aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/networking/timestamping.txt
blob: bc35541249032c4d64c8888741eddc64f87e4f2e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
The existing interfaces for getting network packages time stamped are:

* SO_TIMESTAMP
  Generate time stamp for each incoming packet using the (not necessarily
  monotonous!) system time. Result is returned via recv_msg() in a
  control message as timeval (usec resolution).

* SO_TIMESTAMPNS
  Same time stamping mechanism as SO_TIMESTAMP, but returns result as
  timespec (nsec resolution).

* IP_MULTICAST_LOOP + SO_TIMESTAMP[NS]
  Only for multicasts: approximate send time stamp by receiving the looped
  packet and using its receive time stamp.

The following interface complements the existing ones: receive time
stamps can be generated and returned for arbitrary packets and much
closer to the point where the packet is really sent. Time stamps can
be generated in software (as before) or in hardware (if the hardware
has such a feature).

SO_TIMESTAMPING:

Instructs the socket layer which kind of information should be collected
and/or reported.  The parameter is an integer with some of the following
bits set. Setting other bits is an error and doesn't change the current
state.

Four of the bits are requests to the stack to try to generate
timestamps.  Any combination of them is valid.

SOF_TIMESTAMPING_TX_HARDWARE:  try to obtain send time stamps in hardware
SOF_TIMESTAMPING_TX_SOFTWARE:  try to obtain send time stamps in software
SOF_TIMESTAMPING_RX_HARDWARE:  try to obtain receive time stamps in hardware
SOF_TIMESTAMPING_RX_SOFTWARE:  try to obtain receive time stamps in software

The other three bits control which timestamps will be reported in a
generated control message.  If none of these bits are set or if none of
the set bits correspond to data that is available, then the control
message will not be generated:

SOF_TIMESTAMPING_SOFTWARE:     report systime if available
SOF_TIMESTAMPING_SYS_HARDWARE: report hwtimetrans if available
SOF_TIMESTAMPING_RAW_HARDWARE: report hwtimeraw if available

It is worth noting that timestamps may be collected for reasons other
than being requested by a particular socket with
SOF_TIMESTAMPING_[TR]X_(HARD|SOFT)WARE.  For example, most drivers that
can generate hardware receive timestamps ignore
SOF_TIMESTAMPING_RX_HARDWARE.  It is still a good idea to set that flag
in case future drivers pay attention.

If timestamps are reported, they will appear in a control message with
cmsg_level==SOL_SOCKET, cmsg_type==SO_TIMESTAMPING, and a payload like
this:

struct scm_timestamping {
	struct timespec systime;
	struct timespec hwtimetrans;
	struct timespec hwtimeraw;
};

recvmsg() can be used to get this control message for regular incoming
packets. For send time stamps the outgoing packet is looped back to
the socket's error queue with the send time stamp(s) attached. It can
be received with recvmsg(flags=MSG_ERRQUEUE). The call returns the
original outgoing packet data including all headers preprended down to
and including the link layer, the scm_timestamping control message and
a sock_extended_err control message with ee_errno==ENOMSG and
ee_origin==SO_EE_ORIGIN_TIMESTAMPING. A socket with such a pending
bounced packet is ready for reading as far as select() is concerned.
If the outgoing packet has to be fragmented, then only the first
fragment is time stamped and returned to the sending socket.

All three values correspond to the same event in time, but were
generated in different ways. Each of these values may be empty (= all
zero), in which case no such value was available. If the application
is not interested in some of these values, they can be left blank to
avoid the potential overhead of calculating them.

systime is the value of the system time at that moment. This
corresponds to the value also returned via SO_TIMESTAMP[NS]. If the
time stamp was generated by hardware, then this field is
empty. Otherwise it is filled in if SOF_TIMESTAMPING_SOFTWARE is
set.

hwtimeraw is the original hardware time stamp. Filled in if
SOF_TIMESTAMPING_RAW_HARDWARE is set. No assumptions about its
relation to system time should be made.

hwtimetrans is the hardware time stamp transformed so that it
corresponds as good as possible to system time. This correlation is
not perfect; as a consequence, sorting packets received via different
NICs by their hwtimetrans may differ from the order in which they were
received. hwtimetrans may be non-monotonic even for the same NIC.
Filled in if SOF_TIMESTAMPING_SYS_HARDWARE is set. Requires support
by the network device and will be empty without that support.


SIOCSHWTSTAMP, SIOCGHWTSTAMP:

Hardware time stamping must also be initialized for each device driver
that is expected to do hardware time stamping. The parameter is defined in
/include/linux/net_tstamp.h as:

struct hwtstamp_config {
	int flags;	/* no flags defined right now, must be zero */
	int tx_type;	/* HWTSTAMP_TX_* */
	int rx_filter;	/* HWTSTAMP_FILTER_* */
};

Desired behavior is passed into the kernel and to a specific device by
calling ioctl(SIOCSHWTSTAMP) with a pointer to a struct ifreq whose
ifr_data points to a struct hwtstamp_config. The tx_type and
rx_filter are hints to the driver what it is expected to do. If
the requested fine-grained filtering for incoming packets is not
supported, the driver may time stamp more than just the requested types
of packets.

A driver which supports hardware time stamping shall update the struct
with the actual, possibly more permissive configuration. If the
requested packets cannot be time stamped, then nothing should be
changed and ERANGE shall be returned (in contrast to EINVAL, which
indicates that SIOCSHWTSTAMP is not supported at all).

Only a processes with admin rights may change the configuration. User
space is responsible to ensure that multiple processes don't interfere
with each other and that the settings are reset.

Any process can read the actual configuration by passing this
structure to ioctl(SIOCGHWTSTAMP) in the same way.  However, this has
not been implemented in all drivers.

/* possible values for hwtstamp_config->tx_type */
enum {
	/*
	 * no outgoing packet will need hardware time stamping;
	 * should a packet arrive which asks for it, no hardware
	 * time stamping will be done
	 */
	HWTSTAMP_TX_OFF,

	/*
	 * enables hardware time stamping for outgoing packets;
	 * the sender of the packet decides which are to be
	 * time stamped by setting SOF_TIMESTAMPING_TX_SOFTWARE
	 * before sending the packet
	 */
	HWTSTAMP_TX_ON,
};

/* possible values for hwtstamp_config->rx_filter */
enum {
	/* time stamp no incoming packet at all */
	HWTSTAMP_FILTER_NONE,

	/* time stamp any incoming packet */
	HWTSTAMP_FILTER_ALL,

	/* return value: time stamp all packets requested plus some others */
	HWTSTAMP_FILTER_SOME,

	/* PTP v1, UDP, any kind of event packet */
	HWTSTAMP_FILTER_PTP_V1_L4_EVENT,

	/* for the complete list of values, please check
	 * the include file /include/linux/net_tstamp.h
	 */
};


DEVICE IMPLEMENTATION

A driver which supports hardware time stamping must support the
SIOCSHWTSTAMP ioctl and update the supplied struct hwtstamp_config with
the actual values as described in the section on SIOCSHWTSTAMP.  It
should also support SIOCGHWTSTAMP.

Time stamps for received packets must be stored in the skb. To get a pointer
to the shared time stamp structure of the skb call skb_hwtstamps(). Then
set the time stamps in the structure:

struct skb_shared_hwtstamps {
	/* hardware time stamp transformed into duration
	 * since arbitrary point in time
	 */
	ktime_t	hwtstamp;
	ktime_t	syststamp; /* hwtstamp transformed to system time base */
};

Time stamps for outgoing packets are to be generated as follows:
- In hard_start_xmit(), check if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
  is set no-zero. If yes, then the driver is expected to do hardware time
  stamping.
- If this is possible for the skb and requested, then declare
  that the driver is doing the time stamping by setting the flag
  SKBTX_IN_PROGRESS in skb_shinfo(skb)->tx_flags , e.g. with

      skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

  You might want to keep a pointer to the associated skb for the next step
  and not free the skb. A driver not supporting hardware time stamping doesn't
  do that. A driver must never touch sk_buff::tstamp! It is used to store
  software generated time stamps by the network subsystem.
- Driver should call skb_tx_timestamp() as close to passing sk_buff to hardware
  as possible. skb_tx_timestamp() provides a software time stamp if requested
  and hardware timestamping is not possible (SKBTX_IN_PROGRESS not set).
- As soon as the driver has sent the packet and/or obtained a
  hardware time stamp for it, it passes the time stamp back by
  calling skb_hwtstamp_tx() with the original skb, the raw
  hardware time stamp. skb_hwtstamp_tx() clones the original skb and
  adds the timestamps, therefore the original skb has to be freed now.
  If obtaining the hardware time stamp somehow fails, then the driver
  should not fall back to software time stamping. The rationale is that
  this would occur at a later time in the processing pipeline than other
  software time stamping and therefore could lead to unexpected deltas
  between time stamps.