aboutsummaryrefslogtreecommitdiffstats
path: root/README
blob: 76dd780d88edb6403ac7587229986788abd1a748 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
	Linux kernel release 2.6.xx

These are the release notes for Linux version 2.6.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a Unix clone written from scratch by Linus Torvalds with
  assistance from a loosely-knit team of hackers across the Net.
  It aims towards POSIX compliance. 

  It has all the features you would expect in a modern fully-fledged
  Unix, including true multitasking, virtual memory, shared libraries,
  demand loading, shared copy-on-write executables, proper memory
  management and TCP/IP networking. 

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Linux was first developed for 386/486-based PCs.  These days it also
  runs on ARMs, DEC Alphas, SUN Sparcs, M68000 machines (like Atari and
  Amiga), MIPS and PowerPC, and others.

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, and HTML, among others.
   After installation, "make psdocs", "make pdfdocs", or "make htmldocs"
   will render the documentation in the requested format.

INSTALLING the kernel:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

		gzip -cd linux-2.6.XX.tar.gz | tar xvf -

   Replace "XX" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 2.6.xx releases by patching.  Patches are
   distributed in the traditional gzip and the new bzip2 format.  To
   install by patching, get all the newer patch files, enter the
   top level directory of the kernel source (linux-2.6.xx) and execute:

		gzip -cd ../patch-2.6.xx.gz | patch -p1

   or
		bzip2 -dc ../patch-2.6.xx.bz2 | patch -p1

   (repeat xx for all versions bigger than the version of your current
   source tree, _in_order_) and you should be ok.  You may want to remove
   the backup files (xxx~ or xxx.orig), and make sure that there are no
   failed patches (xxx# or xxx.rej). If there are, either you or me has
   made a mistake.

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

		linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - If you are upgrading between releases using the stable series patches
   (for example, patch-2.6.xx.y), note that these "dot-releases" are
   not incremental and must be applied to the 2.6.xx base tree. For
   example, if your base kernel is 2.6.12 and you want to apply the
   2.6.12.3 patch, you do not and indeed must not first apply the
   2.6.12.1 and 2.6.12.2 patches. Similarly, if you are running kernel
   version 2.6.12.2 and want to jump to 2.6.12.3, you must first
   reverse the 2.6.12.2 patch (that is, patch -R) _before_ applying
   the 2.6.12.3 patch.

 - Make sure you have no stale .o files and dependencies lying around:

		cd linux
		make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 2.6.xx kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:
     kernel source code:	/usr/src/linux-2.6.N
     build directory:		/home/name/build/kernel

   To configure and build the kernel use:
   cd /usr/src/linux-2.6.N
   make O=/home/name/build/kernel menuconfig
   make O=/home/name/build/kernel
   sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternate configuration commands are:
	"make menuconfig"  Text based color menus, radiolists & dialogs.
	"make xconfig"     X windows (Qt) based configuration tool.
	"make gconfig"     X windows (Gtk) based configuration tool.
	"make oldconfig"   Default all questions based on the contents of
			   your existing ./.config file.
   
	NOTES on "make config":
	- having unnecessary drivers will make the kernel bigger, and can
	  under some circumstances lead to problems: probing for a
	  nonexistent controller card may confuse your other controllers
	- compiling the kernel with "Processor type" set higher than 386
	  will result in a kernel that does NOT work on a 386.  The
	  kernel will detect this on bootup, and give up.
	- A kernel with math-emulation compiled in will still use the
	  coprocessor if one is present: the math emulation will just
	  never get used in that case.  The kernel will be slightly larger,
	  but will work on different machines regardless of whether they
	  have a math coprocessor or not. 
	- the "kernel hacking" configuration details usually result in a
	  bigger or slower kernel (or both), and can even make the kernel
	  less stable by configuring some routines to actively try to
	  break bad code to find kernel problems (kmalloc()).  Thus you
	  should probably answer 'n' to the questions for
          "development", "experimental", or "debugging" features.

 - Check the top Makefile for further site-dependent configuration
   (default SVGA mode etc). 

COMPILING the kernel:

 - Make sure you have gcc 2.95.3 available.
   gcc 2.91.66 (egcs-1.1.2), and gcc 2.7.2.3 are known to miscompile
   some parts of the kernel, and are *no longer supported*.
   Also remember to upgrade your binutils package (for as/ld/nm and company)
   if necessary. For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@osdl.org), and possibly to any other relevant
   mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

	unable to handle kernel paging request at address C0000010
	Oops: 0002
	EIP:   0010:XXXXXXXX
	eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
	esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
	ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
	Pid: xx, process nr: xx
	xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump.  This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops.
   Alternately you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

		nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help. 

 - Alternately, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.

2 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
#ifndef _LINUX_KERNEL_TRACE_H
#define _LINUX_KERNEL_TRACE_H

#include <linux/fs.h>
#include <asm/atomic.h>
#include <linux/sched.h>
#include <linux/clocksource.h>
#include <linux/ring_buffer.h>
#include <linux/mmiotrace.h>
#include <linux/ftrace.h>
#include <trace/boot.h>
#include <linux/kmemtrace.h>
#include <trace/power.h>

#include <linux/trace_seq.h>
#include <linux/ftrace_event.h>

enum trace_type {
	__TRACE_FIRST_TYPE = 0,

	TRACE_FN,
	TRACE_CTX,
	TRACE_WAKE,
	TRACE_STACK,
	TRACE_PRINT,
	TRACE_BPRINT,
	TRACE_SPECIAL,
	TRACE_MMIO_RW,
	TRACE_MMIO_MAP,
	TRACE_BRANCH,
	TRACE_BOOT_CALL,
	TRACE_BOOT_RET,
	TRACE_GRAPH_RET,
	TRACE_GRAPH_ENT,
	TRACE_USER_STACK,
	TRACE_HW_BRANCHES,
	TRACE_SYSCALL_ENTER,
	TRACE_SYSCALL_EXIT,
	TRACE_KMEM_ALLOC,
	TRACE_KMEM_FREE,
	TRACE_POWER,
	TRACE_BLK,

	__TRACE_LAST_TYPE,
};

/*
 * Function trace entry - function address and parent function addres:
 */
struct ftrace_entry {
	struct trace_entry	ent;
	unsigned long		ip;
	unsigned long		parent_ip;
};

/* Function call entry */
struct ftrace_graph_ent_entry {
	struct trace_entry		ent;
	struct ftrace_graph_ent		graph_ent;
};

/* Function return entry */
struct ftrace_graph_ret_entry {
	struct trace_entry		ent;
	struct ftrace_graph_ret		ret;
};
extern struct tracer boot_tracer;

/*
 * Context switch trace entry - which task (and prio) we switched from/to:
 */
struct ctx_switch_entry {
	struct trace_entry	ent;
	unsigned int		prev_pid;
	unsigned char		prev_prio;
	unsigned char		prev_state;
	unsigned int		next_pid;
	unsigned char		next_prio;
	unsigned char		next_state;
	unsigned int		next_cpu;
};

/*
 * Special (free-form) trace entry:
 */
struct special_entry {
	struct trace_entry	ent;
	unsigned long		arg1;
	unsigned long		arg2;
	unsigned long		arg3;
};

/*
 * Stack-trace entry:
 */

#define FTRACE_STACK_ENTRIES	8

struct stack_entry {
	struct trace_entry	ent;
	unsigned long		caller[FTRACE_STACK_ENTRIES];
};

struct userstack_entry {
	struct trace_entry	ent;
	unsigned long		caller[FTRACE_STACK_ENTRIES];
};

/*
 * trace_printk entry:
 */
struct bprint_entry {
	struct trace_entry	ent;
	unsigned long		ip;
	const char		*fmt;
	u32			buf[];
};

struct print_entry {
	struct trace_entry	ent;
	unsigned long		ip;
	char			buf[];
};

#define TRACE_OLD_SIZE		88

struct trace_field_cont {
	unsigned char		type;
	/* Temporary till we get rid of this completely */
	char			buf[TRACE_OLD_SIZE - 1];
};

struct trace_mmiotrace_rw {
	struct trace_entry	ent;
	struct mmiotrace_rw	rw;
};

struct trace_mmiotrace_map {
	struct trace_entry	ent;
	struct mmiotrace_map	map;
};

struct trace_boot_call {
	struct trace_entry	ent;
	struct boot_trace_call boot_call;
};

struct trace_boot_ret {
	struct trace_entry	ent;
	struct boot_trace_ret boot_ret;
};

#define TRACE_FUNC_SIZE 30
#define TRACE_FILE_SIZE 20
struct trace_branch {
	struct trace_entry	ent;
	unsigned	        line;
	char			func[TRACE_FUNC_SIZE+1];
	char			file[TRACE_FILE_SIZE+1];
	char			correct;
};

struct hw_branch_entry {
	struct trace_entry	ent;
	u64			from;
	u64			to;
};

struct trace_power {
	struct trace_entry	ent;
	struct power_trace	state_data;
};

enum kmemtrace_type_id {
	KMEMTRACE_TYPE_KMALLOC = 0,	/* kmalloc() or kfree(). */
	KMEMTRACE_TYPE_CACHE,		/* kmem_cache_*(). */
	KMEMTRACE_TYPE_PAGES,		/* __get_free_pages() and friends. */
};

struct kmemtrace_alloc_entry {
	struct trace_entry	ent;
	enum kmemtrace_type_id type_id;
	unsigned long call_site;
	const void *ptr;
	size_t bytes_req;
	size_t bytes_alloc;
	gfp_t gfp_flags;
	int node;
};

struct kmemtrace_free_entry {
	struct trace_entry	ent;
	enum kmemtrace_type_id type_id;
	unsigned long call_site;
	const void *ptr;
};

struct syscall_trace_enter {
	struct trace_entry	ent;
	int			nr;
	unsigned long		args[];
};

struct syscall_trace_exit {
	struct trace_entry	ent;
	int			nr;
	unsigned long		ret;
};


/*
 * trace_flag_type is an enumeration that holds different
 * states when a trace occurs. These are:
 *  IRQS_OFF		- interrupts were disabled
 *  IRQS_NOSUPPORT	- arch does not support irqs_disabled_flags
 *  NEED_RESCED		- reschedule is requested
 *  HARDIRQ		- inside an interrupt handler
 *  SOFTIRQ		- inside a softirq handler
 */
enum trace_flag_type {
	TRACE_FLAG_IRQS_OFF		= 0x01,
	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
	TRACE_FLAG_NEED_RESCHED		= 0x04,
	TRACE_FLAG_HARDIRQ		= 0x08,
	TRACE_FLAG_SOFTIRQ		= 0x10,
};

#define TRACE_BUF_SIZE		1024

/*
 * The CPU trace array - it consists of thousands of trace entries
 * plus some other descriptor data: (for example which task started
 * the trace, etc.)
 */
struct trace_array_cpu {
	atomic_t		disabled;
	void			*buffer_page;	/* ring buffer spare */

	/* these fields get copied into max-trace: */
	unsigned long		trace_idx;
	unsigned long		overrun;
	unsigned long		saved_latency;
	unsigned long		critical_start;
	unsigned long		critical_end;
	unsigned long		critical_sequence;
	unsigned long		nice;
	unsigned long		policy;
	unsigned long		rt_priority;
	cycle_t			preempt_timestamp;
	pid_t			pid;
	uid_t			uid;
	char			comm[TASK_COMM_LEN];
};

/*
 * The trace array - an array of per-CPU trace arrays. This is the
 * highest level data structure that individual tracers deal with.
 * They have on/off state as well:
 */
struct trace_array {
	struct ring_buffer	*buffer;
	unsigned long		entries;
	int			cpu;
	cycle_t			time_start;
	struct task_struct	*waiter;
	struct trace_array_cpu	*data[NR_CPUS];
};

#define FTRACE_CMP_TYPE(var, type) \
	__builtin_types_compatible_p(typeof(var), type *)

#undef IF_ASSIGN
#define IF_ASSIGN(var, entry, etype, id)		\
	if (FTRACE_CMP_TYPE(var, etype)) {		\
		var = (typeof(var))(entry);		\
		WARN_ON(id && (entry)->type != id);	\
		break;					\
	}

/* Will cause compile errors if type is not found. */
extern void __ftrace_bad_type(void);

/*
 * The trace_assign_type is a verifier that the entry type is
 * the same as the type being assigned. To add new types simply
 * add a line with the following format:
 *
 * IF_ASSIGN(var, ent, type, id);
 *
 *  Where "type" is the trace type that includes the trace_entry
 *  as the "ent" item. And "id" is the trace identifier that is
 *  used in the trace_type enum.
 *
 *  If the type can have more than one id, then use zero.
 */
#define trace_assign_type(var, ent)					\
	do {								\
		IF_ASSIGN(var, ent, struct ftrace_entry, TRACE_FN);	\
		IF_ASSIGN(var, ent, struct ctx_switch_entry, 0);	\
		IF_ASSIGN(var, ent, struct stack_entry, TRACE_STACK);	\
		IF_ASSIGN(var, ent, struct userstack_entry, TRACE_USER_STACK);\
		IF_ASSIGN(var, ent, struct print_entry, TRACE_PRINT);	\
		IF_ASSIGN(var, ent, struct bprint_entry, TRACE_BPRINT);	\
		IF_ASSIGN(var, ent, struct special_entry, 0);		\
		IF_ASSIGN(var, ent, struct trace_mmiotrace_rw,		\
			  TRACE_MMIO_RW);				\
		IF_ASSIGN(var, ent, struct trace_mmiotrace_map,		\
			  TRACE_MMIO_MAP);				\
		IF_ASSIGN(var, ent, struct trace_boot_call, TRACE_BOOT_CALL);\
		IF_ASSIGN(var, ent, struct trace_boot_ret, TRACE_BOOT_RET);\
		IF_ASSIGN(var, ent, struct trace_branch, TRACE_BRANCH); \
		IF_ASSIGN(var, ent, struct ftrace_graph_ent_entry,	\
			  TRACE_GRAPH_ENT);		\
		IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry,	\
			  TRACE_GRAPH_RET);		\
		IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\
		IF_ASSIGN(var, ent, struct trace_power, TRACE_POWER); \
		IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry,	\
			  TRACE_KMEM_ALLOC);	\
		IF_ASSIGN(var, ent, struct kmemtrace_free_entry,	\
			  TRACE_KMEM_FREE);	\
		IF_ASSIGN(var, ent, struct syscall_trace_enter,		\
			  TRACE_SYSCALL_ENTER);				\
		IF_ASSIGN(var, ent, struct syscall_trace_exit,		\
			  TRACE_SYSCALL_EXIT);				\
		__ftrace_bad_type();					\
	} while (0)

/*
 * An option specific to a tracer. This is a boolean value.
 * The bit is the bit index that sets its value on the
 * flags value in struct tracer_flags.
 */
struct tracer_opt {
	const char	*name; /* Will appear on the trace_options file */
	u32		bit; /* Mask assigned in val field in tracer_flags */
};

/*
 * The set of specific options for a tracer. Your tracer
 * have to set the initial value of the flags val.
 */
struct tracer_flags {
	u32			val;
	struct tracer_opt	*opts;
};

/* Makes more easy to define a tracer opt */
#define TRACER_OPT(s, b)	.name = #s, .bit = b


/**
 * struct tracer - a specific tracer and its callbacks to interact with debugfs
 * @name: the name chosen to select it on the available_tracers file
 * @init: called when one switches to this tracer (echo name > current_tracer)
 * @reset: called when one switches to another tracer
 * @start: called when tracing is unpaused (echo 1 > tracing_enabled)
 * @stop: called when tracing is paused (echo 0 > tracing_enabled)
 * @open: called when the trace file is opened
 * @pipe_open: called when the trace_pipe file is opened
 * @wait_pipe: override how the user waits for traces on trace_pipe
 * @close: called when the trace file is released
 * @read: override the default read callback on trace_pipe
 * @splice_read: override the default splice_read callback on trace_pipe
 * @selftest: selftest to run on boot (see trace_selftest.c)
 * @print_headers: override the first lines that describe your columns
 * @print_line: callback that prints a trace
 * @set_flag: signals one of your private flags changed (trace_options file)
 * @flags: your private flags
 */
struct tracer {
	const char		*name;
	int			(*init)(struct trace_array *tr);
	void			(*reset)(struct trace_array *tr);
	void			(*start)(struct trace_array *tr);
	void			(*stop)(struct trace_array *tr);
	void			(*open)(struct trace_iterator *iter);
	void			(*pipe_open)(struct trace_iterator *iter);
	void			(*wait_pipe)(struct trace_iterator *iter);
	void			(*close)(struct trace_iterator *iter);
	ssize_t			(*read)(struct trace_iterator *iter,
					struct file *filp, char __user *ubuf,
					size_t cnt, loff_t *ppos);
	ssize_t			(*splice_read)(struct trace_iterator *iter,
					       struct file *filp,
					       loff_t *ppos,
					       struct pipe_inode_info *pipe,
					       size_t len,
					       unsigned int flags);
#ifdef CONFIG_FTRACE_STARTUP_TEST
	int			(*selftest)(struct tracer *trace,
					    struct trace_array *tr);
#endif
	void			(*print_header)(struct seq_file *m);
	enum print_line_t	(*print_line)(struct trace_iterator *iter);
	/* If you handled the flag setting, return 0 */
	int			(*set_flag)(u32 old_flags, u32 bit, int set);
	struct tracer		*next;
	int			print_max;
	struct tracer_flags	*flags;
	struct tracer_stat	*stats;
};


#define TRACE_PIPE_ALL_CPU	-1

int tracer_init(struct tracer *t, struct trace_array *tr);
int tracing_is_enabled(void);
void trace_wake_up(void);
void tracing_reset(struct trace_array *tr, int cpu);
void tracing_reset_online_cpus(struct trace_array *tr);
int tracing_open_generic(struct inode *inode, struct file *filp);
struct dentry *trace_create_file(const char *name,
				 mode_t mode,
				 struct dentry *parent,
				 void *data,
				 const struct file_operations *fops);

struct dentry *tracing_init_dentry(void);
void init_tracer_sysprof_debugfs(struct dentry *d_tracer);

struct ring_buffer_event;

struct ring_buffer_event *trace_buffer_lock_reserve(struct trace_array *tr,
						    int type,
						    unsigned long len,
						    unsigned long flags,
						    int pc);
void trace_buffer_unlock_commit(struct trace_array *tr,
				struct ring_buffer_event *event,
				unsigned long flags, int pc);

struct trace_entry *tracing_get_trace_entry(struct trace_array *tr,
						struct trace_array_cpu *data);

struct trace_entry *trace_find_next_entry(struct trace_iterator *iter,
					  int *ent_cpu, u64 *ent_ts);

void tracing_generic_entry_update(struct trace_entry *entry,
				  unsigned long flags,
				  int pc);

void default_wait_pipe(struct trace_iterator *iter);
void poll_wait_pipe(struct trace_iterator *iter);

void ftrace(struct trace_array *tr,
			    struct trace_array_cpu *data,
			    unsigned long ip,
			    unsigned long parent_ip,
			    unsigned long flags, int pc);
void tracing_sched_switch_trace(struct trace_array *tr,
				struct task_struct *prev,
				struct task_struct *next,
				unsigned long flags, int pc);

void tracing_sched_wakeup_trace(struct trace_array *tr,
				struct task_struct *wakee,
				struct task_struct *cur,
				unsigned long flags, int pc);
void trace_special(struct trace_array *tr,
		   struct trace_array_cpu *data,
		   unsigned long arg1,
		   unsigned long arg2,
		   unsigned long arg3, int pc);
void trace_function(struct trace_array *tr,
		    unsigned long ip,
		    unsigned long parent_ip,
		    unsigned long flags, int pc);

void trace_graph_return(struct ftrace_graph_ret *trace);
int trace_graph_entry(struct ftrace_graph_ent *trace);

void tracing_start_cmdline_record(void);
void tracing_stop_cmdline_record(void);
void tracing_sched_switch_assign_trace(struct trace_array *tr);
void tracing_stop_sched_switch_record(void);
void tracing_start_sched_switch_record(void);
int register_tracer(struct tracer *type);
void unregister_tracer(struct tracer *type);

extern unsigned long nsecs_to_usecs(unsigned long nsecs);

extern unsigned long tracing_max_latency;
extern unsigned long tracing_thresh;

void update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu);
void update_max_tr_single(struct trace_array *tr,
			  struct task_struct *tsk, int cpu);

void __trace_stack(struct trace_array *tr,
		   unsigned long flags,
		   int skip, int pc);

extern cycle_t ftrace_now(int cpu);

#ifdef CONFIG_CONTEXT_SWITCH_TRACER
typedef void
(*tracer_switch_func_t)(void *private,
			void *__rq,
			struct task_struct *prev,
			struct task_struct *next);

struct tracer_switch_ops {
	tracer_switch_func_t		func;
	void				*private;
	struct tracer_switch_ops	*next;
};
#endif /* CONFIG_CONTEXT_SWITCH_TRACER */

extern void trace_find_cmdline(int pid, char comm[]);

#ifdef CONFIG_DYNAMIC_FTRACE
extern unsigned long ftrace_update_tot_cnt;
#define DYN_FTRACE_TEST_NAME trace_selftest_dynamic_test_func
extern int DYN_FTRACE_TEST_NAME(void);
#endif

#ifdef CONFIG_FTRACE_STARTUP_TEST
extern int trace_selftest_startup_function(struct tracer *trace,
					   struct trace_array *tr);
extern int trace_selftest_startup_function_graph(struct tracer *trace,
						 struct trace_array *tr);
extern int trace_selftest_startup_irqsoff(struct tracer *trace,
					  struct trace_array *tr);
extern int trace_selftest_startup_preemptoff(struct tracer *trace,
					     struct trace_array *tr);
extern int trace_selftest_startup_preemptirqsoff(struct tracer *trace,
						 struct trace_array *tr);
extern int trace_selftest_startup_wakeup(struct tracer *trace,
					 struct trace_array *tr);
extern int trace_selftest_startup_nop(struct tracer *trace,
					 struct trace_array *tr);
extern int trace_selftest_startup_sched_switch(struct tracer *trace,
					       struct trace_array *tr);
extern int trace_selftest_startup_sysprof(struct tracer *trace,
					       struct trace_array *tr);
extern int trace_selftest_startup_branch(struct tracer *trace,
					 struct trace_array *tr);
#endif /* CONFIG_FTRACE_STARTUP_TEST */

extern void *head_page(struct trace_array_cpu *data);
extern unsigned long long ns2usecs(cycle_t nsec);
extern int
trace_vbprintk(unsigned long ip, const char *fmt, va_list args);
extern int
trace_vprintk(unsigned long ip, const char *fmt, va_list args);

extern unsigned long trace_flags;

/* Standard output formatting function used for function return traces */
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
extern enum print_line_t print_graph_function(struct trace_iterator *iter);
extern enum print_line_t
trace_print_graph_duration(unsigned long long duration, struct trace_seq *s);

#ifdef CONFIG_DYNAMIC_FTRACE
/* TODO: make this variable */
#define FTRACE_GRAPH_MAX_FUNCS		32
extern int ftrace_graph_count;
extern unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS];

static inline int ftrace_graph_addr(unsigned long addr)
{
	int i;

	if (!ftrace_graph_count || test_tsk_trace_graph(current))
		return 1;

	for (i = 0; i < ftrace_graph_count; i++) {
		if (addr == ftrace_graph_funcs[i])
			return 1;
	}

	return 0;
}
#else
static inline int ftrace_trace_addr(unsigned long addr)
{
	return 1;
}
static inline int ftrace_graph_addr(unsigned long addr)
{
	return 1;
}
#endif /* CONFIG_DYNAMIC_FTRACE */
#else /* CONFIG_FUNCTION_GRAPH_TRACER */
static inline enum print_line_t
print_graph_function(struct trace_iterator *iter)
{
	return TRACE_TYPE_UNHANDLED;
}
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */

extern struct pid *ftrace_pid_trace;

static inline int ftrace_trace_task(struct task_struct *task)
{
	if (!ftrace_pid_trace)
		return 1;

	return test_tsk_trace_trace(task);
}

/*
 * trace_iterator_flags is an enumeration that defines bit
 * positions into trace_flags that controls the output.
 *
 * NOTE: These bits must match the trace_options array in
 *       trace.c.
 */
enum trace_iterator_flags {
	TRACE_ITER_PRINT_PARENT		= 0x01,
	TRACE_ITER_SYM_OFFSET		= 0x02,
	TRACE_ITER_SYM_ADDR		= 0x04,
	TRACE_ITER_VERBOSE		= 0x08,
	TRACE_ITER_RAW			= 0x10,
	TRACE_ITER_HEX			= 0x20,
	TRACE_ITER_BIN			= 0x40,
	TRACE_ITER_BLOCK		= 0x80,
	TRACE_ITER_STACKTRACE		= 0x100,
	TRACE_ITER_SCHED_TREE		= 0x200,
	TRACE_ITER_PRINTK		= 0x400,
	TRACE_ITER_PREEMPTONLY		= 0x800,
	TRACE_ITER_BRANCH		= 0x1000,
	TRACE_ITER_ANNOTATE		= 0x2000,
	TRACE_ITER_USERSTACKTRACE       = 0x4000,
	TRACE_ITER_SYM_USEROBJ          = 0x8000,
	TRACE_ITER_PRINTK_MSGONLY	= 0x10000,
	TRACE_ITER_CONTEXT_INFO		= 0x20000, /* Print pid/cpu/time */
	TRACE_ITER_LATENCY_FMT		= 0x40000,
	TRACE_ITER_GLOBAL_CLK		= 0x80000,
	TRACE_ITER_SLEEP_TIME		= 0x100000,
	TRACE_ITER_GRAPH_TIME		= 0x200000,
};

/*
 * TRACE_ITER_SYM_MASK masks the options in trace_flags that
 * control the output of kernel symbols.
 */
#define TRACE_ITER_SYM_MASK \
	(TRACE_ITER_PRINT_PARENT|TRACE_ITER_SYM_OFFSET|TRACE_ITER_SYM_ADDR)

extern struct tracer nop_trace;

/**
 * ftrace_preempt_disable - disable preemption scheduler safe
 *
 * When tracing can happen inside the scheduler, there exists
 * cases that the tracing might happen before the need_resched
 * flag is checked. If this happens and the tracer calls
 * preempt_enable (after a disable), a schedule might take place
 * causing an infinite recursion.
 *
 * To prevent this, we read the need_resched flag before
 * disabling preemption. When we want to enable preemption we
 * check the flag, if it is set, then we call preempt_enable_no_resched.
 * Otherwise, we call preempt_enable.
 *
 * The rational for doing the above is that if need_resched is set
 * and we have yet to reschedule, we are either in an atomic location
 * (where we do not need to check for scheduling) or we are inside
 * the scheduler and do not want to resched.
 */
static inline int ftrace_preempt_disable(void)
{
	int resched;

	resched = need_resched();
	preempt_disable_notrace();

	return resched;
}

/**
 * ftrace_preempt_enable - enable preemption scheduler safe
 * @resched: the return value from ftrace_preempt_disable
 *
 * This is a scheduler safe way to enable preemption and not miss
 * any preemption checks. The disabled saved the state of preemption.
 * If resched is set, then we are either inside an atomic or
 * are inside the scheduler (we would have already scheduled
 * otherwise). In this case, we do not want to call normal
 * preempt_enable, but preempt_enable_no_resched instead.
 */
static inline void ftrace_preempt_enable(int resched)
{
	if (resched)
		preempt_enable_no_resched_notrace();
	else
		preempt_enable_notrace();
}

#ifdef CONFIG_BRANCH_TRACER
extern int enable_branch_tracing(struct trace_array *tr);
extern void disable_branch_tracing(void);
static inline int trace_branch_enable(struct trace_array *tr)
{
	if (trace_flags & TRACE_ITER_BRANCH)
		return enable_branch_tracing(tr);
	return 0;
}
static inline void trace_branch_disable(void)
{
	/* due to races, always disable */
	disable_branch_tracing();
}
#else
static inline int trace_branch_enable(struct trace_array *tr)
{
	return 0;
}
static inline void trace_branch_disable(void)
{
}
#endif /* CONFIG_BRANCH_TRACER */

/* set ring buffers to default size if not already done so */
int tracing_update_buffers(void);

/* trace event type bit fields, not numeric */
enum {
	TRACE_EVENT_TYPE_PRINTF		= 1,
	TRACE_EVENT_TYPE_RAW		= 2,
};

struct ftrace_event_field {
	struct list_head	link;
	char			*name;
	char			*type;
	int			offset;
	int			size;
};

struct event_filter {
	int			n_preds;
	struct filter_pred	**preds;
};

struct event_subsystem {
	struct list_head	list;
	const char		*name;
	struct dentry		*entry;
	void			*filter;
};

struct filter_pred;

typedef int (*filter_pred_fn_t) (struct filter_pred *pred, void *event);

struct filter_pred {
	filter_pred_fn_t fn;
	u64 val;
	char str_val[MAX_FILTER_STR_VAL];
	int str_len;
	char *field_name;
	int offset;
	int not;
	int or;
	int compound;
	int clear;
};

extern void filter_free_pred(struct filter_pred *pred);
extern void filter_print_preds(struct ftrace_event_call *call,
			       struct trace_seq *s);
extern int filter_parse(char **pbuf, struct filter_pred *pred);
extern int filter_add_pred(struct ftrace_event_call *call,
			   struct filter_pred *pred);
extern void filter_disable_preds(struct ftrace_event_call *call);
extern void filter_free_subsystem_preds(struct event_subsystem *system);
extern void filter_print_subsystem_preds(struct event_subsystem *system,
					 struct trace_seq *s);
extern int filter_add_subsystem_pred(struct event_subsystem *system,
				     struct filter_pred *pred);

static inline int
filter_check_discard(struct ftrace_event_call *call, void *rec,
		     struct ring_buffer *buffer,
		     struct ring_buffer_event *event)
{
	if (unlikely(call->filter_active) && !filter_match_preds(call, rec)) {
		ring_buffer_discard_commit(buffer, event);
		return 1;
	}

	return 0;
}

extern struct list_head ftrace_events;

extern const char *__start___trace_bprintk_fmt[];
extern const char *__stop___trace_bprintk_fmt[];

#undef TRACE_EVENT_FORMAT
#define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt)	\
	extern struct ftrace_event_call event_##call;
#undef TRACE_EVENT_FORMAT_NOFILTER
#define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, tpfmt)
#include "trace_event_types.h"

#endif /* _LINUX_KERNEL_TRACE_H */