aboutsummaryrefslogtreecommitdiffstats
path: root/arch/cris/include/asm/pgtable.h
blob: 7df4301383558410a18def3788b743d4d523251d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
 * CRIS pgtable.h - macros and functions to manipulate page tables.
 */

#ifndef _CRIS_PGTABLE_H
#define _CRIS_PGTABLE_H

#include <asm/page.h>
#include <asm-generic/pgtable-nopmd.h>

#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <asm/mmu.h>
#endif
#include <arch/pgtable.h>

/*
 * The Linux memory management assumes a three-level page table setup. On
 * CRIS, we use that, but "fold" the mid level into the top-level page
 * table. Since the MMU TLB is software loaded through an interrupt, it
 * supports any page table structure, so we could have used a three-level
 * setup, but for the amounts of memory we normally use, a two-level is
 * probably more efficient.
 *
 * This file contains the functions and defines necessary to modify and use
 * the CRIS page table tree.
 */
#ifndef __ASSEMBLY__
extern void paging_init(void);
#endif

/* Certain architectures need to do special things when pte's
 * within a page table are directly modified.  Thus, the following
 * hook is made available.
 */
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)

/*
 * (pmds are folded into pgds so this doesn't get actually called,
 * but the define is needed for a generic inline function.)
 */
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
#define set_pgu(pudptr, pudval) (*(pudptr) = pudval)

/* PGDIR_SHIFT determines the size of the area a second-level page table can
 * map. It is equal to the page size times the number of PTE's that fit in
 * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number.
 */

#define PGDIR_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-2))
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

/*
 * entries per page directory level: we use a two-level, so
 * we don't really have any PMD directory physically.
 * pointers are 4 bytes so we can use the page size and 
 * divide it by 4 (shift by 2).
 */
#define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-2))
#define PTRS_PER_PGD	(1UL << (PAGE_SHIFT-2))

/* calculate how many PGD entries a user-level program can use
 * the first mappable virtual address is 0
 * (TASK_SIZE is the maximum virtual address space)
 */

#define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
#define FIRST_USER_ADDRESS      0

/* zero page used for uninitialized stuff */
#ifndef __ASSEMBLY__
extern unsigned long empty_zero_page;
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
#endif

/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR			(8*sizeof(unsigned long))

/* to align the pointer to a pointer address */
#define PTR_MASK			(~(sizeof(void*)-1))

/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware!  SRB. */
#define SIZEOF_PTR_LOG2			2

/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)

/* to set the page-dir */
#define SET_PAGE_DIR(tsk,pgdir)

#define pte_none(x)	(!pte_val(x))
#define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
#define pte_clear(mm,addr,xp)	do { pte_val(*(xp)) = 0; } while (0)

#define pmd_none(x)     (!pmd_val(x))
/* by removing the _PAGE_KERNEL bit from the comparison, the same pmd_bad
 * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries.
 */
#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE)
#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
#define pmd_clear(xp)	do { pmd_val(*(xp)) = 0; } while (0)

#ifndef __ASSEMBLY__

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */

static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_WRITE; }
static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_MODIFIED; }
static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
static inline int pte_file(pte_t pte)           { return pte_val(pte) & _PAGE_FILE; }
static inline int pte_special(pte_t pte)	{ return 0; }

static inline pte_t pte_wrprotect(pte_t pte)
{
        pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
        return pte;
}

static inline pte_t pte_mkclean(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE); 
	return pte; 
}

static inline pte_t pte_mkold(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ);
	return pte;
}

static inline pte_t pte_mkwrite(pte_t pte)
{
        pte_val(pte) |= _PAGE_WRITE;
        if (pte_val(pte) & _PAGE_MODIFIED)
                pte_val(pte) |= _PAGE_SILENT_WRITE;
        return pte;
}

static inline pte_t pte_mkdirty(pte_t pte)
{
        pte_val(pte) |= _PAGE_MODIFIED;
        if (pte_val(pte) & _PAGE_WRITE)
                pte_val(pte) |= _PAGE_SILENT_WRITE;
        return pte;
}

static inline pte_t pte_mkyoung(pte_t pte)
{
        pte_val(pte) |= _PAGE_ACCESSED;
        if (pte_val(pte) & _PAGE_READ)
        {
                pte_val(pte) |= _PAGE_SILENT_READ;
                if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) ==
		    (_PAGE_WRITE | _PAGE_MODIFIED))
                        pte_val(pte) |= _PAGE_SILENT_WRITE;
        }
        return pte;
}
static inline pte_t pte_mkspecial(pte_t pte)	{ return pte; }

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */

/* What actually goes as arguments to the various functions is less than
 * obvious, but a rule of thumb is that struct page's goes as struct page *,
 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
 * addresses (the 0xc0xxxxxx's) goes as void *'s.
 */

static inline pte_t __mk_pte(void * page, pgprot_t pgprot)
{
	pte_t pte;
	/* the PTE needs a physical address */
	pte_val(pte) = __pa(page) | pgprot_val(pgprot);
	return pte;
}

#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))

#define mk_pte_phys(physpage, pgprot) \
({                                                                      \
        pte_t __pte;                                                    \
                                                                        \
        pte_val(__pte) = (physpage) + pgprot_val(pgprot);               \
        __pte;                                                          \
})

static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }

#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) | _PAGE_NO_CACHE))


/* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval
 * __pte_page(pte_val) refers to the "virtual" DRAM interval
 * pte_pagenr refers to the page-number counted starting from the virtual DRAM start
 */

static inline unsigned long __pte_page(pte_t pte)
{
	/* the PTE contains a physical address */
	return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
}

#define pte_pagenr(pte)         ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)

/* permanent address of a page */

#define __page_address(page)    (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
#define pte_page(pte)           (mem_map+pte_pagenr(pte))

/* only the pte's themselves need to point to physical DRAM (see above)
 * the pagetable links are purely handled within the kernel SW and thus
 * don't need the __pa and __va transformations.
 */

static inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
{ pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; }

#define pmd_page(pmd)		(pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
#define pmd_page_vaddr(pmd)	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))

/* to find an entry in a page-table-directory. */
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))

/* to find an entry in a page-table-directory */
static inline pgd_t * pgd_offset(const struct mm_struct *mm, unsigned long address)
{
	return mm->pgd + pgd_index(address);
}

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

/* Find an entry in the third-level page table.. */
#define __pte_offset(address) \
	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, address) \
	((pte_t *) pmd_page_vaddr(*(dir)) +  __pte_offset(address))
#define pte_offset_map(dir, address) \
	((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))

#define pte_unmap(pte) do { } while (0)
#define pte_pfn(x)		((unsigned long)(__va((x).pte)) >> PAGE_SHIFT)
#define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))

#define pte_ERROR(e) \
        printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
#define pgd_ERROR(e) \
        printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))

#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)         \
		remap_pfn_range(vma, vaddr, pfn, size, prot)


extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */

/*
 * CRIS doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 * 
 * Actually I am not sure on what this could be used for.
 */
static inline void update_mmu_cache(struct vm_area_struct * vma,
	unsigned long address, pte_t *ptep)
{
}

/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */

#define __swp_type(x)			(((x).val >> 5) & 0x7f)
#define __swp_offset(x)			((x).val >> 12)
#define __swp_entry(type, offset)	((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x)		((pte_t) { (x).val })

#define kern_addr_valid(addr)   (1)

#include <asm-generic/pgtable.h>

/*
 * No page table caches to initialise
 */
#define pgtable_cache_init()   do { } while (0)

#define pte_to_pgoff(x)	(pte_val(x) >> 6)
#define pgoff_to_pte(x)	__pte(((x) << 6) | _PAGE_FILE)

typedef pte_t *pte_addr_t;

#endif /* __ASSEMBLY__ */
#endif /* _CRIS_PGTABLE_H */