aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/async_tx/raid6test.c
blob: 98c83ca96c838fdc5d22eceb71cd7c3d040792b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
 * asynchronous raid6 recovery self test
 * Copyright (c) 2009, Intel Corporation.
 *
 * based on drivers/md/raid6test/test.c:
 * 	Copyright 2002-2007 H. Peter Anvin
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/async_tx.h>
#include <linux/random.h>

#undef pr
#define pr(fmt, args...) pr_info("raid6test: " fmt, ##args)

#define NDISKS 16 /* Including P and Q */

static struct page *dataptrs[NDISKS];
static struct page *data[NDISKS+3];
static struct page *spare;
static struct page *recovi;
static struct page *recovj;

static void callback(void *param)
{
	struct completion *cmp = param;

	complete(cmp);
}

static void makedata(int disks)
{
	int i, j;

	for (i = 0; i < disks; i++) {
		for (j = 0; j < PAGE_SIZE/sizeof(u32); j += sizeof(u32)) {
			u32 *p = page_address(data[i]) + j;

			*p = random32();
		}

		dataptrs[i] = data[i];
	}
}

static char disk_type(int d, int disks)
{
	if (d == disks - 2)
		return 'P';
	else if (d == disks - 1)
		return 'Q';
	else
		return 'D';
}

/* Recover two failed blocks. */
static void raid6_dual_recov(int disks, size_t bytes, int faila, int failb, struct page **ptrs)
{
	struct async_submit_ctl submit;
	addr_conv_t addr_conv[disks];
	struct completion cmp;
	struct dma_async_tx_descriptor *tx = NULL;
	enum sum_check_flags result = ~0;

	if (faila > failb)
		swap(faila, failb);

	if (failb == disks-1) {
		if (faila == disks-2) {
			/* P+Q failure.  Just rebuild the syndrome. */
			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
			tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
		} else {
			struct page *blocks[disks];
			struct page *dest;
			int count = 0;
			int i;

			/* data+Q failure.  Reconstruct data from P,
			 * then rebuild syndrome
			 */
			for (i = disks; i-- ; ) {
				if (i == faila || i == failb)
					continue;
				blocks[count++] = ptrs[i];
			}
			dest = ptrs[faila];
			init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
					  NULL, NULL, addr_conv);
			tx = async_xor(dest, blocks, 0, count, bytes, &submit);

			init_async_submit(&submit, 0, tx, NULL, NULL, addr_conv);
			tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
		}
	} else {
		if (failb == disks-2) {
			/* data+P failure. */
			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
			tx = async_raid6_datap_recov(disks, bytes, faila, ptrs, &submit);
		} else {
			/* data+data failure. */
			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
			tx = async_raid6_2data_recov(disks, bytes, faila, failb, ptrs, &submit);
		}
	}
	init_completion(&cmp);
	init_async_submit(&submit, ASYNC_TX_ACK, tx, callback, &cmp, addr_conv);
	tx = async_syndrome_val(ptrs, 0, disks, bytes, &result, spare, &submit);
	async_tx_issue_pending(tx);

	if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0)
		pr("%s: timeout! (faila: %d failb: %d disks: %d)\n",
		   __func__, faila, failb, disks);

	if (result != 0)
		pr("%s: validation failure! faila: %d failb: %d sum_check_flags: %x\n",
		   __func__, faila, failb, result);
}

static int test_disks(int i, int j, int disks)
{
	int erra, errb;

	memset(page_address(recovi), 0xf0, PAGE_SIZE);
	memset(page_address(recovj), 0xba, PAGE_SIZE);

	dataptrs[i] = recovi;
	dataptrs[j] = recovj;

	raid6_dual_recov(disks, PAGE_SIZE, i, j, dataptrs);

	erra = memcmp(page_address(data[i]), page_address(recovi), PAGE_SIZE);
	errb = memcmp(page_address(data[j]), page_address(recovj), PAGE_SIZE);

	pr("%s(%d, %d): faila=%3d(%c)  failb=%3d(%c)  %s\n",
	   __func__, i, j, i, disk_type(i, disks), j, disk_type(j, disks),
	   (!erra && !errb) ? "OK" : !erra ? "ERRB" : !errb ? "ERRA" : "ERRAB");

	dataptrs[i] = data[i];
	dataptrs[j] = data[j];

	return erra || errb;
}

static int test(int disks, int *tests)
{
	addr_conv_t addr_conv[disks];
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct completion cmp;
	int err = 0;
	int i, j;

	recovi = data[disks];
	recovj = data[disks+1];
	spare  = data[disks+2];

	makedata(disks);

	/* Nuke syndromes */
	memset(page_address(data[disks-2]), 0xee, PAGE_SIZE);
	memset(page_address(data[disks-1]), 0xee, PAGE_SIZE);

	/* Generate assumed good syndrome */
	init_completion(&cmp);
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, callback, &cmp, addr_conv);
	tx = async_gen_syndrome(dataptrs, 0, disks, PAGE_SIZE, &submit);
	async_tx_issue_pending(tx);

	if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0) {
		pr("error: initial gen_syndrome(%d) timed out\n", disks);
		return 1;
	}

	pr("testing the %d-disk case...\n", disks);
	for (i = 0; i < disks-1; i++)
		for (j = i+1; j < disks; j++) {
			(*tests)++;
			err += test_disks(i, j, disks);
		}

	return err;
}


static int raid6_test(void)
{
	int err = 0;
	int tests = 0;
	int i;

	for (i = 0; i < NDISKS+3; i++) {
		data[i] = alloc_page(GFP_KERNEL);
		if (!data[i]) {
			while (i--)
				put_page(data[i]);
			return -ENOMEM;
		}
	}

	/* the 4-disk and 5-disk cases are special for the recovery code */
	if (NDISKS > 4)
		err += test(4, &tests);
	if (NDISKS > 5)
		err += test(5, &tests);
	err += test(NDISKS, &tests);

	pr("\n");
	pr("complete (%d tests, %d failure%s)\n",
	   tests, err, err == 1 ? "" : "s");

	for (i = 0; i < NDISKS+3; i++)
		put_page(data[i]);

	return 0;
}

static void raid6_test_exit(void)
{
}

/* when compiled-in wait for drivers to load first (assumes dma drivers
 * are also compliled-in)
 */
late_initcall(raid6_test);
module_exit(raid6_test_exit);
MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
MODULE_DESCRIPTION("asynchronous RAID-6 recovery self tests");
MODULE_LICENSE("GPL");