aboutsummaryrefslogtreecommitdiffstats
path: root/README
blob: 737838fe73cce73cc3be8b7c797156d6497a8b16 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
	Linux kernel release 2.6.xx <http://kernel.org/>

These are the release notes for Linux version 2.6.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
  Xtensa, AVR32 and Renesas M32R architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, HTML, & man-pages, among others.
   After installation, "make psdocs", "make pdfdocs", "make htmldocs",
   or "make mandocs" will render the documentation in the requested format.

INSTALLING the kernel source:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

		gzip -cd linux-2.6.XX.tar.gz | tar xvf -

   or
		bzip2 -dc linux-2.6.XX.tar.bz2 | tar xvf -


   Replace "XX" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 2.6.xx releases by patching.  Patches are
   distributed in the traditional gzip and the newer bzip2 format.  To
   install by patching, get all the newer patch files, enter the
   top level directory of the kernel source (linux-2.6.xx) and execute:

		gzip -cd ../patch-2.6.xx.gz | patch -p1

   or
		bzip2 -dc ../patch-2.6.xx.bz2 | patch -p1

   (repeat xx for all versions bigger than the version of your current
   source tree, _in_order_) and you should be ok.  You may want to remove
   the backup files (xxx~ or xxx.orig), and make sure that there are no
   failed patches (xxx# or xxx.rej). If there are, either you or me has
   made a mistake.

   Unlike patches for the 2.6.x kernels, patches for the 2.6.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 2.6.x kernel.  Please read
   Documentation/applying-patches.txt for more information.

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

		linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - If you are upgrading between releases using the stable series patches
   (for example, patch-2.6.xx.y), note that these "dot-releases" are
   not incremental and must be applied to the 2.6.xx base tree. For
   example, if your base kernel is 2.6.12 and you want to apply the
   2.6.12.3 patch, you do not and indeed must not first apply the
   2.6.12.1 and 2.6.12.2 patches. Similarly, if you are running kernel
   version 2.6.12.2 and want to jump to 2.6.12.3, you must first
   reverse the 2.6.12.2 patch (that is, patch -R) _before_ applying
   the 2.6.12.3 patch.
   You can read more on this in Documentation/applying-patches.txt

 - Make sure you have no stale .o files and dependencies lying around:

		cd linux
		make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 2.6.xx kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:
     kernel source code:	/usr/src/linux-2.6.N
     build directory:		/home/name/build/kernel

   To configure and build the kernel use:
   cd /usr/src/linux-2.6.N
   make O=/home/name/build/kernel menuconfig
   make O=/home/name/build/kernel
   sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternate configuration commands are:
	"make config"      Plain text interface.
	"make menuconfig"  Text based color menus, radiolists & dialogs.
	"make xconfig"     X windows (Qt) based configuration tool.
	"make gconfig"     X windows (Gtk) based configuration tool.
	"make oldconfig"   Default all questions based on the contents of
			   your existing ./.config file and asking about
			   new config symbols.
	"make silentoldconfig"
			   Like above, but avoids cluttering the screen
			   with questions already answered.
			   Additionally updates the dependencies.
	"make defconfig"   Create a ./.config file by using the default
			   symbol values from either arch/$ARCH/defconfig
			   or arch/$ARCH/configs/${PLATFORM}_defconfig,
			   depending on the architecture.
	"make ${PLATFORM}_defconfig"
			  Create a ./.config file by using the default
			  symbol values from
			  arch/$ARCH/configs/${PLATFORM}_defconfig.
			  Use "make help" to get a list of all available
			  platforms of your architecture.
	"make allyesconfig"
			   Create a ./.config file by setting symbol
			   values to 'y' as much as possible.
	"make allmodconfig"
			   Create a ./.config file by setting symbol
			   values to 'm' as much as possible.
	"make allnoconfig" Create a ./.config file by setting symbol
			   values to 'n' as much as possible.
	"make randconfig"  Create a ./.config file by setting symbol
			   values to random values.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.txt.

	NOTES on "make config":
	- having unnecessary drivers will make the kernel bigger, and can
	  under some circumstances lead to problems: probing for a
	  nonexistent controller card may confuse your other controllers
	- compiling the kernel with "Processor type" set higher than 386
	  will result in a kernel that does NOT work on a 386.  The
	  kernel will detect this on bootup, and give up.
	- A kernel with math-emulation compiled in will still use the
	  coprocessor if one is present: the math emulation will just
	  never get used in that case.  The kernel will be slightly larger,
	  but will work on different machines regardless of whether they
	  have a math coprocessor or not. 
	- the "kernel hacking" configuration details usually result in a
	  bigger or slower kernel (or both), and can even make the kernel
	  less stable by configuring some routines to actively try to
	  break bad code to find kernel problems (kmalloc()).  Thus you
	  should probably answer 'n' to the questions for
          "development", "experimental", or "debugging" features.

COMPILING the kernel:

 - Make sure you have at least gcc 3.2 available.
   For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Verbose kernel compile/build output:

   Normally the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by inserting
   "V=1" in the "make" command.  E.g.:

	make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use "V=2".  The default is "V=0".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".
   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@linux-foundation.org), and possibly to any other
   relevant mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

	unable to handle kernel paging request at address C0000010
	Oops: 0002
	EIP:   0010:XXXXXXXX
	eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
	esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
	ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
	Pid: xx, process nr: xx
	xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
   This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
   Alternately you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

		nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help.  Please read the REPORTING-BUGS document for details.

 - Alternately, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.

from CMS to PKCS#7 signing if the openssl is too old' href='/cgit/cgit.cgi/litmus-rt-budgetable-locks.git/.git/commit/scripts/sign-file.c?h=update_litmus_2019&id=283e8ba2dfde54f8f27d7d0f459a07de79a39d55'>283e8ba2dfde
e5a2e3c84782

283e8ba2dfde
e5a2e3c84782

283e8ba2dfde
e5a2e3c84782






bc1c373dd2a5

e5a2e3c84782




23dfbbabbb3a
bc1c373dd2a5





e5a2e3c84782
bc1c373dd2a5


e5a2e3c84782
283e8ba2dfde
e5a2e3c84782
283e8ba2dfde
e5a2e3c84782
283e8ba2dfde
e5a2e3c84782












283e8ba2dfde

bc1c373dd2a5










1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

                                          
                                                            
                                            
                                                                   


                                                 
                                                     

                                                                


                                                                     









                      
                             


                        
                        
                           
 











                                                                              


                                                 







                          


















                                                                                               

                                                                                                





































                                                                      




















                                                        




































                                                                           
                             

                   
              


                                          












                                                                               
         









                                                               





                                    



                                                                        

                                                            
                                            
                               
                             
                                

                                            

                                  
                 
                                    

                                   
                            
      
                   
                     
                   
                                     


                                  

                                             





                                        
            
                                                 
                              
                                                


                                                                   
                                                           
      









                                  






                                           

                              
                                                         







                                                                         







                                                                             
                                  


                                             












                                                                             
                 












                                                                           
 
     



                                                                      
      
 


                                            
 



                                                                                
                 

                                                                    
     

                                                        
      






                                     

         




                                                                              
 





                                                                              
                     


                                             
                       
                 
                                                                               
     
                                                                   
      












                                                                        

                                                        










                                                                                        
/* Sign a module file using the given key.
 *
 * Copyright © 2014-2016 Red Hat, Inc. All Rights Reserved.
 * Copyright © 2015      Intel Corporation.
 * Copyright © 2016      Hewlett Packard Enterprise Development LP
 *
 * Authors: David Howells <dhowells@redhat.com>
 *          David Woodhouse <dwmw2@infradead.org>
 *          Juerg Haefliger <juerg.haefliger@hpe.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation; either version 2.1
 * of the licence, or (at your option) any later version.
 */
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <getopt.h>
#include <err.h>
#include <arpa/inet.h>
#include <openssl/opensslv.h>
#include <openssl/bio.h>
#include <openssl/evp.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include <openssl/engine.h>

/*
 * Use CMS if we have openssl-1.0.0 or newer available - otherwise we have to
 * assume that it's not available and its header file is missing and that we
 * should use PKCS#7 instead.  Switching to the older PKCS#7 format restricts
 * the options we have on specifying the X.509 certificate we want.
 *
 * Further, older versions of OpenSSL don't support manually adding signers to
 * the PKCS#7 message so have to accept that we get a certificate included in
 * the signature message.  Nor do such older versions of OpenSSL support
 * signing with anything other than SHA1 - so we're stuck with that if such is
 * the case.
 */
#if defined(LIBRESSL_VERSION_NUMBER) || \
	OPENSSL_VERSION_NUMBER < 0x10000000L || \
	defined(OPENSSL_NO_CMS)
#define USE_PKCS7
#endif
#ifndef USE_PKCS7
#include <openssl/cms.h>
#else
#include <openssl/pkcs7.h>
#endif

struct module_signature {
	uint8_t		algo;		/* Public-key crypto algorithm [0] */
	uint8_t		hash;		/* Digest algorithm [0] */
	uint8_t		id_type;	/* Key identifier type [PKEY_ID_PKCS7] */
	uint8_t		signer_len;	/* Length of signer's name [0] */
	uint8_t		key_id_len;	/* Length of key identifier [0] */
	uint8_t		__pad[3];
	uint32_t	sig_len;	/* Length of signature data */
};

#define PKEY_ID_PKCS7 2

static char magic_number[] = "~Module signature appended~\n";

static __attribute__((noreturn))
void format(void)
{
	fprintf(stderr,
		"Usage: scripts/sign-file [-dp] <hash algo> <key> <x509> <module> [<dest>]\n");
	fprintf(stderr,
		"       scripts/sign-file -s <raw sig> <hash algo> <x509> <module> [<dest>]\n");
	exit(2);
}

static void display_openssl_errors(int l)
{
	const char *file;
	char buf[120];
	int e, line;

	if (ERR_peek_error() == 0)
		return;
	fprintf(stderr, "At main.c:%d:\n", l);

	while ((e = ERR_get_error_line(&file, &line))) {
		ERR_error_string(e, buf);
		fprintf(stderr, "- SSL %s: %s:%d\n", buf, file, line);
	}
}

static void drain_openssl_errors(void)
{
	const char *file;
	int line;

	if (ERR_peek_error() == 0)
		return;
	while (ERR_get_error_line(&file, &line)) {}
}

#define ERR(cond, fmt, ...)				\
	do {						\
		bool __cond = (cond);			\
		display_openssl_errors(__LINE__);	\
		if (__cond) {				\
			err(1, fmt, ## __VA_ARGS__);	\
		}					\
	} while(0)

static const char *key_pass;

static int pem_pw_cb(char *buf, int len, int w, void *v)
{
	int pwlen;

	if (!key_pass)
		return -1;

	pwlen = strlen(key_pass);
	if (pwlen >= len)
		return -1;

	strcpy(buf, key_pass);

	/* If it's wrong, don't keep trying it. */
	key_pass = NULL;

	return pwlen;
}

static EVP_PKEY *read_private_key(const char *private_key_name)
{
	EVP_PKEY *private_key;

	if (!strncmp(private_key_name, "pkcs11:", 7)) {
		ENGINE *e;

		ENGINE_load_builtin_engines();
		drain_openssl_errors();
		e = ENGINE_by_id("pkcs11");
		ERR(!e, "Load PKCS#11 ENGINE");
		if (ENGINE_init(e))
			drain_openssl_errors();
		else
			ERR(1, "ENGINE_init");
		if (key_pass)
			ERR(!ENGINE_ctrl_cmd_string(e, "PIN", key_pass, 0),
			    "Set PKCS#11 PIN");
		private_key = ENGINE_load_private_key(e, private_key_name,
						      NULL, NULL);
		ERR(!private_key, "%s", private_key_name);
	} else {
		BIO *b;

		b = BIO_new_file(private_key_name, "rb");
		ERR(!b, "%s", private_key_name);
		private_key = PEM_read_bio_PrivateKey(b, NULL, pem_pw_cb,
						      NULL);
		ERR(!private_key, "%s", private_key_name);
		BIO_free(b);
	}

	return private_key;
}

static X509 *read_x509(const char *x509_name)
{
	unsigned char buf[2];
	X509 *x509;
	BIO *b;
	int n;

	b = BIO_new_file(x509_name, "rb");
	ERR(!b, "%s", x509_name);

	/* Look at the first two bytes of the file to determine the encoding */
	n = BIO_read(b, buf, 2);
	if (n != 2) {
		if (BIO_should_retry(b)) {
			fprintf(stderr, "%s: Read wanted retry\n", x509_name);
			exit(1);
		}
		if (n >= 0) {
			fprintf(stderr, "%s: Short read\n", x509_name);
			exit(1);
		}
		ERR(1, "%s", x509_name);
	}

	ERR(BIO_reset(b) != 0, "%s", x509_name);

	if (buf[0] == 0x30 && buf[1] >= 0x81 && buf[1] <= 0x84)
		/* Assume raw DER encoded X.509 */
		x509 = d2i_X509_bio(b, NULL);
	else
		/* Assume PEM encoded X.509 */
		x509 = PEM_read_bio_X509(b, NULL, NULL, NULL);

	BIO_free(b);
	ERR(!x509, "%s", x509_name);

	return x509;
}

int main(int argc, char **argv)
{
	struct module_signature sig_info = { .id_type = PKEY_ID_PKCS7 };
	char *hash_algo = NULL;
	char *private_key_name = NULL, *raw_sig_name = NULL;
	char *x509_name, *module_name, *dest_name;
	bool save_sig = false, replace_orig;
	bool sign_only = false;
	bool raw_sig = false;
	unsigned char buf[4096];
	unsigned long module_size, sig_size;
	unsigned int use_signed_attrs;
	const EVP_MD *digest_algo;
	EVP_PKEY *private_key;
#ifndef USE_PKCS7
	CMS_ContentInfo *cms = NULL;
	unsigned int use_keyid = 0;
#else
	PKCS7 *pkcs7 = NULL;
#endif
	X509 *x509;
	BIO *bd, *bm;
	int opt, n;
	OpenSSL_add_all_algorithms();
	ERR_load_crypto_strings();
	ERR_clear_error();

	key_pass = getenv("KBUILD_SIGN_PIN");

#ifndef USE_PKCS7
	use_signed_attrs = CMS_NOATTR;
#else
	use_signed_attrs = PKCS7_NOATTR;
#endif

	do {
		opt = getopt(argc, argv, "sdpk");
		switch (opt) {
		case 's': raw_sig = true; break;
		case 'p': save_sig = true; break;
		case 'd': sign_only = true; save_sig = true; break;
#ifndef USE_PKCS7
		case 'k': use_keyid = CMS_USE_KEYID; break;
#endif
		case -1: break;
		default: format();
		}
	} while (opt != -1);

	argc -= optind;
	argv += optind;
	if (argc < 4 || argc > 5)
		format();

	if (raw_sig) {
		raw_sig_name = argv[0];
		hash_algo = argv[1];
	} else {
		hash_algo = argv[0];
		private_key_name = argv[1];
	}
	x509_name = argv[2];
	module_name = argv[3];
	if (argc == 5 && strcmp(argv[3], argv[4]) != 0) {
		dest_name = argv[4];
		replace_orig = false;
	} else {
		ERR(asprintf(&dest_name, "%s.~signed~", module_name) < 0,
		    "asprintf");
		replace_orig = true;
	}

#ifdef USE_PKCS7
	if (strcmp(hash_algo, "sha1") != 0) {
		fprintf(stderr, "sign-file: %s only supports SHA1 signing\n",
			OPENSSL_VERSION_TEXT);
		exit(3);
	}
#endif

	/* Open the module file */
	bm = BIO_new_file(module_name, "rb");
	ERR(!bm, "%s", module_name);

	if (!raw_sig) {
		/* Read the private key and the X.509 cert the PKCS#7 message
		 * will point to.
		 */
		private_key = read_private_key(private_key_name);
		x509 = read_x509(x509_name);

		/* Digest the module data. */
		OpenSSL_add_all_digests();
		display_openssl_errors(__LINE__);
		digest_algo = EVP_get_digestbyname(hash_algo);
		ERR(!digest_algo, "EVP_get_digestbyname");

#ifndef USE_PKCS7
		/* Load the signature message from the digest buffer. */
		cms = CMS_sign(NULL, NULL, NULL, NULL,
			       CMS_NOCERTS | CMS_PARTIAL | CMS_BINARY |
			       CMS_DETACHED | CMS_STREAM);
		ERR(!cms, "CMS_sign");

		ERR(!CMS_add1_signer(cms, x509, private_key, digest_algo,
				     CMS_NOCERTS | CMS_BINARY |
				     CMS_NOSMIMECAP | use_keyid |
				     use_signed_attrs),
		    "CMS_add1_signer");
		ERR(CMS_final(cms, bm, NULL, CMS_NOCERTS | CMS_BINARY) < 0,
		    "CMS_final");

#else
		pkcs7 = PKCS7_sign(x509, private_key, NULL, bm,
				   PKCS7_NOCERTS | PKCS7_BINARY |
				   PKCS7_DETACHED | use_signed_attrs);
		ERR(!pkcs7, "PKCS7_sign");
#endif

		if (save_sig) {
			char *sig_file_name;
			BIO *b;

			ERR(asprintf(&sig_file_name, "%s.p7s", module_name) < 0,
			    "asprintf");
			b = BIO_new_file(sig_file_name, "wb");
			ERR(!b, "%s", sig_file_name);
#ifndef USE_PKCS7
			ERR(i2d_CMS_bio_stream(b, cms, NULL, 0) < 0,
			    "%s", sig_file_name);
#else
			ERR(i2d_PKCS7_bio(b, pkcs7) < 0,
			    "%s", sig_file_name);
#endif
			BIO_free(b);
		}

		if (sign_only) {
			BIO_free(bm);
			return 0;
		}
	}

	/* Open the destination file now so that we can shovel the module data
	 * across as we read it.
	 */
	bd = BIO_new_file(dest_name, "wb");
	ERR(!bd, "%s", dest_name);

	/* Append the marker and the PKCS#7 message to the destination file */
	ERR(BIO_reset(bm) < 0, "%s", module_name);
	while ((n = BIO_read(bm, buf, sizeof(buf))),
	       n > 0) {
		ERR(BIO_write(bd, buf, n) < 0, "%s", dest_name);
	}
	BIO_free(bm);
	ERR(n < 0, "%s", module_name);
	module_size = BIO_number_written(bd);

	if (!raw_sig) {
#ifndef USE_PKCS7
		ERR(i2d_CMS_bio_stream(bd, cms, NULL, 0) < 0, "%s", dest_name);
#else
		ERR(i2d_PKCS7_bio(bd, pkcs7) < 0, "%s", dest_name);
#endif
	} else {
		BIO *b;

		/* Read the raw signature file and write the data to the
		 * destination file
		 */
		b = BIO_new_file(raw_sig_name, "rb");
		ERR(!b, "%s", raw_sig_name);
		while ((n = BIO_read(b, buf, sizeof(buf))), n > 0)
			ERR(BIO_write(bd, buf, n) < 0, "%s", dest_name);
		BIO_free(b);
	}

	sig_size = BIO_number_written(bd) - module_size;
	sig_info.sig_len = htonl(sig_size);
	ERR(BIO_write(bd, &sig_info, sizeof(sig_info)) < 0, "%s", dest_name);
	ERR(BIO_write(bd, magic_number, sizeof(magic_number) - 1) < 0, "%s", dest_name);

	ERR(BIO_free(bd) < 0, "%s", dest_name);

	/* Finally, if we're signing in place, replace the original. */
	if (replace_orig)
		ERR(rename(dest_name, module_name) < 0, "%s", dest_name);

	return 0;
}