
		gfp_t mem_flags)
{
	int i, ret;
	struct xhci_hcd *xhci;
	struct xhci_virt_device *vdev;
	struct xhci_command *command;
	struct xhci_input_control_ctx *ctrl_ctx;
	unsigned int ep_index;
	unsigned long flags;
	u32 changed_ep_bitmask;

	xhci = hcd_to_xhci(hcd);
	vdev = xhci->devs[udev->slot_id];

	/* Set up a configure endpoint command to remove the streams rings */
	spin_lock_irqsave(&xhci->lock, flags);
	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
			udev, eps, num_eps);
	if (changed_ep_bitmask == 0) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		return -EINVAL;
	}

	/* Use the xhci_command structure from the first endpoint.  We may have
	 * allocated too many, but the driver may call xhci_free_streams() for
	 * each endpoint it grouped into one call to xhci_alloc_streams().
	 */
	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
	command = vdev->eps[ep_index].stream_info->free_streams_command;
	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
	if (!ctrl_ctx) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		return -EINVAL;
	}

	for (i = 0; i < num_eps; i++) {
		struct xhci_ep_ctx *ep_ctx;

		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
			EP_GETTING_NO_STREAMS;

		xhci_endpoint_copy(xhci, command->in_ctx,
				vdev->out_ctx, ep_index);
		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
				&vdev->eps[ep_index]);
	}
	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
			vdev->out_ctx, ctrl_ctx,
			changed_ep_bitmask, changed_ep_bitmask);
	spin_unlock_irqrestore(&xhci->lock, flags);

	/* Issue and wait for the configure endpoint command,
	 * which must succeed.
	 */
	ret = xhci_configure_endpoint(xhci, udev, command,
			false, true);

	/* xHC rejected the configure endpoint command for some reason, so we
	 * leave the streams rings intact.
	 */
	if (ret < 0)
		return ret;

	spin_lock_irqsave(&xhci->lock, flags);
	for (i = 0; i < num_eps; i++) {
		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
		vdev->eps[ep_index].stream_info = NULL;
		/* FIXME Unset maxPstreams in endpoint context and
		 * update deq ptr to point to normal string ring.
		 */
		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
	}
	spin_unlock_irqrestore(&xhci->lock, flags);

	return 0;
}

/*
 * Deletes endpoint resources for endpoints that were active before a Reset
 * Device command, or a Disable Slot command.  The Reset Device command leaves
 * the control endpoint intact, whereas the Disable Slot command deletes it.
 *
 * Must be called with xhci->lock held.
 */
void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
	struct xhci_virt_device *virt_dev, bool drop_control_ep)
{
	int i;
	unsigned int num_dropped_eps = 0;
	unsigned int drop_flags = 0;

	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
		if (virt_dev->eps[i].ring) {
			drop_flags |= 1 << i;
			num_dropped_eps++;
		}
	}
	xhci->num_active_eps -= num_dropped_eps;
	if (num_dropped_eps)
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"Dropped %u ep ctxs, flags = 0x%x, "
				"%u now active.",
				num_dropped_eps, drop_flags,
				xhci->num_active_eps);
}

/*
 * This submits a Reset Device Command, which will set the device state to 0,
 * set the device address to 0, and disable all the endpoints except the default
 * control endpoint.  The USB core should come back and call
 * xhci_address_device(), and then re-set up the configuration.  If this is
 * called because of a usb_reset_and_verify_device(), then the old alternate
 * settings will be re-installed through the normal bandwidth allocation
 * functions.
 *
 * Wait for the Reset Device command to finish.  Remove all structures
 * associated with the endpoints that were disabled.  Clear the input device
 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
 *
 * If the virt_dev to be reset does not exist or does not match the udev,
 * it means the device is lost, possibly due to the xHC restore error and
 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
 * re-allocate the device.
 */
int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
{
	int ret, i;
	unsigned long flags;
	struct xhci_hcd *xhci;
	unsigned int slot_id;
	struct xhci_virt_device *virt_dev;
	struct xhci_command *reset_device_cmd;
	int last_freed_endpoint;
	struct xhci_slot_ctx *slot_ctx;
	int old_active_eps = 0;

	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
	if (ret <= 0)
		return ret;
	xhci = hcd_to_xhci(hcd);
	slot_id = udev->slot_id;
	virt_dev = xhci->devs[slot_id];
	if (!virt_dev) {
		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
				"not exist. Re-allocate the device\n", slot_id);
		ret = xhci_alloc_dev(hcd, udev);
		if (ret == 1)
			return 0;
		else
			return -EINVAL;
	}

	if (virt_dev->udev != udev) {
		/* If the virt_dev and the udev does not match, this virt_dev
		 * may belong to another udev.
		 * Re-allocate the device.
		 */
		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
				"not match the udev. Re-allocate the device\n",
				slot_id);
		ret = xhci_alloc_dev(hcd, udev);
		if (ret == 1)
			return 0;
		else
			return -EINVAL;
	}

	/* If device is not setup, there is no point in resetting it */
	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
						SLOT_STATE_DISABLED)
		return 0;

	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
	/* Allocate the command structure that holds the struct completion.
	 * Assume we're in process context, since the normal device reset
	 * process has to wait for the device anyway.  Storage devices are
	 * reset as part of error handling, so use GFP_NOIO instead of
	 * GFP_KERNEL.
	 */
	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
	if (!reset_device_cmd) {
		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
		return -ENOMEM;
	}

	/* Attempt to submit the Reset Device command to the command ring */
	spin_lock_irqsave(&xhci->lock, flags);

	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
	if (ret) {
		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
		spin_unlock_irqrestore(&xhci->lock, flags);
		goto command_cleanup;
	}
	xhci_ring_cmd_db(xhci);
	spin_unlock_irqrestore(&xhci->lock, flags);

	/* Wait for the Reset Device command to finish */
	wait_for_completion(reset_device_cmd->completion);

	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
	 * unless we tried to reset a slot ID that wasn't enabled,
	 * or the device wasn't in the addressed or configured state.
	 */
	ret = reset_device_cmd->status;
	switch (ret) {
	case COMP_CMD_ABORT:
	case COMP_CMD_STOP:
		xhci_warn(xhci, "Timeout waiting for reset device command\n");
		ret = -ETIME;
		goto command_cleanup;
	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
				slot_id,
				xhci_get_slot_state(xhci, virt_dev->out_ctx));
		xhci_dbg(xhci, "Not freeing device rings.\n");
		/* Don't treat this as an error.  May change my mind later. */
		ret = 0;
		goto command_cleanup;
	case COMP_SUCCESS:
		xhci_dbg(xhci, "Successful reset device command.\n");
		break;
	default:
		if (xhci_is_vendor_info_code(xhci, ret))
			break;
		xhci_warn(xhci, "Unknown completion code %u for "
				"reset device command.\n", ret);
		ret = -EINVAL;
		goto command_cleanup;
	}

	/* Free up host controller endpoint resources */
	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
		spin_lock_irqsave(&xhci->lock, flags);
		/* Don't delete the default control endpoint resources */
		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
		spin_unlock_irqrestore(&xhci->lock, flags);
	}

	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
	last_freed_endpoint = 1;
	for (i = 1; i < 31; ++i) {
		struct xhci_virt_ep *ep = &virt_dev->eps[i];

		if (ep->ep_state & EP_HAS_STREAMS) {
			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
					xhci_get_endpoint_address(i));
			xhci_free_stream_info(xhci, ep->stream_info);
			ep->stream_info = NULL;
			ep->ep_state &= ~EP_HAS_STREAMS;
		}

		if (ep->ring) {
			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
			last_freed_endpoint = i;
		}
		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
			xhci_drop_ep_from_interval_table(xhci,
					&virt_dev->eps[i].bw_info,
					virt_dev->bw_table,
					udev,
					&virt_dev->eps[i],
					virt_dev->tt_info);
		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
	}
	/* If necessary, update the number of active TTs on this root port */
	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);

	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
	ret = 0;

command_cleanup:
	xhci_free_command(xhci, reset_device_cmd);
	return ret;
}

/*
 * At this point, the struct usb_device is about to go away, the device has
 * disconnected, and all traffic has been stopped and the endpoints have been
 * disabled.  Free any HC data structures associated with that device.
 */
void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	struct xhci_virt_device *virt_dev;
	unsigned long flags;
	u32 state;
	int i, ret;
	struct xhci_command *command;

	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
	if (!command)
		return;

#ifndef CONFIG_USB_DEFAULT_PERSIST
	/*
	 * We called pm_runtime_get_noresume when the device was attached.
	 * Decrement the counter here to allow controller to runtime suspend
	 * if no devices remain.
	 */
	if (xhci->quirks & XHCI_RESET_ON_RESUME)
		pm_runtime_put_noidle(hcd->self.controller);
#endif

	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
	/* If the host is halted due to driver unload, we still need to free the
	 * device.
	 */
	if (ret <= 0 && ret != -ENODEV) {
		kfree(command);
		return;
	}

	virt_dev = xhci->devs[udev->slot_id];

	/* Stop any wayward timer functions (which may grab the lock) */
	for (i = 0; i < 31; ++i) {
		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
	}

	spin_lock_irqsave(&xhci->lock, flags);
	/* Don't disable the slot if the host controller is dead. */
	state = readl(&xhci->op_regs->status);
	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
			(xhci->xhc_state & XHCI_STATE_HALTED)) {
		xhci_free_virt_device(xhci, udev->slot_id);
		spin_unlock_irqrestore(&xhci->lock, flags);
		kfree(command);
		return;
	}

	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
				    udev->slot_id)) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
		return;
	}
	xhci_ring_cmd_db(xhci);
	spin_unlock_irqrestore(&xhci->lock, flags);

	/*
	 * Event command completion handler will free any data structures
	 * associated with the slot.  XXX Can free sleep?
	 */
}

/*
 * Checks if we have enough host controller resources for the default control
 * endpoint.
 *
 * Must be called with xhci->lock held.
 */
static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
{
	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
				"Not enough ep ctxs: "
				"%u active, need to add 1, limit is %u.",
				xhci->num_active_eps, xhci->limit_active_eps);
		return -ENOMEM;
	}
	xhci->num_active_eps += 1;
	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
			"Adding 1 ep ctx, %u now active.",
			xhci->num_active_eps);
	return 0;
}


/*
 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
 * timed out, or allocating memory failed.  Returns 1 on success.
 */
int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	unsigned long flags;
	int ret;
	struct xhci_command *command;

	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
	if (!command)
		return 0;

	spin_lock_irqsave(&xhci->lock, flags);
	command->completion = &xhci->addr_dev;
	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
	if (ret) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
		kfree(command);
		return 0;
	}
	xhci_ring_cmd_db(xhci);
	spin_unlock_irqrestore(&xhci->lock, flags);

	wait_for_completion(command->completion);

	if (!xhci->slot_id || command->status != COMP_SUCCESS) {
		xhci_err(xhci, "Error while assigning device slot ID\n");
		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
				HCS_MAX_SLOTS(
					readl(&xhci->cap_regs->hcs_params1)));
		kfree(command);
		return 0;
	}

	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
		spin_lock_irqsave(&xhci->lock, flags);
		ret = xhci_reserve_host_control_ep_resources(xhci);
		if (ret) {
			spin_unlock_irqrestore(&xhci->lock, flags);
			xhci_warn(xhci, "Not enough host resources, "
					"active endpoint contexts = %u\n",
					xhci->num_active_eps);
			goto disable_slot;
		}
		spin_unlock_irqrestore(&xhci->lock, flags);
	}
	/* Use GFP_NOIO, since this function can be called from
	 * xhci_discover_or_reset_device(), which may be called as part of
	 * mass storage driver error handling.
	 */
	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
		goto disable_slot;
	}
	udev->slot_id = xhci->slot_id;

#ifndef CONFIG_USB_DEFAULT_PERSIST
	/*
	 * If resetting upon resume, we can't put the controller into runtime
	 * suspend if there is a device attached.
	 */
	if (xhci->quirks & XHCI_RESET_ON_RESUME)
		pm_runtime_get_noresume(hcd->self.controller);
#endif


	kfree(command);
	/* Is this a LS or FS device under a HS hub? */
	/* Hub or peripherial? */
	return 1;

disable_slot:
	/* Disable slot, if we can do it without mem alloc */
	spin_lock_irqsave(&xhci->lock, flags);
	command->completion = NULL;
	command->status = 0;
	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
				     udev->slot_id))
		xhci_ring_cmd_db(xhci);
	spin_unlock_irqrestore(&xhci->lock, flags);
	return 0;
}

/*
 * Issue an Address Device command and optionally send a corresponding
 * SetAddress request to the device.
 * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init,
 * so we should only issue and wait on one address command at the same time.
 */
static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
			     enum xhci_setup_dev setup)
{
	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
	unsigned long flags;
	struct xhci_virt_device *virt_dev;
	int ret = 0;
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	struct xhci_slot_ctx *slot_ctx;
	struct xhci_input_control_ctx *ctrl_ctx;
	u64 temp_64;
	struct xhci_command *command;

	if (!udev->slot_id) {
		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
				"Bad Slot ID %d", udev->slot_id);
		return -EINVAL;
	}

	virt_dev = xhci->devs[udev->slot_id];

	if (WARN_ON(!virt_dev)) {
		/*
		 * In plug/unplug torture test with an NEC controller,
		 * a zero-dereference was observed once due to virt_dev = 0.
		 * Print useful debug rather than crash if it is observed again!
		 */
		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
			udev->slot_id);
		return -EINVAL;
	}

	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
	if (!command)
		return -ENOMEM;

	command->in_ctx = virt_dev->in_ctx;
	command->completion = &xhci->addr_dev;

	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
	if (!ctrl_ctx) {
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		kfree(command);
		return -EINVAL;
	}
	/*
	 * If this is the first Set Address since device plug-in or
	 * virt_device realloaction after a resume with an xHCI power loss,
	 * then set up the slot context.
	 */
	if (!slot_ctx->dev_info)
		xhci_setup_addressable_virt_dev(xhci, udev);
	/* Otherwise, update the control endpoint ring enqueue pointer. */
	else
		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
	ctrl_ctx->drop_flags = 0;

	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
				le32_to_cpu(slot_ctx->dev_info) >> 27);

	spin_lock_irqsave(&xhci->lock, flags);
	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
					udev->slot_id, setup);
	if (ret) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
				"FIXME: allocate a command ring segment");
		kfree(command);
		return ret;
	}
	xhci_ring_cmd_db(xhci);
	spin_unlock_irqrestore(&xhci->lock, flags);

	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
	wait_for_completion(command->completion);

	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
	 * the SetAddress() "recovery interval" required by USB and aborting the
	 * command on a timeout.
	 */
	switch (command->status) {
	case COMP_CMD_ABORT:
	case COMP_CMD_STOP:
		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
		ret = -ETIME;
		break;
	case COMP_CTX_STATE:
	case COMP_EBADSLT:
		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
			 act, udev->slot_id);
		ret = -EINVAL;
		break;
	case COMP_TX_ERR:
		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
		ret = -EPROTO;
		break;
	case COMP_DEV_ERR:
		dev_warn(&udev->dev,
			 "ERROR: Incompatible device for setup %s command\n", act);
		ret = -ENODEV;
		break;
	case COMP_SUCCESS:
		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
			       "Successful setup %s command", act);
		break;
	default:
		xhci_err(xhci,
			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
			 act, command->status);
		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
		ret = -EINVAL;
		break;
	}
	if (ret) {
		kfree(command);
		return ret;
	}
	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
			"Op regs DCBAA ptr = %#016llx", temp_64);
	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
		"Slot ID %d dcbaa entry @%p = %#016llx",
		udev->slot_id,
		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
		(unsigned long long)
		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
			"Output Context DMA address = %#08llx",
			(unsigned long long)virt_dev->out_ctx->dma);
	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
				le32_to_cpu(slot_ctx->dev_info) >> 27);
	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
	/*
	 * USB core uses address 1 for the roothubs, so we add one to the
	 * address given back to us by the HC.
	 */
	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
				le32_to_cpu(slot_ctx->dev_info) >> 27);
	/* Zero the input context control for later use */
	ctrl_ctx->add_flags = 0;
	ctrl_ctx->drop_flags = 0;

	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
		       "Internal device address = %d",
		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
	kfree(command);
	return 0;
}

int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
{
	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
}

int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
{
	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
}

/*
 * Transfer the port index into real index in the HW port status
 * registers. Caculate offset between the port's PORTSC register
 * and port status base. Divide the number of per port register
 * to get the real index. The raw port number bases 1.
 */
int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
	__le32 __iomem *addr;
	int raw_port;

	if (hcd->speed != HCD_USB3)
		addr = xhci->usb2_ports[port1 - 1];
	else
		addr = xhci->usb3_ports[port1 - 1];

	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
	return raw_port;
}

/*
 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
 */
static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
			struct usb_device *udev, u16 max_exit_latency)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_command *command;
	struct xhci_input_control_ctx *ctrl_ctx;
	struct xhci_slot_ctx *slot_ctx;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&xhci->lock, flags);

	virt_dev = xhci->devs[udev->slot_id];

	/*
	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
	 * xHC was re-initialized. Exit latency will be set later after
	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
	 */

	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		return 0;
	}

	/* Attempt to issue an Evaluate Context command to change the MEL. */
	command = xhci->lpm_command;
	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
	if (!ctrl_ctx) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
				__func__);
		return -ENOMEM;
	}

	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
	spin_unlock_irqrestore(&xhci->lock, flags);

	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);

	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
			"Set up evaluate context for LPM MEL change.");
	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
	xhci_dbg_ctx(xhci, command->in_ctx, 0);

	/* Issue and wait for the evaluate context command. */
	ret = xhci_configure_endpoint(xhci, udev, command,
			true, true);
	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);

	if (!ret) {
		spin_lock_irqsave(&xhci->lock, flags);
		virt_dev->current_mel = max_exit_latency;
		spin_unlock_irqrestore(&xhci->lock, flags);
	}
	return ret;
}

#ifdef CONFIG_PM_RUNTIME

/* BESL to HIRD Encoding array for USB2 LPM */
static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};

/* Calculate HIRD/BESL for USB2 PORTPMSC*/
static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
					struct usb_device *udev)
{
	int u2del, besl, besl_host;
	int besl_device = 0;
	u32 field;

	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);

	if (field & USB_BESL_SUPPORT) {
		for (besl_host = 0; besl_host < 16; besl_host++) {
			if (xhci_besl_encoding[besl_host] >= u2del)
				break;
		}
		/* Use baseline BESL value as default */
		if (field & USB_BESL_BASELINE_VALID)
			besl_device = USB_GET_BESL_BASELINE(field);
		else if (field & USB_BESL_DEEP_VALID)
			besl_device = USB_GET_BESL_DEEP(field);
	} else {
		if (u2del <= 50)
			besl_host = 0;
		else
			besl_host = (u2del - 51) / 75 + 1;
	}

	besl = besl_host + besl_device;
	if (besl > 15)
		besl = 15;

	return besl;
}

/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
{
	u32 field;
	int l1;
	int besld = 0;
	int hirdm = 0;

	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);

	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
	l1 = udev->l1_params.timeout / 256;

	/* device has preferred BESLD */
	if (field & USB_BESL_DEEP_VALID) {
		besld = USB_GET_BESL_DEEP(field);
		hirdm = 1;
	}

	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
}

int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
			struct usb_device *udev, int enable)
{
	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
	__le32 __iomem	**port_array;
	__le32 __iomem	*pm_addr, *hlpm_addr;
	u32		pm_val, hlpm_val, field;
	unsigned int	port_num;
	unsigned long	flags;
	int		hird, exit_latency;
	int		ret;

	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
			!udev->lpm_capable)
		return -EPERM;

	if (!udev->parent || udev->parent->parent ||
			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
		return -EPERM;

	if (udev->usb2_hw_lpm_capable != 1)
		return -EPERM;

	spin_lock_irqsave(&xhci->lock, flags);

	port_array = xhci->usb2_ports;
	port_num = udev->portnum - 1;
	pm_addr = port_array[port_num] + PORTPMSC;
	pm_val = readl(pm_addr);
	hlpm_addr = port_array[port_num] + PORTHLPMC;
	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);

	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
			enable ? "enable" : "disable", port_num + 1);

	if (enable) {
		/* Host supports BESL timeout instead of HIRD */
		if (udev->usb2_hw_lpm_besl_capable) {
			/* if device doesn't have a preferred BESL value use a
			 * default one which works with mixed HIRD and BESL
			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
			 */
			if ((field & USB_BESL_SUPPORT) &&
			    (field & USB_BESL_BASELINE_VALID))
				hird = USB_GET_BESL_BASELINE(field);
			else
				hird = udev->l1_params.besl;

			exit_latency = xhci_besl_encoding[hird];
			spin_unlock_irqrestore(&xhci->lock, flags);

			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
			 * input context for link powermanagement evaluate
			 * context commands. It is protected by hcd->bandwidth
			 * mutex and is shared by all devices. We need to set
			 * the max ext latency in USB 2 BESL LPM as well, so
			 * use the same mutex and xhci_change_max_exit_latency()
			 */
			mutex_lock(hcd->bandwidth_mutex);
			ret = xhci_change_max_exit_latency(xhci, udev,
							   exit_latency);
			mutex_unlock(hcd->bandwidth_mutex);

			if (ret < 0)
				return ret;
			spin_lock_irqsave(&xhci->lock, flags);

			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
			writel(hlpm_val, hlpm_addr);
			/* flush write */
			readl(hlpm_addr);
		} else {
			hird = xhci_calculate_hird_besl(xhci, udev);
		}

		pm_val &= ~PORT_HIRD_MASK;
		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
		writel(pm_val, pm_addr);
		pm_val = readl(pm_addr);
		pm_val |= PORT_HLE;
		writel(pm_val, pm_addr);
		/* flush write */
		readl(pm_addr);
	} else {
		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
		writel(pm_val, pm_addr);
		/* flush write */
		readl(pm_addr);
		if (udev->usb2_hw_lpm_besl_capable) {
			spin_unlock_irqrestore(&xhci->lock, flags);
			mutex_lock(hcd->bandwidth_mutex);
			xhci_change_max_exit_latency(xhci, udev, 0);
			mutex_unlock(hcd->bandwidth_mutex);
			return 0;
		}
	}

	spin_unlock_irqrestore(&xhci->lock, flags);
	return 0;
}

/* check if a usb2 port supports a given extened capability protocol
 * only USB2 ports extended protocol capability values are cached.
 * Return 1 if capability is supported
 */
static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
					   unsigned capability)
{
	u32 port_offset, port_count;
	int i;

	for (i = 0; i < xhci->num_ext_caps; i++) {
		if (xhci->ext_caps[i] & capability) {
			/* port offsets starts at 1 */
			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
			if (port >= port_offset &&
			    port < port_offset + port_count)
				return 1;
		}
	}
	return 0;
}

int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
{
	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
	int		portnum = udev->portnum - 1;

	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
			!udev->lpm_capable)
		return 0;

	/* we only support lpm for non-hub device connected to root hub yet */
	if (!udev->parent || udev->parent->parent ||
			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
		return 0;

	if (xhci->hw_lpm_support == 1 &&
			xhci_check_usb2_port_capability(
				xhci, portnum, XHCI_HLC)) {
		udev->usb2_hw_lpm_capable = 1;
		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
		udev->l1_params.besl = XHCI_DEFAULT_BESL;
		if (xhci_check_usb2_port_capability(xhci, portnum,
					XHCI_BLC))
			udev->usb2_hw_lpm_besl_capable = 1;
	}

	return 0;
}

#else

int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
				struct usb_device *udev, int enable)
{
	return 0;
}

int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
{
	return 0;
}

#endif /* CONFIG_PM_RUNTIME */

/*---------------------- USB 3.0 Link PM functions ------------------------*/

#ifdef CONFIG_PM
/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
static unsigned long long xhci_service_interval_to_ns(
		struct usb_endpoint_descriptor *desc)
{
	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
}

static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
		enum usb3_link_state state)
{
	unsigned long long sel;
	unsigned long long pel;
	unsigned int max_sel_pel;
	char *state_name;

	switch (state) {
	case USB3_LPM_U1:
		/* Convert SEL and PEL stored in nanoseconds to microseconds */
		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
		state_name = "U1";
		break;
	case USB3_LPM_U2:
		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
		state_name = "U2";
		break;
	default:
		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
				__func__);
		return USB3_LPM_DISABLED;
	}

	if (sel <= max_sel_pel && pel <= max_sel_pel)
		return USB3_LPM_DEVICE_INITIATED;

	if (sel > max_sel_pel)
		dev_dbg(&udev->dev, "Device-initiated %s disabled "
				"due to long SEL %llu ms\n",
				state_name, sel);
	else
		dev_dbg(&udev->dev, "Device-initiated %s disabled "
				"due to long PEL %llu ms\n",
				state_name, pel);
	return USB3_LPM_DISABLED;
}

/* The U1 timeout should be the maximum of the following values:
 *  - For control endpoints, U1 system exit latency (SEL) * 3
 *  - For bulk endpoints, U1 SEL * 5
 *  - For interrupt endpoints:
 *    - Notification EPs, U1 SEL * 3
 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)