aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/trace/ftrace.txt
blob: 4da42616939f05002062117be457699bb8543d69 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
		ftrace - Function Tracer
		========================

Copyright 2008 Red Hat Inc.
   Author:   Steven Rostedt <srostedt@redhat.com>
  License:   The GNU Free Documentation License, Version 1.2
               (dual licensed under the GPL v2)
Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
	     John Kacur, and David Teigland.
Written for: 2.6.28-rc2
Updated for: 3.10

Introduction
------------

Ftrace is an internal tracer designed to help out developers and
designers of systems to find what is going on inside the kernel.
It can be used for debugging or analyzing latencies and
performance issues that take place outside of user-space.

Although ftrace is typically considered the function tracer, it
is really a frame work of several assorted tracing utilities.
There's latency tracing to examine what occurs between interrupts
disabled and enabled, as well as for preemption and from a time
a task is woken to the task is actually scheduled in.

One of the most common uses of ftrace is the event tracing.
Through out the kernel is hundreds of static event points that
can be enabled via the debugfs file system to see what is
going on in certain parts of the kernel.


Implementation Details
----------------------

See ftrace-design.txt for details for arch porters and such.


The File System
---------------

Ftrace uses the debugfs file system to hold the control files as
well as the files to display output.

When debugfs is configured into the kernel (which selecting any ftrace
option will do) the directory /sys/kernel/debug will be created. To mount
this directory, you can add to your /etc/fstab file:

 debugfs       /sys/kernel/debug          debugfs defaults        0       0

Or you can mount it at run time with:

 mount -t debugfs nodev /sys/kernel/debug

For quicker access to that directory you may want to make a soft link to
it:

 ln -s /sys/kernel/debug /debug

Any selected ftrace option will also create a directory called tracing
within the debugfs. The rest of the document will assume that you are in
the ftrace directory (cd /sys/kernel/debug/tracing) and will only concentrate
on the files within that directory and not distract from the content with
the extended "/sys/kernel/debug/tracing" path name.

That's it! (assuming that you have ftrace configured into your kernel)

After mounting debugfs, you can see a directory called
"tracing".  This directory contains the control and output files
of ftrace. Here is a list of some of the key files:


 Note: all time values are in microseconds.

  current_tracer:

	This is used to set or display the current tracer
	that is configured.

  available_tracers:

	This holds the different types of tracers that
	have been compiled into the kernel. The
	tracers listed here can be configured by
	echoing their name into current_tracer.

  tracing_on:

	This sets or displays whether writing to the trace
	ring buffer is enabled. Echo 0 into this file to disable
	the tracer or 1 to enable it. Note, this only disables
	writing to the ring buffer, the tracing overhead may
	still be occurring.

  trace:

	This file holds the output of the trace in a human
	readable format (described below).

  trace_pipe:

	The output is the same as the "trace" file but this
	file is meant to be streamed with live tracing.
	Reads from this file will block until new data is
	retrieved.  Unlike the "trace" file, this file is a
	consumer. This means reading from this file causes
	sequential reads to display more current data. Once
	data is read from this file, it is consumed, and
	will not be read again with a sequential read. The
	"trace" file is static, and if the tracer is not
	adding more data,they will display the same
	information every time they are read.

  trace_options:

	This file lets the user control the amount of data
	that is displayed in one of the above output
	files. Options also exist to modify how a tracer
	or events work (stack traces, timestamps, etc).

  options:

	This is a directory that has a file for every available
	trace option (also in trace_options). Options may also be set
	or cleared by writing a "1" or "0" respectively into the
	corresponding file with the option name.

  tracing_max_latency:

	Some of the tracers record the max latency.
	For example, the time interrupts are disabled.
	This time is saved in this file. The max trace
	will also be stored, and displayed by "trace".
	A new max trace will only be recorded if the
	latency is greater than the value in this
	file. (in microseconds)

  tracing_thresh:

	Some latency tracers will record a trace whenever the
	latency is greater than the number in this file.
	Only active when the file contains a number greater than 0.
	(in microseconds)

  buffer_size_kb:

	This sets or displays the number of kilobytes each CPU
	buffer holds. By default, the trace buffers are the same size
	for each CPU. The displayed number is the size of the
	CPU buffer and not total size of all buffers. The
	trace buffers are allocated in pages (blocks of memory
	that the kernel uses for allocation, usually 4 KB in size).
	If the last page allocated has room for more bytes
	than requested, the rest of the page will be used,
	making the actual allocation bigger than requested.
	( Note, the size may not be a multiple of the page size
	  due to buffer management meta-data. )

  buffer_total_size_kb:

	This displays the total combined size of all the trace buffers.

  free_buffer:

	If a process is performing the tracing, and the ring buffer
	should be shrunk "freed" when the process is finished, even
	if it were to be killed by a signal, this file can be used
	for that purpose. On close of this file, the ring buffer will
	be resized to its minimum size. Having a process that is tracing
	also open this file, when the process exits its file descriptor
	for this file will be closed, and in doing so, the ring buffer
	will be "freed".

	It may also stop tracing if disable_on_free option is set.

  tracing_cpumask:

	This is a mask that lets the user only trace
	on specified CPUs. The format is a hex string
	representing the CPUs.

  set_ftrace_filter:

	When dynamic ftrace is configured in (see the
	section below "dynamic ftrace"), the code is dynamically
	modified (code text rewrite) to disable calling of the
	function profiler (mcount). This lets tracing be configured
	in with practically no overhead in performance.  This also
	has a side effect of enabling or disabling specific functions
	to be traced. Echoing names of functions into this file
	will limit the trace to only those functions.

	This interface also allows for commands to be used. See the
	"Filter commands" section for more details.

  set_ftrace_notrace:

	This has an effect opposite to that of
	set_ftrace_filter. Any function that is added here will not
	be traced. If a function exists in both set_ftrace_filter
	and set_ftrace_notrace,	the function will _not_ be traced.

  set_ftrace_pid:

	Have the function tracer only trace a single thread.

  set_graph_function:

	Set a "trigger" function where tracing should start
	with the function graph tracer (See the section
	"dynamic ftrace" for more details).

  available_filter_functions:

	This lists the functions that ftrace
	has processed and can trace. These are the function
	names that you can pass to "set_ftrace_filter" or
	"set_ftrace_notrace". (See the section "dynamic ftrace"
	below for more details.)

  enabled_functions:

	This file is more for debugging ftrace, but can also be useful
	in seeing if any function has a callback attached to it.
	Not only does the trace infrastructure use ftrace function
	trace utility, but other subsystems might too. This file
	displays all functions that have a callback attached to them
	as well as the number of callbacks that have been attached.
	Note, a callback may also call multiple functions which will
	not be listed in this count.

	If the callback registered to be traced by a function with
	the "save regs" attribute (thus even more overhead), a 'R'
	will be displayed on the same line as the function that
	is returning registers.

  function_profile_enabled:

	When set it will enable all functions with either the function
	tracer, or if enabled, the function graph tracer. It will
	keep a histogram of the number of functions that were called
	and if run with the function graph tracer, it will also keep
	track of the time spent in those functions. The histogram
	content can be displayed in the files:

	trace_stats/function<cpu> ( function0, function1, etc).

  trace_stats:

	A directory that holds different tracing stats.

  kprobe_events:
 
	Enable dynamic trace points. See kprobetrace.txt.

  kprobe_profile:

	Dynamic trace points stats. See kprobetrace.txt.

  max_graph_depth:

	Used with the function graph tracer. This is the max depth
	it will trace into a function. Setting this to a value of
	one will show only the first kernel function that is called
	from user space.

  printk_formats:

	This is for tools that read the raw format files. If an event in
	the ring buffer references a string (currently only trace_printk()
	does this), only a pointer to the string is recorded into the buffer
	and not the string itself. This prevents tools from knowing what
	that string was. This file displays the string and address for
	the string allowing tools to map the pointers to what the
	strings were.

  saved_cmdlines:

	Only the pid of the task is recorded in a trace event unless
	the event specifically saves the task comm as well. Ftrace
	makes a cache of pid mappings to comms to try to display
	comms for events. If a pid for a comm is not listed, then
	"<...>" is displayed in the output.

  snapshot:

	This displays the "snapshot" buffer and also lets the user
	take a snapshot of the current running trace.
	See the "Snapshot" section below for more details.

  stack_max_size:

	When the stack tracer is activated, this will display the
	maximum stack size it has encountered.
	See the "Stack Trace" section below.

  stack_trace:

	This displays the stack back trace of the largest stack
	that was encountered when the stack tracer is activated.
	See the "Stack Trace" section below.

  stack_trace_filter:

	This is similar to "set_ftrace_filter" but it limits what
	functions the stack tracer will check.

  trace_clock:

	Whenever an event is recorded into the ring buffer, a
	"timestamp" is added. This stamp comes from a specified
	clock. By default, ftrace uses the "local" clock. This
	clock is very fast and strictly per cpu, but on some
	systems it may not be monotonic with respect to other
	CPUs. In other words, the local clocks may not be in sync
	with local clocks on other CPUs.

	Usual clocks for tracing:

	  # cat trace_clock
	  [local] global counter x86-tsc

	  local: Default clock, but may not be in sync across CPUs

	  global: This clock is in sync with all CPUs but may
	  	  be a bit slower than the local clock.

	  counter: This is not a clock at all, but literally an atomic
	  	   counter. It counts up one by one, but is in sync
		   with all CPUs. This is useful when you need to
		   know exactly the order events occurred with respect to
		   each other on different CPUs.

	  uptime: This uses the jiffies counter and the time stamp
	  	  is relative to the time since boot up.

	  perf: This makes ftrace use the same clock that perf uses.
	  	Eventually perf will be able to read ftrace buffers
		and this will help out in interleaving the data.

	  x86-tsc: Architectures may define their own clocks. For
	  	   example, x86 uses its own TSC cycle clock here.

	To set a clock, simply echo the clock name into this file.

	  echo global > trace_clock

  trace_marker:

	This is a very useful file for synchronizing user space
	with events happening in the kernel. Writing strings into
	this file will be written into the ftrace buffer.

	It is useful in applications to open this file at the start
	of the application and just reference the file descriptor
	for the file.

	void trace_write(const char *fmt, ...)
	{
		va_list ap;
		char buf[256];
		int n;

		if (trace_fd < 0)
			return;

		va_start(ap, fmt);
		n = vsnprintf(buf, 256, fmt, ap);
		va_end(ap);

		write(trace_fd, buf, n);
	}

	start:

		trace_fd = open("trace_marker", WR_ONLY);

  uprobe_events:
 
	Add dynamic tracepoints in programs.
	See uprobetracer.txt

  uprobe_profile:

	Uprobe statistics. See uprobetrace.txt

  instances:

	This is a way to make multiple trace buffers where different
	events can be recorded in different buffers.
	See "Instances" section below.

  events:

	This is the trace event directory. It holds event tracepoints
	(also known as static tracepoints) that have been compiled
	into the kernel. It shows what event tracepoints exist
	and how they are grouped by system. There are "enable"
	files at various levels that can enable the tracepoints
	when a "1" is written to them.

	See events.txt for more information.

  per_cpu:

	This is a directory that contains the trace per_cpu information.

  per_cpu/cpu0/buffer_size_kb:

	The ftrace buffer is defined per_cpu. That is, there's a separate
	buffer for each CPU to allow writes to be done atomically,
	and free from cache bouncing. These buffers may have different
	size buffers. This file is similar to the buffer_size_kb
	file, but it only displays or sets the buffer size for the
	specific CPU. (here cpu0).

  per_cpu/cpu0/trace:

	This is similar to the "trace" file, but it will only display
	the data specific for the CPU. If written to, it only clears
	the specific CPU buffer.

  per_cpu/cpu0/trace_pipe

	This is similar to the "trace_pipe" file, and is a consuming
	read, but it will only display (and consume) the data specific
	for the CPU.

  per_cpu/cpu0/trace_pipe_raw

	For tools that can parse the ftrace ring buffer binary format,
	the trace_pipe_raw file can be used to extract the data
	from the ring buffer directly. With the use of the splice()
	system call, the buffer data can be quickly transferred to
	a file or to the network where a server is collecting the
	data.

	Like trace_pipe, this is a consuming reader, where multiple
	reads will always produce different data.

  per_cpu/cpu0/snapshot:

	This is similar to the main "snapshot" file, but will only
	snapshot the current CPU (if supported). It only displays
	the content of the snapshot for a given CPU, and if
	written to, only clears this CPU buffer.

  per_cpu/cpu0/snapshot_raw:

	Similar to the trace_pipe_raw, but will read the binary format
	from the snapshot buffer for the given CPU.

  per_cpu/cpu0/stats:

	This displays certain stats about the ring buffer:

	 entries: The number of events that are still in the buffer.

	 overrun: The number of lost events due to overwriting when
	 	  the buffer was full.

	 commit overrun: Should always be zero.
	 	This gets set if so many events happened within a nested
		event (ring buffer is re-entrant), that it fills the
		buffer and starts dropping events.

	 bytes: Bytes actually read (not overwritten).

	 oldest event ts: The oldest timestamp in the buffer

	 now ts: The current timestamp

	 dropped events: Events lost due to overwrite option being off.

	 read events: The number of events read.

The Tracers
-----------

Here is the list of current tracers that may be configured.

  "function"

	Function call tracer to trace all kernel functions.

  "function_graph"

	Similar to the function tracer except that the
	function tracer probes the functions on their entry
	whereas the function graph tracer traces on both entry
	and exit of the functions. It then provides the ability
	to draw a graph of function calls similar to C code
	source.

  "irqsoff"

	Traces the areas that disable interrupts and saves
	the trace with the longest max latency.
	See tracing_max_latency. When a new max is recorded,
	it replaces the old trace. It is best to view this
	trace with the latency-format option enabled.

  "preemptoff"

	Similar to irqsoff but traces and records the amount of
	time for which preemption is disabled.

  "preemptirqsoff"

	Similar to irqsoff and preemptoff, but traces and
	records the largest time for which irqs and/or preemption
	is disabled.

  "wakeup"

	Traces and records the max latency that it takes for
	the highest priority task to get scheduled after
	it has been woken up.
        Traces all tasks as an average developer would expect.

  "wakeup_rt"

        Traces and records the max latency that it takes for just
        RT tasks (as the current "wakeup" does). This is useful
        for those interested in wake up timings of RT tasks.

  "nop"

	This is the "trace nothing" tracer. To remove all
	tracers from tracing simply echo "nop" into
	current_tracer.


Examples of using the tracer
----------------------------

Here are typical examples of using the tracers when controlling
them only with the debugfs interface (without using any
user-land utilities).

Output format:
--------------

Here is an example of the output format of the file "trace"

                             --------
# tracer: function
#
# entries-in-buffer/entries-written: 140080/250280   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
            bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
            bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
            bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
            sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
            bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
            bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
            bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
            bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
            bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
            sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
                             --------

A header is printed with the tracer name that is represented by
the trace. In this case the tracer is "function". Then it shows the
number of events in the buffer as well as the total number of entries
that were written. The difference is the number of entries that were
lost due to the buffer filling up (250280 - 140080 = 110200 events
lost).

The header explains the content of the events. Task name "bash", the task
PID "1977", the CPU that it was running on "000", the latency format
(explained below), the timestamp in <secs>.<usecs> format, the
function name that was traced "sys_close" and the parent function that
called this function "system_call_fastpath". The timestamp is the time
at which the function was entered.

Latency trace format
--------------------

When the latency-format option is enabled or when one of the latency
tracers is set, the trace file gives somewhat more information to see
why a latency happened. Here is a typical trace.

# tracer: irqsoff
#
# irqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: __lock_task_sighand
#  => ended at:   _raw_spin_unlock_irqrestore
#
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
      ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
      ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
      ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
      ps-6143    2d..1  306us : <stack trace>
 => trace_hardirqs_on_caller
 => trace_hardirqs_on
 => _raw_spin_unlock_irqrestore
 => do_task_stat
 => proc_tgid_stat
 => proc_single_show
 => seq_read
 => vfs_read
 => sys_read
 => system_call_fastpath


This shows that the current tracer is "irqsoff" tracing the time
for which interrupts were disabled. It gives the trace version (which
never changes) and the version of the kernel upon which this was executed on
(3.10). Then it displays the max latency in microseconds (259 us). The number
of trace entries displayed and the total number (both are four: #4/4).
VP, KP, SP, and HP are always zero and are reserved for later use.
#P is the number of online CPUs (#P:4).

The task is the process that was running when the latency
occurred. (ps pid: 6143).

The start and stop (the functions in which the interrupts were
disabled and enabled respectively) that caused the latencies:

 __lock_task_sighand is where the interrupts were disabled.
 _raw_spin_unlock_irqrestore is where they were enabled again.

The next lines after the header are the trace itself. The header
explains which is which.

  cmd: The name of the process in the trace.

  pid: The PID of that process.

  CPU#: The CPU which the process was running on.

  irqs-off: 'd' interrupts are disabled. '.' otherwise.
	    Note: If the architecture does not support a way to
		  read the irq flags variable, an 'X' will always
		  be printed here.

  need-resched:
	'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
	'n' only TIF_NEED_RESCHED is set,
	'p' only PREEMPT_NEED_RESCHED is set,
	'.' otherwise.

  hardirq/softirq:
	'H' - hard irq occurred inside a softirq.
	'h' - hard irq is running
	's' - soft irq is running
	'.' - normal context.

  preempt-depth: The level of preempt_disabled

The above is mostly meaningful for kernel developers.

  time: When the latency-format option is enabled, the trace file
	output includes a timestamp relative to the start of the
	trace. This differs from the output when latency-format
	is disabled, which includes an absolute timestamp.

  delay: This is just to help catch your eye a bit better. And
	 needs to be fixed to be only relative to the same CPU.
	 The marks are determined by the difference between this
	 current trace and the next trace.
	  '!' - greater than preempt_mark_thresh (default 100)
	  '+' - greater than 1 microsecond
	  ' ' - less than or equal to 1 microsecond.

  The rest is the same as the 'trace' file.

  Note, the latency tracers will usually end with a back trace
  to easily find where the latency occurred.

trace_options
-------------

The trace_options file (or the options directory) is used to control
what gets printed in the trace output, or manipulate the tracers.
To see what is available, simply cat the file:

  cat trace_options
print-parent
nosym-offset
nosym-addr
noverbose
noraw
nohex
nobin
noblock
nostacktrace
trace_printk
noftrace_preempt
nobranch
annotate
nouserstacktrace
nosym-userobj
noprintk-msg-only
context-info
latency-format
sleep-time
graph-time
record-cmd
overwrite
nodisable_on_free
irq-info
markers
function-trace

To disable one of the options, echo in the option prepended with
"no".

  echo noprint-parent > trace_options

To enable an option, leave off the "no".

  echo sym-offset > trace_options

Here are the available options:

  print-parent - On function traces, display the calling (parent)
		 function as well as the function being traced.

  print-parent:
   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul

  noprint-parent:
   bash-4000  [01]  1477.606694: simple_strtoul


  sym-offset - Display not only the function name, but also the
	       offset in the function. For example, instead of
	       seeing just "ktime_get", you will see
	       "ktime_get+0xb/0x20".

  sym-offset:
   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0

  sym-addr - this will also display the function address as well
	     as the function name.

  sym-addr:
   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>

  verbose - This deals with the trace file when the
            latency-format option is enabled.

    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
    (+0.000ms): simple_strtoul (kstrtoul)

  raw - This will display raw numbers. This option is best for
	use with user applications that can translate the raw
	numbers better than having it done in the kernel.

  hex - Similar to raw, but the numbers will be in a hexadecimal
	format.

  bin - This will print out the formats in raw binary.

  block - When set, reading trace_pipe will not block when polled.

  stacktrace - This is one of the options that changes the trace
	       itself. When a trace is recorded, so is the stack
	       of functions. This allows for back traces of
	       trace sites.

  trace_printk - Can disable trace_printk() from writing into the buffer.

  branch - Enable branch tracing with the tracer.

  annotate - It is sometimes confusing when the CPU buffers are full
  	     and one CPU buffer had a lot of events recently, thus
	     a shorter time frame, were another CPU may have only had
	     a few events, which lets it have older events. When
	     the trace is reported, it shows the oldest events first,
	     and it may look like only one CPU ran (the one with the
	     oldest events). When the annotate option is set, it will
	     display when a new CPU buffer started:

          <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
          <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
          <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
##### CPU 2 buffer started ####
          <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
          <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
          <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock

  userstacktrace - This option changes the trace. It records a
		   stacktrace of the current userspace thread.

  sym-userobj - when user stacktrace are enabled, look up which
		object the address belongs to, and print a
		relative address. This is especially useful when
		ASLR is on, otherwise you don't get a chance to
		resolve the address to object/file/line after
		the app is no longer running

		The lookup is performed when you read
		trace,trace_pipe. Example:

		a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]


  printk-msg-only - When set, trace_printk()s will only show the format
  		    and not their parameters (if trace_bprintk() or
		    trace_bputs() was used to save the trace_printk()).

  context-info - Show only the event data. Hides the comm, PID,
  	         timestamp, CPU, and other useful data.

  latency-format - This option changes the trace. When
                   it is enabled, the trace displays
                   additional information about the
                   latencies, as described in "Latency
                   trace format".

  sleep-time - When running function graph tracer, to include
  	       the time a task schedules out in its function.
	       When enabled, it will account time the task has been
	       scheduled out as part of the function call.

  graph-time - When running function graph tracer, to include the
  	       time to call nested functions. When this is not set,
	       the time reported for the function will only include
	       the time the function itself executed for, not the time
	       for functions that it called.

  record-cmd - When any event or tracer is enabled, a hook is enabled
  	       in the sched_switch trace point to fill comm cache
	       with mapped pids and comms. But this may cause some
	       overhead, and if you only care about pids, and not the
	       name of the task, disabling this option can lower the
	       impact of tracing.

  overwrite - This controls what happens when the trace buffer is
              full. If "1" (default), the oldest events are
              discarded and overwritten. If "0", then the newest
              events are discarded.
	        (see per_cpu/cpu0/stats for overrun and dropped)

  disable_on_free - When the free_buffer is closed, tracing will
  		    stop (tracing_on set to 0).

  irq-info - Shows the interrupt, preempt count, need resched data.
  	     When disabled, the trace looks like:

# tracer: function
#
# entries-in-buffer/entries-written: 144405/9452052   #P:4
#
#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
#              | |       |          |         |
          <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
          <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
          <idle>-0     [002]  23636.756055: enqueue_task <-activate_task


  markers - When set, the trace_marker is writable (only by root).
  	    When disabled, the trace_marker will error with EINVAL
	    on write.


  function-trace - The latency tracers will enable function tracing
  	    if this option is enabled (default it is). When
	    it is disabled, the latency tracers do not trace
	    functions. This keeps the overhead of the tracer down
	    when performing latency tests.

 Note: Some tracers have their own options. They only appear
       when the tracer is active.



irqsoff
-------

When interrupts are disabled, the CPU can not react to any other
external event (besides NMIs and SMIs). This prevents the timer
interrupt from triggering or the mouse interrupt from letting
the kernel know of a new mouse event. The result is a latency
with the reaction time.

The irqsoff tracer tracks the time for which interrupts are
disabled. When a new maximum latency is hit, the tracer saves
the trace leading up to that latency point so that every time a
new maximum is reached, the old saved trace is discarded and the
new trace is saved.

To reset the maximum, echo 0 into tracing_max_latency. Here is
an example:

 # echo 0 > options/function-trace
 # echo irqsoff > current_tracer
 # echo 1 > tracing_on
 # echo 0 > tracing_max_latency
 # ls -ltr
 [...]
 # echo 0 > tracing_on
 # cat trace
# tracer: irqsoff
#
# irqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: run_timer_softirq
#  => ended at:   run_timer_softirq
#
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
  <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
  <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
  <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
  <idle>-0       0dNs3   25us : <stack trace>
 => _raw_spin_unlock_irq
 => run_timer_softirq
 => __do_softirq
 => call_softirq
 => do_softirq
 => irq_exit
 => smp_apic_timer_interrupt
 => apic_timer_interrupt
 => rcu_idle_exit
 => cpu_idle
 => rest_init
 => start_kernel
 => x86_64_start_reservations
 => x86_64_start_kernel

Here we see that that we had a latency of 16 microseconds (which is
very good). The _raw_spin_lock_irq in run_timer_softirq disabled
interrupts. The difference between the 16 and the displayed
timestamp 25us occurred because the clock was incremented
between the time of recording the max latency and the time of
recording the function that had that latency.

Note the above example had function-trace not set. If we set
function-trace, we get a much larger output:

 with echo 1 > options/function-trace

# tracer: irqsoff
#
# irqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: ata_scsi_queuecmd
#  => ended at:   ata_scsi_queuecmd
#
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
    bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
    bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
    bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
    bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
    bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
    bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
    bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
    bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
    bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
[...]
    bash-2042    3d..1   67us : delay_tsc <-__delay
    bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
    bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
    bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
    bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
    bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
    bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
    bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
    bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
    bash-2042    3d..1  120us : <stack trace>
 => _raw_spin_unlock_irqrestore
 => ata_scsi_queuecmd
 => scsi_dispatch_cmd
 => scsi_request_fn
 => __blk_run_queue_uncond
 => __blk_run_queue
 => blk_queue_bio
 => generic_make_request
 => submit_bio
 => submit_bh
 => __ext3_get_inode_loc
 => ext3_iget
 => ext3_lookup
 => lookup_real
 => __lookup_hash
 => walk_component
 => lookup_last
 => path_lookupat
 => filename_lookup
 => user_path_at_empty
 => user_path_at
 => vfs_fstatat
 => vfs_stat
 => sys_newstat
 => system_call_fastpath


Here we traced a 71 microsecond latency. But we also see all the
functions that were called during that time. Note that by
enabling function tracing, we incur an added overhead. This
overhead may extend the latency times. But nevertheless, this
trace has provided some very helpful debugging information.


preemptoff
----------

When preemption is disabled, we may be able to receive
interrupts but the task cannot be preempted and a higher
priority task must wait for preemption to be enabled again
before it can preempt a lower priority task.

The preemptoff tracer traces the places that disable preemption.
Like the irqsoff tracer, it records the maximum latency for
which preemption was disabled. The control of preemptoff tracer
is much like the irqsoff tracer.

 # echo 0 > options/function-trace
 # echo preemptoff > current_tracer
 # echo 1 > tracing_on
 # echo 0 > tracing_max_latency
 # ls -ltr
 [...]
 # echo 0 > tracing_on
 # cat trace
# tracer: preemptoff
#
# preemptoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: do_IRQ
#  => ended at:   do_IRQ
#
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
    sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
    sshd-1991    1d..1   46us : irq_exit <-do_IRQ
    sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
    sshd-1991    1d..1   52us : <stack trace>
 => sub_preempt_count
 => irq_exit
 => do_IRQ
 => ret_from_intr


This has some more changes. Preemption was disabled when an
interrupt came in (notice the 'h'), and was enabled on exit.
But we also see that interrupts have been disabled when entering
the preempt off section and leaving it (the 'd'). We do not know if
interrupts were enabled in the mean time or shortly after this
was over.

# tracer: preemptoff
#
# preemptoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: wake_up_new_task
#  => ended at:   task_rq_unlock
#
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
    bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
    bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
    bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
    bash-1994    1d..1    1us : source_load <-select_task_rq_fair
    bash-1994    1d..1    1us : source_load <-select_task_rq_fair
[...]
    bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
    bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
    bash-1994    1d..1   13us : add_preempt_count <-irq_enter
    bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
    bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
    bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
    bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
    bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
[...]
    bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
    bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
    bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
    bash-1994    1d..2   36us : do_softirq <-irq_exit
    bash-1994    1d..2   36us : __do_softirq <-call_softirq
    bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
    bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
    bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
    bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
    bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
[...]
    bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
    bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
    bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
    bash-1994    1dN.2   82us : idle_cpu <-irq_exit
    bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
    bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
    bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
    bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
    bash-1994    1.N.1  104us : <stack trace>
 => sub_preempt_count
 => _raw_spin_unlock_irqrestore
 => task_rq_unlock
 => wake_up_new_task
 => do_fork
 => sys_clone
 => stub_clone


The above is an example of the preemptoff trace with
function-trace set. Here we see that interrupts were not disabled
the entire time. The irq_enter code lets us know that we entered
an interrupt 'h'. Before that, the functions being traced still
show that it is not in an interrupt, but we can see from the
functions themselves that this is not the case.

preemptirqsoff
--------------

Knowing the locations that have interrupts disabled or
preemption disabled for the longest times is helpful. But
sometimes we would like to know when either preemption and/or
interrupts are disabled.

Consider the following code:

    local_irq_disable();
    call_function_with_irqs_off();
    preempt_disable();
    call_function_with_irqs_and_preemption_off();
    local_irq_enable();
    call_function_with_preemption_off();
    preempt_enable();

The irqsoff tracer will record the total length of
call_function_with_irqs_off() and
call_function_with_irqs_and_preemption_off().

The preemptoff tracer will record the total length of
call_function_with_irqs_and_preemption_off() and
call_function_with_preemption_off().

But neither will trace the time that interrupts and/or
preemption is disabled. This total time is the time that we can
not schedule. To record this time, use the preemptirqsoff
tracer.

Again, using this trace is much like the irqsoff and preemptoff
tracers.

 # echo 0 > options/function-trace
 # echo preemptirqsoff > current_tracer
 # echo 1 > tracing_on
 # echo 0 > tracing_max_latency
 # ls -ltr
 [...]
 # echo 0 > tracing_on
 # cat trace
# tracer: preemptirqsoff
#
# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: ata_scsi_queuecmd
#  => ended at:   ata_scsi_queuecmd
#
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
      ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
      ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
      ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
      ls-2230    3...1  111us : <stack trace>
 => sub_preempt_count
 => _raw_spin_unlock_irqrestore
 => ata_scsi_queuecmd
 => scsi_dispatch_cmd
 => scsi_request_fn
 => __blk_run_queue_uncond
 => __blk_run_queue
 => blk_queue_bio
 => generic_make_request
 => submit_bio
 => submit_bh
 => ext3_bread
 => ext3_dir_bread
 => htree_dirblock_to_tree
 => ext3_htree_fill_tree
 => ext3_readdir
 => vfs_readdir
 => sys_getdents
 => system_call_fastpath


The trace_hardirqs_off_thunk is called from assembly on x86 when
interrupts are disabled in the assembly code. Without the
function tracing, we do not know if interrupts were enabled
within the preemption points. We do see that it started with
preemption enabled.

Here is a trace with function-trace set:

# tracer: preemptirqsoff
#
# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: schedule
#  => ended at:   mutex_unlock
#
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
kworker/-59      3...1    0us : __schedule <-schedule
kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
kworker/-59      3d..2    1us : deactivate_task <-__schedule
kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
      ls-2269    3d..2    7us : finish_task_switch <-__schedule
      ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
      ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
      ls-2269    3d..2    8us : irq_enter <-do_IRQ
      ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
      ls-2269    3d..2    9us : add_preempt_count <-irq_enter
      ls-2269    3d.h2    9us : exit_idle <-do_IRQ
[...]
      ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
      ls-2269    3d.h2   20us : irq_exit <-do_IRQ
      ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
      ls-2269    3d..3   21us : do_softirq <-irq_exit
      ls-2269    3d..3   21us : __do_softirq <-call_softirq
      ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
      ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
      ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
      ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
      ls-2269    3d.s5   31us : irq_enter <-do_IRQ
      ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
[...]
      ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
      ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
      ls-2269    3d.H5   32us : exit_idle <-do_IRQ
      ls-2269    3d.H5   32us : handle_irq <-do_IRQ
      ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
      ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
[...]
      ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
      ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
      ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
      ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
      ls-2269    3d..3  159us : idle_cpu <-irq_exit
      ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
      ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
      ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
      ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
      ls-2269    3d...  186us : <stack trace>
 => __mutex_unlock_slowpath
 => mutex_unlock
 => process_output
 => n_tty_write
 => tty_write
 => vfs_write
 => sys_write
 => system_call_fastpath

This is an interesting trace. It started with kworker running and
scheduling out and ls taking over. But as soon as ls released the
rq lock and enabled interrupts (but not preemption) an interrupt
triggered. When the interrupt finished, it started running softirqs.
But while the softirq was running, another interrupt triggered.
When an interrupt is running inside a softirq, the annotation is 'H'.


wakeup
------

One common case that people are interested in tracing is the
time it takes for a task that is woken to actually wake up.
Now for non Real-Time tasks, this can be arbitrary. But tracing
it none the less can be interesting. 

Without function tracing:

 # echo 0 > options/function-trace
 # echo wakeup > current_tracer
 # echo 1 > tracing_on
 # echo 0 > tracing_max_latency
 # chrt -f 5 sleep 1
 # echo 0 > tracing_on
 # cat trace
# tracer: wakeup
#
# wakeup latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
#    -----------------
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
  <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
  <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
  <idle>-0       3d..3   15us : __schedule <-schedule
  <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H

The tracer only traces the highest priority task in the system
to avoid tracing the normal circumstances. Here we see that
the kworker with a nice priority of -20 (not very nice), took
just 15 microseconds from the time it woke up, to the time it
ran.

Non Real-Time tasks are not that interesting. A more interesting
trace is to concentrate only on Real-Time tasks.

wakeup_rt
---------

In a Real-Time environment it is very important to know the
wakeup time it takes for the highest priority task that is woken
up to the time that it executes. This is also known as "schedule
latency". I stress the point that this is about RT tasks. It is
also important to know the scheduling latency of non-RT tasks,
but the average schedule latency is better for non-RT tasks.
Tools like LatencyTop are more appropriate for such
measurements.

Real-Time environments are interested in the worst case latency.
That is the longest latency it takes for something to happen,
and not the average. We can have a very fast scheduler that may
only have a large latency once in a while, but that would not
work well with Real-Time tasks.  The wakeup_rt tracer was designed
to record the worst case wakeups of RT tasks. Non-RT tasks are
not recorded because the tracer only records one worst case and
tracing non-RT tasks that are unpredictable will overwrite the
worst case latency of RT tasks (just run the normal wakeup
tracer for a while to see that effect).

Since this tracer only deals with RT tasks, we will run this
slightly differently than we did with the previous tracers.
Instead of performing an 'ls', we will run 'sleep 1' under
'chrt' which changes the priority of the task.

 # echo 0 > options/function-trace
 # echo wakeup_rt > current_tracer
 # echo 1 > tracing_on
 # echo 0 > tracing_max_latency
 # chrt -f 5 sleep 1
 # echo 0 > tracing_on
 # cat trace
# tracer: wakeup
#
# tracer: wakeup_rt
#
# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
#    -----------------
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
  <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
  <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
  <idle>-0       3d..3    5us : __schedule <-schedule
  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep


Running this on an idle system, we see that it only took 5 microseconds
to perform the task switch.  Note, since the trace point in the schedule
is before the actual "switch", we stop the tracing when the recorded task
is about to schedule in. This may change if we add a new marker at the
end of the scheduler.

Notice that the recorded task is 'sleep' with the PID of 2389
and it has an rt_prio of 5. This priority is user-space priority
and not the internal kernel priority. The policy is 1 for
SCHED_FIFO and 2 for SCHED_RR.

Note, that the trace data shows the internal priority (99 - rtprio).

  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep

The 0:120:R means idle was running with a nice priority of 0 (120 - 20)
and in the running state 'R'. The sleep task was scheduled in with
2389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
and it too is in the running state.

Doing the same with chrt -r 5 and function-trace set.

  echo 1 > options/function-trace

# tracer: wakeup_rt
#
# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
#    -----------------
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
  <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
  <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
  <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
  <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
  <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
  <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
  <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
  <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
  <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
  <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
  <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
  <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
  <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
  <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
  <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
  <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
  <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
  <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
  <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
  <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
  <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
  <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
  <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
  <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
  <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
  <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
  <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
  <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
  <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
  <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
  <idle>-0       3dN.1   13us : update_cpu_load_nohz <-tick_nohz_idle_exit
  <idle>-0       3dN.1   13us : _raw_spin_lock <-update_cpu_load_nohz
  <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
  <idle>-0       3dN.2   13us : __update_cpu_load <-update_cpu_load_nohz
  <idle>-0       3dN.2   14us : sched_avg_update <-__update_cpu_load
  <idle>-0       3dN.2   14us : _raw_spin_unlock <-update_cpu_load_nohz
  <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
  <idle>-0       3dN.1   15us : calc_load_exit_idle <-tick_nohz_idle_exit
  <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
  <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
  <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
  <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
  <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
  <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
  <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
  <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
  <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
  <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
  <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
  <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
  <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
  <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
  <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
  <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
  <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
  <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
  <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
  <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
  <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
  <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
  <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
  <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
  <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
  <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
  <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
  <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
  <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
  <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
  <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
  <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
  <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
  <idle>-0       3.N..   25us : schedule <-cpu_idle
  <idle>-0       3.N..   25us : __schedule <-preempt_schedule
  <idle>-0       3.N..   26us : add_preempt_count <-__schedule
  <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
  <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
  <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
  <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
  <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
  <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
  <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
  <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
  <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
  <idle>-0       3d..3   29us : __schedule <-preempt_schedule
  <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep

This isn't that big of a trace, even with function tracing enabled,
so I included the entire trace.

The interrupt went off while when the system was idle. Somewhere
before task_woken_rt() was called, the NEED_RESCHED flag was set,
this is indicated by the first occurrence of the 'N' flag.

Latency tracing and events
--------------------------
As function tracing can induce a much larger latency, but without
seeing what happens within the latency it is hard to know what
caused it. There is a middle ground, and that is with enabling
events.

 # echo 0 > options/function-trace
 # echo wakeup_rt > current_tracer
 # echo 1 > events/enable
 # echo 1 > tracing_on
 # echo 0 > tracing_max_latency
 # chrt -f 5 sleep 1
 # echo 0 > tracing_on
 # cat trace
# tracer: wakeup_rt
#
# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
#    -----------------
#
#                  _------=> CPU#            
#                 / _-----=> irqs-off        
#                | / _----=> need-resched    
#                || / _---=> hardirq/softirq 
#                ||| / _--=> preempt-depth   
#                |||| /     delay             
#  cmd     pid   ||||| time  |   caller      
#     \   /      |||||  \    |   /           
  <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
  <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
  <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
  <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
  <idle>-0       2.N.2    2us : power_end: cpu_id=2
  <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
  <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
  <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
  <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
  <idle>-0       2.N.2    5us : rcu_utilization: End context switch
  <idle>-0       2d..3    6us : __schedule <-schedule
  <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep


function
--------

This tracer is the function tracer. Enabling the function tracer
can be done from the debug file system. Make sure the
ftrace_enabled is set; otherwise this tracer is a nop.
See the "ftrace_enabled" section below.

 # sysctl kernel.ftrace_enabled=1
 # echo function > current_tracer
 # echo 1 > tracing_on
 # usleep 1
 # echo 0 > tracing_on
 # cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 24799/24799   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
            bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
            bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
            bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
            bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
            bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
            bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
            bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
            bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
[...]


Note: function tracer uses ring buffers to store the above
entries. The newest data may overwrite the oldest data.
Sometimes using echo to stop the trace is not sufficient because
the tracing could have overwritten the data that you wanted to
record. For this reason, it is sometimes better to disable
tracing directly from a program. This allows you to stop the
tracing at the point that you hit the part that you are
interested in. To disable the tracing directly from a C program,
something like following code snippet can be used:

int trace_fd;
[...]
int main(int argc, char *argv[]) {
	[...]
	trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
	[...]
	if (condition_hit()) {
		write(trace_fd, "0", 1);
	}
	[...]
}


Single thread tracing
---------------------

By writing into set_ftrace_pid you can trace a
single thread. For example:

# cat set_ftrace_pid
no pid
# echo 3111 > set_ftrace_pid
# cat set_ftrace_pid
3111
# echo function > current_tracer
# cat trace | head
 # tracer: function
 #
 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
 #              | |       |          |         |
     yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
     yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
     yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
     yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
     yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
     yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
# echo -1 > set_ftrace_pid
# cat trace |head
 # tracer: function
 #
 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
 #              | |       |          |         |
 ##### CPU 3 buffer started ####
     yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
     yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
     yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
     yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
     yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit

If you want to trace a function when executing, you could use
something like this simple program:

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

#define _STR(x) #x
#define STR(x) _STR(x)
#define MAX_PATH 256

const char *find_debugfs(void)
{
       static char debugfs[MAX_PATH+1];
       static int debugfs_found;
       char type[100];
       FILE *fp;

       if (debugfs_found)
               return debugfs;

       if ((fp = fopen("/proc/mounts","r")) == NULL) {
               perror("/proc/mounts");
               return NULL;
       }

       while (fscanf(fp, "%*s %"
                     STR(MAX_PATH)
                     "s %99s %*s %*d %*d\n",
                     debugfs, type) == 2) {
               if (strcmp(type, "debugfs") == 0)
                       break;
       }
       fclose(fp);

       if (strcmp(type, "debugfs") != 0) {
               fprintf(stderr, "debugfs not mounted");
               return NULL;
       }

       strcat(debugfs, "/tracing/");
       debugfs_found = 1;

       return debugfs;
}

const char *tracing_file(const char *file_name)
{
       static char trace_file[MAX_PATH+1];
       snprintf(trace_file, MAX_PATH, "%s/%s", find_debugfs(), file_name);
       return trace_file;
}

int main (int argc, char **argv)
{
        if (argc < 1)
                exit(-1);

        if (fork() > 0) {
                int fd, ffd;
                char line[64];
                int s;

                ffd = open(tracing_file("current_tracer"), O_WRONLY);
                if (ffd < 0)
                        exit(-1);
                write(ffd, "nop", 3);

                fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
                s = sprintf(line, "%d\n", getpid());
                write(fd, line, s);

                write(ffd, "function", 8);

                close(fd);
                close(ffd);

                execvp(argv[1], argv+1);
        }

        return 0;
}

Or this simple script!

------
#!/bin/bash

debugfs=`sed -ne 's/^debugfs \(.*\) debugfs.*/\1/p' /proc/mounts`
echo nop > $debugfs/tracing/current_tracer
echo 0 > $debugfs/tracing/tracing_on
echo $$ > $debugfs/tracing/set_ftrace_pid
echo function > $debugfs/tracing/current_tracer
echo 1 > $debugfs/tracing/tracing_on
exec "$@"
------


function graph tracer
---------------------------

This tracer is similar to the function tracer except that it
probes a function on its entry and its exit. This is done by
using a dynamically allocated stack of return addresses in each
task_struct. On function entry the tracer overwrites the return
address of each function traced to set a custom probe. Thus the
original return address is stored on the stack of return address
in the task_struct.

Probing on both ends of a function leads to special features
such as:

- measure of a function's time execution
- having a reliable call stack to draw function calls graph

This tracer is useful in several situations:

- you want to find the reason of a strange kernel behavior and
  need to see what happens in detail on any areas (or specific
  ones).

- you are experiencing weird latencies but it's difficult to
  find its origin.

- you want to find quickly which path is taken by a specific
  function

- you just want to peek inside a working kernel and want to see
  what happens there.

# tracer: function_graph
#
# CPU  DURATION                  FUNCTION CALLS
# |     |   |                     |   |   |   |

 0)               |  sys_open() {
 0)               |    do_sys_open() {
 0)               |      getname() {
 0)               |        kmem_cache_alloc() {
 0)   1.382 us    |          __might_sleep();
 0)   2.478 us    |        }
 0)               |        strncpy_from_user() {
 0)               |          might_fault() {
 0)   1.389 us    |            __might_sleep();
 0)   2.553 us    |          }
 0)   3.807 us    |        }
 0)   7.876 us    |      }
 0)               |      alloc_fd() {
 0)   0.668 us    |        _spin_lock();
 0)   0.570 us    |        expand_files();
 0)   0.586 us    |        _spin_unlock();


There are several columns that can be dynamically
enabled/disabled. You can use every combination of options you
want, depending on your needs.

- The cpu number on which the function executed is default
  enabled.  It is sometimes better to only trace one cpu (see
  tracing_cpu_mask file) or you might sometimes see unordered
  function calls while cpu tracing switch.

	hide: echo nofuncgraph-cpu > trace_options
	show: echo funcgraph-cpu > trace_options

- The duration (function's time of execution) is displayed on
  the closing bracket line of a function or on the same line
  than the current function in case of a leaf one. It is default
  enabled.

	hide: echo nofuncgraph-duration > trace_options
	show: echo funcgraph-duration > trace_options

- The overhead field precedes the duration field in case of
  reached duration thresholds.

	hide: echo nofuncgraph-overhead > trace_options
	show: echo funcgraph-overhead > trace_options
	depends on: funcgraph-duration

  ie:

  0)               |    up_write() {
  0)   0.646 us    |      _spin_lock_irqsave();
  0)   0.684 us    |      _spin_unlock_irqrestore();
  0)   3.123 us    |    }
  0)   0.548 us    |    fput();
  0) + 58.628 us   |  }

  [...]

  0)               |      putname() {
  0)               |        kmem_cache_free() {
  0)   0.518 us    |          __phys_addr();
  0)   1.757 us    |        }
  0)   2.861 us    |      }
  0) ! 115.305 us  |    }
  0) ! 116.402 us  |  }

  + means that the function exceeded 10 usecs.
  ! means that the function exceeded 100 usecs.


- The task/pid field displays the thread cmdline and pid which
  executed the function. It is default disabled.

	hide: echo nofuncgraph-proc > trace_options
	show: echo funcgraph-proc > trace_options

  ie:

  # tracer: function_graph
  #
  # CPU  TASK/PID        DURATION                  FUNCTION CALLS
  # |    |    |           |   |                     |   |   |   |
  0)    sh-4802     |               |                  d_free() {
  0)    sh-4802     |               |                    call_rcu() {
  0)    sh-4802     |               |                      __call_rcu() {
  0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
  0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
  0)    sh-4802     |   2.899 us    |                      }
  0)    sh-4802     |   4.040 us    |                    }
  0)    sh-4802     |   5.151 us    |                  }
  0)    sh-4802     | + 49.370 us   |                }


- The absolute time field is an absolute timestamp given by the
  system clock since it started. A snapshot of this time is
  given on each entry/exit of functions

	hide: echo nofuncgraph-abstime > trace_options
	show: echo funcgraph-abstime > trace_options

  ie:

  #
  #      TIME       CPU  DURATION                  FUNCTION CALLS
  #       |         |     |   |                     |   |   |   |
  360.774522 |   1)   0.541 us    |                                          }
  360.774522 |   1)   4.663 us    |                                        }
  360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
  360.774524 |   1)   6.796 us    |                                      }
  360.774524 |   1)   7.952 us    |                                    }
  360.774525 |   1)   9.063 us    |                                  }
  360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
  360.774527 |   1)   0.578 us    |                                  __brelse();
  360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
  360.774528 |   1)               |                                    unlock_buffer() {
  360.774529 |   1)               |                                      wake_up_bit() {
  360.774529 |   1)               |                                        bit_waitqueue() {
  360.774530 |   1)   0.594 us    |                                          __phys_addr();


The function name is always displayed after the closing bracket
for a function if the start of that function is not in the
trace buffer.

Display of the function name after the closing bracket may be
enabled for functions whose start is in the trace buffer,
allowing easier searching with grep for function durations.
It is default disabled.

	hide: echo nofuncgraph-tail > trace_options
	show: echo funcgraph-tail > trace_options

  Example with nofuncgraph-tail (default):
  0)               |      putname() {
  0)               |        kmem_cache_free() {
  0)   0.518 us    |          __phys_addr();
  0)   1.757 us    |        }
  0)   2.861 us    |      }

  Example with funcgraph-tail:
  0)               |      putname() {
  0)               |        kmem_cache_free() {
  0)   0.518 us    |          __phys_addr();
  0)   1.757 us    |        } /* kmem_cache_free() */
  0)   2.861 us    |      } /* putname() */

You can put some comments on specific functions by using
trace_printk() For example, if you want to put a comment inside
the __might_sleep() function, you just have to include
<linux/ftrace.h> and call trace_printk() inside __might_sleep()

trace_printk("I'm a comment!\n")

will produce:

 1)               |             __might_sleep() {
 1)               |                /* I'm a comment! */
 1)   1.449 us    |             }


You might find other useful features for this tracer in the
following "dynamic ftrace" section such as tracing only specific
functions or tasks.

dynamic ftrace
--------------

If CONFIG_DYNAMIC_FTRACE is set, the system will run with
virtually no overhead when function tracing is disabled. The way
this works is the mcount function call (placed at the start of
every kernel function, produced by the -pg switch in gcc),
starts of pointing to a simple return. (Enabling FTRACE will
include the -pg switch in the compiling of the kernel.)

At compile time every C file object is run through the
recordmcount program (located in the scripts directory). This
program will parse the ELF headers in the C object to find all
the locations in the .text section that call mcount. (Note, only
white listed .text sections are processed, since processing other
sections like .init.text may cause races due to those sections
being freed unexpectedly).

A new section called "__mcount_loc" is created that holds
references to all the mcount call sites in the .text section.
The recordmcount program re-links this section back into the
original object. The final linking stage of the kernel will add all these
references into a single table.

On boot up, before SMP is initialized, the dynamic ftrace code
scans this table and updates all the locations into nops. It
also records the locations, which are added to the
available_filter_functions list.  Modules are processed as they
are loaded and before they are executed.  When a module is
unloaded, it also removes its functions from the ftrace function
list. This is automatic in the module unload code, and the
module author does not need to worry about it.

When tracing is enabled, the process of modifying the function
tracepoints is dependent on architecture. The old method is to use
kstop_machine to prevent races with the CPUs executing code being
modified (which can cause the CPU to do undesirable things, especially
if the modified code crosses cache (or page) boundaries), and the nops are
patched back to calls. But this time, they do not call mcount
(which is just a function stub). They now call into the ftrace
infrastructure.

The new method of modifying the function tracepoints is to place
a breakpoint at the location to be modified, sync all CPUs, modify
the rest of the instruction not covered by the breakpoint. Sync
all CPUs again, and then remove the breakpoint with the finished
version to the ftrace call site.

Some archs do not even need to monkey around with the synchronization,
and can just slap the new code on top of the old without any
problems with other CPUs executing it at the same time.

One special side-effect to the recording of the functions being
traced is that we can now selectively choose which functions we
wish to trace and which ones we want the mcount calls to remain
as nops.

Two files are used, one for enabling and one for disabling the
tracing of specified functions. They are:

  set_ftrace_filter

and

  set_ftrace_notrace

A list of available functions that you can add to these files is
listed in:

   available_filter_functions

 # cat available_filter_functions
put_prev_task_idle
kmem_cache_create
pick_next_task_rt
get_online_cpus
pick_next_task_fair
mutex_lock
[...]

If I am only interested in sys_nanosleep and hrtimer_interrupt:

 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
 # echo function > current_tracer
 # echo 1 > tracing_on
 # usleep 1
 # echo 0 > tracing_on
 # cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 5/5   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
          usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
          <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
          usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
          <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
          <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt

To see which functions are being traced, you can cat the file:

 # cat set_ftrace_filter
hrtimer_interrupt
sys_nanosleep


Perhaps this is not enough. The filters also allow simple wild
cards. Only the following are currently available

  <match>*  - will match functions that begin with <match>
  *<match>  - will match functions that end with <match>
  *<match>* - will match functions that have <match> in it

These are the only wild cards which are supported.

  <match>*<match> will not work.

Note: It is better to use quotes to enclose the wild cards,
      otherwise the shell may expand the parameters into names
      of files in the local directory.

 # echo 'hrtimer_*' > set_ftrace_filter

Produces:

# tracer: function
#
# entries-in-buffer/entries-written: 897/897   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
          <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
          <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
          <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
          <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
          <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
          <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
          <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
          <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem

Notice that we lost the sys_nanosleep.

 # cat set_ftrace_filter
hrtimer_run_queues
hrtimer_run_pending
hrtimer_init
hrtimer_cancel
hrtimer_try_to_cancel
hrtimer_forward
hrtimer_start
hrtimer_reprogram
hrtimer_force_reprogram
hrtimer_get_next_event
hrtimer_interrupt
hrtimer_nanosleep
hrtimer_wakeup
hrtimer_get_remaining
hrtimer_get_res
hrtimer_init_sleeper


This is because the '>' and '>>' act just like they do in bash.
To rewrite the filters, use '>'
To append to the filters, use '>>'

To clear out a filter so that all functions will be recorded
again:

 # echo > set_ftrace_filter
 # cat set_ftrace_filter
 #

Again, now we want to append.

 # echo sys_nanosleep > set_ftrace_filter
 # cat set_ftrace_filter
sys_nanosleep
 # echo 'hrtimer_*' >> set_ftrace_filter
 # cat set_ftrace_filter
hrtimer_run_queues
hrtimer_run_pending
hrtimer_init
hrtimer_cancel
hrtimer_try_to_cancel
hrtimer_forward
hrtimer_start
hrtimer_reprogram
hrtimer_force_reprogram
hrtimer_get_next_event
hrtimer_interrupt
sys_nanosleep
hrtimer_nanosleep
hrtimer_wakeup
hrtimer_get_remaining
hrtimer_get_res
hrtimer_init_sleeper


The set_ftrace_notrace prevents those functions from being
traced.

 # echo '*preempt*' '*lock*' > set_ftrace_notrace

Produces:

# tracer: function
#
# entries-in-buffer/entries-written: 39608/39608   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
            bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
            bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
            bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
            bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
            bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
            bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
            bash-1994  [000] ....  4342.324899: do_truncate <-do_last
            bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
            bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
            bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
            bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
            bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time

We can see that there's no more lock or preempt tracing.


Dynamic ftrace with the function graph tracer
---------------------------------------------

Although what has been explained above concerns both the
function tracer and the function-graph-tracer, there are some
special features only available in the function-graph tracer.

If you want to trace only one function and all of its children,
you just have to echo its name into set_graph_function:

 echo __do_fault > set_graph_function

will produce the following "expanded" trace of the __do_fault()
function:

 0)               |  __do_fault() {
 0)               |    filemap_fault() {
 0)               |      find_lock_page() {
 0)   0.804 us    |        find_get_page();
 0)               |        __might_sleep() {
 0)   1.329 us    |        }
 0)   3.904 us    |      }
 0)   4.979 us    |    }
 0)   0.653 us    |    _spin_lock();
 0)   0.578 us    |    page_add_file_rmap();
 0)   0.525 us    |    native_set_pte_at();
 0)   0.585 us    |    _spin_unlock();
 0)               |    unlock_page() {
 0)   0.541 us    |      page_waitqueue();
 0)   0.639 us    |      __wake_up_bit();
 0)   2.786 us    |    }
 0) + 14.237 us   |  }
 0)               |  __do_fault() {
 0)               |    filemap_fault() {
 0)               |      find_lock_page() {
 0)   0.698 us    |        find_get_page();
 0)               |        __might_sleep() {
 0)   1.412 us    |        }
 0)   3.950 us    |      }
 0)   5.098 us    |    }
 0)   0.631 us    |    _spin_lock();
 0)   0.571 us    |    page_add_file_rmap();
 0)   0.526 us    |    native_set_pte_at();
 0)   0.586 us    |    _spin_unlock();
 0)               |    unlock_page() {
 0)   0.533 us    |      page_waitqueue();
 0)   0.638 us    |      __wake_up_bit();
 0)   2.793 us    |    }
 0) + 14.012 us   |  }

You can also expand several functions at once:

 echo sys_open > set_graph_function
 echo sys_close >> set_graph_function

Now if you want to go back to trace all functions you can clear
this special filter via:

 echo > set_graph_function


ftrace_enabled
--------------

Note, the proc sysctl ftrace_enable is a big on/off switch for the
function tracer. By default it is enabled (when function tracing is
enabled in the kernel). If it is disabled, all function tracing is
disabled. This includes not only the function tracers for ftrace, but
also for any other uses (perf, kprobes, stack tracing, profiling, etc).

Please disable this with care.

This can be disable (and enabled) with:

  sysctl kernel.ftrace_enabled=0
  sysctl kernel.ftrace_enabled=1

 or

  echo 0 > /proc/sys/kernel/ftrace_enabled
  echo 1 > /proc/sys/kernel/ftrace_enabled


Filter commands
---------------

A few commands are supported by the set_ftrace_filter interface.
Trace commands have the following format:

<function>:<command>:<parameter>

The following commands are supported:

- mod
  This command enables function filtering per module. The
  parameter defines the module. For example, if only the write*
  functions in the ext3 module are desired, run:

   echo 'write*:mod:ext3' > set_ftrace_filter

  This command interacts with the filter in the same way as
  filtering based on function names. Thus, adding more functions
  in a different module is accomplished by appending (>>) to the
  filter file. Remove specific module functions by prepending
  '!':

   echo '!writeback*:mod:ext3' >> set_ftrace_filter

- traceon/traceoff
  These commands turn tracing on and off when the specified
  functions are hit. The parameter determines how many times the
  tracing system is turned on and off. If unspecified, there is
  no limit. For example, to disable tracing when a schedule bug
  is hit the first 5 times, run:

   echo '__schedule_bug:traceoff:5' > set_ftrace_filter

  To always disable tracing when __schedule_bug is hit:

   echo '__schedule_bug:traceoff' > set_ftrace_filter

  These commands are cumulative whether or not they are appended
  to set_ftrace_filter. To remove a command, prepend it by '!'
  and drop the parameter:

   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter

    The above removes the traceoff command for __schedule_bug
    that have a counter. To remove commands without counters:

   echo '!__schedule_bug:traceoff' > set_ftrace_filter

- snapshot
  Will cause a snapshot to be triggered when the function is hit.

   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter

  To only snapshot once:

   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter

  To remove the above commands:

   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter

- enable_event/disable_event
  These commands can enable or disable a trace event. Note, because
  function tracing callbacks are very sensitive, when these commands
  are registered, the trace point is activated, but disabled in
  a "soft" mode. That is, the tracepoint will be called, but
  just will not be traced. The event tracepoint stays in this mode
  as long as there's a command that triggers it.

   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
   	 set_ftrace_filter

  The format is:

    <function>:enable_event:<system>:<event>[:count]
    <function>:disable_event:<system>:<event>[:count]

  To remove the events commands:


   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
   	 set_ftrace_filter
   echo '!schedule:disable_event:sched:sched_switch' > \
   	 set_ftrace_filter

- dump
  When the function is hit, it will dump the contents of the ftrace
  ring buffer to the console. This is useful if you need to debug
  something, and want to dump the trace when a certain function
  is hit. Perhaps its a function that is called before a tripple
  fault happens and does not allow you to get a regular dump.

- cpudump
  When the function is hit, it will dump the contents of the ftrace
  ring buffer for the current CPU to the console. Unlike the "dump"
  command, it only prints out the contents of the ring buffer for the
  CPU that executed the function that triggered the dump.

trace_pipe
----------

The trace_pipe outputs the same content as the trace file, but
the effect on the tracing is different. Every read from
trace_pipe is consumed. This means that subsequent reads will be
different. The trace is live.

 # echo function > current_tracer
 # cat trace_pipe > /tmp/trace.out &
[1] 4153
 # echo 1 > tracing_on
 # usleep 1
 # echo 0 > tracing_on
 # cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 0/0   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |

 #
 # cat /tmp/trace.out
            bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
            bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
            bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
            bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
            bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
            bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
            bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
            bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
            bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath


Note, reading the trace_pipe file will block until more input is
added.

trace entries
-------------

Having too much or not enough data can be troublesome in
diagnosing an issue in the kernel. The file buffer_size_kb is
used to modify the size of the internal trace buffers. The
number listed is the number of entries that can be recorded per
CPU. To know the full size, multiply the number of possible CPUs
with the number of entries.

 # cat buffer_size_kb
1408 (units kilobytes)

Or simply read buffer_total_size_kb

 # cat buffer_total_size_kb 
5632

To modify the buffer, simple echo in a number (in 1024 byte segments).

 # echo 10000 > buffer_size_kb
 # cat buffer_size_kb
10000 (units kilobytes)

It will try to allocate as much as possible. If you allocate too
much, it can cause Out-Of-Memory to trigger.

 # echo 1000000000000 > buffer_size_kb
-bash: echo: write error: Cannot allocate memory
 # cat buffer_size_kb
85

The per_cpu buffers can be changed individually as well:

 # echo 10000 > per_cpu/cpu0/buffer_size_kb
 # echo 100 > per_cpu/cpu1/buffer_size_kb

When the per_cpu buffers are not the same, the buffer_size_kb
at the top level will just show an X

 # cat buffer_size_kb
X

This is where the buffer_total_size_kb is useful:

 # cat buffer_total_size_kb 
12916

Writing to the top level buffer_size_kb will reset all the buffers
to be the same again.

Snapshot
--------
CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
available to all non latency tracers. (Latency tracers which
record max latency, such as "irqsoff" or "wakeup", can't use
this feature, since those are already using the snapshot
mechanism internally.)

Snapshot preserves a current trace buffer at a particular point
in time without stopping tracing. Ftrace swaps the current
buffer with a spare buffer, and tracing continues in the new
current (=previous spare) buffer.

The following debugfs files in "tracing" are related to this
feature:

  snapshot:

	This is used to take a snapshot and to read the output
	of the snapshot. Echo 1 into this file to allocate a
	spare buffer and to take a snapshot (swap), then read
	the snapshot from this file in the same format as
	"trace" (described above in the section "The File
	System"). Both reads snapshot and tracing are executable
	in parallel. When the spare buffer is allocated, echoing
	0 frees it, and echoing else (positive) values clear the
	snapshot contents.
	More details are shown in the table below.

	status\input  |     0      |     1      |    else    |
	--------------+------------+------------+------------+
	not allocated |(do nothing)| alloc+swap |(do nothing)|
	--------------+------------+------------+------------+
	allocated     |    free    |    swap    |   clear    |
	--------------+------------+------------+------------+

Here is an example of using the snapshot feature.

 # echo 1 > events/sched/enable
 # echo 1 > snapshot
 # cat snapshot
# tracer: nop
#
# entries-in-buffer/entries-written: 71/71   #P:8
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
          <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
           sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
[...]
          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120

 # cat trace
# tracer: nop
#
# entries-in-buffer/entries-written: 77/77   #P:8
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
          <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
 snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
[...]


If you try to use this snapshot feature when current tracer is
one of the latency tracers, you will get the following results.

 # echo wakeup > current_tracer
 # echo 1 > snapshot
bash: echo: write error: Device or resource busy
 # cat snapshot
cat: snapshot: Device or resource busy


Instances
---------
In the debugfs tracing directory is a directory called "instances".
This directory can have new directories created inside of it using
mkdir, and removing directories with rmdir. The directory created
with mkdir in this directory will already contain files and other
directories after it is created.

 # mkdir instances/foo
 # ls instances/foo
buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
set_event  snapshot  trace  trace_clock  trace_marker  trace_options
trace_pipe  tracing_on

As you can see, the new directory looks similar to the tracing directory
itself. In fact, it is very similar, except that the buffer and
events are agnostic from the main director, or from any other
instances that are created.

The files in the new directory work just like the files with the
same name in the tracing directory except the buffer that is used
is a separate and new buffer. The files affect that buffer but do not
affect the main buffer with the exception of trace_options. Currently,
the trace_options affect all instances and the top level buffer
the same, but this may change in future releases. That is, options
may become specific to the instance they reside in.

Notice that none of the function tracer files are there, nor is
current_tracer and available_tracers. This is because the buffers
can currently only have events enabled for them.

 # mkdir instances/foo
 # mkdir instances/bar
 # mkdir instances/zoot
 # echo 100000 > buffer_size_kb
 # echo 1000 > instances/foo/buffer_size_kb
 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
 # echo function > current_trace
 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
 # echo 1 > instances/foo/events/sched/sched_switch/enable
 # echo 1 > instances/bar/events/irq/enable
 # echo 1 > instances/zoot/events/syscalls/enable
 # cat trace_pipe
CPU:2 [LOST 11745 EVENTS]
            bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
            bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
            bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
            bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
            bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
            bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
            bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
            bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
            bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
            bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
            bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
[...]

 # cat instances/foo/trace_pipe
            bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
            bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
          <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
          <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
     rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
            bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
            bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
            bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
     kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
     kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
[...]

 # cat instances/bar/trace_pipe
     migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
          <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
            bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
            bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
            bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
            bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
            bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
            bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
            sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
            sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
            sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
            sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
[...]

 # cat instances/zoot/trace
# tracer: nop
#
# entries-in-buffer/entries-written: 18996/18996   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
            bash-1998  [000] d...   140.733501: sys_write -> 0x2
            bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
            bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
            bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
            bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
            bash-1998  [000] d...   140.733510: sys_close(fd: a)
            bash-1998  [000] d...   140.733510: sys_close -> 0x0
            bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
            bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
            bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
            bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0

You can see that the trace of the top most trace buffer shows only
the function tracing. The foo instance displays wakeups and task
switches.

To remove the instances, simply delete their directories:

 # rmdir instances/foo
 # rmdir instances/bar
 # rmdir instances/zoot

Note, if a process has a trace file open in one of the instance
directories, the rmdir will fail with EBUSY.


Stack trace
-----------
Since the kernel has a fixed sized stack, it is important not to
waste it in functions. A kernel developer must be conscience of
what they allocate on the stack. If they add too much, the system
can be in danger of a stack overflow, and corruption will occur,
usually leading to a system panic.

There are some tools that check this, usually with interrupts
periodically checking usage. But if you can perform a check
at every function call that will become very useful. As ftrace provides
a function tracer, it makes it convenient to check the stack size
at every function call. This is enabled via the stack tracer.

CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.

 # echo 1 > /proc/sys/kernel/stack_tracer_enabled

You can also enable it from the kernel command line to trace
the stack size of the kernel during boot up, by adding "stacktrace"
to the kernel command line parameter.

After running it for a few minutes, the output looks like:

 # cat stack_max_size
2928

 # cat stack_trace
        Depth    Size   Location    (18 entries)
        -----    ----   --------
  0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
  1)     2704     160   find_busiest_group+0x31/0x1f1
  2)     2544     256   load_balance+0xd9/0x662
  3)     2288      80   idle_balance+0xbb/0x130
  4)     2208     128   __schedule+0x26e/0x5b9
  5)     2080      16   schedule+0x64/0x66
  6)     2064     128   schedule_timeout+0x34/0xe0
  7)     1936     112   wait_for_common+0x97/0xf1
  8)     1824      16   wait_for_completion+0x1d/0x1f
  9)     1808     128   flush_work+0xfe/0x119
 10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
 11)     1664      48   input_available_p+0x1d/0x5c
 12)     1616      48   n_tty_poll+0x6d/0x134
 13)     1568      64   tty_poll+0x64/0x7f
 14)     1504     880   do_select+0x31e/0x511
 15)      624     400   core_sys_select+0x177/0x216
 16)      224      96   sys_select+0x91/0xb9
 17)      128     128   system_call_fastpath+0x16/0x1b

Note, if -mfentry is being used by gcc, functions get traced before
they set up the stack frame. This means that leaf level functions
are not tested by the stack tracer when -mfentry is used.

Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.

---------

More details can be found in the source code, in the
kernel/trace/*.c files.