aboutsummaryrefslogtreecommitdiffstats
path: root/arch/parisc/kernel/module.c
blob: 2a625fb063e1537bcdff9dd18cc10dde87ec535f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
/*    Kernel dynamically loadable module help for PARISC.
 *
 *    The best reference for this stuff is probably the Processor-
 *    Specific ELF Supplement for PA-RISC:
 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
 *
 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
 *
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 *    Notes:
 *    - PLT stub handling
 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
 *      fail to reach their PLT stub if we only create one big stub array for
 *      all sections at the beginning of the core or init section.
 *      Instead we now insert individual PLT stub entries directly in front of
 *      of the code sections where the stubs are actually called.
 *      This reduces the distance between the PCREL location and the stub entry
 *      so that the relocations can be fulfilled.
 *      While calculating the final layout of the kernel module in memory, the
 *      kernel module loader calls arch_mod_section_prepend() to request the
 *      to be reserved amount of memory in front of each individual section.
 *
 *    - SEGREL32 handling
 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
 *      should do a value offset, like this:
 *			if (in_init(me, (void *)val))
 *				val -= (uint32_t)me->module_init;
 *			else
 *				val -= (uint32_t)me->module_core;
 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
 *	those entries to have an absolute address, and not just an offset.
 *
 *	The unwind table mechanism has the ability to specify an offset for 
 *	the unwind table; however, because we split off the init functions into
 *	a different piece of memory, it is not possible to do this using a 
 *	single offset. Instead, we use the above hack for now.
 */

#include <linux/moduleloader.h>
#include <linux/elf.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/bug.h>
#include <linux/mm.h>
#include <linux/slab.h>

#include <asm/pgtable.h>
#include <asm/unwind.h>

#if 0
#define DEBUGP printk
#else
#define DEBUGP(fmt...)
#endif

#define RELOC_REACHABLE(val, bits) \
	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
	0 : 1)

#define CHECK_RELOC(val, bits) \
	if (!RELOC_REACHABLE(val, bits)) { \
		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
		return -ENOEXEC;			\
	}

/* Maximum number of GOT entries. We use a long displacement ldd from
 * the bottom of the table, which has a maximum signed displacement of
 * 0x3fff; however, since we're only going forward, this becomes
 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
 * at most 1023 entries.
 * To overcome this 14bit displacement with some kernel modules, we'll
 * use instead the unusal 16bit displacement method (see reassemble_16a)
 * which gives us a maximum positive displacement of 0x7fff, and as such
 * allows us to allocate up to 4095 GOT entries. */
#define MAX_GOTS	4095

/* three functions to determine where in the module core
 * or init pieces the location is */
static inline int in_init(struct module *me, void *loc)
{
	return (loc >= me->module_init &&
		loc <= (me->module_init + me->init_size));
}

static inline int in_core(struct module *me, void *loc)
{
	return (loc >= me->module_core &&
		loc <= (me->module_core + me->core_size));
}

static inline int in_local(struct module *me, void *loc)
{
	return in_init(me, loc) || in_core(me, loc);
}

#ifndef CONFIG_64BIT
struct got_entry {
	Elf32_Addr addr;
};

struct stub_entry {
	Elf32_Word insns[2]; /* each stub entry has two insns */
};
#else
struct got_entry {
	Elf64_Addr addr;
};

struct stub_entry {
	Elf64_Word insns[4]; /* each stub entry has four insns */
};
#endif

/* Field selection types defined by hppa */
#define rnd(x)			(((x)+0x1000)&~0x1fff)
/* fsel: full 32 bits */
#define fsel(v,a)		((v)+(a))
/* lsel: select left 21 bits */
#define lsel(v,a)		(((v)+(a))>>11)
/* rsel: select right 11 bits */
#define rsel(v,a)		(((v)+(a))&0x7ff)
/* lrsel with rounding of addend to nearest 8k */
#define lrsel(v,a)		(((v)+rnd(a))>>11)
/* rrsel with rounding of addend to nearest 8k */
#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))

#define mask(x,sz)		((x) & ~((1<<(sz))-1))


/* The reassemble_* functions prepare an immediate value for
   insertion into an opcode. pa-risc uses all sorts of weird bitfields
   in the instruction to hold the value.  */
static inline int sign_unext(int x, int len)
{
	int len_ones;

	len_ones = (1 << len) - 1;
	return x & len_ones;
}

static inline int low_sign_unext(int x, int len)
{
	int sign, temp;

	sign = (x >> (len-1)) & 1;
	temp = sign_unext(x, len-1);
	return (temp << 1) | sign;
}

static inline int reassemble_14(int as14)
{
	return (((as14 & 0x1fff) << 1) |
		((as14 & 0x2000) >> 13));
}

static inline int reassemble_16a(int as16)
{
	int s, t;

	/* Unusual 16-bit encoding, for wide mode only.  */
	t = (as16 << 1) & 0xffff;
	s = (as16 & 0x8000);
	return (t ^ s ^ (s >> 1)) | (s >> 15);
}


static inline int reassemble_17(int as17)
{
	return (((as17 & 0x10000) >> 16) |
		((as17 & 0x0f800) << 5) |
		((as17 & 0x00400) >> 8) |
		((as17 & 0x003ff) << 3));
}

static inline int reassemble_21(int as21)
{
	return (((as21 & 0x100000) >> 20) |
		((as21 & 0x0ffe00) >> 8) |
		((as21 & 0x000180) << 7) |
		((as21 & 0x00007c) << 14) |
		((as21 & 0x000003) << 12));
}

static inline int reassemble_22(int as22)
{
	return (((as22 & 0x200000) >> 21) |
		((as22 & 0x1f0000) << 5) |
		((as22 & 0x00f800) << 5) |
		((as22 & 0x000400) >> 8) |
		((as22 & 0x0003ff) << 3));
}

void *module_alloc(unsigned long size)
{
	/* using RWX means less protection for modules, but it's
	 * easier than trying to map the text, data, init_text and
	 * init_data correctly */
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_HIGHMEM,
				    PAGE_KERNEL_RWX, -1,
				    __builtin_return_address(0));
}

#ifndef CONFIG_64BIT
static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
{
	return 0;
}

static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
{
	return 0;
}

static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
{
	unsigned long cnt = 0;

	for (; n > 0; n--, rela++)
	{
		switch (ELF32_R_TYPE(rela->r_info)) {
			case R_PARISC_PCREL17F:
			case R_PARISC_PCREL22F:
				cnt++;
		}
	}

	return cnt;
}
#else
static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
{
	unsigned long cnt = 0;

	for (; n > 0; n--, rela++)
	{
		switch (ELF64_R_TYPE(rela->r_info)) {
			case R_PARISC_LTOFF21L:
			case R_PARISC_LTOFF14R:
			case R_PARISC_PCREL22F:
				cnt++;
		}
	}

	return cnt;
}

static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
{
	unsigned long cnt = 0;

	for (; n > 0; n--, rela++)
	{
		switch (ELF64_R_TYPE(rela->r_info)) {
			case R_PARISC_FPTR64:
				cnt++;
		}
	}

	return cnt;
}

static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
{
	unsigned long cnt = 0;

	for (; n > 0; n--, rela++)
	{
		switch (ELF64_R_TYPE(rela->r_info)) {
			case R_PARISC_PCREL22F:
				cnt++;
		}
	}

	return cnt;
}
#endif


/* Free memory returned from module_alloc */
void module_free(struct module *mod, void *module_region)
{
	kfree(mod->arch.section);
	mod->arch.section = NULL;

	vfree(module_region);
}

/* Additional bytes needed in front of individual sections */
unsigned int arch_mod_section_prepend(struct module *mod,
				      unsigned int section)
{
	/* size needed for all stubs of this section (including
	 * one additional for correct alignment of the stubs) */
	return (mod->arch.section[section].stub_entries + 1)
		* sizeof(struct stub_entry);
}

#define CONST 
int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
			      CONST Elf_Shdr *sechdrs,
			      CONST char *secstrings,
			      struct module *me)
{
	unsigned long gots = 0, fdescs = 0, len;
	unsigned int i;

	len = hdr->e_shnum * sizeof(me->arch.section[0]);
	me->arch.section = kzalloc(len, GFP_KERNEL);
	if (!me->arch.section)
		return -ENOMEM;

	for (i = 1; i < hdr->e_shnum; i++) {
		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
		unsigned int count, s;

		if (strncmp(secstrings + sechdrs[i].sh_name,
			    ".PARISC.unwind", 14) == 0)
			me->arch.unwind_section = i;

		if (sechdrs[i].sh_type != SHT_RELA)
			continue;

		/* some of these are not relevant for 32-bit/64-bit
		 * we leave them here to make the code common. the
		 * compiler will do its thing and optimize out the
		 * stuff we don't need
		 */
		gots += count_gots(rels, nrels);
		fdescs += count_fdescs(rels, nrels);

		/* XXX: By sorting the relocs and finding duplicate entries
		 *  we could reduce the number of necessary stubs and save
		 *  some memory. */
		count = count_stubs(rels, nrels);
		if (!count)
			continue;

		/* so we need relocation stubs. reserve necessary memory. */
		/* sh_info gives the section for which we need to add stubs. */
		s = sechdrs[i].sh_info;

		/* each code section should only have one relocation section */
		WARN_ON(me->arch.section[s].stub_entries);

		/* store number of stubs we need for this section */
		me->arch.section[s].stub_entries += count;
	}

	/* align things a bit */
	me->core_size = ALIGN(me->core_size, 16);
	me->arch.got_offset = me->core_size;
	me->core_size += gots * sizeof(struct got_entry);

	me->core_size = ALIGN(me->core_size, 16);
	me->arch.fdesc_offset = me->core_size;
	me->core_size += fdescs * sizeof(Elf_Fdesc);

	me->arch.got_max = gots;
	me->arch.fdesc_max = fdescs;

	return 0;
}

#ifdef CONFIG_64BIT
static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
{
	unsigned int i;
	struct got_entry *got;

	value += addend;

	BUG_ON(value == 0);

	got = me->module_core + me->arch.got_offset;
	for (i = 0; got[i].addr; i++)
		if (got[i].addr == value)
			goto out;

	BUG_ON(++me->arch.got_count > me->arch.got_max);

	got[i].addr = value;
 out:
	DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
	       value);
	return i * sizeof(struct got_entry);
}
#endif /* CONFIG_64BIT */

#ifdef CONFIG_64BIT
static Elf_Addr get_fdesc(struct module *me, unsigned long value)
{
	Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;

	if (!value) {
		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
		return 0;
	}

	/* Look for existing fdesc entry. */
	while (fdesc->addr) {
		if (fdesc->addr == value)
			return (Elf_Addr)fdesc;
		fdesc++;
	}

	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);

	/* Create new one */
	fdesc->addr = value;
	fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
	return (Elf_Addr)fdesc;
}
#endif /* CONFIG_64BIT */

enum elf_stub_type {
	ELF_STUB_GOT,
	ELF_STUB_MILLI,
	ELF_STUB_DIRECT,
};

static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
{
	struct stub_entry *stub;
	int __maybe_unused d;

	/* initialize stub_offset to point in front of the section */
	if (!me->arch.section[targetsec].stub_offset) {
		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
				sizeof(struct stub_entry);
		/* get correct alignment for the stubs */
		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
		me->arch.section[targetsec].stub_offset = loc0;
	}

	/* get address of stub entry */
	stub = (void *) me->arch.section[targetsec].stub_offset;
	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);

	/* do not write outside available stub area */
	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);


#ifndef CONFIG_64BIT
/* for 32-bit the stub looks like this:
 * 	ldil L'XXX,%r1
 * 	be,n R'XXX(%sr4,%r1)
 */
	//value = *(unsigned long *)((value + addend) & ~3); /* why? */

	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/

	stub->insns[0] |= reassemble_21(lrsel(value, addend));
	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);

#else
/* for 64-bit we have three kinds of stubs:
 * for normal function calls:
 * 	ldd 0(%dp),%dp
 * 	ldd 10(%dp), %r1
 * 	bve (%r1)
 * 	ldd 18(%dp), %dp
 *
 * for millicode:
 * 	ldil 0, %r1
 * 	ldo 0(%r1), %r1
 * 	ldd 10(%r1), %r1
 * 	bve,n (%r1)
 *
 * for direct branches (jumps between different section of the
 * same module):
 *	ldil 0, %r1
 *	ldo 0(%r1), %r1
 *	bve,n (%r1)
 */
	switch (stub_type) {
	case ELF_STUB_GOT:
		d = get_got(me, value, addend);
		if (d <= 15) {
			/* Format 5 */
			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
			stub->insns[0] |= low_sign_unext(d, 5) << 16;
		} else {
			/* Format 3 */
			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
			stub->insns[0] |= reassemble_16a(d);
		}
		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
		break;
	case ELF_STUB_MILLI:
		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/

		stub->insns[0] |= reassemble_21(lrsel(value, addend));
		stub->insns[1] |= reassemble_14(rrsel(value, addend));
		break;
	case ELF_STUB_DIRECT:
		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */

		stub->insns[0] |= reassemble_21(lrsel(value, addend));
		stub->insns[1] |= reassemble_14(rrsel(value, addend));
		break;
	}

#endif

	return (Elf_Addr)stub;
}

#ifndef CONFIG_64BIT
int apply_relocate_add(Elf_Shdr *sechdrs,
		       const char *strtab,
		       unsigned int symindex,
		       unsigned int relsec,
		       struct module *me)
{
	int i;
	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
	Elf32_Sym *sym;
	Elf32_Word *loc;
	Elf32_Addr val;
	Elf32_Sword addend;
	Elf32_Addr dot;
	Elf_Addr loc0;
	unsigned int targetsec = sechdrs[relsec].sh_info;
	//unsigned long dp = (unsigned long)$global$;
	register unsigned long dp asm ("r27");

	DEBUGP("Applying relocate section %u to %u\n", relsec,
	       targetsec);
	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
		/* This is where to make the change */
		loc = (void *)sechdrs[targetsec].sh_addr
		      + rel[i].r_offset;
		/* This is the start of the target section */
		loc0 = sechdrs[targetsec].sh_addr;
		/* This is the symbol it is referring to */
		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
			+ ELF32_R_SYM(rel[i].r_info);
		if (!sym->st_value) {
			printk(KERN_WARNING "%s: Unknown symbol %s\n",
			       me->name, strtab + sym->st_name);
			return -ENOENT;
		}
		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
		dot =  (Elf32_Addr)loc & ~0x03;

		val = sym->st_value;
		addend = rel[i].r_addend;

#if 0
#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
		DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
			strtab + sym->st_name,
			(uint32_t)loc, val, addend,
			r(R_PARISC_PLABEL32)
			r(R_PARISC_DIR32)
			r(R_PARISC_DIR21L)
			r(R_PARISC_DIR14R)
			r(R_PARISC_SEGREL32)
			r(R_PARISC_DPREL21L)
			r(R_PARISC_DPREL14R)
			r(R_PARISC_PCREL17F)
			r(R_PARISC_PCREL22F)
			"UNKNOWN");
#undef r
#endif

		switch (ELF32_R_TYPE(rel[i].r_info)) {
		case R_PARISC_PLABEL32:
			/* 32-bit function address */
			/* no function descriptors... */
			*loc = fsel(val, addend);
			break;
		case R_PARISC_DIR32:
			/* direct 32-bit ref */
			*loc = fsel(val, addend);
			break;
		case R_PARISC_DIR21L:
			/* left 21 bits of effective address */
			val = lrsel(val, addend);
			*loc = mask(*loc, 21) | reassemble_21(val);
			break;
		case R_PARISC_DIR14R:
			/* right 14 bits of effective address */
			val = rrsel(val, addend);
			*loc = mask(*loc, 14) | reassemble_14(val);
			break;
		case R_PARISC_SEGREL32:
			/* 32-bit segment relative address */
			/* See note about special handling of SEGREL32 at
			 * the beginning of this file.
			 */
			*loc = fsel(val, addend); 
			break;
		case R_PARISC_DPREL21L:
			/* left 21 bit of relative address */
			val = lrsel(val - dp, addend);
			*loc = mask(*loc, 21) | reassemble_21(val);
			break;
		case R_PARISC_DPREL14R:
			/* right 14 bit of relative address */
			val = rrsel(val - dp, addend);
			*loc = mask(*loc, 14) | reassemble_14(val);
			break;
		case R_PARISC_PCREL17F:
			/* 17-bit PC relative address */
			/* calculate direct call offset */
			val += addend;
			val = (val - dot - 8)/4;
			if (!RELOC_REACHABLE(val, 17)) {
				/* direct distance too far, create
				 * stub entry instead */
				val = get_stub(me, sym->st_value, addend,
					ELF_STUB_DIRECT, loc0, targetsec);
				val = (val - dot - 8)/4;
				CHECK_RELOC(val, 17);
			}
			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
			break;
		case R_PARISC_PCREL22F:
			/* 22-bit PC relative address; only defined for pa20 */
			/* calculate direct call offset */
			val += addend;
			val = (val - dot - 8)/4;
			if (!RELOC_REACHABLE(val, 22)) {
				/* direct distance too far, create
				 * stub entry instead */
				val = get_stub(me, sym->st_value, addend,
					ELF_STUB_DIRECT, loc0, targetsec);
				val = (val - dot - 8)/4;
				CHECK_RELOC(val, 22);
			}
			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
			break;

		default:
			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
			       me->name, ELF32_R_TYPE(rel[i].r_info));
			return -ENOEXEC;
		}
	}

	return 0;
}

#else
int apply_relocate_add(Elf_Shdr *sechdrs,
		       const char *strtab,
		       unsigned int symindex,
		       unsigned int relsec,
		       struct module *me)
{
	int i;
	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
	Elf64_Sym *sym;
	Elf64_Word *loc;
	Elf64_Xword *loc64;
	Elf64_Addr val;
	Elf64_Sxword addend;
	Elf64_Addr dot;
	Elf_Addr loc0;
	unsigned int targetsec = sechdrs[relsec].sh_info;

	DEBUGP("Applying relocate section %u to %u\n", relsec,
	       targetsec);
	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
		/* This is where to make the change */
		loc = (void *)sechdrs[targetsec].sh_addr
		      + rel[i].r_offset;
		/* This is the start of the target section */
		loc0 = sechdrs[targetsec].sh_addr;
		/* This is the symbol it is referring to */
		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
			+ ELF64_R_SYM(rel[i].r_info);
		if (!sym->st_value) {
			printk(KERN_WARNING "%s: Unknown symbol %s\n",
			       me->name, strtab + sym->st_name);
			return -ENOENT;
		}
		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
		dot = (Elf64_Addr)loc & ~0x03;
		loc64 = (Elf64_Xword *)loc;

		val = sym->st_value;
		addend = rel[i].r_addend;

#if 0
#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
			strtab + sym->st_name,
			loc, val, addend,
			r(R_PARISC_LTOFF14R)
			r(R_PARISC_LTOFF21L)
			r(R_PARISC_PCREL22F)
			r(R_PARISC_DIR64)
			r(R_PARISC_SEGREL32)
			r(R_PARISC_FPTR64)
			"UNKNOWN");
#undef r
#endif

		switch (ELF64_R_TYPE(rel[i].r_info)) {
		case R_PARISC_LTOFF21L:
			/* LT-relative; left 21 bits */
			val = get_got(me, val, addend);
			DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
			       strtab + sym->st_name,
			       loc, val);
			val = lrsel(val, 0);
			*loc = mask(*loc, 21) | reassemble_21(val);
			break;
		case R_PARISC_LTOFF14R:
			/* L(ltoff(val+addend)) */
			/* LT-relative; right 14 bits */
			val = get_got(me, val, addend);
			val = rrsel(val, 0);
			DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
			       strtab + sym->st_name,
			       loc, val);
			*loc = mask(*loc, 14) | reassemble_14(val);
			break;
		case R_PARISC_PCREL22F:
			/* PC-relative; 22 bits */
			DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
			       strtab + sym->st_name,
			       loc, val);
			val += addend;
			/* can we reach it locally? */
			if (in_local(me, (void *)val)) {
				/* this is the case where the symbol is local
				 * to the module, but in a different section,
				 * so stub the jump in case it's more than 22
				 * bits away */
				val = (val - dot - 8)/4;
				if (!RELOC_REACHABLE(val, 22)) {
					/* direct distance too far, create
					 * stub entry instead */
					val = get_stub(me, sym->st_value,
						addend, ELF_STUB_DIRECT,
						loc0, targetsec);
				} else {
					/* Ok, we can reach it directly. */
					val = sym->st_value;
					val += addend;
				}
			} else {
				val = sym->st_value;
				if (strncmp(strtab + sym->st_name, "$$", 2)
				    == 0)
					val = get_stub(me, val, addend, ELF_STUB_MILLI,
						       loc0, targetsec);
				else
					val = get_stub(me, val, addend, ELF_STUB_GOT,
						       loc0, targetsec);
			}
			DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
			       strtab + sym->st_name, loc, sym->st_value,
			       addend, val);
			val = (val - dot - 8)/4;
			CHECK_RELOC(val, 22);
			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
			break;
		case R_PARISC_DIR64:
			/* 64-bit effective address */
			*loc64 = val + addend;
			break;
		case R_PARISC_SEGREL32:
			/* 32-bit segment relative address */
			/* See note about special handling of SEGREL32 at
			 * the beginning of this file.
			 */
			*loc = fsel(val, addend); 
			break;
		case R_PARISC_FPTR64:
			/* 64-bit function address */
			if(in_local(me, (void *)(val + addend))) {
				*loc64 = get_fdesc(me, val+addend);
				DEBUGP("FDESC for %s at %p points to %lx\n",
				       strtab + sym->st_name, *loc64,
				       ((Elf_Fdesc *)*loc64)->addr);
			} else {
				/* if the symbol is not local to this
				 * module then val+addend is a pointer
				 * to the function descriptor */
				DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
				       strtab + sym->st_name,
				       loc, val);
				*loc64 = val + addend;
			}
			break;

		default:
			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
			       me->name, ELF64_R_TYPE(rel[i].r_info));
			return -ENOEXEC;
		}
	}
	return 0;
}
#endif

static void
register_unwind_table(struct module *me,
		      const Elf_Shdr *sechdrs)
{
	unsigned char *table, *end;
	unsigned long gp;

	if (!me->arch.unwind_section)
		return;

	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
	end = table + sechdrs[me->arch.unwind_section].sh_size;
	gp = (Elf_Addr)me->module_core + me->arch.got_offset;

	DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
	       me->arch.unwind_section, table, end, gp);
	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
}

static void
deregister_unwind_table(struct module *me)
{
	if (me->arch.unwind)
		unwind_table_remove(me->arch.unwind);
}

int module_finalize(const Elf_Ehdr *hdr,
		    const Elf_Shdr *sechdrs,
		    struct module *me)
{
	int i;
	unsigned long nsyms;
	const char *strtab = NULL;
	Elf_Sym *newptr, *oldptr;
	Elf_Shdr *symhdr = NULL;
#ifdef DEBUG
	Elf_Fdesc *entry;
	u32 *addr;

	entry = (Elf_Fdesc *)me->init;
	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
	       entry->gp, entry->addr);
	addr = (u32 *)entry->addr;
	printk("INSNS: %x %x %x %x\n",
	       addr[0], addr[1], addr[2], addr[3]);
	printk("got entries used %ld, gots max %ld\n"
	       "fdescs used %ld, fdescs max %ld\n",
	       me->arch.got_count, me->arch.got_max,
	       me->arch.fdesc_count, me->arch.fdesc_max);
#endif

	register_unwind_table(me, sechdrs);

	/* haven't filled in me->symtab yet, so have to find it
	 * ourselves */
	for (i = 1; i < hdr->e_shnum; i++) {
		if(sechdrs[i].sh_type == SHT_SYMTAB
		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
			int strindex = sechdrs[i].sh_link;
			/* FIXME: AWFUL HACK
			 * The cast is to drop the const from
			 * the sechdrs pointer */
			symhdr = (Elf_Shdr *)&sechdrs[i];
			strtab = (char *)sechdrs[strindex].sh_addr;
			break;
		}
	}

	DEBUGP("module %s: strtab %p, symhdr %p\n",
	       me->name, strtab, symhdr);

	if(me->arch.got_count > MAX_GOTS) {
		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
				me->name, me->arch.got_count, MAX_GOTS);
		return -EINVAL;
	}

	kfree(me->arch.section);
	me->arch.section = NULL;

	/* no symbol table */
	if(symhdr == NULL)
		return 0;

	oldptr = (void *)symhdr->sh_addr;
	newptr = oldptr + 1;	/* we start counting at 1 */
	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
	DEBUGP("OLD num_symtab %lu\n", nsyms);

	for (i = 1; i < nsyms; i++) {
		oldptr++;	/* note, count starts at 1 so preincrement */
		if(strncmp(strtab + oldptr->st_name,
			      ".L", 2) == 0)
			continue;

		if(newptr != oldptr)
			*newptr++ = *oldptr;
		else
			newptr++;

	}
	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
	DEBUGP("NEW num_symtab %lu\n", nsyms);
	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
	return 0;
}

void module_arch_cleanup(struct module *mod)
{
	deregister_unwind_table(mod);
}