aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86_64/kernel/time.c
blob: 216fc9d742478902ca0109faa3aaf432a73381a8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/*
 *  linux/arch/x86-64/kernel/time.c
 *
 *  "High Precision Event Timer" based timekeeping.
 *
 *  Copyright (c) 1991,1992,1995  Linus Torvalds
 *  Copyright (c) 1994  Alan Modra
 *  Copyright (c) 1995  Markus Kuhn
 *  Copyright (c) 1996  Ingo Molnar
 *  Copyright (c) 1998  Andrea Arcangeli
 *  Copyright (c) 2002,2006  Vojtech Pavlik
 *  Copyright (c) 2003  Andi Kleen
 *  RTC support code taken from arch/i386/kernel/timers/time_hpet.c
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/sysdev.h>
#include <linux/bcd.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/kallsyms.h>
#include <linux/acpi.h>
#ifdef CONFIG_ACPI
#include <acpi/achware.h>	/* for PM timer frequency */
#include <acpi/acpi_bus.h>
#endif
#include <asm/8253pit.h>
#include <asm/pgtable.h>
#include <asm/vsyscall.h>
#include <asm/timex.h>
#include <asm/proto.h>
#include <asm/hpet.h>
#include <asm/sections.h>
#include <linux/cpufreq.h>
#include <linux/hpet.h>
#include <asm/apic.h>
#include <asm/hpet.h>

#ifdef CONFIG_CPU_FREQ
extern void cpufreq_delayed_get(void);
#endif
extern void i8254_timer_resume(void);
extern int using_apic_timer;

static char *timename = NULL;

DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
DEFINE_SPINLOCK(i8253_lock);

unsigned long vxtime_hz = PIT_TICK_RATE;
int report_lost_ticks;				/* command line option */
unsigned long long monotonic_base;

struct vxtime_data __vxtime __section_vxtime;	/* for vsyscalls */

volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
struct timespec __xtime __section_xtime;
struct timezone __sys_tz __section_sys_tz;

unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;

/*
 * This version of gettimeofday() has microsecond resolution and better than
 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
 * MHz) HPET timer.
 */

void do_gettimeofday(struct timeval *tv)
{
	unsigned long seq;
 	unsigned int sec, usec;

	do {
		seq = read_seqbegin(&xtime_lock);

		sec = xtime.tv_sec;
		usec = xtime.tv_nsec / NSEC_PER_USEC;

		/* i386 does some correction here to keep the clock 
		   monotonous even when ntpd is fixing drift.
		   But they didn't work for me, there is a non monotonic
		   clock anyways with ntp.
		   I dropped all corrections now until a real solution can
		   be found. Note when you fix it here you need to do the same
		   in arch/x86_64/kernel/vsyscall.c and export all needed
		   variables in vmlinux.lds. -AK */ 
		usec += do_gettimeoffset();

	} while (read_seqretry(&xtime_lock, seq));

	tv->tv_sec = sec + usec / USEC_PER_SEC;
	tv->tv_usec = usec % USEC_PER_SEC;
}

EXPORT_SYMBOL(do_gettimeofday);

/*
 * settimeofday() first undoes the correction that gettimeofday would do
 * on the time, and then saves it. This is ugly, but has been like this for
 * ages already.
 */

int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, sec = tv->tv_sec;
	long wtm_nsec, nsec = tv->tv_nsec;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irq(&xtime_lock);

	nsec -= do_gettimeoffset() * NSEC_PER_USEC;

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);

	set_normalized_timespec(&xtime, sec, nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

	ntp_clear();

	write_sequnlock_irq(&xtime_lock);
	clock_was_set();
	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	/* Assume the lock function has either no stack frame or a copy
	   of eflags from PUSHF
	   Eflags always has bits 22 and up cleared unlike kernel addresses. */
	if (!user_mode(regs) && in_lock_functions(pc)) {
		unsigned long *sp = (unsigned long *)regs->rsp;
		if (sp[0] >> 22)
			return sp[0];
		if (sp[1] >> 22)
			return sp[1];
	}
	return pc;
}
EXPORT_SYMBOL(profile_pc);

/*
 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
 * ms after the second nowtime has started, because when nowtime is written
 * into the registers of the CMOS clock, it will jump to the next second
 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
 * sheet for details.
 */

static void set_rtc_mmss(unsigned long nowtime)
{
	int real_seconds, real_minutes, cmos_minutes;
	unsigned char control, freq_select;

/*
 * IRQs are disabled when we're called from the timer interrupt,
 * no need for spin_lock_irqsave()
 */

	spin_lock(&rtc_lock);

/*
 * Tell the clock it's being set and stop it.
 */

	control = CMOS_READ(RTC_CONTROL);
	CMOS_WRITE(control | RTC_SET, RTC_CONTROL);

	freq_select = CMOS_READ(RTC_FREQ_SELECT);
	CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);

	cmos_minutes = CMOS_READ(RTC_MINUTES);
		BCD_TO_BIN(cmos_minutes);

/*
 * since we're only adjusting minutes and seconds, don't interfere with hour
 * overflow. This avoids messing with unknown time zones but requires your RTC
 * not to be off by more than 15 minutes. Since we're calling it only when
 * our clock is externally synchronized using NTP, this shouldn't be a problem.
 */

	real_seconds = nowtime % 60;
	real_minutes = nowtime / 60;
	if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
		real_minutes += 30;		/* correct for half hour time zone */
	real_minutes %= 60;

	if (abs(real_minutes - cmos_minutes) >= 30) {
		printk(KERN_WARNING "time.c: can't update CMOS clock "
		       "from %d to %d\n", cmos_minutes, real_minutes);
	} else {
		BIN_TO_BCD(real_seconds);
		BIN_TO_BCD(real_minutes);
		CMOS_WRITE(real_seconds, RTC_SECONDS);
		CMOS_WRITE(real_minutes, RTC_MINUTES);
	}

/*
 * The following flags have to be released exactly in this order, otherwise the
 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
 * not reset the oscillator and will not update precisely 500 ms later. You
 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
 * believes data sheets anyway ... -- Markus Kuhn
 */

	CMOS_WRITE(control, RTC_CONTROL);
	CMOS_WRITE(freq_select, RTC_FREQ_SELECT);

	spin_unlock(&rtc_lock);
}


/* monotonic_clock(): returns # of nanoseconds passed since time_init()
 *		Note: This function is required to return accurate
 *		time even in the absence of multiple timer ticks.
 */
extern unsigned long long cycles_2_ns(unsigned long long cyc);
unsigned long long monotonic_clock(void)
{
	unsigned long seq;
 	u32 last_offset, this_offset, offset;
	unsigned long long base;

	if (vxtime.mode == VXTIME_HPET) {
		do {
			seq = read_seqbegin(&xtime_lock);

			last_offset = vxtime.last;
			base = monotonic_base;
			this_offset = hpet_readl(HPET_COUNTER);
		} while (read_seqretry(&xtime_lock, seq));
		offset = (this_offset - last_offset);
		offset *= NSEC_PER_TICK / hpet_tick;
	} else {
		do {
			seq = read_seqbegin(&xtime_lock);

			last_offset = vxtime.last_tsc;
			base = monotonic_base;
		} while (read_seqretry(&xtime_lock, seq));
		this_offset = get_cycles_sync();
		offset = cycles_2_ns(this_offset - last_offset);
	}
	return base + offset;
}
EXPORT_SYMBOL(monotonic_clock);

static noinline void handle_lost_ticks(int lost)
{
	static long lost_count;
	static int warned;
	if (report_lost_ticks) {
		printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
		print_symbol("rip %s)\n", get_irq_regs()->rip);
	}

	if (lost_count == 1000 && !warned) {
		printk(KERN_WARNING "warning: many lost ticks.\n"
		       KERN_WARNING "Your time source seems to be instable or "
		   		"some driver is hogging interupts\n");
		print_symbol("rip %s\n", get_irq_regs()->rip);
		if (vxtime.mode == VXTIME_TSC && hpet_address) {
			printk(KERN_WARNING "Falling back to HPET\n");
			if (hpet_use_timer)
				vxtime.last = hpet_readl(HPET_T0_CMP) - 
							hpet_tick;
			else
				vxtime.last = hpet_readl(HPET_COUNTER);
			vxtime.mode = VXTIME_HPET;
			vxtime.hpet_address = hpet_address;
			do_gettimeoffset = do_gettimeoffset_hpet;
		}
		/* else should fall back to PIT, but code missing. */
		warned = 1;
	} else
		lost_count++;

#ifdef CONFIG_CPU_FREQ
	/* In some cases the CPU can change frequency without us noticing
	   Give cpufreq a change to catch up. */
	if ((lost_count+1) % 25 == 0)
		cpufreq_delayed_get();
#endif
}

void main_timer_handler(void)
{
	static unsigned long rtc_update = 0;
	unsigned long tsc;
	int delay = 0, offset = 0, lost = 0;

/*
 * Here we are in the timer irq handler. We have irqs locally disabled (so we
 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
 * on the other CPU, so we need a lock. We also need to lock the vsyscall
 * variables, because both do_timer() and us change them -arca+vojtech
 */

	write_seqlock(&xtime_lock);

	if (hpet_address)
		offset = hpet_readl(HPET_COUNTER);

	if (hpet_use_timer) {
		/* if we're using the hpet timer functionality,
		 * we can more accurately know the counter value
		 * when the timer interrupt occured.
		 */
		offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
		delay = hpet_readl(HPET_COUNTER) - offset;
	} else if (!pmtmr_ioport) {
		spin_lock(&i8253_lock);
		outb_p(0x00, 0x43);
		delay = inb_p(0x40);
		delay |= inb(0x40) << 8;
		spin_unlock(&i8253_lock);
		delay = LATCH - 1 - delay;
	}

	tsc = get_cycles_sync();

	if (vxtime.mode == VXTIME_HPET) {
		if (offset - vxtime.last > hpet_tick) {
			lost = (offset - vxtime.last) / hpet_tick - 1;
		}

		monotonic_base += 
			(offset - vxtime.last) * NSEC_PER_TICK / hpet_tick;

		vxtime.last = offset;
#ifdef CONFIG_X86_PM_TIMER
	} else if (vxtime.mode == VXTIME_PMTMR) {
		lost = pmtimer_mark_offset();
#endif
	} else {
		offset = (((tsc - vxtime.last_tsc) *
			   vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK;

		if (offset < 0)
			offset = 0;

		if (offset > USEC_PER_TICK) {
			lost = offset / USEC_PER_TICK;
			offset %= USEC_PER_TICK;
		}

		monotonic_base += cycles_2_ns(tsc - vxtime.last_tsc);

		vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;

		if ((((tsc - vxtime.last_tsc) *
		      vxtime.tsc_quot) >> US_SCALE) < offset)
			vxtime.last_tsc = tsc -
				(((long) offset << US_SCALE) / vxtime.tsc_quot) - 1;
	}

	if (lost > 0)
		handle_lost_ticks(lost);
	else
		lost = 0;

/*
 * Do the timer stuff.
 */

	do_timer(lost + 1);
#ifndef CONFIG_SMP
	update_process_times(user_mode(get_irq_regs()));
#endif

/*
 * In the SMP case we use the local APIC timer interrupt to do the profiling,
 * except when we simulate SMP mode on a uniprocessor system, in that case we
 * have to call the local interrupt handler.
 */

	if (!using_apic_timer)
		smp_local_timer_interrupt();

/*
 * If we have an externally synchronized Linux clock, then update CMOS clock
 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
 * closest to exactly 500 ms before the next second. If the update fails, we
 * don't care, as it'll be updated on the next turn, and the problem (time way
 * off) isn't likely to go away much sooner anyway.
 */

	if (ntp_synced() && xtime.tv_sec > rtc_update &&
		abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
		set_rtc_mmss(xtime.tv_sec);
		rtc_update = xtime.tv_sec + 660;
	}
 
	write_sequnlock(&xtime_lock);
}

static irqreturn_t timer_interrupt(int irq, void *dev_id)
{
	if (apic_runs_main_timer > 1)
		return IRQ_HANDLED;
	main_timer_handler();
	if (using_apic_timer)
		smp_send_timer_broadcast_ipi();
	return IRQ_HANDLED;
}

static unsigned long get_cmos_time(void)
{
	unsigned int year, mon, day, hour, min, sec;
	unsigned long flags;
	unsigned century = 0;

	spin_lock_irqsave(&rtc_lock, flags);

	do {
		sec = CMOS_READ(RTC_SECONDS);
		min = CMOS_READ(RTC_MINUTES);
		hour = CMOS_READ(RTC_HOURS);
		day = CMOS_READ(RTC_DAY_OF_MONTH);
		mon = CMOS_READ(RTC_MONTH);
		year = CMOS_READ(RTC_YEAR);
#ifdef CONFIG_ACPI
		if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
					acpi_gbl_FADT.century)
			century = CMOS_READ(acpi_gbl_FADT.century);
#endif
	} while (sec != CMOS_READ(RTC_SECONDS));

	spin_unlock_irqrestore(&rtc_lock, flags);

	/*
	 * We know that x86-64 always uses BCD format, no need to check the
	 * config register.
 	 */

	BCD_TO_BIN(sec);
	BCD_TO_BIN(min);
	BCD_TO_BIN(hour);
	BCD_TO_BIN(day);
	BCD_TO_BIN(mon);
	BCD_TO_BIN(year);

	if (century) {
		BCD_TO_BIN(century);
		year += century * 100;
		printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
	} else { 
		/*
		 * x86-64 systems only exists since 2002.
		 * This will work up to Dec 31, 2100
	 	 */
		year += 2000;
	}

	return mktime(year, mon, day, hour, min, sec);
}


/*
 * pit_calibrate_tsc() uses the speaker output (channel 2) of
 * the PIT. This is better than using the timer interrupt output,
 * because we can read the value of the speaker with just one inb(),
 * where we need three i/o operations for the interrupt channel.
 * We count how many ticks the TSC does in 50 ms.
 */

static unsigned int __init pit_calibrate_tsc(void)
{
	unsigned long start, end;
	unsigned long flags;

	spin_lock_irqsave(&i8253_lock, flags);

	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	outb(0xb0, 0x43);
	outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
	outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
	start = get_cycles_sync();
	while ((inb(0x61) & 0x20) == 0);
	end = get_cycles_sync();

	spin_unlock_irqrestore(&i8253_lock, flags);
	
	return (end - start) / 50;
}

#define PIT_MODE 0x43
#define PIT_CH0  0x40

static void __init __pit_init(int val, u8 mode)
{
	unsigned long flags;

	spin_lock_irqsave(&i8253_lock, flags);
	outb_p(mode, PIT_MODE);
	outb_p(val & 0xff, PIT_CH0);	/* LSB */
	outb_p(val >> 8, PIT_CH0);	/* MSB */
	spin_unlock_irqrestore(&i8253_lock, flags);
}

void __init pit_init(void)
{
	__pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
}

void __init pit_stop_interrupt(void)
{
	__pit_init(0, 0x30); /* mode 0 */
}

void __init stop_timer_interrupt(void)
{
	char *name;
	if (hpet_address) {
		name = "HPET";
		hpet_timer_stop_set_go(0);
	} else {
		name = "PIT";
		pit_stop_interrupt();
	}
	printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
}

int __init time_setup(char *str)
{
	report_lost_ticks = 1;
	return 1;
}

static struct irqaction irq0 = {
	timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL
};

void __init time_init(void)
{
	if (nohpet)
		hpet_address = 0;
	xtime.tv_sec = get_cmos_time();
	xtime.tv_nsec = 0;

	set_normalized_timespec(&wall_to_monotonic,
	                        -xtime.tv_sec, -xtime.tv_nsec);

	if (!hpet_arch_init())
                vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period;
	else
		hpet_address = 0;

	if (hpet_use_timer) {
		/* set tick_nsec to use the proper rate for HPET */
	  	tick_nsec = TICK_NSEC_HPET;
		cpu_khz = hpet_calibrate_tsc();
		timename = "HPET";
#ifdef CONFIG_X86_PM_TIMER
	} else if (pmtmr_ioport && !hpet_address) {
		vxtime_hz = PM_TIMER_FREQUENCY;
		timename = "PM";
		pit_init();
		cpu_khz = pit_calibrate_tsc();
#endif
	} else {
		pit_init();
		cpu_khz = pit_calibrate_tsc();
		timename = "PIT";
	}

	vxtime.mode = VXTIME_TSC;
	vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
	vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
	vxtime.last_tsc = get_cycles_sync();
	set_cyc2ns_scale(cpu_khz);
	setup_irq(0, &irq0);

#ifndef CONFIG_SMP
	time_init_gtod();
#endif
}

/*
 * Decide what mode gettimeofday should use.
 */
void time_init_gtod(void)
{
	char *timetype;

	if (unsynchronized_tsc())
		notsc = 1;

	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
		vgetcpu_mode = VGETCPU_RDTSCP;
	else
		vgetcpu_mode = VGETCPU_LSL;

	if (hpet_address && notsc) {
		timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
		if (hpet_use_timer)
			vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
		else
			vxtime.last = hpet_readl(HPET_COUNTER);
		vxtime.mode = VXTIME_HPET;
		vxtime.hpet_address = hpet_address;
		do_gettimeoffset = do_gettimeoffset_hpet;
#ifdef CONFIG_X86_PM_TIMER
	/* Using PM for gettimeofday is quite slow, but we have no other
	   choice because the TSC is too unreliable on some systems. */
	} else if (pmtmr_ioport && !hpet_address && notsc) {
		timetype = "PM";
		do_gettimeoffset = do_gettimeoffset_pm;
		vxtime.mode = VXTIME_PMTMR;
		sysctl_vsyscall = 0;
		printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
#endif
	} else {
		timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
		vxtime.mode = VXTIME_TSC;
	}

	printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
	       vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype);
	printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
		cpu_khz / 1000, cpu_khz % 1000);
	vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
	vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
	vxtime.last_tsc = get_cycles_sync();

	set_cyc2ns_scale(cpu_khz);
}

__setup("report_lost_ticks", time_setup);

static long clock_cmos_diff;
static unsigned long sleep_start;

/*
 * sysfs support for the timer.
 */

static int timer_suspend(struct sys_device *dev, pm_message_t state)
{
	/*
	 * Estimate time zone so that set_time can update the clock
	 */
	long cmos_time =  get_cmos_time();

	clock_cmos_diff = -cmos_time;
	clock_cmos_diff += get_seconds();
	sleep_start = cmos_time;
	return 0;
}

static int timer_resume(struct sys_device *dev)
{
	unsigned long flags;
	unsigned long sec;
	unsigned long ctime = get_cmos_time();
	long sleep_length = (ctime - sleep_start) * HZ;

	if (sleep_length < 0) {
		printk(KERN_WARNING "Time skew detected in timer resume!\n");
		/* The time after the resume must not be earlier than the time
		 * before the suspend or some nasty things will happen
		 */
		sleep_length = 0;
		ctime = sleep_start;
	}
	if (hpet_address)
		hpet_reenable();
	else
		i8254_timer_resume();

	sec = ctime + clock_cmos_diff;
	write_seqlock_irqsave(&xtime_lock,flags);
	xtime.tv_sec = sec;
	xtime.tv_nsec = 0;
	if (vxtime.mode == VXTIME_HPET) {
		if (hpet_use_timer)
			vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
		else
			vxtime.last = hpet_readl(HPET_COUNTER);
#ifdef CONFIG_X86_PM_TIMER
	} else if (vxtime.mode == VXTIME_PMTMR) {
		pmtimer_resume();
#endif
	} else
		vxtime.last_tsc = get_cycles_sync();
	write_sequnlock_irqrestore(&xtime_lock,flags);
	jiffies += sleep_length;
	monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
	touch_softlockup_watchdog();
	return 0;
}

static struct sysdev_class timer_sysclass = {
	.resume = timer_resume,
	.suspend = timer_suspend,
	set_kset_name("timer"),
};

/* XXX this driverfs stuff should probably go elsewhere later -john */
static struct sys_device device_timer = {
	.id	= 0,
	.cls	= &timer_sysclass,
};

static int time_init_device(void)
{
	int error = sysdev_class_register(&timer_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(time_init_device);