/* * An async IO implementation for Linux * Written by Benjamin LaHaise * * Implements an efficient asynchronous io interface. * * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. * * See ../COPYING for licensing terms. */ #include #include #include #include #include #include #include #include #define DEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if DEBUG > 1 #define dprintk printk #else #define dprintk(x...) do { ; } while (0) #endif /*------ sysctl variables----*/ static DEFINE_SPINLOCK(aio_nr_lock); unsigned long aio_nr; /* current system wide number of aio requests */ unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ /*----end sysctl variables---*/ static struct kmem_cache *kiocb_cachep; static struct kmem_cache *kioctx_cachep; static struct workqueue_struct *aio_wq; /* Used for rare fput completion. */ static void aio_fput_routine(struct work_struct *); static DECLARE_WORK(fput_work, aio_fput_routine); static DEFINE_SPINLOCK(fput_lock); static LIST_HEAD(fput_head); static void aio_kick_handler(struct work_struct *); static void aio_queue_work(struct kioctx *); /* aio_setup * Creates the slab caches used by the aio routines, panic on * failure as this is done early during the boot sequence. */ static int __init aio_setup(void) { kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); aio_wq = create_workqueue("aio"); pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); return 0; } __initcall(aio_setup); static void aio_free_ring(struct kioctx *ctx) { struct aio_ring_info *info = &ctx->ring_info; long i; for (i=0; inr_pages; i++) put_page(info->ring_pages[i]); if (info->mmap_size) { down_write(&ctx->mm->mmap_sem); do_munmap(ctx->mm, info->mmap_base, info->mmap_size); up_write(&ctx->mm->mmap_sem); } if (info->ring_pages && info->ring_pages != info->internal_pages) kfree(info->ring_pages); info->ring_pages = NULL; info->nr = 0; } static int aio_setup_ring(struct kioctx *ctx) { struct aio_ring *ring; struct aio_ring_info *info = &ctx->ring_info; unsigned nr_events = ctx->max_reqs; unsigned long size; int nr_pages; /* Compensate for the ring buffer's head/tail overlap entry */ nr_events += 2; /* 1 is required, 2 for good luck */ size = sizeof(struct aio_ring); size += sizeof(struct io_event) * nr_events; nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; if (nr_pages < 0) return -EINVAL; nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); info->nr = 0; info->ring_pages = info->internal_pages; if (nr_pages > AIO_RING_PAGES) { info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!info->ring_pages) return -ENOMEM; } info->mmap_size = nr_pages * PAGE_SIZE; dprintk("attempting mmap of %lu bytes\n", info->mmap_size); down_write(&ctx->mm->mmap_sem); info->mmap_base = do_mmap(NULL, 0, info->mmap_size, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 0); if (IS_ERR((void *)info->mmap_base)) { up_write(&ctx->mm->mmap_sem); info->mmap_size = 0; aio_free_ring(ctx); return -EAGAIN; } dprintk("mmap address: 0x%08lx\n", info->mmap_base); info->nr_pages = get_user_pages(current, ctx->mm, info->mmap_base, nr_pages, 1, 0, info->ring_pages, NULL); up_write(&ctx->mm->mmap_sem); if (unlikely(info->nr_pages != nr_pages)) { aio_free_ring(ctx); return -EAGAIN; } ctx->user_id = info->mmap_base; info->nr = nr_events; /* trusted copy */ ring = kmap_atomic(info->ring_pages[0], KM_USER0); ring->nr = nr_events; /* user copy */ ring->id = ctx->user_id; ring->head = ring->tail = 0; ring->magic = AIO_RING_MAGIC; ring->compat_features = AIO_RING_COMPAT_FEATURES; ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; ring->header_length = sizeof(struct aio_ring); kunmap_atomic(ring, KM_USER0); return 0; } /* aio_ring_event: returns a pointer to the event at the given index from * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); */ #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) #define aio_ring_event(info, nr, km) ({ \ unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ struct io_event *__event; \ __event = kmap_atomic( \ (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ __event += pos % AIO_EVENTS_PER_PAGE; \ __event; \ }) #define put_aio_ring_event(event, km) do { \ struct io_event *__event = (event); \ (void)__event; \ kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ } while(0) static void ctx_rcu_free(struct rcu_head *head) { struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); unsigned nr_events = ctx->max_reqs; kmem_cache_free(kioctx_cachep, ctx); if (nr_events) { spin_lock(&aio_nr_lock); BUG_ON(aio_nr - nr_events > aio_nr); aio_nr -= nr_events; spin_unlock(&aio_nr_lock); } } /* __put_ioctx * Called when the last user of an aio context has gone away, * and the struct needs to be freed. */ static void __put_ioctx(struct kioctx *ctx) { BUG_ON(ctx->reqs_active); cancel_delayed_work(&ctx->wq); cancel_work_sync(&ctx->wq.work); aio_free_ring(ctx); mmdrop(ctx->mm); ctx->mm = NULL; pr_debug("__put_ioctx: freeing %p\n", ctx); call_rcu(&ctx->rcu_head, ctx_rcu_free); } #define get_ioctx(kioctx) do { \ BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ atomic_inc(&(kioctx)->users); \ } while (0) #define put_ioctx(kioctx) do { \ BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \ __put_ioctx(kioctx); \ } while (0) /* ioctx_alloc * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. */ static struct kioctx *ioctx_alloc(unsigned nr_events) { struct mm_struct *mm; struct kioctx *ctx; int did_sync = 0; /* Prevent overflows */ if ((nr_events > (0x10000000U / sizeof(struct io_event))) || (nr_events > (0x10000000U / sizeof(struct kiocb)))) { pr_debug("ENOMEM: nr_events too high\n"); return ERR_PTR(-EINVAL); } if ((unsigned long)nr_events > aio_max_nr) return ERR_PTR(-EAGAIN); ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); ctx->max_reqs = nr_events; mm = ctx->mm = current->mm; atomic_inc(&mm->mm_count); atomic_set(&ctx->users, 1); spin_lock_init(&ctx->ctx_lock); spin_lock_init(&ctx->ring_info.ring_lock); init_waitqueue_head(&ctx->wait); INIT_LIST_HEAD(&ctx->active_reqs); INIT_LIST_HEAD(&ctx->run_list); INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); if (aio_setup_ring(ctx) < 0) goto out_freectx; /* limit the number of system wide aios */ do { spin_lock_bh(&aio_nr_lock); if (aio_nr + nr_events > aio_max_nr || aio_nr + nr_events < aio_nr) ctx->max_reqs = 0; else aio_nr += ctx->max_reqs; spin_unlock_bh(&aio_nr_lock); if (ctx->max_reqs || did_sync) break; /* wait for rcu callbacks to have completed before giving up */ synchronize_rcu(); did_sync = 1; ctx->max_reqs = nr_events; } while (1); if (ctx->max_reqs == 0) goto out_cleanup; /* now link into global list. */ spin_lock(&mm->ioctx_lock); hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); spin_unlock(&mm->ioctx_lock); dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", ctx, ctx->user_id, current->mm, ctx->ring_info.nr); return ctx; out_cleanup: __put_ioctx(ctx); return ERR_PTR(-EAGAIN); out_freectx: mmdrop(mm); kmem_cache_free(kioctx_cachep, ctx); ctx = ERR_PTR(-ENOMEM); dprintk("aio: error allocating ioctx %p\n", ctx); return ctx; } /* aio_cancel_all * Cancels all outstanding aio requests on an aio context. Used * when the processes owning a context have all exited to encourage * the rapid destruction of the kioctx. */ static void aio_cancel_all(struct kioctx *ctx) { int (*cancel)(struct kiocb *, struct io_event *); struct io_event res; spin_lock_irq(&ctx->ctx_lock); ctx->dead = 1; while (!list_empty(&ctx->active_reqs)) { struct list_head *pos = ctx->active_reqs.next; struct kiocb *iocb = list_kiocb(pos); list_del_init(&iocb->ki_list); cancel = iocb->ki_cancel; kiocbSetCancelled(iocb); if (cancel) { iocb->ki_users++; spin_unlock_irq(&ctx->ctx_lock); cancel(iocb, &res); spin_lock_irq(&ctx->ctx_lock); } } spin_unlock_irq(&ctx->ctx_lock); } static void wait_for_all_aios(struct kioctx *ctx) { struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); spin_lock_irq(&ctx->ctx_lock); if (!ctx->reqs_active) goto out; add_wait_queue(&ctx->wait, &wait); set_task_state(tsk, TASK_UNINTERRUPTIBLE); while (ctx->reqs_active) { spin_unlock_irq(&ctx->ctx_lock); io_schedule(); set_task_state(tsk, TASK_UNINTERRUPTIBLE); spin_lock_irq(&ctx->ctx_lock); } __set_task_state(tsk, TASK_RUNNING); remove_wait_queue(&ctx->wait, &wait); out: spin_unlock_irq(&ctx->ctx_lock); } /* wait_on_sync_kiocb: * Waits on the given sync kiocb to complete. */ ssize_t wait_on_sync_kiocb(struct kiocb *iocb) { while (iocb->ki_users) { set_current_state(TASK_UNINTERRUPTIBLE); if (!iocb->ki_users) break; io_schedule(); } __set_current_state(TASK_RUNNING); return iocb->ki_user_data; } EXPORT_SYMBOL(wait_on_sync_kiocb); /* exit_aio: called when the last user of mm goes away. At this point, * there is no way for any new requests to be submited or any of the * io_* syscalls to be called on the context. However, there may be * outstanding requests which hold references to the context; as they * go away, they will call put_ioctx and release any pinned memory * associated with the request (held via struct page * references). */ void exit_aio(struct mm_struct *mm) { struct kioctx *ctx; while (!hlist_empty(&mm->ioctx_list)) { ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); hlist_del_rcu(&ctx->list); aio_cancel_all(ctx); wait_for_all_aios(ctx); /* * Ensure we don't leave the ctx on the aio_wq */ cancel_work_sync(&ctx->wq.work); if (1 != atomic_read(&ctx->users)) printk(KERN_DEBUG "exit_aio:ioctx still alive: %d %d %d\n", atomic_read(&ctx->users), ctx->dead, ctx->reqs_active); put_ioctx(ctx); } } /* aio_get_req * Allocate a slot for an aio request. Increments the users count * of the kioctx so that the kioctx stays around until all requests are * complete. Returns NULL if no requests are free. * * Returns with kiocb->users set to 2. The io submit code path holds * an extra reference while submitting the i/o. * This prevents races between the aio code path referencing the * req (after submitting it) and aio_complete() freeing the req. */ static struct kiocb *__aio_get_req(struct kioctx *ctx) { struct kiocb *req = NULL; struct aio_ring *ring; int okay = 0; req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); if (unlikely(!req)) return NULL; req->ki_flags = 0; req->ki_users = 2; req->ki_key = 0; req->ki_ctx = ctx; req->ki_cancel = NULL; req->ki_retry = NULL; req->ki_dtor = NULL; req->private = NULL; req->ki_iovec = NULL; INIT_LIST_HEAD(&req->ki_run_list); req->ki_eventfd = NULL; /* Check if the completion queue has enough free space to * accept an event from this io. */ spin_lock_irq(&ctx->ctx_lock); ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { list_add(&req->ki_list, &ctx->active_reqs); ctx->reqs_active++; okay = 1; } kunmap_atomic(ring, KM_USER0); spin_unlock_irq(&ctx->ctx_lock); if (!okay) { kmem_cache_free(kiocb_cachep, req); req = NULL; } return req; } static inline struct kiocb *aio_get_req(struct kioctx *ctx) { struct kiocb *req; /* Handle a potential starvation case -- should be exceedingly rare as * requests will be stuck on fput_head only if the aio_fput_routine is * delayed and the requests were the last user of the struct file. */ req = __aio_get_req(ctx); if (unlikely(NULL == req)) { aio_fput_routine(NULL); req = __aio_get_req(ctx); } return req; } static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) { assert_spin_locked(&ctx->ctx_lock); if (req->ki_eventfd != NULL) eventfd_ctx_put(req->ki_eventfd); if (req->ki_dtor) req->ki_dtor(req); if (req->ki_iovec != &req->ki_inline_vec) kfree(req->ki_iovec); kmem_cache_free(kiocb_cachep, req); ctx->reqs_active--; if (unlikely(!ctx->reqs_active && ctx->dead)) wake_up(&ctx->wait); } static void aio_fput_routine(struct work_struct *data) { spin_lock_irq(&fput_lock); while (likely(!list_empty(&fput_head))) { struct kiocb *req = list_kiocb(fput_head.next); struct kioctx *ctx = req->ki_ctx; list_del(&req->ki_list); spin_unlock_irq(&fput_lock); /* Complete the fput(s) */ if (req->ki_filp != NULL) __fput(req->ki_filp); /* Link the iocb into the context's free list */ spin_lock_irq(&ctx->ctx_lock); really_put_req(ctx, req); spin_unlock_irq(&ctx->ctx_lock); put_ioctx(ctx); spin_lock_irq(&fput_lock); } spin_unlock_irq(&fput_lock); } /* __aio_put_req * Returns true if this put was the last user of the request. */ static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) { dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", req, atomic_long_read(&req->ki_filp->f_count)); assert_spin_locked(&ctx->ctx_lock); req->ki_users--; BUG_ON(req->ki_users < 0); if (likely(req->ki_users)) return 0; list_del(&req->ki_list); /* remove from active_reqs */ req->ki_cancel = NULL; req->ki_retry = NULL; /* * Try to optimize the aio and eventfd file* puts, by avoiding to * schedule work in case it is not __fput() time. In normal cases, * we would not be holding the last reference to the file*, so * this function will be executed w/out any aio kthread wakeup. */ if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) { get_ioctx(ctx); spin_lock(&fput_lock); list_add(&req->ki_list, &fput_head); spin_unlock(&fput_lock); queue_work(aio_wq, &fput_work); } else { req->ki_filp = NULL; really_put_req(ctx, req); } return 1; } /* aio_put_req * Returns true if this put was the last user of the kiocb, * false if the request is still in use. */ int aio_put_req(struct kiocb *req) { struct kioctx *ctx = req->ki_ctx; int ret; spin_lock_irq(&ctx->ctx_lock); ret = __aio_put_req(ctx, req); spin_unlock_irq(&ctx->ctx_lock); return ret; } EXPORT_SYMBOL(aio_put_req); static struct kioctx *lookup_ioctx(unsigned long ctx_id) { struct mm_struct *mm = current->mm; struct kioctx *ctx, *ret = NULL; struct hlist_node *n; rcu_read_lock(); hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { if (ctx->user_id == ctx_id && !ctx->dead) { get_ioctx(ctx); ret = ctx; break; } } rcu_read_unlock(); return ret; } /* * Queue up a kiocb to be retried. Assumes that the kiocb * has already been marked as kicked, and places it on * the retry run list for the corresponding ioctx, if it * isn't already queued. Returns 1 if it actually queued * the kiocb (to tell the caller to activate the work * queue to process it), or 0, if it found that it was * already queued. */ static inline int __queue_kicked_iocb(struct kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; assert_spin_locked(&ctx->ctx_lock); if (list_empty(&iocb->ki_run_list)) { list_add_tail(&iocb->ki_run_list, &ctx->run_list); return 1; } return 0; } /* aio_run_iocb * This is the core aio execution routine. It is * invoked both for initial i/o submission and * subsequent retries via the aio_kick_handler. * Expects to be invoked with iocb->ki_ctx->lock * already held. The lock is released and reacquired * as needed during processing. * * Calls the iocb retry method (already setup for the * iocb on initial submission) for operation specific * handling, but takes care of most of common retry * execution details for a given iocb. The retry method * needs to be non-blocking as far as possible, to avoid * holding up other iocbs waiting to be serviced by the * retry kernel thread. * * The trickier parts in this code have to do with * ensuring that only one retry instance is in progress * for a given iocb at any time. Providing that guarantee * simplifies the coding of individual aio operations as * it avoids various potential races. */ static ssize_t aio_run_iocb(struct kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; ssize_t (*retry)(struct kiocb *); ssize_t ret; if (!(retry = iocb->ki_retry)) { printk("aio_run_iocb: iocb->ki_retry = NULL\n"); return 0; } /* * We don't want the next retry iteration for this * operation to start until this one has returned and * updated the iocb state. However, wait_queue functions * can trigger a kick_iocb from interrupt context in the * meantime, indicating that data is available for the next * iteration. We want to remember that and enable the * next retry iteration _after_ we are through with * this one. * * So, in order to be able to register a "kick", but * prevent it from being queued now, we clear the kick * flag, but make the kick code *think* that the iocb is * still on the run list until we are actually done. * When we are done with this iteration, we check if * the iocb was kicked in the meantime and if so, queue * it up afresh. */ kiocbClearKicked(iocb); /* * This is so that aio_complete knows it doesn't need to * pull the iocb off the run list (We can't just call * INIT_LIST_HEAD because we don't want a kick_iocb to * queue this on the run list yet) */ iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; spin_unlock_irq(&ctx->ctx_lock); /* Quit retrying if the i/o has been cancelled */ if (kiocbIsCancelled(iocb)) { ret = -EINTR; aio_complete(iocb, ret, 0); /* must not access the iocb after this */ goto out; } /* * Now we are all set to call the retry method in async * context. */ ret = retry(iocb); if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { BUG_ON(!list_empty(&iocb->ki_wait.task_list)); aio_complete(iocb, ret, 0); } out: spin_lock_irq(&ctx->ctx_lock); if (-EIOCBRETRY == ret) { /* * OK, now that we are done with this iteration * and know that there is more left to go, * this is where we let go so that a subsequent * "kick" can start the next iteration */ /* will make __queue_kicked_iocb succeed from here on */ INIT_LIST_HEAD(&iocb->ki_run_list); /* we must queue the next iteration ourselves, if it * has already been kicked */ if (kiocbIsKicked(iocb)) { __queue_kicked_iocb(iocb); /* * __queue_kicked_iocb will always return 1 here, because * iocb->ki_run_list is empty at this point so it should * be safe to unconditionally queue the context into the * work queue. */ aio_queue_work(ctx); } } return ret; } /* * __aio_run_iocbs: * Process all pending retries queued on the ioctx * run list. * Assumes it is operating within the aio issuer's mm * context. */ static int __aio_run_iocbs(struct kioctx *ctx) { struct kiocb *iocb; struct list_head run_list; assert_spin_locked(&ctx->ctx_lock); list_replace_init(&ctx->run_list, &run_list); while (!list_empty(&run_list)) { iocb = list_entry(run_list.next, struct kiocb, ki_run_list); list_del(&iocb->ki_run_list); /* * Hold an extra reference while retrying i/o. */ iocb->ki_users++; /* grab extra reference */ aio_run_iocb(iocb); __aio_put_req(ctx, iocb); } if (!list_empty(&ctx->run_list)) return 1; return 0; } static void aio_queue_work(struct kioctx * ctx) { unsigned long timeout; /* * if someone is waiting, get the work started right * away, otherwise, use a longer delay */ smp_mb(); if (waitqueue_active(&ctx->wait)) timeout = 1; else timeout = HZ/10; queue_delayed_work(aio_wq, &ctx->wq, timeout); } /* * aio_run_iocbs: * Process all pending retries queued on the ioctx * run list. * Assumes it is operating within the aio issuer's mm * context. */ static inline void aio_run_iocbs(struct kioctx *ctx) { int requeue; spin_lock_irq(&ctx->ctx_lock); requeue = __aio_run_iocbs(ctx); spin_unlock_irq(&ctx->ctx_lock); if (requeue) aio_queue_work(ctx); } /* * just like aio_run_iocbs, but keeps running them until * the list stays empty */ static inline void aio_run_all_iocbs(struct kioctx *ctx) { spin_lock_irq(&ctx->ctx_lock); while (__aio_run_iocbs(ctx)) ; spin_unlock_irq(&ctx->ctx_lock); } /* * aio_kick_handler: * Work queue handler triggered to process pending * retries on an ioctx. Takes on the aio issuer's * mm context before running the iocbs, so that * copy_xxx_user operates on the issuer's address * space. * Run on aiod's context. */ static void aio_kick_handler(struct work_struct *work) { struct kioctx *ctx = container_of(work, struct kioctx, wq.work); mm_segment_t oldfs = get_fs(); struct mm_struct *mm; int requeue; set_fs(USER_DS); use_mm(ctx->mm); spin_lock_irq(&ctx->ctx_lock); requeue =__aio_run_iocbs(ctx); mm = ctx->mm; spin_unlock_irq(&ctx->ctx_lock); unuse_mm(mm); set_fs(oldfs); /* * we're in a worker thread already, don't use queue_delayed_work, */ if (requeue) queue_delayed_work(aio_wq, &ctx->wq, 0); } /* * Called by kick_iocb to queue the kiocb for retry * and if required activate the aio work queue to process * it */ static void try_queue_kicked_iocb(struct kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; unsigned long flags; int run = 0; /* We're supposed to be the only path putting the iocb back on the run * list. If we find that the iocb is *back* on a wait queue already * than retry has happened before we could queue the iocb. This also * means that the retry could have completed and freed our iocb, no * good. */ BUG_ON((!list_empty(&iocb->ki_wait.task_list))); spin_lock_irqsave(&ctx->ctx_lock, flags); /* set this inside the lock so that we can't race with aio_run_iocb() * testing it and putting the iocb on the run list under the lock */ if (!kiocbTryKick(iocb)) run = __queue_kicked_iocb(iocb); spin_unlock_irqrestore(&ctx->ctx_lock, flags); if (run) aio_queue_work(ctx); } /* * kick_iocb: * Called typically from a wait queue callback context * (aio_wake_function) to trigger a retry of the iocb. * The retry is usually executed by aio workqueue * threads (See aio_kick_handler). */ void kick_iocb(struct kiocb *iocb) { /* sync iocbs are easy: they can only ever be executing from a * single context. */ if (is_sync_kiocb(iocb)) { kiocbSetKicked(iocb); wake_up_process(iocb->ki_obj.tsk); return; } try_queue_kicked_iocb(iocb); } EXPORT_SYMBOL(kick_iocb); /* aio_complete * Called when the io request on the given iocb is complete. * Returns true if this is the last user of the request. The * only other user of the request can be the cancellation code. */ int aio_complete(struct kiocb *iocb, long res, long res2) { struct kioctx *ctx = iocb->ki_ctx; struct aio_ring_info *info; struct aio_ring *ring; struct io_event *event; unsigned long flags; unsigned long tail; int ret; /* * Special case handling for sync iocbs: * - events go directly into the iocb for fast handling * - the sync task with the iocb in its stack holds the single iocb * ref, no other paths have a way to get another ref * - the sync task helpfully left a reference to itself in the iocb */ if (is_sync_kiocb(iocb)) { BUG_ON(iocb->ki_users != 1); iocb->ki_user_data = res; iocb->ki_users = 0; wake_up_process(iocb->ki_obj.tsk); return 1; } info = &ctx->ring_info; /* add a completion event to the ring buffer. * must be done holding ctx->ctx_lock to prevent * other code from messing with the tail * pointer since we might be called from irq * context. */ spin_lock_irqsave(&ctx->ctx_lock, flags); if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) list_del_init(&iocb->ki_run_list); /* * cancelled requests don't get events, userland was given one * when the event got cancelled. */ if (kiocbIsCancelled(iocb)) goto put_rq; ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); tail = info->tail; event = aio_ring_event(info, tail, KM_IRQ0); if (++tail >= info->nr) tail = 0; event->obj = (u64)(unsigned long)iocb->ki_obj.user; event->data = iocb->ki_user_data; event->res = res; event->res2 = res2; dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, res, res2); /* after flagging the request as done, we * must never even look at it again */ smp_wmb(); /* make event visible before updating tail */ info->tail = tail; ring->tail = tail; put_aio_ring_event(event, KM_IRQ0); kunmap_atomic(ring, KM_IRQ1); pr_debug("added to ring %p at [%lu]\n", iocb, tail); /* * Check if the user asked us to deliver the result through an * eventfd. The eventfd_signal() function is safe to be called * from IRQ context. */ if (iocb->ki_eventfd != NULL) eventfd_signal(iocb->ki_eventfd, 1); put_rq: /* everything turned out well, dispose of the aiocb. */ ret = __aio_put_req(ctx, iocb); /* * We have to order our ring_info tail store above and test * of the wait list below outside the wait lock. This is * like in wake_up_bit() where clearing a bit has to be * ordered with the unlocked test. */ smp_mb(); if (waitqueue_active(&ctx->wait #include <plat/board.h> #include <plat/common.h> #include <plat/gpmc.h> #include <asm/delay.h> #include <plat/control.h> #include <plat/usb.h> #include "mux.h" #include "hsmmc.h" #define LDP_SMSC911X_CS 1 #define LDP_SMSC911X_GPIO 152 #define DEBUG_BASE 0x08000000 #define LDP_ETHR_START DEBUG_BASE static struct resource ldp_smsc911x_resources[] = { [0] = { .start = LDP_ETHR_START, .end = LDP_ETHR_START + SZ_4K, .flags = IORESOURCE_MEM, }, [1] = { .start = 0, .end = 0, .flags = IORESOURCE_IRQ | IORESOURCE_IRQ_LOWLEVEL, }, }; static struct smsc911x_platform_config ldp_smsc911x_config = { .irq_polarity = SMSC911X_IRQ_POLARITY_ACTIVE_LOW, .irq_type = SMSC911X_IRQ_TYPE_OPEN_DRAIN, .flags = SMSC911X_USE_32BIT, .phy_interface = PHY_INTERFACE_MODE_MII, }; static struct platform_device ldp_smsc911x_device = { .name = "smsc911x", .id = -1, .num_resources = ARRAY_SIZE(ldp_smsc911x_resources), .resource = ldp_smsc911x_resources, .dev = { .platform_data = &ldp_smsc911x_config, }, }; static int board_keymap[] = { KEY(0, 0, KEY_1), KEY(1, 0, KEY_2), KEY(2, 0, KEY_3), KEY(0, 1, KEY_4), KEY(1, 1, KEY_5), KEY(2, 1, KEY_6), KEY(3, 1, KEY_F5), KEY(0, 2, KEY_7), KEY(1, 2, KEY_8), KEY(2, 2, KEY_9), KEY(3, 2, KEY_F6), KEY(0, 3, KEY_F7), KEY(1, 3, KEY_0), KEY(2, 3, KEY_F8), PERSISTENT_KEY(4, 5), KEY(4, 4, KEY_VOLUMEUP), KEY(5, 5, KEY_VOLUMEDOWN), 0 }; static struct matrix_keymap_data board_map_data = { .keymap = board_keymap, .keymap_size = ARRAY_SIZE(board_keymap), }; static struct twl4030_keypad_data ldp_kp_twl4030_data = { .keymap_data = &board_map_data, .rows = 6, .cols = 6, .rep = 1, }; static struct gpio_keys_button ldp_gpio_keys_buttons[] = { [0] = { .code = KEY_ENTER, .gpio = 101, .desc = "enter sw", .active_low = 1, .debounce_interval = 30, }, [1] = { .code = KEY_F1, .gpio = 102, .desc = "func 1", .active_low = 1, .debounce_interval = 30, }, [2] = { .code = KEY_F2, .gpio = 103, .desc = "func 2", .active_low = 1, .debounce_interval = 30, }, [3] = { .code = KEY_F3, .gpio = 104, .desc = "func 3", .active_low = 1, .debounce_interval = 30, }, [4] = { .code = KEY_F4, .gpio = 105, .desc = "func 4", .active_low = 1, .debounce_interval = 30, }, [5] = { .code = KEY_LEFT, .gpio = 106, .desc = "left sw", .active_low = 1, .debounce_interval = 30, }, [6] = { .code = KEY_RIGHT, .gpio = 107, .desc = "right sw", .active_low = 1, .debounce_interval = 30, }, [7] = { .code = KEY_UP, .gpio = 108, .desc = "up sw", .active_low = 1, .debounce_interval = 30, }, [8] = { .code = KEY_DOWN, .gpio = 109, .desc = "down sw", .active_low = 1, .debounce_interval = 30, }, }; static struct gpio_keys_platform_data ldp_gpio_keys = { .buttons = ldp_gpio_keys_buttons, .nbuttons = ARRAY_SIZE(ldp_gpio_keys_buttons), .rep = 1, }; static struct platform_device ldp_gpio_keys_device = { .name = "gpio-keys", .id = -1, .dev = { .platform_data = &ldp_gpio_keys, }, }; static int ts_gpio; /** * @brief ads7846_dev_init : Requests & sets GPIO line for pen-irq * * @return - void. If request gpio fails then Flag KERN_ERR. */ static void ads7846_dev_init(void) { if (gpio_request(ts_gpio, "ads7846 irq") < 0) { printk(KERN_ERR "can't get ads746 pen down GPIO\n"); return; } gpio_direction_input(ts_gpio); gpio_set_debounce(ts_gpio, 310); } static int ads7846_get_pendown_state(void) { return !gpio_get_value(ts_gpio); } static struct ads7846_platform_data tsc2046_config __initdata = { .get_pendown_state = ads7846_get_pendown_state, .keep_vref_on = 1, }; static struct omap2_mcspi_device_config tsc2046_mcspi_config = { .turbo_mode = 0, .single_channel = 1, /* 0: slave, 1: master */ }; static struct spi_board_info ldp_spi_board_info[] __initdata = { [0] = { /* * TSC2046 operates at a max freqency of 2MHz, so * operate slightly below at 1.5MHz