aboutsummaryrefslogtreecommitdiffstats
path: root/arch/cris/arch-v32/mach-a3/arbiter.c
blob: 8b924db71c9a9a7f7eb90b6b6c13a1a387504a0a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
/*
 * Memory arbiter functions. Allocates bandwidth through the
 * arbiter and sets up arbiter breakpoints.
 *
 * The algorithm first assigns slots to the clients that has specified
 * bandwidth (e.g. ethernet) and then the remaining slots are divided
 * on all the active clients.
 *
 * Copyright (c) 2004-2007 Axis Communications AB.
 *
 * The artpec-3 has two arbiters. The memory hierarchy looks like this:
 *
 *
 * CPU DMAs
 *  |   |
 *  |   |
 * --------------    ------------------
 * | foo arbiter|----| Internal memory|
 * --------------    ------------------
 *      |
 * --------------
 * | L2 cache   |
 * --------------
 *             |
 * h264 etc    |
 *    |        |
 *    |        |
 * --------------
 * | bar arbiter|
 * --------------
 *       |
 * ---------
 * | SDRAM |
 * ---------
 *
 */

#include <hwregs/reg_map.h>
#include <hwregs/reg_rdwr.h>
#include <hwregs/marb_foo_defs.h>
#include <hwregs/marb_bar_defs.h>
#include <arbiter.h>
#include <hwregs/intr_vect.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <asm/irq_regs.h>

#define D(x)

struct crisv32_watch_entry {
  unsigned long instance;
  watch_callback *cb;
  unsigned long start;
  unsigned long end;
  int used;
};

#define NUMBER_OF_BP 4
#define SDRAM_BANDWIDTH 400000000
#define INTMEM_BANDWIDTH 400000000
#define NBR_OF_SLOTS 64
#define NBR_OF_REGIONS 2
#define NBR_OF_CLIENTS 15
#define ARBITERS 2
#define UNASSIGNED 100

struct arbiter {
  unsigned long instance;
  int nbr_regions;
  int nbr_clients;
  int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
  int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
};

static struct crisv32_watch_entry watches[ARBITERS][NUMBER_OF_BP] =
{
  {
  {regi_marb_foo_bp0},
  {regi_marb_foo_bp1},
  {regi_marb_foo_bp2},
  {regi_marb_foo_bp3}
  },
  {
  {regi_marb_bar_bp0},
  {regi_marb_bar_bp1},
  {regi_marb_bar_bp2},
  {regi_marb_bar_bp3}
  }
};

struct arbiter arbiters[ARBITERS] =
{
  { /* L2 cache arbiter */
    .instance = regi_marb_foo,
    .nbr_regions = 2,
    .nbr_clients = 15
  },
  { /* DDR2 arbiter */
    .instance = regi_marb_bar,
    .nbr_regions = 1,
    .nbr_clients = 9
  }
};

static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH};

DEFINE_SPINLOCK(arbiter_lock);

static irqreturn_t
crisv32_foo_arbiter_irq(int irq, void *dev_id);
static irqreturn_t
crisv32_bar_arbiter_irq(int irq, void *dev_id);

/*
 * "I'm the arbiter, I know the score.
 *  From square one I'll be watching all 64."
 * (memory arbiter slots, that is)
 *
 *  Or in other words:
 * Program the memory arbiter slots for "region" according to what's
 * in requested_slots[] and active_clients[], while minimizing
 * latency. A caller may pass a non-zero positive amount for
 * "unused_slots", which must then be the unallocated, remaining
 * number of slots, free to hand out to any client.
 */

static void crisv32_arbiter_config(int arbiter, int region, int unused_slots)
{
	int slot;
	int client;
	int interval = 0;

	/*
	 * This vector corresponds to the hardware arbiter slots (see
	 * the hardware documentation for semantics). We initialize
	 * each slot with a suitable sentinel value outside the valid
	 * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
	 * client indexes. Then it's fed to the hardware.
	 */
	s8 val[NBR_OF_SLOTS];

	for (slot = 0; slot < NBR_OF_SLOTS; slot++)
	    val[slot] = -1;

	for (client = 0; client < arbiters[arbiter].nbr_clients; client++) {
	    int pos;
	    /* Allocate the requested non-zero number of slots, but
	     * also give clients with zero-requests one slot each
	     * while stocks last. We do the latter here, in client
	     * order. This makes sure zero-request clients are the
	     * first to get to any spare slots, else those slots
	     * could, when bandwidth is allocated close to the limit,
	     * all be allocated to low-index non-zero-request clients
	     * in the default-fill loop below. Another positive but
	     * secondary effect is a somewhat better spread of the
	     * zero-bandwidth clients in the vector, avoiding some of
	     * the latency that could otherwise be caused by the
	     * partitioning of non-zero-bandwidth clients at low
	     * indexes and zero-bandwidth clients at high
	     * indexes. (Note that this spreading can only affect the
	     * unallocated bandwidth.)  All the above only matters for
	     * memory-intensive situations, of course.
	     */
	    if (!arbiters[arbiter].requested_slots[region][client]) {
		/*
		 * Skip inactive clients. Also skip zero-slot
		 * allocations in this pass when there are no known
		 * free slots.
		 */
		if (!arbiters[arbiter].active_clients[region][client] ||
				unused_slots <= 0)
			continue;

		unused_slots--;

		/* Only allocate one slot for this client. */
		interval = NBR_OF_SLOTS;
	    } else
		interval = NBR_OF_SLOTS /
			arbiters[arbiter].requested_slots[region][client];

	    pos = 0;
	    while (pos < NBR_OF_SLOTS) {
		if (val[pos] >= 0)
		   pos++;
		else {
			val[pos] = client;
			pos += interval;
		}
	    }
	}

	client = 0;
	for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
		/*
		 * Allocate remaining slots in round-robin
		 * client-number order for active clients. For this
		 * pass, we ignore requested bandwidth and previous
		 * allocations.
		 */
		if (val[slot] < 0) {
			int first = client;
			while (!arbiters[arbiter].active_clients[region][client]) {
				client = (client + 1) %
					arbiters[arbiter].nbr_clients;
				if (client == first)
				   break;
			}
			val[slot] = client;
			client = (client + 1) % arbiters[arbiter].nbr_clients;
		}
		if (arbiter == 0) {
			if (region == EXT_REGION)
				REG_WR_INT_VECT(marb_foo, regi_marb_foo,
					rw_l2_slots, slot, val[slot]);
			else if (region == INT_REGION)
				REG_WR_INT_VECT(marb_foo, regi_marb_foo,
					rw_intm_slots, slot, val[slot]);
		} else {
			REG_WR_INT_VECT(marb_bar, regi_marb_bar,
				rw_ddr2_slots, slot, val[slot]);
		}
	}
}

extern char _stext, _etext;

static void crisv32_arbiter_init(void)
{
	static int initialized;

	if (initialized)
		return;

	initialized = 1;

	/*
	 * CPU caches are always set to active, but with zero
	 * bandwidth allocated. It should be ok to allocate zero
	 * bandwidth for the caches, because DMA for other channels
	 * will supposedly finish, once their programmed amount is
	 * done, and then the caches will get access according to the
	 * "fixed scheme" for unclaimed slots. Though, if for some
	 * use-case somewhere, there's a maximum CPU latency for
	 * e.g. some interrupt, we have to start allocating specific
	 * bandwidth for the CPU caches too.
	 */
	arbiters[0].active_clients[EXT_REGION][11] = 1;
	arbiters[0].active_clients[EXT_REGION][12] = 1;
	crisv32_arbiter_config(0, EXT_REGION, 0);
	crisv32_arbiter_config(0, INT_REGION, 0);
	crisv32_arbiter_config(1, EXT_REGION, 0);

	if (request_irq(MEMARB_FOO_INTR_VECT, crisv32_foo_arbiter_irq,
			IRQF_DISABLED, "arbiter", NULL))
		printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");

	if (request_irq(MEMARB_BAR_INTR_VECT, crisv32_bar_arbiter_irq,
			IRQF_DISABLED, "arbiter", NULL))
		printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");

#ifndef CONFIG_ETRAX_KGDB
	/* Global watch for writes to kernel text segment. */
	crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
		MARB_CLIENTS(arbiter_all_clients, arbiter_bar_all_clients),
			      arbiter_all_write, NULL);
#endif

	/* Set up max burst sizes by default */
	REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_rd_burst, 3);
	REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_wr_burst, 3);
	REG_WR_INT(marb_bar, regi_marb_bar, rw_ccd_burst, 3);
	REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_wr_burst, 3);
	REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_rd_burst, 3);
	REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_rd_burst, 3);
	REG_WR_INT(marb_bar, regi_marb_bar, rw_vout_burst, 3);
	REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_fifo_burst, 3);
	REG_WR_INT(marb_bar, regi_marb_bar, rw_l2cache_burst, 3);
}

int crisv32_arbiter_allocate_bandwidth(int client, int region,
				      unsigned long bandwidth)
{
	int i;
	int total_assigned = 0;
	int total_clients = 0;
	int req;
	int arbiter = 0;

	crisv32_arbiter_init();

	if (client & 0xffff0000) {
		arbiter = 1;
		client >>= 16;
	}

	for (i = 0; i < arbiters[arbiter].nbr_clients; i++) {
		total_assigned += arbiters[arbiter].requested_slots[region][i];
		total_clients += arbiters[arbiter].active_clients[region][i];
	}

	/* Avoid division by 0 for 0-bandwidth requests. */
	req = bandwidth == 0
		? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);

	/*
	 * We make sure that there are enough slots only for non-zero
	 * requests. Requesting 0 bandwidth *may* allocate slots,
	 * though if all bandwidth is allocated, such a client won't
	 * get any and will have to rely on getting memory access
	 * according to the fixed scheme that's the default when one
	 * of the slot-allocated clients doesn't claim their slot.
	 */
	if (total_assigned + req > NBR_OF_SLOTS)
	   return -ENOMEM;

	arbiters[arbiter].active_clients[region][client] = 1;
	arbiters[arbiter].requested_slots[region][client] = req;
	crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);

	/* Propagate allocation from foo to bar */
	if (arbiter == 0)
		crisv32_arbiter_allocate_bandwidth(8 << 16,
			EXT_REGION, bandwidth);
	return 0;
}

/*
 * Main entry for bandwidth deallocation.
 *
 * Strictly speaking, for a somewhat constant set of clients where
 * each client gets a constant bandwidth and is just enabled or
 * disabled (somewhat dynamically), no action is necessary here to
 * avoid starvation for non-zero-allocation clients, as the allocated
 * slots will just be unused. However, handing out those unused slots
 * to active clients avoids needless latency if the "fixed scheme"
 * would give unclaimed slots to an eager low-index client.
 */

void crisv32_arbiter_deallocate_bandwidth(int client, int region)
{
	int i;
	int total_assigned = 0;
	int arbiter = 0;

	if (client & 0xffff0000)
		arbiter = 1;

	arbiters[arbiter].requested_slots[region][client] = 0;
	arbiters[arbiter].active_clients[region][client] = 0;

	for (i = 0; i < arbiters[arbiter].nbr_clients; i++)
		total_assigned += arbiters[arbiter].requested_slots[region][i];

	crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
}

int crisv32_arbiter_watch(unsigned long start, unsigned long size,
			  unsigned long clients, unsigned long accesses,
			  watch_callback *cb)
{
	int i;
	int arbiter;
	int used[2];
	int ret = 0;

	crisv32_arbiter_init();

	if (start > 0x80000000) {
		printk(KERN_ERR "Arbiter: %lX doesn't look like a "
			"physical address", start);
		return -EFAULT;
	}

	spin_lock(&arbiter_lock);

	if (clients & 0xffff)
		used[0] = 1;
	if (clients & 0xffff0000)
		used[1] = 1;

	for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
		if (!used[arbiter])
			continue;

		for (i = 0; i < NUMBER_OF_BP; i++) {
			if (!watches[arbiter][i].used) {
				unsigned intr_mask;
				if (arbiter)
					intr_mask = REG_RD_INT(marb_bar,
						regi_marb_bar, rw_intr_mask);
				else
					intr_mask = REG_RD_INT(marb_foo,
						regi_marb_foo, rw_intr_mask);

				watches[arbiter][i].used = 1;
				watches[arbiter][i].start = start;
				watches[arbiter][i].end = start + size;
				watches[arbiter][i].cb = cb;

				ret |= (i + 1) << (arbiter + 8);
				if (arbiter) {
					REG_WR_INT(marb_bar_bp,
						watches[arbiter][i].instance,
						rw_first_addr,
						watches[arbiter][i].start);
					REG_WR_INT(marb_bar_bp,
						watches[arbiter][i].instance,
						rw_last_addr,
						watches[arbiter][i].end);
					REG_WR_INT(marb_bar_bp,
						watches[arbiter][i].instance,
						rw_op, accesses);
					REG_WR_INT(marb_bar_bp,
						watches[arbiter][i].instance,
						rw_clients,
						clients & 0xffff);
				} else {
					REG_WR_INT(marb_foo_bp,
						watches[arbiter][i].instance,
						rw_first_addr,
						watches[arbiter][i].start);
					REG_WR_INT(marb_foo_bp,
						watches[arbiter][i].instance,
						rw_last_addr,
						watches[arbiter][i].end);
					REG_WR_INT(marb_foo_bp,
						watches[arbiter][i].instance,
						rw_op, accesses);
					REG_WR_INT(marb_foo_bp,
						watches[arbiter][i].instance,
						rw_clients, clients >> 16);
				}

				if (i == 0)
					intr_mask |= 1;
				else if (i == 1)
					intr_mask |= 2;
				else if (i == 2)
					intr_mask |= 4;
				else if (i == 3)
					intr_mask |= 8;

				if (arbiter)
					REG_WR_INT(marb_bar, regi_marb_bar,
						rw_intr_mask, intr_mask);
				else
					REG_WR_INT(marb_foo, regi_marb_foo,
						rw_intr_mask, intr_mask);

				spin_unlock(&arbiter_lock);

				break;
			}
		}
	}
	spin_unlock(&arbiter_lock);
	if (ret)
		return ret;
	else
		return -ENOMEM;
}

int crisv32_arbiter_unwatch(int id)
{
	int arbiter;
	int intr_mask;

	crisv32_arbiter_init();

	spin_lock(&arbiter_lock);

	for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
		int id2;

		if (arbiter)
			intr_mask = REG_RD_INT(marb_bar, regi_marb_bar,
				rw_intr_mask);
		else
			intr_mask = REG_RD_INT(marb_foo, regi_marb_foo,
				rw_intr_mask);

		id2 = (id & (0xff << (arbiter + 8))) >> (arbiter + 8);
		if (id2 == 0)
			continue;
		id2--;
		if ((id2 >= NUMBER_OF_BP) || (!watches[arbiter][id2].used)) {
			spin_unlock(&arbiter_lock);
			return -EINVAL;
		}

		memset(&watches[arbiter][id2], 0,
			sizeof(struct crisv32_watch_entry));

		if (id2 == 0)
			intr_mask &= ~1;
		else if (id2 == 1)
			intr_mask &= ~2;
		else if (id2 == 2)
			intr_mask &= ~4;
		else if (id2 == 3)
			intr_mask &= ~8;

		if (arbiter)
			REG_WR_INT(marb_bar, regi_marb_bar, rw_intr_mask,
				intr_mask);
		else
			REG_WR_INT(marb_foo, regi_marb_foo, rw_intr_mask,
				intr_mask);
	}

	spin_unlock(&arbiter_lock);
	return 0;
}

extern void show_registers(struct pt_regs *regs);


static irqreturn_t
crisv32_foo_arbiter_irq(int irq, void *dev_id)
{
	reg_marb_foo_r_masked_intr masked_intr =
		REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
	reg_marb_foo_bp_r_brk_clients r_clients;
	reg_marb_foo_bp_r_brk_addr r_addr;
	reg_marb_foo_bp_r_brk_op r_op;
	reg_marb_foo_bp_r_brk_first_client r_first;
	reg_marb_foo_bp_r_brk_size r_size;
	reg_marb_foo_bp_rw_ack ack = {0};
	reg_marb_foo_rw_ack_intr ack_intr = {
		.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
	};
	struct crisv32_watch_entry *watch;
	unsigned arbiter = (unsigned)dev_id;

	masked_intr = REG_RD(marb_foo, regi_marb_foo, r_masked_intr);

	if (masked_intr.bp0)
		watch = &watches[arbiter][0];
	else if (masked_intr.bp1)
		watch = &watches[arbiter][1];
	else if (masked_intr.bp2)
		watch = &watches[arbiter][2];
	else if (masked_intr.bp3)
		watch = &watches[arbiter][3];
	else
		return IRQ_NONE;

	/* Retrieve all useful information and print it. */
	r_clients = REG_RD(marb_foo_bp, watch->instance, r_brk_clients);
	r_addr = REG_RD(marb_foo_bp, watch->instance, r_brk_addr);
	r_op = REG_RD(marb_foo_bp, watch->instance, r_brk_op);
	r_first = REG_RD(marb_foo_bp, watch->instance, r_brk_first_client);
	r_size = REG_RD(marb_foo_bp, watch->instance, r_brk_size);

	printk(KERN_DEBUG "Arbiter IRQ\n");
	printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_clients, r_clients),
	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_addr, r_addr),
	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_op, r_op),
	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_first_client, r_first),
	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_size, r_size));

	REG_WR(marb_foo_bp, watch->instance, rw_ack, ack);
	REG_WR(marb_foo, regi_marb_foo, rw_ack_intr, ack_intr);

	printk(KERN_DEBUG "IRQ occured at %X\n", (unsigned)get_irq_regs());

	if (watch->cb)
		watch->cb();

	return IRQ_HANDLED;
}

static irqreturn_t
crisv32_bar_arbiter_irq(int irq, void *dev_id)
{
	reg_marb_bar_r_masked_intr masked_intr =
		REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
	reg_marb_bar_bp_r_brk_clients r_clients;
	reg_marb_bar_bp_r_brk_addr r_addr;
	reg_marb_bar_bp_r_brk_op r_op;
	reg_marb_bar_bp_r_brk_first_client r_first;
	reg_marb_bar_bp_r_brk_size r_size;
	reg_marb_bar_bp_rw_ack ack = {0};
	reg_marb_bar_rw_ack_intr ack_intr = {
		.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
	};
	struct crisv32_watch_entry *watch;
	unsigned arbiter = (unsigned)dev_id;

	masked_intr = REG_RD(marb_bar, regi_marb_bar, r_masked_intr);

	if (masked_intr.bp0)
		watch = &watches[arbiter][0];
	else if (masked_intr.bp1)
		watch = &watches[arbiter][1];
	else if (masked_intr.bp2)
		watch = &watches[arbiter][2];
	else if (masked_intr.bp3)
		watch = &watches[arbiter][3];
	else
		return IRQ_NONE;

	/* Retrieve all useful information and print it. */
	r_clients = REG_RD(marb_bar_bp, watch->instance, r_brk_clients);
	r_addr = REG_RD(marb_bar_bp, watch->instance, r_brk_addr);
	r_op = REG_RD(marb_bar_bp, watch->instance, r_brk_op);
	r_first = REG_RD(marb_bar_bp, watch->instance, r_brk_first_client);
	r_size = REG_RD(marb_bar_bp, watch->instance, r_brk_size);

	printk(KERN_DEBUG "Arbiter IRQ\n");
	printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_clients, r_clients),
	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_addr, r_addr),
	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_op, r_op),
	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_first_client, r_first),
	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_size, r_size));

	REG_WR(marb_bar_bp, watch->instance, rw_ack, ack);
	REG_WR(marb_bar, regi_marb_bar, rw_ack_intr, ack_intr);

	printk(KERN_DEBUG "IRQ occured at %X\n", (unsigned)get_irq_regs()->erp);

	if (watch->cb)
		watch->cb();

	return IRQ_HANDLED;
}