aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/platforms/pseries/eeh.c
blob: d8d24502970f7ba5629674251260eed178107886 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
/*
 * eeh.c
 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/delay.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <asm/atomic.h>
#include <asm/eeh.h>
#include <asm/eeh_event.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/ppc-pci.h>
#include <asm/rtas.h>

#undef DEBUG

/** Overview:
 *  EEH, or "Extended Error Handling" is a PCI bridge technology for
 *  dealing with PCI bus errors that can't be dealt with within the
 *  usual PCI framework, except by check-stopping the CPU.  Systems
 *  that are designed for high-availability/reliability cannot afford
 *  to crash due to a "mere" PCI error, thus the need for EEH.
 *  An EEH-capable bridge operates by converting a detected error
 *  into a "slot freeze", taking the PCI adapter off-line, making
 *  the slot behave, from the OS'es point of view, as if the slot
 *  were "empty": all reads return 0xff's and all writes are silently
 *  ignored.  EEH slot isolation events can be triggered by parity
 *  errors on the address or data busses (e.g. during posted writes),
 *  which in turn might be caused by low voltage on the bus, dust,
 *  vibration, humidity, radioactivity or plain-old failed hardware.
 *
 *  Note, however, that one of the leading causes of EEH slot
 *  freeze events are buggy device drivers, buggy device microcode,
 *  or buggy device hardware.  This is because any attempt by the
 *  device to bus-master data to a memory address that is not
 *  assigned to the device will trigger a slot freeze.   (The idea
 *  is to prevent devices-gone-wild from corrupting system memory).
 *  Buggy hardware/drivers will have a miserable time co-existing
 *  with EEH.
 *
 *  Ideally, a PCI device driver, when suspecting that an isolation
 *  event has occured (e.g. by reading 0xff's), will then ask EEH
 *  whether this is the case, and then take appropriate steps to
 *  reset the PCI slot, the PCI device, and then resume operations.
 *  However, until that day,  the checking is done here, with the
 *  eeh_check_failure() routine embedded in the MMIO macros.  If
 *  the slot is found to be isolated, an "EEH Event" is synthesized
 *  and sent out for processing.
 */

/* If a device driver keeps reading an MMIO register in an interrupt
 * handler after a slot isolation event has occurred, we assume it
 * is broken and panic.  This sets the threshold for how many read
 * attempts we allow before panicking.
 */
#define EEH_MAX_FAILS	100000

/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;
static int ibm_get_config_addr_info;
static int ibm_configure_bridge;

int eeh_subsystem_enabled;
EXPORT_SYMBOL(eeh_subsystem_enabled);

/* Lock to avoid races due to multiple reports of an error */
static DEFINE_SPINLOCK(confirm_error_lock);

/* Buffer for reporting slot-error-detail rtas calls */
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;

/* System monitoring statistics */
static DEFINE_PER_CPU(unsigned long, no_device);
static DEFINE_PER_CPU(unsigned long, no_dn);
static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
static DEFINE_PER_CPU(unsigned long, ignored_check);
static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
static DEFINE_PER_CPU(unsigned long, false_positives);
static DEFINE_PER_CPU(unsigned long, ignored_failures);
static DEFINE_PER_CPU(unsigned long, slot_resets);

/* --------------------------------------------------------------- */
/* Below lies the EEH event infrastructure */

void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
{
	int config_addr;
	unsigned long flags;
	int rc;

	/* Log the error with the rtas logger */
	spin_lock_irqsave(&slot_errbuf_lock, flags);
	memset(slot_errbuf, 0, eeh_error_buf_size);

	/* Use PE configuration address, if present */
	config_addr = pdn->eeh_config_addr;
	if (pdn->eeh_pe_config_addr)
		config_addr = pdn->eeh_pe_config_addr;

	rc = rtas_call(ibm_slot_error_detail,
	               8, 1, NULL, config_addr,
	               BUID_HI(pdn->phb->buid),
	               BUID_LO(pdn->phb->buid), NULL, 0,
	               virt_to_phys(slot_errbuf),
	               eeh_error_buf_size,
	               severity);

	if (rc == 0)
		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
}

/**
 * read_slot_reset_state - Read the reset state of a device node's slot
 * @dn: device node to read
 * @rets: array to return results in
 */
static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
{
	int token, outputs;
	int config_addr;

	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
		token = ibm_read_slot_reset_state2;
		outputs = 4;
	} else {
		token = ibm_read_slot_reset_state;
		rets[2] = 0; /* fake PE Unavailable info */
		outputs = 3;
	}

	/* Use PE configuration address, if present */
	config_addr = pdn->eeh_config_addr;
	if (pdn->eeh_pe_config_addr)
		config_addr = pdn->eeh_pe_config_addr;

	return rtas_call(token, 3, outputs, rets, config_addr,
			 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
}

/**
 * eeh_token_to_phys - convert EEH address token to phys address
 * @token i/o token, should be address in the form 0xA....
 */
static inline unsigned long eeh_token_to_phys(unsigned long token)
{
	pte_t *ptep;
	unsigned long pa;

	ptep = find_linux_pte(init_mm.pgd, token);
	if (!ptep)
		return token;
	pa = pte_pfn(*ptep) << PAGE_SHIFT;

	return pa | (token & (PAGE_SIZE-1));
}

/** 
 * Return the "partitionable endpoint" (pe) under which this device lies
 */
struct device_node * find_device_pe(struct device_node *dn)
{
	while ((dn->parent) && PCI_DN(dn->parent) &&
	      (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
		dn = dn->parent;
	}
	return dn;
}

/** Mark all devices that are peers of this device as failed.
 *  Mark the device driver too, so that it can see the failure
 *  immediately; this is critical, since some drivers poll
 *  status registers in interrupts ... If a driver is polling,
 *  and the slot is frozen, then the driver can deadlock in
 *  an interrupt context, which is bad.
 */

static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
{
	while (dn) {
		if (PCI_DN(dn)) {
			PCI_DN(dn)->eeh_mode |= mode_flag;

			/* Mark the pci device driver too */
			struct pci_dev *dev = PCI_DN(dn)->pcidev;
			if (dev && dev->driver)
				dev->error_state = pci_channel_io_frozen;

			if (dn->child)
				__eeh_mark_slot (dn->child, mode_flag);
		}
		dn = dn->sibling;
	}
}

void eeh_mark_slot (struct device_node *dn, int mode_flag)
{
	dn = find_device_pe (dn);
	PCI_DN(dn)->eeh_mode |= mode_flag;
	__eeh_mark_slot (dn->child, mode_flag);
}

static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
{
	while (dn) {
		if (PCI_DN(dn)) {
			PCI_DN(dn)->eeh_mode &= ~mode_flag;
			PCI_DN(dn)->eeh_check_count = 0;
			if (dn->child)
				__eeh_clear_slot (dn->child, mode_flag);
		}
		dn = dn->sibling;
	}
}

void eeh_clear_slot (struct device_node *dn, int mode_flag)
{
	unsigned long flags;
	spin_lock_irqsave(&confirm_error_lock, flags);
	dn = find_device_pe (dn);
	PCI_DN(dn)->eeh_mode &= ~mode_flag;
	PCI_DN(dn)->eeh_check_count = 0;
	__eeh_clear_slot (dn->child, mode_flag);
	spin_unlock_irqrestore(&confirm_error_lock, flags);
}

/**
 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
 * @dn device node
 * @dev pci device, if known
 *
 * Check for an EEH failure for the given device node.  Call this
 * routine if the result of a read was all 0xff's and you want to
 * find out if this is due to an EEH slot freeze.  This routine
 * will query firmware for the EEH status.
 *
 * Returns 0 if there has not been an EEH error; otherwise returns
 * a non-zero value and queues up a slot isolation event notification.
 *
 * It is safe to call this routine in an interrupt context.
 */
int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
{
	int ret;
	int rets[3];
	unsigned long flags;
	struct pci_dn *pdn;
	enum pci_channel_state state;
	int rc = 0;

	__get_cpu_var(total_mmio_ffs)++;

	if (!eeh_subsystem_enabled)
		return 0;

	if (!dn) {
		__get_cpu_var(no_dn)++;
		return 0;
	}
	pdn = PCI_DN(dn);

	/* Access to IO BARs might get this far and still not want checking. */
	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
		__get_cpu_var(ignored_check)++;
#ifdef DEBUG
		printk ("EEH:ignored check (%x) for %s %s\n", 
		        pdn->eeh_mode, pci_name (dev), dn->full_name);
#endif
		return 0;
	}

	if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
		__get_cpu_var(no_cfg_addr)++;
		return 0;
	}

	/* If we already have a pending isolation event for this
	 * slot, we know it's bad already, we don't need to check.
	 * Do this checking under a lock; as multiple PCI devices
	 * in one slot might report errors simultaneously, and we
	 * only want one error recovery routine running.
	 */
	spin_lock_irqsave(&confirm_error_lock, flags);
	rc = 1;
	if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
		pdn->eeh_check_count ++;
		if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
			printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
			        pdn->eeh_check_count);
			dump_stack();
			
			/* re-read the slot reset state */
			if (read_slot_reset_state(pdn, rets) != 0)
				rets[0] = -1;	/* reset state unknown */

			/* If we are here, then we hit an infinite loop. Stop. */
			panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
		}
		goto dn_unlock;
	}

	/*
	 * Now test for an EEH failure.  This is VERY expensive.
	 * Note that the eeh_config_addr may be a parent device
	 * in the case of a device behind a bridge, or it may be
	 * function zero of a multi-function device.
	 * In any case they must share a common PHB.
	 */
	ret = read_slot_reset_state(pdn, rets);

	/* If the call to firmware failed, punt */
	if (ret != 0) {
		printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
		       ret, dn->full_name);
		__get_cpu_var(false_positives)++;
		rc = 0;
		goto dn_unlock;
	}

	/* If EEH is not supported on this device, punt. */
	if (rets[1] != 1) {
		printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
		       ret, dn->full_name);
		__get_cpu_var(false_positives)++;
		rc = 0;
		goto dn_unlock;
	}

	/* If not the kind of error we know about, punt. */
	if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
		__get_cpu_var(false_positives)++;
		rc = 0;
		goto dn_unlock;
	}

	/* Note that config-io to empty slots may fail;
	 * we recognize empty because they don't have children. */
	if ((rets[0] == 5) && (dn->child == NULL)) {
		__get_cpu_var(false_positives)++;
		rc = 0;
		goto dn_unlock;
	}

	__get_cpu_var(slot_resets)++;
 
	/* Avoid repeated reports of this failure, including problems
	 * with other functions on this device, and functions under
	 * bridges. */
	eeh_mark_slot (dn, EEH_MODE_ISOLATED);
	spin_unlock_irqrestore(&confirm_error_lock, flags);

	state = pci_channel_io_normal;
	if ((rets[0] == 2) || (rets[0] == 4))
		state = pci_channel_io_frozen;
	if (rets[0] == 5)
		state = pci_channel_io_perm_failure;
	eeh_send_failure_event (dn, dev, state, rets[2]);

	/* Most EEH events are due to device driver bugs.  Having
	 * a stack trace will help the device-driver authors figure
	 * out what happened.  So print that out. */
	if (rets[0] != 5) dump_stack();
	return 1;

dn_unlock:
	spin_unlock_irqrestore(&confirm_error_lock, flags);
	return rc;
}

EXPORT_SYMBOL_GPL(eeh_dn_check_failure);

/**
 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
 * @token i/o token, should be address in the form 0xA....
 * @val value, should be all 1's (XXX why do we need this arg??)
 *
 * Check for an EEH failure at the given token address.  Call this
 * routine if the result of a read was all 0xff's and you want to
 * find out if this is due to an EEH slot freeze event.  This routine
 * will query firmware for the EEH status.
 *
 * Note this routine is safe to call in an interrupt context.
 */
unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
{
	unsigned long addr;
	struct pci_dev *dev;
	struct device_node *dn;

	/* Finding the phys addr + pci device; this is pretty quick. */
	addr = eeh_token_to_phys((unsigned long __force) token);
	dev = pci_get_device_by_addr(addr);
	if (!dev) {
		__get_cpu_var(no_device)++;
		return val;
	}

	dn = pci_device_to_OF_node(dev);
	eeh_dn_check_failure (dn, dev);

	pci_dev_put(dev);
	return val;
}

EXPORT_SYMBOL(eeh_check_failure);

/* ------------------------------------------------------------- */
/* The code below deals with error recovery */

/** Return negative value if a permanent error, else return
 * a number of milliseconds to wait until the PCI slot is
 * ready to be used.
 */
static int
eeh_slot_availability(struct pci_dn *pdn)
{
	int rc;
	int rets[3];

	rc = read_slot_reset_state(pdn, rets);

	if (rc) return rc;

	if (rets[1] == 0) return -1;  /* EEH is not supported */
	if (rets[0] == 0)  return 0;  /* Oll Korrect */
	if (rets[0] == 5) {
		if (rets[2] == 0) return -1; /* permanently unavailable */
		return rets[2]; /* number of millisecs to wait */
	}
	return -1;
}

/** rtas_pci_slot_reset raises/lowers the pci #RST line
 *  state: 1/0 to raise/lower the #RST
 *
 * Clear the EEH-frozen condition on a slot.  This routine
 * asserts the PCI #RST line if the 'state' argument is '1',
 * and drops the #RST line if 'state is '0'.  This routine is
 * safe to call in an interrupt context.
 *
 */

static void
rtas_pci_slot_reset(struct pci_dn *pdn, int state)
{
	int config_addr;
	int rc;

	BUG_ON (pdn==NULL); 

	if (!pdn->phb) {
		printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
		        pdn->node->full_name);
		return;
	}

	/* Use PE configuration address, if present */
	config_addr = pdn->eeh_config_addr;
	if (pdn->eeh_pe_config_addr)
		config_addr = pdn->eeh_pe_config_addr;

	rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
	               config_addr,
	               BUID_HI(pdn->phb->buid),
	               BUID_LO(pdn->phb->buid),
	               state);
	if (rc) {
		printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n", 
		        rc, state, pdn->node->full_name);
		return;
	}
}

/** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
 *  dn -- device node to be reset.
 */

void
rtas_set_slot_reset(struct pci_dn *pdn)
{
	int i, rc;

	rtas_pci_slot_reset (pdn, 1);

	/* The PCI bus requires that the reset be held high for at least
	 * a 100 milliseconds. We wait a bit longer 'just in case'.  */

#define PCI_BUS_RST_HOLD_TIME_MSEC 250
	msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
	
	/* We might get hit with another EEH freeze as soon as the 
	 * pci slot reset line is dropped. Make sure we don't miss
	 * these, and clear the flag now. */
	eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);

	rtas_pci_slot_reset (pdn, 0);

	/* After a PCI slot has been reset, the PCI Express spec requires
	 * a 1.5 second idle time for the bus to stabilize, before starting
	 * up traffic. */
#define PCI_BUS_SETTLE_TIME_MSEC 1800
	msleep (PCI_BUS_SETTLE_TIME_MSEC);

	/* Now double check with the firmware to make sure the device is
	 * ready to be used; if not, wait for recovery. */
	for (i=0; i<10; i++) {
		rc = eeh_slot_availability (pdn);
		if (rc <= 0) break;

		msleep (rc+100);
	}
}

/* ------------------------------------------------------- */
/** Save and restore of PCI BARs
 *
 * Although firmware will set up BARs during boot, it doesn't
 * set up device BAR's after a device reset, although it will,
 * if requested, set up bridge configuration. Thus, we need to
 * configure the PCI devices ourselves.  
 */

/**
 * __restore_bars - Restore the Base Address Registers
 * Loads the PCI configuration space base address registers,
 * the expansion ROM base address, the latency timer, and etc.
 * from the saved values in the device node.
 */
static inline void __restore_bars (struct pci_dn *pdn)
{
	int i;

	if (NULL==pdn->phb) return;
	for (i=4; i<10; i++) {
		rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
	}

	/* 12 == Expansion ROM Address */
	rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);

#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
#define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])

	rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
	            SAVED_BYTE(PCI_CACHE_LINE_SIZE));

	rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
	            SAVED_BYTE(PCI_LATENCY_TIMER));

	/* max latency, min grant, interrupt pin and line */
	rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
}

/**
 * eeh_restore_bars - restore the PCI config space info
 *
 * This routine performs a recursive walk to the children
 * of this device as well.
 */
void eeh_restore_bars(struct pci_dn *pdn)
{
	struct device_node *dn;
	if (!pdn) 
		return;
	
	if (! pdn->eeh_is_bridge)
		__restore_bars (pdn);

	dn = pdn->node->child;
	while (dn) {
		eeh_restore_bars (PCI_DN(dn));
		dn = dn->sibling;
	}
}

/**
 * eeh_save_bars - save device bars
 *
 * Save the values of the device bars. Unlike the restore
 * routine, this routine is *not* recursive. This is because
 * PCI devices are added individuallly; but, for the restore,
 * an entire slot is reset at a time.
 */
void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
{
	int i;

	if (!pdev || !pdn )
		return;
	
	for (i = 0; i < 16; i++)
		pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);

	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
		pdn->eeh_is_bridge = 1;
}

void
rtas_configure_bridge(struct pci_dn *pdn)
{
	int config_addr;
	int rc;

	/* Use PE configuration address, if present */
	config_addr = pdn->eeh_config_addr;
	if (pdn->eeh_pe_config_addr)
		config_addr = pdn->eeh_pe_config_addr;

	rc = rtas_call(ibm_configure_bridge,3,1, NULL,
	               config_addr,
	               BUID_HI(pdn->phb->buid),
	               BUID_LO(pdn->phb->buid));
	if (rc) {
		printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
		        rc, pdn->node->full_name);
	}
}

/* ------------------------------------------------------------- */
/* The code below deals with enabling EEH for devices during  the
 * early boot sequence.  EEH must be enabled before any PCI probing
 * can be done.
 */

#define EEH_ENABLE 1

struct eeh_early_enable_info {
	unsigned int buid_hi;
	unsigned int buid_lo;
};

/* Enable eeh for the given device node. */
static void *early_enable_eeh(struct device_node *dn, void *data)
{
	struct eeh_early_enable_info *info = data;
	int ret;
	char *status = get_property(dn, "status", NULL);
	u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
	u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
	u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
	u32 *regs;
	int enable;
	struct pci_dn *pdn = PCI_DN(dn);

	pdn->eeh_mode = 0;
	pdn->eeh_check_count = 0;
	pdn->eeh_freeze_count = 0;

	if (status && strcmp(status, "ok") != 0)
		return NULL;	/* ignore devices with bad status */

	/* Ignore bad nodes. */
	if (!class_code || !vendor_id || !device_id)
		return NULL;

	/* There is nothing to check on PCI to ISA bridges */
	if (dn->type && !strcmp(dn->type, "isa")) {
		pdn->eeh_mode |= EEH_MODE_NOCHECK;
		return NULL;
	}

	/*
	 * Now decide if we are going to "Disable" EEH checking
	 * for this device.  We still run with the EEH hardware active,
	 * but we won't be checking for ff's.  This means a driver
	 * could return bad data (very bad!), an interrupt handler could
	 * hang waiting on status bits that won't change, etc.
	 * But there are a few cases like display devices that make sense.
	 */
	enable = 1;	/* i.e. we will do checking */
#if 0
	if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
		enable = 0;
#endif

	if (!enable)
		pdn->eeh_mode |= EEH_MODE_NOCHECK;

	/* Ok... see if this device supports EEH.  Some do, some don't,
	 * and the only way to find out is to check each and every one. */
	regs = (u32 *)get_property(dn, "reg", NULL);
	if (regs) {
		/* First register entry is addr (00BBSS00)  */
		/* Try to enable eeh */
		ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
		                regs[0], info->buid_hi, info->buid_lo,
		                EEH_ENABLE);

		if (ret == 0) {
			eeh_subsystem_enabled = 1;
			pdn->eeh_mode |= EEH_MODE_SUPPORTED;
			pdn->eeh_config_addr = regs[0];

			/* If the newer, better, ibm,get-config-addr-info is supported, 
			 * then use that instead. */
			pdn->eeh_pe_config_addr = 0;
			if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
				unsigned int rets[2];
				ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets, 
					pdn->eeh_config_addr, 
					info->buid_hi, info->buid_lo,
					0);
				if (ret == 0)
					pdn->eeh_pe_config_addr = rets[0];
			}
#ifdef DEBUG
			printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
			       dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
#endif
		} else {

			/* This device doesn't support EEH, but it may have an
			 * EEH parent, in which case we mark it as supported. */
			if (dn->parent && PCI_DN(dn->parent)
			    && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
				/* Parent supports EEH. */
				pdn->eeh_mode |= EEH_MODE_SUPPORTED;
				pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
				return NULL;
			}
		}
	} else {
		printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
		       dn->full_name);
	}

	return NULL;
}

/*
 * Initialize EEH by trying to enable it for all of the adapters in the system.
 * As a side effect we can determine here if eeh is supported at all.
 * Note that we leave EEH on so failed config cycles won't cause a machine
 * check.  If a user turns off EEH for a particular adapter they are really
 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
 * grant access to a slot if EEH isn't enabled, and so we always enable
 * EEH for all slots/all devices.
 *
 * The eeh-force-off option disables EEH checking globally, for all slots.
 * Even if force-off is set, the EEH hardware is still enabled, so that
 * newer systems can boot.
 */
void __init eeh_init(void)
{
	struct device_node *phb, *np;
	struct eeh_early_enable_info info;

	spin_lock_init(&confirm_error_lock);
	spin_lock_init(&slot_errbuf_lock);

	np = of_find_node_by_path("/rtas");
	if (np == NULL)
		return;

	ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
	ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
	ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
	ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
	ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
	ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
	ibm_configure_bridge = rtas_token ("ibm,configure-bridge");

	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
		return;

	eeh_error_buf_size = rtas_token("rtas-error-log-max");
	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
		eeh_error_buf_size = 1024;
	}
	if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
		printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
		      "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
	}

	/* Enable EEH for all adapters.  Note that eeh requires buid's */
	for (phb = of_find_node_by_name(NULL, "pci"); phb;
	     phb = of_find_node_by_name(phb, "pci")) {
		unsigned long buid;

		buid = get_phb_buid(phb);
		if (buid == 0 || PCI_DN(phb) == NULL)
			continue;

		info.buid_lo = BUID_LO(buid);
		info.buid_hi = BUID_HI(buid);
		traverse_pci_devices(phb, early_enable_eeh, &info);
	}

	if (eeh_subsystem_enabled)
		printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
	else
		printk(KERN_WARNING "EEH: No capable adapters found\n");
}

/**
 * eeh_add_device_early - enable EEH for the indicated device_node
 * @dn: device node for which to set up EEH
 *
 * This routine must be used to perform EEH initialization for PCI
 * devices that were added after system boot (e.g. hotplug, dlpar).
 * This routine must be called before any i/o is performed to the
 * adapter (inluding any config-space i/o).
 * Whether this actually enables EEH or not for this device depends
 * on the CEC architecture, type of the device, on earlier boot
 * command-line arguments & etc.
 */
void eeh_add_device_early(struct device_node *dn)
{
	struct pci_controller *phb;
	struct eeh_early_enable_info info;

	if (!dn || !PCI_DN(dn))
		return;
	phb = PCI_DN(dn)->phb;

	/* USB Bus children of PCI devices will not have BUID's */
	if (NULL == phb || 0 == phb->buid)
		return;

	info.buid_hi = BUID_HI(phb->buid);
	info.buid_lo = BUID_LO(phb->buid);
	early_enable_eeh(dn, &info);
}
EXPORT_SYMBOL_GPL(eeh_add_device_early);

void eeh_add_device_tree_early(struct device_node *dn)
{
	struct device_node *sib;
	for (sib = dn->child; sib; sib = sib->sibling)
		eeh_add_device_tree_early(sib);
	eeh_add_device_early(dn);
}
EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);

/**
 * eeh_add_device_late - perform EEH initialization for the indicated pci device
 * @dev: pci device for which to set up EEH
 *
 * This routine must be used to complete EEH initialization for PCI
 * devices that were added after system boot (e.g. hotplug, dlpar).
 */
void eeh_add_device_late(struct pci_dev *dev)
{
	struct device_node *dn;
	struct pci_dn *pdn;

	if (!dev || !eeh_subsystem_enabled)
		return;

#ifdef DEBUG
	printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
#endif

	pci_dev_get (dev);
	dn = pci_device_to_OF_node(dev);
	pdn = PCI_DN(dn);
	pdn->pcidev = dev;

	pci_addr_cache_insert_device (dev);
	eeh_save_bars(dev, pdn);
}
EXPORT_SYMBOL_GPL(eeh_add_device_late);

/**
 * eeh_remove_device - undo EEH setup for the indicated pci device
 * @dev: pci device to be removed
 *
 * This routine should be when a device is removed from a running
 * system (e.g. by hotplug or dlpar).
 */
void eeh_remove_device(struct pci_dev *dev)
{
	struct device_node *dn;
	if (!dev || !eeh_subsystem_enabled)
		return;

	/* Unregister the device with the EEH/PCI address search system */
#ifdef DEBUG
	printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
#endif
	pci_addr_cache_remove_device(dev);

	dn = pci_device_to_OF_node(dev);
	PCI_DN(dn)->pcidev = NULL;
	pci_dev_put (dev);
}
EXPORT_SYMBOL_GPL(eeh_remove_device);

void eeh_remove_bus_device(struct pci_dev *dev)
{
	eeh_remove_device(dev);
	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
		struct pci_bus *bus = dev->subordinate;
		struct list_head *ln;
		if (!bus)
			return; 
		for (ln = bus->devices.next; ln != &bus->devices; ln = ln->next) {
			struct pci_dev *pdev = pci_dev_b(ln);
			if (pdev)
				eeh_remove_bus_device(pdev);
		}
	}
}
EXPORT_SYMBOL_GPL(eeh_remove_bus_device);

static int proc_eeh_show(struct seq_file *m, void *v)
{
	unsigned int cpu;
	unsigned long ffs = 0, positives = 0, failures = 0;
	unsigned long resets = 0;
	unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;

	for_each_cpu(cpu) {
		ffs += per_cpu(total_mmio_ffs, cpu);
		positives += per_cpu(false_positives, cpu);
		failures += per_cpu(ignored_failures, cpu);
		resets += per_cpu(slot_resets, cpu);
		no_dev += per_cpu(no_device, cpu);
		no_dn += per_cpu(no_dn, cpu);
		no_cfg += per_cpu(no_cfg_addr, cpu);
		no_check += per_cpu(ignored_check, cpu);
	}

	if (0 == eeh_subsystem_enabled) {
		seq_printf(m, "EEH Subsystem is globally disabled\n");
		seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
	} else {
		seq_printf(m, "EEH Subsystem is enabled\n");
		seq_printf(m,
				"no device=%ld\n"
				"no device node=%ld\n"
				"no config address=%ld\n"
				"check not wanted=%ld\n"
				"eeh_total_mmio_ffs=%ld\n"
				"eeh_false_positives=%ld\n"
				"eeh_ignored_failures=%ld\n"
				"eeh_slot_resets=%ld\n",
				no_dev, no_dn, no_cfg, no_check,
				ffs, positives, failures, resets);
	}

	return 0;
}

static int proc_eeh_open(struct inode *inode, struct file *file)
{
	return single_open(file, proc_eeh_show, NULL);
}

static struct file_operations proc_eeh_operations = {
	.open      = proc_eeh_open,
	.read      = seq_read,
	.llseek    = seq_lseek,
	.release   = single_release,
};

static int __init eeh_init_proc(void)
{
	struct proc_dir_entry *e;

	if (platform_is_pseries()) {
		e = create_proc_entry("ppc64/eeh", 0, NULL);
		if (e)
			e->proc_fops = &proc_eeh_operations;
	}

	return 0;
}
__initcall(eeh_init_proc);