aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/networking/dccp.txt
blob: fdc93beec05767be426b75dc4baebbddb495ea3e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
DCCP protocol
============


Contents
========

- Introduction
- Missing features
- Socket options
- Notes

Introduction
============

Datagram Congestion Control Protocol (DCCP) is an unreliable, connection
based protocol designed to solve issues present in UDP and TCP particularly
for real time and multimedia traffic.

It has a base protocol and pluggable congestion control IDs (CCIDs).

DCCP is a Proposed Standard (RFC 2026), and the homepage for DCCP as a protocol
is at http://www.ietf.org/html.charters/dccp-charter.html

Missing features
================

The Linux DCCP implementation does not currently support all the features that are
specified in RFCs 4340...42.

The known bugs are at:
	http://linux-net.osdl.org/index.php/TODO#DCCP

For more up-to-date versions of the DCCP implementation, please consider using
the experimental DCCP test tree; instructions for checking this out are on:
http://linux-net.osdl.org/index.php/DCCP_Testing#Experimental_DCCP_source_tree


Socket options
==============

DCCP_SOCKOPT_SERVICE sets the service. The specification mandates use of
service codes (RFC 4340, sec. 8.1.2); if this socket option is not set,
the socket will fall back to 0 (which means that no meaningful service code
is present). On active sockets this is set before connect(); specifying more
than one code has no effect (all subsequent service codes are ignored). The
case is different for passive sockets, where multiple service codes (up to 32)
can be set before calling bind().

DCCP_SOCKOPT_GET_CUR_MPS is read-only and retrieves the current maximum packet
size (application payload size) in bytes, see RFC 4340, section 14.

DCCP_SOCKOPT_SEND_CSCOV and DCCP_SOCKOPT_RECV_CSCOV are used for setting the
partial checksum coverage (RFC 4340, sec. 9.2). The default is that checksums
always cover the entire packet and that only fully covered application data is
accepted by the receiver. Hence, when using this feature on the sender, it must
be enabled at the receiver, too with suitable choice of CsCov.

DCCP_SOCKOPT_SEND_CSCOV sets the sender checksum coverage. Values in the
	range 0..15 are acceptable. The default setting is 0 (full coverage),
	values between 1..15 indicate partial coverage.
DCCP_SOCKOPT_RECV_CSCOV is for the receiver and has a different meaning: it
	sets a threshold, where again values 0..15 are acceptable. The default
	of 0 means that all packets with a partial coverage will be discarded.
	Values in the range 1..15 indicate that packets with minimally such a
	coverage value are also acceptable. The higher the number, the more
	restrictive this setting (see [RFC 4340, sec. 9.2.1]). Partial coverage
	settings are inherited to the child socket after accept().

The following two options apply to CCID 3 exclusively and are getsockopt()-only.
In either case, a TFRC info struct (defined in <linux/tfrc.h>) is returned.
DCCP_SOCKOPT_CCID_RX_INFO
	Returns a `struct tfrc_rx_info' in optval; the buffer for optval and
	optlen must be set to at least sizeof(struct tfrc_rx_info).
DCCP_SOCKOPT_CCID_TX_INFO
	Returns a `struct tfrc_tx_info' in optval; the buffer for optval and
	optlen must be set to at least sizeof(struct tfrc_tx_info).

On unidirectional connections it is useful to close the unused half-connection
via shutdown (SHUT_WR or SHUT_RD): this will reduce per-packet processing costs.

Sysctl variables
================
Several DCCP default parameters can be managed by the following sysctls
(sysctl net.dccp.default or /proc/sys/net/dccp/default):

request_retries
	The number of active connection initiation retries (the number of
	Requests minus one) before timing out. In addition, it also governs
	the behaviour of the other, passive side: this variable also sets
	the number of times DCCP repeats sending a Response when the initial
	handshake does not progress from RESPOND to OPEN (i.e. when no Ack
	is received after the initial Request).  This value should be greater
	than 0, suggested is less than 10. Analogue of tcp_syn_retries.

retries1
	How often a DCCP Response is retransmitted until the listening DCCP
	side considers its connecting peer dead. Analogue of tcp_retries1.

retries2
	The number of times a general DCCP packet is retransmitted. This has
	importance for retransmitted acknowledgments and feature negotiation,
	data packets are never retransmitted. Analogue of tcp_retries2.

send_ndp = 1
	Whether or not to send NDP count options (sec. 7.7.2).

send_ackvec = 1
	Whether or not to send Ack Vector options (sec. 11.5).

ack_ratio = 2
	The default Ack Ratio (sec. 11.3) to use.

tx_ccid = 2
	Default CCID for the sender-receiver half-connection.

rx_ccid = 2
	Default CCID for the receiver-sender half-connection.

seq_window = 100
	The initial sequence window (sec. 7.5.2).

tx_qlen = 5
	The size of the transmit buffer in packets. A value of 0 corresponds
	to an unbounded transmit buffer.

sync_ratelimit = 125 ms
	The timeout between subsequent DCCP-Sync packets sent in response to
	sequence-invalid packets on the same socket (RFC 4340, 7.5.4). The unit
	of this parameter is milliseconds; a value of 0 disables rate-limiting.

Notes
=====

DCCP does not travel through NAT successfully at present on many boxes. This is
because the checksum covers the pseudo-header as per TCP and UDP. Linux NAT
support for DCCP has been added.