aboutsummaryrefslogtreecommitdiffstats
path: root/arch/v850/kernel/module.c
blob: 64aeb3e37c52716c1687eecbd46a509c2db27309 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*
 * arch/v850/kernel/module.c -- Architecture-specific module functions
 *
 *  Copyright (C) 2002,03  NEC Electronics Corporation
 *  Copyright (C) 2002,03  Miles Bader <miles@gnu.org>
 *  Copyright (C) 2001,03  Rusty Russell
 *
 * This file is subject to the terms and conditions of the GNU General
 * Public License.  See the file COPYING in the main directory of this
 * archive for more details.
 *
 * Written by Miles Bader <miles@gnu.org>
 *
 * Derived in part from arch/ppc/kernel/module.c
 */

#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/moduleloader.h>
#include <linux/elf.h>

#if 0
#define DEBUGP printk
#else
#define DEBUGP(fmt , ...)
#endif

void *module_alloc (unsigned long size)
{
	return size == 0 ? 0 : vmalloc (size);
}

void module_free (struct module *mod, void *module_region)
{
	vfree (module_region);
	/* FIXME: If module_region == mod->init_region, trim exception
           table entries. */
}

int module_finalize (const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
		     struct module *mod)
{
	return 0;
}

/* Count how many different relocations (different symbol, different
   addend) */
static unsigned int count_relocs(const Elf32_Rela *rela, unsigned int num)
{
	unsigned int i, j, ret = 0;

	/* Sure, this is order(n^2), but it's usually short, and not
           time critical */
	for (i = 0; i < num; i++) {
		for (j = 0; j < i; j++) {
			/* If this addend appeared before, it's
                           already been counted */
			if (ELF32_R_SYM(rela[i].r_info)
			    == ELF32_R_SYM(rela[j].r_info)
			    && rela[i].r_addend == rela[j].r_addend)
				break;
		}
		if (j == i) ret++;
	}
	return ret;
}

/* Get the potential trampolines size required of the init and
   non-init sections */
static unsigned long get_plt_size(const Elf32_Ehdr *hdr,
				  const Elf32_Shdr *sechdrs,
				  const char *secstrings,
				  int is_init)
{
	unsigned long ret = 0;
	unsigned i;

	/* Everything marked ALLOC (this includes the exported
           symbols) */
	for (i = 1; i < hdr->e_shnum; i++) {
		/* If it's called *.init*, and we're not init, we're
                   not interested */
		if ((strstr(secstrings + sechdrs[i].sh_name, ".init") != 0)
		    != is_init)
			continue;

		if (sechdrs[i].sh_type == SHT_RELA) {
			DEBUGP("Found relocations in section %u\n", i);
			DEBUGP("Ptr: %p.  Number: %u\n",
			       (void *)hdr + sechdrs[i].sh_offset,
			       sechdrs[i].sh_size / sizeof(Elf32_Rela));
			ret += count_relocs((void *)hdr
					     + sechdrs[i].sh_offset,
					     sechdrs[i].sh_size
					     / sizeof(Elf32_Rela))
				* sizeof(struct v850_plt_entry);
		}
	}

	return ret;
}

int module_frob_arch_sections(Elf32_Ehdr *hdr,
			      Elf32_Shdr *sechdrs,
			      char *secstrings,
			      struct module *me)
{
	unsigned int i;

	/* Find .plt and .pltinit sections */
	for (i = 0; i < hdr->e_shnum; i++) {
		if (strcmp(secstrings + sechdrs[i].sh_name, ".init.plt") == 0)
			me->arch.init_plt_section = i;
		else if (strcmp(secstrings + sechdrs[i].sh_name, ".plt") == 0)
			me->arch.core_plt_section = i;
	}
	if (!me->arch.core_plt_section || !me->arch.init_plt_section) {
		printk("Module doesn't contain .plt or .plt.init sections.\n");
		return -ENOEXEC;
	}

	/* Override their sizes */
	sechdrs[me->arch.core_plt_section].sh_size
		= get_plt_size(hdr, sechdrs, secstrings, 0);
	sechdrs[me->arch.init_plt_section].sh_size
		= get_plt_size(hdr, sechdrs, secstrings, 1);
	return 0;
}

int apply_relocate (Elf32_Shdr *sechdrs, const char *strtab,
		    unsigned int symindex, unsigned int relsec,
		    struct module *mod)
{
	printk ("Barf\n");
	return -ENOEXEC;
}

/* Set up a trampoline in the PLT to bounce us to the distant function */
static uint32_t do_plt_call (void *location, Elf32_Addr val,
			     Elf32_Shdr *sechdrs, struct module *mod)
{
	struct v850_plt_entry *entry;
	/* Instructions used to do the indirect jump.  */
	uint32_t tramp[2];

	/* We have to trash a register, so we assume that any control
	   transfer more than 21-bits away must be a function call
	   (so we can use a call-clobbered register).  */
	tramp[0] = 0x0621 + ((val & 0xffff) << 16);   /* mov sym, r1 ... */
	tramp[1] = ((val >> 16) & 0xffff) + 0x610000; /* ...; jmp r1 */

	/* Init, or core PLT? */
	if (location >= mod->module_core
	    && location < mod->module_core + mod->core_size)
		entry = (void *)sechdrs[mod->arch.core_plt_section].sh_addr;
	else
		entry = (void *)sechdrs[mod->arch.init_plt_section].sh_addr;

	/* Find this entry, or if that fails, the next avail. entry */
	while (entry->tramp[0])
		if (entry->tramp[0] == tramp[0] && entry->tramp[1] == tramp[1])
			return (uint32_t)entry;
		else
			entry++;

	entry->tramp[0] = tramp[0];
	entry->tramp[1] = tramp[1];

	return (uint32_t)entry;
}

int apply_relocate_add (Elf32_Shdr *sechdrs, const char *strtab,
			unsigned int symindex, unsigned int relsec,
			struct module *mod)
{
	unsigned int i;
	Elf32_Rela *rela = (void *)sechdrs[relsec].sh_addr;

	DEBUGP ("Applying relocate section %u to %u\n", relsec,
		sechdrs[relsec].sh_info);

	for (i = 0; i < sechdrs[relsec].sh_size / sizeof (*rela); i++) {
		/* This is where to make the change */
		uint32_t *loc
			= ((void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
			   + rela[i].r_offset);
		/* This is the symbol it is referring to.  Note that all
		   undefined symbols have been resolved.  */
		Elf32_Sym *sym
			= ((Elf32_Sym *)sechdrs[symindex].sh_addr
			   + ELF32_R_SYM (rela[i].r_info));
		uint32_t val = sym->st_value + rela[i].r_addend;

		switch (ELF32_R_TYPE (rela[i].r_info)) {
		case R_V850_32:
			/* We write two shorts instead of a long because even
			   32-bit insns only need half-word alignment, but
			   32-bit data writes need to be long-word aligned.  */
			val += ((uint16_t *)loc)[0];
			val += ((uint16_t *)loc)[1] << 16;
			((uint16_t *)loc)[0] = val & 0xffff;
			((uint16_t *)loc)[1] = (val >> 16) & 0xffff;
			break;

		case R_V850_22_PCREL:
			/* Maybe jump indirectly via a PLT table entry.  */
			if ((int32_t)(val - (uint32_t)loc) > 0x1fffff
			    || (int32_t)(val - (uint32_t)loc) < -0x200000)
				val = do_plt_call (loc, val, sechdrs, mod);

			val -= (uint32_t)loc;

			/* We write two shorts instead of a long because
			   even 32-bit insns only need half-word alignment,
			   but 32-bit data writes need to be long-word
			   aligned.  */
			((uint16_t *)loc)[0] =
				(*(uint16_t *)loc & 0xffc0) /* opcode + reg */
				| ((val >> 16) & 0xffc03f); /* offs high */
			((uint16_t *)loc)[1] =
				(val & 0xffff);		    /* offs low */
			break;

		default:
			printk (KERN_ERR "module %s: Unknown reloc: %u\n",
				mod->name, ELF32_R_TYPE (rela[i].r_info));
			return -ENOEXEC;
		}
	}

	return 0;
}

void
module_arch_cleanup(struct module *mod)
{
}