1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
|
/*
*
* BRIEF MODULE DESCRIPTION
* The Descriptor Based DMA channel manager that first appeared
* on the Au1550. I started with dma.c, but I think all that is
* left is this initial comment :-)
*
* Copyright 2004 Embedded Edge, LLC
* dan@embeddededge.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/system.h>
#if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
/*
* The Descriptor Based DMA supports up to 16 channels.
*
* There are 32 devices defined. We keep an internal structure
* of devices using these channels, along with additional
* information.
*
* We allocate the descriptors and allow access to them through various
* functions. The drivers allocate the data buffers and assign them
* to the descriptors.
*/
static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
/* I couldn't find a macro that did this......
*/
#define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
static int dbdma_initialized=0;
static void au1xxx_dbdma_init(void);
static dbdev_tab_t dbdev_tab[] = {
#ifdef CONFIG_SOC_AU1550
/* UARTS */
{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
{ DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
{ DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
/* EXT DMA */
{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
/* USB DEV */
{ DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
{ DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
{ DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
{ DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
{ DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
{ DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
/* PSC 0 */
{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
/* PSC 1 */
{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
/* PSC 2 */
{ DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
{ DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
/* PSC 3 */
{ DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
{ DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
{ DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
{ DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
/* MAC 0 */
{ DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
/* MAC 1 */
{ DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
#endif /* CONFIG_SOC_AU1550 */
#ifdef CONFIG_SOC_AU1200
{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
{ DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
{ DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
{ DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
{ DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
{ DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
{ DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
{ DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
{ DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
{ DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
{ DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
{ DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
{ DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
#endif // CONFIG_SOC_AU1200
{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
/* Provide 16 user definable device types */
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
};
#define DBDEV_TAB_SIZE (sizeof(dbdev_tab) / sizeof(dbdev_tab_t))
static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
static dbdev_tab_t *
find_dbdev_id (u32 id)
{
int i;
dbdev_tab_t *p;
for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
p = &dbdev_tab[i];
if (p->dev_id == id)
return p;
}
return NULL;
}
void * au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
{
return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
}
EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
u32
au1xxx_ddma_add_device(dbdev_tab_t *dev)
{
u32 ret = 0;
dbdev_tab_t *p=NULL;
static u16 new_id=0x1000;
p = find_dbdev_id(0);
if ( NULL != p )
{
memcpy(p, dev, sizeof(dbdev_tab_t));
p->dev_id = DSCR_DEV2CUSTOM_ID(new_id,dev->dev_id);
ret = p->dev_id;
new_id++;
#if 0
printk("add_device: id:%x flags:%x padd:%x\n",
p->dev_id, p->dev_flags, p->dev_physaddr );
#endif
}
return ret;
}
EXPORT_SYMBOL(au1xxx_ddma_add_device);
/* Allocate a channel and return a non-zero descriptor if successful.
*/
u32
au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
void (*callback)(int, void *, struct pt_regs *), void *callparam)
{
unsigned long flags;
u32 used, chan, rv;
u32 dcp;
int i;
dbdev_tab_t *stp, *dtp;
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
/* We do the intialization on the first channel allocation.
* We have to wait because of the interrupt handler initialization
* which can't be done successfully during board set up.
*/
if (!dbdma_initialized)
au1xxx_dbdma_init();
dbdma_initialized = 1;
if ((stp = find_dbdev_id(srcid)) == NULL) return 0;
if ((dtp = find_dbdev_id(destid)) == NULL) return 0;
used = 0;
rv = 0;
/* Check to see if we can get both channels.
*/
spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
(stp->dev_flags & DEV_FLAGS_ANYUSE)) {
/* Got source */
stp->dev_flags |= DEV_FLAGS_INUSE;
if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
(dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
/* Got destination */
dtp->dev_flags |= DEV_FLAGS_INUSE;
}
else {
/* Can't get dest. Release src.
*/
stp->dev_flags &= ~DEV_FLAGS_INUSE;
used++;
}
}
else {
used++;
}
spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
if (!used) {
/* Let's see if we can allocate a channel for it.
*/
ctp = NULL;
chan = 0;
spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
for (i=0; i<NUM_DBDMA_CHANS; i++) {
if (chan_tab_ptr[i] == NULL) {
/* If kmalloc fails, it is caught below same
* as a channel not available.
*/
ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
chan_tab_ptr[i] = ctp;
break;
}
}
spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
if (ctp != NULL) {
memset(ctp, 0, sizeof(chan_tab_t));
ctp->chan_index = chan = i;
dcp = DDMA_CHANNEL_BASE;
dcp += (0x0100 * chan);
ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
cp = (au1x_dma_chan_t *)dcp;
ctp->chan_src = stp;
ctp->chan_dest = dtp;
ctp->chan_callback = callback;
ctp->chan_callparam = callparam;
/* Initialize channel configuration.
*/
i = 0;
if (stp->dev_intlevel)
i |= DDMA_CFG_SED;
if (stp->dev_intpolarity)
i |= DDMA_CFG_SP;
if (dtp->dev_intlevel)
i |= DDMA_CFG_DED;
if (dtp->dev_intpolarity)
i |= DDMA_CFG_DP;
if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
(dtp->dev_flags & DEV_FLAGS_SYNC))
i |= DDMA_CFG_SYNC;
cp->ddma_cfg = i;
au_sync();
/* Return a non-zero value that can be used to
* find the channel information in subsequent
* operations.
*/
rv = (u32)(&chan_tab_ptr[chan]);
}
else {
/* Release devices */
stp->dev_flags &= ~DEV_FLAGS_INUSE;
dtp->dev_flags &= ~DEV_FLAGS_INUSE;
}
}
return rv;
}
EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
/* Set the device width if source or destination is a FIFO.
* Should be 8, 16, or 32 bits.
*/
u32
au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
{
u32 rv;
chan_tab_t *ctp;
dbdev_tab_t *stp, *dtp;
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
rv = 0;
if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
rv = stp->dev_devwidth;
stp->dev_devwidth = bits;
}
if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
rv = dtp->dev_devwidth;
dtp->dev_devwidth = bits;
}
return rv;
}
EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
/* Allocate a descriptor ring, initializing as much as possible.
*/
u32
au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
{
int i;
u32 desc_base, srcid, destid;
u32 cmd0, cmd1, src1, dest1;
u32 src0, dest0;
chan_tab_t *ctp;
dbdev_tab_t *stp, *dtp;
au1x_ddma_desc_t *dp;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
/* The descriptors must be 32-byte aligned. There is a
* possibility the allocation will give us such an address,
* and if we try that first we are likely to not waste larger
* slabs of memory.
*/
desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
GFP_KERNEL|GFP_DMA);
if (desc_base == 0)
return 0;
if (desc_base & 0x1f) {
/* Lost....do it again, allocate extra, and round
* the address base.
*/
kfree((const void *)desc_base);
i = entries * sizeof(au1x_ddma_desc_t);
i += (sizeof(au1x_ddma_desc_t) - 1);
if ((desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA)) == 0)
return 0;
desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
}
dp = (au1x_ddma_desc_t *)desc_base;
/* Keep track of the base descriptor.
*/
ctp->chan_desc_base = dp;
/* Initialize the rings with as much information as we know.
*/
srcid = stp->dev_id;
destid = dtp->dev_id;
cmd0 = cmd1 = src1 = dest1 = 0;
src0 = dest0 = 0;
cmd0 |= DSCR_CMD0_SID(srcid);
cmd0 |= DSCR_CMD0_DID(destid);
cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
/* is it mem to mem transfer? */
if(((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) {
cmd0 |= DSCR_CMD0_MEM;
}
switch (stp->dev_devwidth) {
case 8:
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
break;
case 16:
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
break;
case 32:
default:
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
break;
}
switch (dtp->dev_devwidth) {
case 8:
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
break;
case 16:
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
break;
case 32:
default:
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
break;
}
/* If the device is marked as an in/out FIFO, ensure it is
* set non-coherent.
*/
if (stp->dev_flags & DEV_FLAGS_IN)
cmd0 |= DSCR_CMD0_SN; /* Source in fifo */
if (dtp->dev_flags & DEV_FLAGS_OUT)
cmd0 |= DSCR_CMD0_DN; /* Destination out fifo */
/* Set up source1. For now, assume no stride and increment.
* A channel attribute update can change this later.
*/
switch (stp->dev_tsize) {
case 1:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
break;
case 2:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
break;
case 4:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
break;
case 8:
default:
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
break;
}
/* If source input is fifo, set static address.
*/
if (stp->dev_flags & DEV_FLAGS_IN) {
if ( stp->dev_flags & DEV_FLAGS_BURSTABLE )
src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
else
src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
}
if (stp->dev_physaddr)
src0 = stp->dev_physaddr;
/* Set up dest1. For now, assume no stride and increment.
* A channel attribute update can change this later.
*/
switch (dtp->dev_tsize) {
case 1:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
break;
case 2:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
break;
case 4:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
break;
case 8:
default:
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
break;
}
/* If destination output is fifo, set static address.
*/
if (dtp->dev_flags & DEV_FLAGS_OUT) {
if ( dtp->dev_flags & DEV_FLAGS_BURSTABLE )
dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
else
dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
}
if (dtp->dev_physaddr)
dest0 = dtp->dev_physaddr;
#if 0
printk("did:%x sid:%x cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, src1, dest0, dest1 );
#endif
for (i=0; i<entries; i++) {
dp->dscr_cmd0 = cmd0;
dp->dscr_cmd1 = cmd1;
dp->dscr_source0 = src0;
dp->dscr_source1 = src1;
dp->dscr_dest0 = dest0;
dp->dscr_dest1 = dest1;
dp->dscr_stat = 0;
dp->sw_context = 0;
dp->sw_status = 0;
dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
dp++;
}
/* Make last descrptor point to the first.
*/
dp--;
dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
return (u32)(ctp->chan_desc_base);
}
EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
/* Put a source buffer into the DMA ring.
* This updates the source pointer and byte count. Normally used
* for memory to fifo transfers.
*/
u32
_au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->put_ptr;
/* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V) {
return 0;
}
/* Load up buffer address and byte count.
*/
dp->dscr_source0 = virt_to_phys(buf);
dp->dscr_cmd1 = nbytes;
/* Check flags */
if (flags & DDMA_FLAGS_IE)
dp->dscr_cmd0 |= DSCR_CMD0_IE;
if (flags & DDMA_FLAGS_NOIE)
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
/*
* There is an errata on the Au1200/Au1550 parts that could result
* in "stale" data being DMA'd. It has to do with the snoop logic on
* the dache eviction buffer. NONCOHERENT_IO is on by default for
* these parts. If it is fixedin the future, these dma_cache_inv will
* just be nothing more than empty macros. See io.h.
* */
dma_cache_wback_inv((unsigned long)buf, nbytes);
dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
au_sync();
dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
ctp->chan_ptr->ddma_dbell = 0;
/* Get next descriptor pointer.
*/
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* return something not zero.
*/
return nbytes;
}
EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
/* Put a destination buffer into the DMA ring.
* This updates the destination pointer and byte count. Normally used
* to place an empty buffer into the ring for fifo to memory transfers.
*/
u32
_au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->put_ptr;
/* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V)
return 0;
/* Load up buffer address and byte count */
/* Check flags */
if (flags & DDMA_FLAGS_IE)
dp->dscr_cmd0 |= DSCR_CMD0_IE;
if (flags & DDMA_FLAGS_NOIE)
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
dp->dscr_dest0 = virt_to_phys(buf);
dp->dscr_cmd1 = nbytes;
#if 0
printk("cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1 );
#endif
/*
* There is an errata on the Au1200/Au1550 parts that could result in
* "stale" data being DMA'd. It has to do with the snoop logic on the
* dache eviction buffer. NONCOHERENT_IO is on by default for these
* parts. If it is fixedin the future, these dma_cache_inv will just
* be nothing more than empty macros. See io.h.
* */
dma_cache_inv((unsigned long)buf,nbytes);
dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
au_sync();
dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
ctp->chan_ptr->ddma_dbell = 0;
/* Get next descriptor pointer.
*/
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* return something not zero.
*/
return nbytes;
}
EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
/* Get a destination buffer into the DMA ring.
* Normally used to get a full buffer from the ring during fifo
* to memory transfers. This does not set the valid bit, you will
* have to put another destination buffer to keep the DMA going.
*/
u32
au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
u32 rv;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->get_ptr;
/* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V)
return 0;
/* Return buffer address and byte count.
*/
*buf = (void *)(phys_to_virt(dp->dscr_dest0));
*nbytes = dp->dscr_cmd1;
rv = dp->dscr_stat;
/* Get next descriptor pointer.
*/
ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* return something not zero.
*/
return rv;
}
void
au1xxx_dbdma_stop(u32 chanid)
{
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
int halt_timeout = 0;
ctp = *((chan_tab_t **)chanid);
cp = ctp->chan_ptr;
cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
au_sync();
while (!(cp->ddma_stat & DDMA_STAT_H)) {
udelay(1);
halt_timeout++;
if (halt_timeout > 100) {
printk("warning: DMA channel won't halt\n");
break;
}
}
/* clear current desc valid and doorbell */
cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
au_sync();
}
EXPORT_SYMBOL(au1xxx_dbdma_stop);
/* Start using the current descriptor pointer. If the dbdma encounters
* a not valid descriptor, it will stop. In this case, we can just
* continue by adding a buffer to the list and starting again.
*/
void
au1xxx_dbdma_start(u32 chanid)
{
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
ctp = *((chan_tab_t **)chanid);
cp = ctp->chan_ptr;
cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
au_sync();
cp->ddma_dbell = 0;
au_sync();
}
EXPORT_SYMBOL(au1xxx_dbdma_start);
void
au1xxx_dbdma_reset(u32 chanid)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
au1xxx_dbdma_stop(chanid);
ctp = *((chan_tab_t **)chanid);
ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
/* Run through the descriptors and reset the valid indicator.
*/
dp = ctp->chan_desc_base;
do {
dp->dscr_cmd0 &= ~DSCR_CMD0_V;
/* reset our SW status -- this is used to determine
* if a descriptor is in use by upper level SW. Since
* posting can reset 'V' bit.
*/
dp->sw_status = 0;
dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
} while (dp != ctp->chan_desc_base);
}
EXPORT_SYMBOL(au1xxx_dbdma_reset);
u32
au1xxx_get_dma_residue(u32 chanid)
{
chan_tab_t *ctp;
au1x_dma_chan_t *cp;
u32 rv;
ctp = *((chan_tab_t **)chanid);
cp = ctp->chan_ptr;
/* This is only valid if the channel is stopped.
*/
rv = cp->ddma_bytecnt;
au_sync();
return rv;
}
void
au1xxx_dbdma_chan_free(u32 chanid)
{
chan_tab_t *ctp;
dbdev_tab_t *stp, *dtp;
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
au1xxx_dbdma_stop(chanid);
kfree((void *)ctp->chan_desc_base);
stp->dev_flags &= ~DEV_FLAGS_INUSE;
dtp->dev_flags &= ~DEV_FLAGS_INUSE;
chan_tab_ptr[ctp->chan_index] = NULL;
kfree(ctp);
}
EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
static irqreturn_t
dbdma_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
u32 intstat;
u32 chan_index;
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
au1x_dma_chan_t *cp;
intstat = dbdma_gptr->ddma_intstat;
au_sync();
chan_index = au_ffs(intstat) - 1;
ctp = chan_tab_ptr[chan_index];
cp = ctp->chan_ptr;
dp = ctp->cur_ptr;
/* Reset interrupt.
*/
cp->ddma_irq = 0;
au_sync();
if (ctp->chan_callback)
(ctp->chan_callback)(irq, ctp->chan_callparam, regs);
ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
return IRQ_RETVAL(1);
}
static void au1xxx_dbdma_init(void)
{
int irq_nr;
dbdma_gptr->ddma_config = 0;
dbdma_gptr->ddma_throttle = 0;
dbdma_gptr->ddma_inten = 0xffff;
au_sync();
#if defined(CONFIG_SOC_AU1550)
irq_nr = AU1550_DDMA_INT;
#elif defined(CONFIG_SOC_AU1200)
irq_nr = AU1200_DDMA_INT;
#else
#error Unknown Au1x00 SOC
#endif
if (request_irq(irq_nr, dbdma_interrupt, SA_INTERRUPT,
"Au1xxx dbdma", (void *)dbdma_gptr))
printk("Can't get 1550 dbdma irq");
}
void
au1xxx_dbdma_dump(u32 chanid)
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
dbdev_tab_t *stp, *dtp;
au1x_dma_chan_t *cp;
u32 i = 0;
ctp = *((chan_tab_t **)chanid);
stp = ctp->chan_src;
dtp = ctp->chan_dest;
cp = ctp->chan_ptr;
printk("Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
(u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab);
printk("desc base %x, get %x, put %x, cur %x\n",
(u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
(u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
printk("dbdma chan %x\n", (u32)cp);
printk("cfg %08x, desptr %08x, statptr %08x\n",
cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt);
/* Run through the descriptors
*/
dp = ctp->chan_desc_base;
do {
printk("Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
printk("src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
printk("stat %08x, nxtptr %08x\n",
dp->dscr_stat, dp->dscr_nxtptr);
dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
} while (dp != ctp->chan_desc_base);
}
/* Put a descriptor into the DMA ring.
* This updates the source/destination pointers and byte count.
*/
u32
au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr )
{
chan_tab_t *ctp;
au1x_ddma_desc_t *dp;
u32 nbytes=0;
/* I guess we could check this to be within the
* range of the table......
*/
ctp = *((chan_tab_t **)chanid);
/* We should have multiple callers for a particular channel,
* an interrupt doesn't affect this pointer nor the descriptor,
* so no locking should be needed.
*/
dp = ctp->put_ptr;
/* If the descriptor is valid, we are way ahead of the DMA
* engine, so just return an error condition.
*/
if (dp->dscr_cmd0 & DSCR_CMD0_V)
return 0;
/* Load up buffer addresses and byte count.
*/
dp->dscr_dest0 = dscr->dscr_dest0;
dp->dscr_source0 = dscr->dscr_source0;
dp->dscr_dest1 = dscr->dscr_dest1;
dp->dscr_source1 = dscr->dscr_source1;
dp->dscr_cmd1 = dscr->dscr_cmd1;
nbytes = dscr->dscr_cmd1;
/* Allow the caller to specifiy if an interrupt is generated */
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
ctp->chan_ptr->ddma_dbell = 0;
/* Get next descriptor pointer.
*/
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
/* return something not zero.
*/
return nbytes;
}
#endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */
|