aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/MSI-HOWTO.txt
blob: a51f693c15419e9b2da87df025b69d898f648b51 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
		The MSI Driver Guide HOWTO
	Tom L Nguyen tom.l.nguyen@intel.com
			10/03/2003
	Revised Feb 12, 2004 by Martine Silbermann
		email: Martine.Silbermann@hp.com
	Revised Jun 25, 2004 by Tom L Nguyen

1. About this guide

This guide describes the basics of Message Signaled Interrupts (MSI),
the advantages of using MSI over traditional interrupt mechanisms,
and how to enable your driver to use MSI or MSI-X. Also included is
a Frequently Asked Questions (FAQ) section.

1.1 Terminology

PCI devices can be single-function or multi-function.  In either case,
when this text talks about enabling or disabling MSI on a "device
function," it is referring to one specific PCI device and function and
not to all functions on a PCI device (unless the PCI device has only
one function).

2. Copyright 2003 Intel Corporation

3. What is MSI/MSI-X?

Message Signaled Interrupt (MSI), as described in the PCI Local Bus
Specification Revision 2.3 or later, is an optional feature, and a
required feature for PCI Express devices. MSI enables a device function
to request service by sending an Inbound Memory Write on its PCI bus to
the FSB as a Message Signal Interrupt transaction. Because MSI is
generated in the form of a Memory Write, all transaction conditions,
such as a Retry, Master-Abort, Target-Abort or normal completion, are
supported.

A PCI device that supports MSI must also support pin IRQ assertion
interrupt mechanism to provide backward compatibility for systems that
do not support MSI. In systems which support MSI, the bus driver is
responsible for initializing the message address and message data of
the device function's MSI/MSI-X capability structure during device
initial configuration.

An MSI capable device function indicates MSI support by implementing
the MSI/MSI-X capability structure in its PCI capability list. The
device function may implement both the MSI capability structure and
the MSI-X capability structure; however, the bus driver should not
enable both.

The MSI capability structure contains Message Control register,
Message Address register and Message Data register. These registers
provide the bus driver control over MSI. The Message Control register
indicates the MSI capability supported by the device. The Message
Address register specifies the target address and the Message Data
register specifies the characteristics of the message. To request
service, the device function writes the content of the Message Data
register to the target address. The device and its software driver
are prohibited from writing to these registers.

The MSI-X capability structure is an optional extension to MSI. It
uses an independent and separate capability structure. There are
some key advantages to implementing the MSI-X capability structure
over the MSI capability structure as described below.

	- Support a larger maximum number of vectors per function.

	- Provide the ability for system software to configure
	each vector with an independent message address and message
	data, specified by a table that resides in Memory Space.

        - MSI and MSI-X both support per-vector masking. Per-vector
	masking is an optional extension of MSI but a required
	feature for MSI-X. Per-vector masking provides the kernel the
	ability to mask/unmask a single MSI while running its
	interrupt service routine. If per-vector masking is
	not supported, then the device driver should provide the
	hardware/software synchronization to ensure that the device
	generates MSI when the driver wants it to do so.

4. Why use MSI?

As a benefit to the simplification of board design, MSI allows board
designers to remove out-of-band interrupt routing. MSI is another
step towards a legacy-free environment.

Due to increasing pressure on chipset and processor packages to
reduce pin count, the need for interrupt pins is expected to
diminish over time. Devices, due to pin constraints, may implement
messages to increase performance.

PCI Express endpoints uses INTx emulation (in-band messages) instead
of IRQ pin assertion. Using INTx emulation requires interrupt
sharing among devices connected to the same node (PCI bridge) while
MSI is unique (non-shared) and does not require BIOS configuration
support. As a result, the PCI Express technology requires MSI
support for better interrupt performance.

Using MSI enables the device functions to support two or more
vectors, which can be configured to target different CPUs to
increase scalability.

5. Configuring a driver to use MSI/MSI-X

By default, the kernel will not enable MSI/MSI-X on all devices that
support this capability. The CONFIG_PCI_MSI kernel option
must be selected to enable MSI/MSI-X support.

5.1 Including MSI/MSI-X support into the kernel

To allow MSI/MSI-X capable device drivers to selectively enable
MSI/MSI-X (using pci_enable_msi()/pci_enable_msix() as described
below), the VECTOR based scheme needs to be enabled by setting
CONFIG_PCI_MSI during kernel config.

Since the target of the inbound message is the local APIC, providing
CONFIG_X86_LOCAL_APIC must be enabled as well as CONFIG_PCI_MSI.

5.2 Configuring for MSI support

Due to the non-contiguous fashion in vector assignment of the
existing Linux kernel, this version does not support multiple
messages regardless of a device function is capable of supporting
more than one vector. To enable MSI on a device function's MSI
capability structure requires a device driver to call the function
pci_enable_msi() explicitly.

5.2.1 API pci_enable_msi

int pci_enable_msi(struct pci_dev *dev)

With this new API, a device driver that wants to have MSI
enabled on its device function must call this API to enable MSI.
A successful call will initialize the MSI capability structure
with ONE vector, regardless of whether a device function is
capable of supporting multiple messages. This vector replaces the
pre-assigned dev->irq with a new MSI vector. To avoid a conflict
of the new assigned vector with existing pre-assigned vector requires
a device driver to call this API before calling request_irq().

5.2.2 API pci_disable_msi

void pci_disable_msi(struct pci_dev *dev)

This API should always be used to undo the effect of pci_enable_msi()
when a device driver is unloading. This API restores dev->irq with
the pre-assigned IOAPIC vector and switches a device's interrupt
mode to PCI pin-irq assertion/INTx emulation mode.

Note that a device driver should always call free_irq() on the MSI vector
that it has done request_irq() on before calling this API. Failure to do
so results in a BUG_ON() and a device will be left with MSI enabled and
leaks its vector.

5.2.3 MSI mode vs. legacy mode diagram

The below diagram shows the events which switch the interrupt
mode on the MSI-capable device function between MSI mode and
PIN-IRQ assertion mode.

	 ------------   pci_enable_msi 	 ------------------------
	|	     | <===============	| 			 |
	| MSI MODE   |	  	     	| PIN-IRQ ASSERTION MODE |
	| 	     | ===============>	|			 |
 	 ------------	pci_disable_msi  ------------------------


Figure 1. MSI Mode vs. Legacy Mode

In Figure 1, a device operates by default in legacy mode. Legacy
in this context means PCI pin-irq assertion or PCI-Express INTx
emulation. A successful MSI request (using pci_enable_msi()) switches
a device's interrupt mode to MSI mode. A pre-assigned IOAPIC vector
stored in dev->irq will be saved by the PCI subsystem and a new
assigned MSI vector will replace dev->irq.

To return back to its default mode, a device driver should always call
pci_disable_msi() to undo the effect of pci_enable_msi(). Note that a
device driver should always call free_irq() on the MSI vector it has
done request_irq() on before calling pci_disable_msi(). Failure to do
so results in a BUG_ON() and a device will be left with MSI enabled and
leaks its vector. Otherwise, the PCI subsystem restores a device's
dev->irq with a pre-assigned IOAPIC vector and marks the released
MSI vector as unused.

Once being marked as unused, there is no guarantee that the PCI
subsystem will reserve this MSI vector for a device. Depending on
the availability of current PCI vector resources and the number of
MSI/MSI-X requests from other drivers, this MSI may be re-assigned.

For the case where the PCI subsystem re-assigns this MSI vector to
another driver, a request to switch back to MSI mode may result
in being assigned a different MSI vector or a failure if no more
vectors are available.

5.3 Configuring for MSI-X support

Due to the ability of the system software to configure each vector of
the MSI-X capability structure with an independent message address
and message data, the non-contiguous fashion in vector assignment of
the existing Linux kernel has no impact on supporting multiple
messages on an MSI-X capable device functions. To enable MSI-X on
a device function's MSI-X capability structure requires its device
driver to call the function pci_enable_msix() explicitly.

The function pci_enable_msix(), once invoked, enables either
all or nothing, depending on the current availability of PCI vector
resources. If the PCI vector resources are available for the number
of vectors requested by a device driver, this function will configure
the MSI-X table of the MSI-X capability structure of a device with
requested messages. To emphasize this reason, for example, a device
may be capable for supporting the maximum of 32 vectors while its
software driver usually may request 4 vectors. It is recommended
that the device driver should call this function once during the
initialization phase of the device driver.

Unlike the function pci_enable_msi(), the function pci_enable_msix()
does not replace the pre-assigned IOAPIC dev->irq with a new MSI
vector because the PCI subsystem writes the 1:1 vector-to-entry mapping
into the field vector of each element contained in a second argument.
Note that the pre-assigned IOAPIC dev->irq is valid only if the device
operates in PIN-IRQ assertion mode. In MSI-X mode, any attempt at
using dev->irq by the device driver to request for interrupt service
may result in unpredictable behavior.

For each MSI-X vector granted, a device driver is responsible for calling
other functions like request_irq(), enable_irq(), etc. to enable
this vector with its corresponding interrupt service handler. It is
a device driver's choice to assign all vectors with the same
interrupt service handler or each vector with a unique interrupt
service handler.

5.3.1 Handling MMIO address space of MSI-X Table

The PCI 3.0 specification has implementation notes that MMIO address
space for a device's MSI-X structure should be isolated so that the
software system can set different pages for controlling accesses to the
MSI-X structure. The implementation of MSI support requires the PCI
subsystem, not a device driver, to maintain full control of the MSI-X
table/MSI-X PBA (Pending Bit Array) and MMIO address space of the MSI-X
table/MSI-X PBA.  A device driver is prohibited from requesting the MMIO
address space of the MSI-X table/MSI-X PBA. Otherwise, the PCI subsystem
will fail enabling MSI-X on its hardware device when it calls the function
pci_enable_msix().

5.3.2 API pci_enable_msix

int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)

This API enables a device driver to request the PCI subsystem
to enable MSI-X messages on its hardware device. Depending on
the availability of PCI vectors resources, the PCI subsystem enables
either all or none of the requested vectors.

Argument 'dev' points to the device (pci_dev) structure.

Argument 'entries' is a pointer to an array of msix_entry structs.
The number of entries is indicated in argument 'nvec'.
struct msix_entry is defined in /driver/pci/msi.h:

struct msix_entry {
	u16 	vector; /* kernel uses to write alloc vector */
	u16	entry; /* driver uses to specify entry */
};

A device driver is responsible for initializing the field 'entry' of
each element with a unique entry supported by MSI-X table. Otherwise,
-EINVAL will be returned as a result. A successful return of zero
indicates the PCI subsystem completed initializing each of the requested
entries of the MSI-X table with message address and message data.
Last but not least, the PCI subsystem will write the 1:1
vector-to-entry mapping into the field 'vector' of each element. A
device driver is responsible for keeping track of allocated MSI-X
vectors in its internal data structure.

A return of zero indicates that the number of MSI-X vectors was
successfully allocated. A return of greater than zero indicates
MSI-X vector shortage. Or a return of less than zero indicates
a failure. This failure may be a result of duplicate entries
specified in second argument, or a result of no available vector,
or a result of failing to initialize MSI-X table entries.

5.3.3 API pci_disable_msix

void pci_disable_msix(struct pci_dev *dev)

This API should always be used to undo the effect of pci_enable_msix()
when a device driver is unloading. Note that a device driver should
always call free_irq() on all MSI-X vectors it has done request_irq()
on before calling this API. Failure to do so results in a BUG_ON() and
a device will be left with MSI-X enabled and leaks its vectors.

5.3.4 MSI-X mode vs. legacy mode diagram

The below diagram shows the events which switch the interrupt
mode on the MSI-X capable device function between MSI-X mode and
PIN-IRQ assertion mode (legacy).

	 ------------   pci_enable_msix(,,n) ------------------------
	|	     | <===============	    | 			     |
	| MSI-X MODE |	  	     	    | PIN-IRQ ASSERTION MODE |
	| 	     | ===============>	    |			     |
 	 ------------	pci_disable_msix     ------------------------

Figure 2. MSI-X Mode vs. Legacy Mode

In Figure 2, a device operates by default in legacy mode. A
successful MSI-X request (using pci_enable_msix()) switches a
device's interrupt mode to MSI-X mode. A pre-assigned IOAPIC vector
stored in dev->irq will be saved by the PCI subsystem; however,
unlike MSI mode, the PCI subsystem will not replace dev->irq with
assigned MSI-X vector because the PCI subsystem already writes the 1:1
vector-to-entry mapping into the field 'vector' of each element
specified in second argument.

To return back to its default mode, a device driver should always call
pci_disable_msix() to undo the effect of pci_enable_msix(). Note that
a device driver should always call free_irq() on all MSI-X vectors it
has done request_irq() on before calling pci_disable_msix(). Failure
to do so results in a BUG_ON() and a device will be left with MSI-X
enabled and leaks its vectors. Otherwise, the PCI subsystem switches a
device function's interrupt mode from MSI-X mode to legacy mode and
marks all allocated MSI-X vectors as unused.

Once being marked as unused, there is no guarantee that the PCI
subsystem will reserve these MSI-X vectors for a device. Depending on
the availability of current PCI vector resources and the number of
MSI/MSI-X requests from other drivers, these MSI-X vectors may be
re-assigned.

For the case where the PCI subsystem re-assigned these MSI-X vectors
to other drivers, a request to switch back to MSI-X mode may result
being assigned with another set of MSI-X vectors or a failure if no
more vectors are available.

5.4 Handling function implementing both MSI and MSI-X capabilities

For the case where a function implements both MSI and MSI-X
capabilities, the PCI subsystem enables a device to run either in MSI
mode or MSI-X mode but not both. A device driver determines whether it
wants MSI or MSI-X enabled on its hardware device. Once a device
driver requests for MSI, for example, it is prohibited from requesting
MSI-X; in other words, a device driver is not permitted to ping-pong
between MSI mod MSI-X mode during a run-time.

5.5 Hardware requirements for MSI/MSI-X support

MSI/MSI-X support requires support from both system hardware and
individual hardware device functions.

5.5.1 Required x86 hardware support

Since the target of MSI address is the local APIC CPU, enabling
MSI/MSI-X support in the Linux kernel is dependent on whether existing
system hardware supports local APIC. Users should verify that their
system supports local APIC operation by testing that it runs when
CONFIG_X86_LOCAL_APIC=y.

In SMP environment, CONFIG_X86_LOCAL_APIC is automatically set;
however, in UP environment, users must manually set
CONFIG_X86_LOCAL_APIC. Once CONFIG_X86_LOCAL_APIC=y, setting
CONFIG_PCI_MSI enables the VECTOR based scheme and the option for
MSI-capable device drivers to selectively enable MSI/MSI-X.

Note that CONFIG_X86_IO_APIC setting is irrelevant because MSI/MSI-X
vector is allocated new during runtime and MSI/MSI-X support does not
depend on BIOS support. This key independency enables MSI/MSI-X
support on future IOxAPIC free platforms.

5.5.2 Device hardware support

The hardware device function supports MSI by indicating the
MSI/MSI-X capability structure on its PCI capability list. By
default, this capability structure will not be initialized by
the kernel to enable MSI during the system boot. In other words,
the device function is running on its default pin assertion mode.
Note that in many cases the hardware supporting MSI have bugs,
which may result in system hangs. The software driver of specific
MSI-capable hardware is responsible for deciding whether to call
pci_enable_msi or not. A return of zero indicates the kernel
successfully initialized the MSI/MSI-X capability structure of the
device function. The device function is now running on MSI/MSI-X mode.

5.6 How to tell whether MSI/MSI-X is enabled on device function

At the driver level, a return of zero from the function call of
pci_enable_msi()/pci_enable_msix() indicates to a device driver that
its device function is initialized successfully and ready to run in
MSI/MSI-X mode.

At the user level, users can use the command 'cat /proc/interrupts'
to display the vectors allocated for devices and their interrupt
MSI/MSI-X modes ("PCI-MSI"/"PCI-MSI-X"). Below shows MSI mode is
enabled on a SCSI Adaptec 39320D Ultra320 controller.

           CPU0       CPU1
  0:     324639          0    IO-APIC-edge  timer
  1:       1186          0    IO-APIC-edge  i8042
  2:          0          0          XT-PIC  cascade
 12:       2797          0    IO-APIC-edge  i8042
 14:       6543          0    IO-APIC-edge  ide0
 15:          1          0    IO-APIC-edge  ide1
169:          0          0   IO-APIC-level  uhci-hcd
185:          0          0   IO-APIC-level  uhci-hcd
193:        138         10         PCI-MSI  aic79xx
201:         30          0         PCI-MSI  aic79xx
225:         30          0   IO-APIC-level  aic7xxx
233:         30          0   IO-APIC-level  aic7xxx
NMI:          0          0
LOC:     324553     325068
ERR:          0
MIS:          0

6. MSI quirks

Several PCI chipsets or devices are known to not support MSI.
The PCI stack provides 3 possible levels of MSI disabling:
* on a single device
* on all devices behind a specific bridge
* globally

6.1. Disabling MSI on a single device

Under some circumstances it might be required to disable MSI on a
single device.  This may be achieved by either not calling pci_enable_msi()
or all, or setting the pci_dev->no_msi flag before (most of the time
in a quirk).

6.2. Disabling MSI below a bridge

The vast majority of MSI quirks are required by PCI bridges not
being able to route MSI between busses. In this case, MSI have to be
disabled on all devices behind this bridge. It is achieves by setting
the PCI_BUS_FLAGS_NO_MSI flag in the pci_bus->bus_flags of the bridge
subordinate bus. There is no need to set the same flag on bridges that
are below the broken bridge. When pci_enable_msi() is called to enable
MSI on a device, pci_msi_supported() takes care of checking the NO_MSI
flag in all parent busses of the device.

Some bridges actually support dynamic MSI support enabling/disabling
by changing some bits in their PCI configuration space (especially
the Hypertransport chipsets such as the nVidia nForce and Serverworks
HT2000). It may then be required to update the NO_MSI flag on the
corresponding devices in the sysfs hierarchy. To enable MSI support
on device "0000:00:0e", do:

	echo 1 > /sys/bus/pci/devices/0000:00:0e/msi_bus

To disable MSI support, echo 0 instead of 1. Note that it should be
used with caution since changing this value might break interrupts.

6.3. Disabling MSI globally

Some extreme cases may require to disable MSI globally on the system.
For now, the only known case is a Serverworks PCI-X chipsets (MSI are
not supported on several busses that are not all connected to the
chipset in the Linux PCI hierarchy). In the vast majority of other
cases, disabling only behind a specific bridge is enough.

For debugging purpose, the user may also pass pci=nomsi on the kernel
command-line to explicitly disable MSI globally. But, once the appro-
priate quirks are added to the kernel, this option should not be
required anymore.

6.4. Finding why MSI cannot be enabled on a device

Assuming that MSI are not enabled on a device, you should look at
dmesg to find messages that quirks may output when disabling MSI
on some devices, some bridges or even globally.
Then, lspci -t gives the list of bridges above a device. Reading
/sys/bus/pci/devices/0000:00:0e/msi_bus will tell you whether MSI
are enabled (1) or disabled (0). In 0 is found in a single bridge
msi_bus file above the device, MSI cannot be enabled.

7. FAQ

Q1. Are there any limitations on using the MSI?

A1. If the PCI device supports MSI and conforms to the
specification and the platform supports the APIC local bus,
then using MSI should work.

Q2. Will it work on all the Pentium processors (P3, P4, Xeon,
AMD processors)? In P3 IPI's are transmitted on the APIC local
bus and in P4 and Xeon they are transmitted on the system
bus. Are there any implications with this?

A2. MSI support enables a PCI device sending an inbound
memory write (0xfeexxxxx as target address) on its PCI bus
directly to the FSB. Since the message address has a
redirection hint bit cleared, it should work.

Q3. The target address 0xfeexxxxx will be translated by the
Host Bridge into an interrupt message. Are there any
limitations on the chipsets such as Intel 8xx, Intel e7xxx,
or VIA?

A3. If these chipsets support an inbound memory write with
target address set as 0xfeexxxxx, as conformed to PCI
specification 2.3 or latest, then it should work.

Q4. From the driver point of view, if the MSI is lost because
of errors occurring during inbound memory write, then it may
wait forever. Is there a mechanism for it to recover?

A4. Since the target of the transaction is an inbound memory
write, all transaction termination conditions (Retry,
Master-Abort, Target-Abort, or normal completion) are
supported. A device sending an MSI must abide by all the PCI
rules and conditions regarding that inbound memory write. So,
if a retry is signaled it must retry, etc... We believe that
the recommendation for Abort is also a retry (refer to PCI
specification 2.3 or latest).
CD_ADVANTAGE_IDE ZORRO_ID(ICD, 0x03, 0) #define ZORRO_PROD_ICD_ADVANTAGE_2080_RAM ZORRO_ID(ICD, 0x04, 0) #define ZORRO_MANUF_KUPKE_2 0x0819 #define ZORRO_PROD_KUPKE_OMTI ZORRO_ID(KUPKE_2, 0x01, 0) #define ZORRO_PROD_KUPKE_SCSI_II ZORRO_ID(KUPKE_2, 0x02, 0) #define ZORRO_PROD_KUPKE_GOLEM_BOX ZORRO_ID(KUPKE_2, 0x03, 0) #define ZORRO_PROD_KUPKE_030_882 ZORRO_ID(KUPKE_2, 0x04, 0) #define ZORRO_PROD_KUPKE_SCSI_AT ZORRO_ID(KUPKE_2, 0x05, 0) #define ZORRO_MANUF_GREAT_VALLEY_PRODUCTS_3 0x081D #define ZORRO_PROD_GVP_A2000_RAM8 ZORRO_ID(GREAT_VALLEY_PRODUCTS_3, 0x09, 0) #define ZORRO_PROD_GVP_IMPACT_SERIES_II_RAM_2 ZORRO_ID(GREAT_VALLEY_PRODUCTS_3, 0x0A, 0) #define ZORRO_MANUF_INTERWORKS_NETWORK 0x081E #define ZORRO_MANUF_HARDITAL_SYNTHESIS 0x0820 #define ZORRO_PROD_HARDITAL_SYNTHESIS_TQM_68030_68882 ZORRO_ID(HARDITAL_SYNTHESIS, 0x14, 0) #define ZORRO_MANUF_APPLIED_ENGINEERING 0x0828 #define ZORRO_PROD_APPLIED_ENGINEERING_DL2000 ZORRO_ID(APPLIED_ENGINEERING, 0x10, 0) #define ZORRO_PROD_APPLIED_ENGINEERING_RAM_WORKS ZORRO_ID(APPLIED_ENGINEERING, 0xE0, 0) #define ZORRO_MANUF_BSC_ALFADATA_3 0x082C #define ZORRO_PROD_BSC_OKTAGON_2008 ZORRO_ID(BSC_ALFADATA_3, 0x05, 0) #define ZORRO_PROD_BSC_TANDEM_AT_2008_508 ZORRO_ID(BSC_ALFADATA_3, 0x06, 0) #define ZORRO_PROD_BSC_ALFA_RAM_1200 ZORRO_ID(BSC_ALFADATA_3, 0x07, 0) #define ZORRO_PROD_BSC_OKTAGON_2008_RAM ZORRO_ID(BSC_ALFADATA_3, 0x08, 0) #define ZORRO_PROD_BSC_MULTIFACE_I ZORRO_ID(BSC_ALFADATA_3, 0x10, 0) #define ZORRO_PROD_BSC_MULTIFACE_II ZORRO_ID(BSC_ALFADATA_3, 0x11, 0) #define ZORRO_PROD_BSC_MULTIFACE_III ZORRO_ID(BSC_ALFADATA_3, 0x12, 0) #define ZORRO_PROD_BSC_FRAMEMASTER_II ZORRO_ID(BSC_ALFADATA_3, 0x20, 0) #define ZORRO_PROD_BSC_GRAFFITI_RAM ZORRO_ID(BSC_ALFADATA_3, 0x21, 0) #define ZORRO_PROD_BSC_GRAFFITI_REG ZORRO_ID(BSC_ALFADATA_3, 0x22, 0) #define ZORRO_PROD_BSC_ISDN_MASTERCARD ZORRO_ID(BSC_ALFADATA_3, 0x40, 0) #define ZORRO_PROD_BSC_ISDN_MASTERCARD_II ZORRO_ID(BSC_ALFADATA_3, 0x41, 0) #define ZORRO_MANUF_PHOENIX 0x0835 #define ZORRO_PROD_PHOENIX_ST506 ZORRO_ID(PHOENIX, 0x21, 0) #define ZORRO_PROD_PHOENIX_SCSI ZORRO_ID(PHOENIX, 0x22, 0) #define ZORRO_PROD_PHOENIX_RAM ZORRO_ID(PHOENIX, 0xBE, 0) #define ZORRO_MANUF_ADVANCED_STORAGE_SYSTEMS 0x0836 #define ZORRO_PROD_ADVANCED_STORAGE_SYSTEMS_NEXUS ZORRO_ID(ADVANCED_STORAGE_SYSTEMS, 0x01, 0) #define ZORRO_PROD_ADVANCED_STORAGE_SYSTEMS_NEXUS_RAM ZORRO_ID(ADVANCED_STORAGE_SYSTEMS, 0x08, 0) #define ZORRO_MANUF_IMPULSE 0x0838 #define ZORRO_PROD_IMPULSE_FIRECRACKER_24 ZORRO_ID(IMPULSE, 0x00, 0) #define ZORRO_MANUF_IVS 0x0840 #define ZORRO_PROD_IVS_GRANDSLAM_PIC_2 ZORRO_ID(IVS, 0x02, 0) #define ZORRO_PROD_IVS_GRANDSLAM_PIC_1 ZORRO_ID(IVS, 0x04, 0) #define ZORRO_PROD_IVS_OVERDRIVE ZORRO_ID(IVS, 0x10, 0) #define ZORRO_PROD_IVS_TRUMPCARD_CLASSIC ZORRO_ID(IVS, 0x30, 0) #define ZORRO_PROD_IVS_TRUMPCARD_PRO_GRANDSLAM ZORRO_ID(IVS, 0x34, 0) #define ZORRO_PROD_IVS_META_4 ZORRO_ID(IVS, 0x40, 0) #define ZORRO_PROD_IVS_WAVETOOLS ZORRO_ID(IVS, 0xBF, 0) #define ZORRO_PROD_IVS_VECTOR_1 ZORRO_ID(IVS, 0xF3, 0) #define ZORRO_PROD_IVS_VECTOR_2 ZORRO_ID(IVS, 0xF4, 0) #define ZORRO_MANUF_VECTOR_1 0x0841 #define ZORRO_PROD_VECTOR_CONNECTION_1 ZORRO_ID(VECTOR_1, 0xE3, 0) #define ZORRO_MANUF_XPERT_PRODEV 0x0845 #define ZORRO_PROD_XPERT_PRODEV_VISIONA_RAM ZORRO_ID(XPERT_PRODEV, 0x01, 0) #define ZORRO_PROD_XPERT_PRODEV_VISIONA_REG ZORRO_ID(XPERT_PRODEV, 0x02, 0) #define ZORRO_PROD_XPERT_PRODEV_MERLIN_RAM ZORRO_ID(XPERT_PRODEV, 0x03, 0) #define ZORRO_PROD_XPERT_PRODEV_MERLIN_REG_1 ZORRO_ID(XPERT_PRODEV, 0x04, 0) #define ZORRO_PROD_XPERT_PRODEV_MERLIN_REG_2 ZORRO_ID(XPERT_PRODEV, 0xC9, 0) #define ZORRO_MANUF_HYDRA_SYSTEMS 0x0849 #define ZORRO_PROD_HYDRA_SYSTEMS_AMIGANET ZORRO_ID(HYDRA_SYSTEMS, 0x01, 0) #define ZORRO_MANUF_SUNRIZE_INDUSTRIES 0x084F #define ZORRO_PROD_SUNRIZE_INDUSTRIES_AD1012 ZORRO_ID(SUNRIZE_INDUSTRIES, 0x01, 0) #define ZORRO_PROD_SUNRIZE_INDUSTRIES_AD516 ZORRO_ID(SUNRIZE_INDUSTRIES, 0x02, 0) #define ZORRO_PROD_SUNRIZE_INDUSTRIES_DD512 ZORRO_ID(SUNRIZE_INDUSTRIES, 0x03, 0) #define ZORRO_MANUF_TRICERATOPS 0x0850 #define ZORRO_PROD_TRICERATOPS_MULTI_IO ZORRO_ID(TRICERATOPS, 0x01, 0) #define ZORRO_MANUF_APPLIED_MAGIC 0x0851 #define ZORRO_PROD_APPLIED_MAGIC_DMI_RESOLVER ZORRO_ID(APPLIED_MAGIC, 0x01, 0) #define ZORRO_PROD_APPLIED_MAGIC_DIGITAL_BROADCASTER ZORRO_ID(APPLIED_MAGIC, 0x06, 0) #define ZORRO_MANUF_GFX_BASE 0x085E #define ZORRO_PROD_GFX_BASE_GDA_1_VRAM ZORRO_ID(GFX_BASE, 0x00, 0) #define ZORRO_PROD_GFX_BASE_GDA_1 ZORRO_ID(GFX_BASE, 0x01, 0) #define ZORRO_MANUF_ROCTEC 0x0860 #define ZORRO_PROD_ROCTEC_RH_800C ZORRO_ID(ROCTEC, 0x01, 0) #define ZORRO_PROD_ROCTEC_RH_800C_RAM ZORRO_ID(ROCTEC, 0x01, 0) #define ZORRO_MANUF_KATO 0x0861 #define ZORRO_PROD_KATO_MELODY ZORRO_ID(KATO, 0x80, 0) /* ID clash!! */ #define ZORRO_MANUF_HELFRICH_1 0x0861 #define ZORRO_PROD_HELFRICH_RAINBOW_II ZORRO_ID(HELFRICH_1, 0x20, 0) #define ZORRO_PROD_HELFRICH_RAINBOW_III ZORRO_ID(HELFRICH_1, 0x21, 0) #define ZORRO_MANUF_ATLANTIS 0x0862 #define ZORRO_MANUF_PROTAR 0x0864 #define ZORRO_MANUF_ACS 0x0865 #define ZORRO_MANUF_SOFTWARE_RESULTS_ENTERPRISES 0x0866 #define ZORRO_PROD_SOFTWARE_RESULTS_ENTERPRISES_GOLDEN_GATE_2_BUS_PLUS ZORRO_ID(SOFTWARE_RESULTS_ENTERPRISES, 0x01, 0) #define ZORRO_MANUF_MASOBOSHI 0x086D #define ZORRO_PROD_MASOBOSHI_MASTER_CARD_SC201 ZORRO_ID(MASOBOSHI, 0x03, 0) #define ZORRO_PROD_MASOBOSHI_MASTER_CARD_MC702 ZORRO_ID(MASOBOSHI, 0x04, 0) #define ZORRO_PROD_MASOBOSHI_MVD_819 ZORRO_ID(MASOBOSHI, 0x07, 0) #define ZORRO_MANUF_MAINHATTAN_DATA 0x086F #define ZORRO_PROD_MAINHATTAN_DATA_IDE ZORRO_ID(MAINHATTAN_DATA, 0x01, 0) #define ZORRO_MANUF_VILLAGE_TRONIC 0x0877 #define ZORRO_PROD_VILLAGE_TRONIC_DOMINO_RAM ZORRO_ID(VILLAGE_TRONIC, 0x01, 0) #define ZORRO_PROD_VILLAGE_TRONIC_DOMINO_REG ZORRO_ID(VILLAGE_TRONIC, 0x02, 0) #define ZORRO_PROD_VILLAGE_TRONIC_DOMINO_16M_PROTOTYPE ZORRO_ID(VILLAGE_TRONIC, 0x03, 0) #define ZORRO_PROD_VILLAGE_TRONIC_PICASSO_II_II_PLUS_RAM ZORRO_ID(VILLAGE_TRONIC, 0x0B, 0) #define ZORRO_PROD_VILLAGE_TRONIC_PICASSO_II_II_PLUS_REG ZORRO_ID(VILLAGE_TRONIC, 0x0C, 0) #define ZORRO_PROD_VILLAGE_TRONIC_PICASSO_II_II_PLUS_SEGMENTED_MODE ZORRO_ID(VILLAGE_TRONIC, 0x0D, 0) #define ZORRO_PROD_VILLAGE_TRONIC_PICASSO_IV_Z2_RAM1 ZORRO_ID(VILLAGE_TRONIC, 0x15, 0) #define ZORRO_PROD_VILLAGE_TRONIC_PICASSO_IV_Z2_RAM2 ZORRO_ID(VILLAGE_TRONIC, 0x16, 0) #define ZORRO_PROD_VILLAGE_TRONIC_PICASSO_IV_Z2_REG ZORRO_ID(VILLAGE_TRONIC, 0x17, 0) #define ZORRO_PROD_VILLAGE_TRONIC_PICASSO_IV_Z3 ZORRO_ID(VILLAGE_TRONIC, 0x18, 0) #define ZORRO_PROD_VILLAGE_TRONIC_ARIADNE ZORRO_ID(VILLAGE_TRONIC, 0xC9, 0) #define ZORRO_PROD_VILLAGE_TRONIC_ARIADNE2 ZORRO_ID(VILLAGE_TRONIC, 0xCA, 0) #define ZORRO_MANUF_UTILITIES_UNLIMITED 0x087B #define ZORRO_PROD_UTILITIES_UNLIMITED_EMPLANT_DELUXE ZORRO_ID(UTILITIES_UNLIMITED, 0x15, 0) #define ZORRO_PROD_UTILITIES_UNLIMITED_EMPLANT_DELUXE2 ZORRO_ID(UTILITIES_UNLIMITED, 0x20, 0) #define ZORRO_MANUF_AMITRIX 0x0880 #define ZORRO_PROD_AMITRIX_MULTI_IO ZORRO_ID(AMITRIX, 0x01, 0) #define ZORRO_PROD_AMITRIX_CD_RAM ZORRO_ID(AMITRIX, 0x02, 0) #define ZORRO_MANUF_ARMAX 0x0885 #define ZORRO_PROD_ARMAX_OMNIBUS ZORRO_ID(ARMAX, 0x00, 0) #define ZORRO_MANUF_ZEUS 0x088D #define ZORRO_PROD_ZEUS_SPIDER ZORRO_ID(ZEUS, 0x04, 0) #define ZORRO_MANUF_NEWTEK 0x088F #define ZORRO_PROD_NEWTEK_VIDEOTOASTER ZORRO_ID(NEWTEK, 0x00, 0) #define ZORRO_MANUF_M_TECH_GERMANY 0x0890 #define ZORRO_PROD_MTEC_AT500_2 ZORRO_ID(M_TECH_GERMANY, 0x01, 0) #define ZORRO_PROD_MTEC_68030 ZORRO_ID(M_TECH_GERMANY, 0x03, 0) #define ZORRO_PROD_MTEC_68020I ZORRO_ID(M_TECH_GERMANY, 0x06, 0) #define ZORRO_PROD_MTEC_A1200_T68030_RTC ZORRO_ID(M_TECH_GERMANY, 0x20, 0) #define ZORRO_PROD_MTEC_VIPER_MK_V_E_MATRIX_530 ZORRO_ID(M_TECH_GERMANY, 0x21, 0) #define ZORRO_PROD_MTEC_8_MB_RAM ZORRO_ID(M_TECH_GERMANY, 0x22, 0) #define ZORRO_PROD_MTEC_VIPER_MK_V_E_MATRIX_530_SCSI_IDE ZORRO_ID(M_TECH_GERMANY, 0x24, 0) #define ZORRO_MANUF_GREAT_VALLEY_PRODUCTS_4 0x0891 #define ZORRO_PROD_GVP_EGS_28_24_SPECTRUM_RAM ZORRO_ID(GREAT_VALLEY_PRODUCTS_4, 0x01, 0) #define ZORRO_PROD_GVP_EGS_28_24_SPECTRUM_REG ZORRO_ID(GREAT_VALLEY_PRODUCTS_4, 0x02, 0) #define ZORRO_MANUF_APOLLO_1 0x0892 #define ZORRO_PROD_APOLLO_A1200 ZORRO_ID(APOLLO_1, 0x01, 0) #define ZORRO_MANUF_HELFRICH_2 0x0893 #define ZORRO_PROD_HELFRICH_PICCOLO_RAM ZORRO_ID(HELFRICH_2, 0x05, 0) #define ZORRO_PROD_HELFRICH_PICCOLO_REG ZORRO_ID(HELFRICH_2, 0x06, 0) #define ZORRO_PROD_HELFRICH_PEGGY_PLUS_MPEG ZORRO_ID(HELFRICH_2, 0x07, 0) #define ZORRO_PROD_HELFRICH_VIDEOCRUNCHER ZORRO_ID(HELFRICH_2, 0x08, 0) #define ZORRO_PROD_HELFRICH_SD64_RAM ZORRO_ID(HELFRICH_2, 0x0A, 0) #define ZORRO_PROD_HELFRICH_SD64_REG ZORRO_ID(HELFRICH_2, 0x0B, 0) #define ZORRO_MANUF_MACROSYSTEMS_USA 0x089B #define ZORRO_PROD_MACROSYSTEMS_WARP_ENGINE_40xx ZORRO_ID(MACROSYSTEMS_USA, 0x13, 0) #define ZORRO_MANUF_ELBOX_COMPUTER 0x089E #define ZORRO_PROD_ELBOX_COMPUTER_1200_4 ZORRO_ID(ELBOX_COMPUTER, 0x06, 0) #define ZORRO_MANUF_HARMS_PROFESSIONAL 0x0A00 #define ZORRO_PROD_HARMS_PROFESSIONAL_030_PLUS ZORRO_ID(HARMS_PROFESSIONAL, 0x10, 0) #define ZORRO_PROD_HARMS_PROFESSIONAL_3500 ZORRO_ID(HARMS_PROFESSIONAL, 0xD0, 0) #define ZORRO_MANUF_MICRONIK 0x0A50 #define ZORRO_PROD_MICRONIK_RCA_120 ZORRO_ID(MICRONIK, 0x0A, 0) #define ZORRO_MANUF_MICRONIK2 0x0F0F #define ZORRO_PROD_MICRONIK2_Z3I ZORRO_ID(MICRONIK2, 0x01, 0) #define ZORRO_MANUF_MEGAMICRO 0x1000 #define ZORRO_PROD_MEGAMICRO_SCRAM_500 ZORRO_ID(MEGAMICRO, 0x03, 0) #define ZORRO_PROD_MEGAMICRO_SCRAM_500_RAM ZORRO_ID(MEGAMICRO, 0x04, 0) #define ZORRO_MANUF_IMTRONICS_2 0x1028 #define ZORRO_PROD_IMTRONICS_HURRICANE_2800_3 ZORRO_ID(IMTRONICS_2, 0x39, 0) #define ZORRO_PROD_IMTRONICS_HURRICANE_2800_4 ZORRO_ID(IMTRONICS_2, 0x57, 0) /* unofficial ID */ #define ZORRO_MANUF_INDIVIDUAL_COMPUTERS 0x1212 #define ZORRO_PROD_INDIVIDUAL_COMPUTERS_BUDDHA ZORRO_ID(INDIVIDUAL_COMPUTERS, 0x00, 0) #define ZORRO_PROD_INDIVIDUAL_COMPUTERS_X_SURF ZORRO_ID(INDIVIDUAL_COMPUTERS, 0x17, 0) #define ZORRO_PROD_INDIVIDUAL_COMPUTERS_CATWEASEL ZORRO_ID(INDIVIDUAL_COMPUTERS, 0x2A, 0) #define ZORRO_MANUF_KUPKE_3 0x1248 #define ZORRO_PROD_KUPKE_GOLEM_HD_3000 ZORRO_ID(KUPKE_3, 0x01, 0) #define ZORRO_MANUF_ITH 0x1388 #define ZORRO_PROD_ITH_ISDN_MASTER_II ZORRO_ID(ITH, 0x01, 0) #define ZORRO_MANUF_VMC 0x1389 #define ZORRO_PROD_VMC_ISDN_BLASTER_Z2 ZORRO_ID(VMC, 0x01, 0) #define ZORRO_PROD_VMC_HYPERCOM_4 ZORRO_ID(VMC, 0x02, 0) #define ZORRO_MANUF_INFORMATION 0x157C #define ZORRO_PROD_INFORMATION_ISDN_ENGINE_I ZORRO_ID(INFORMATION, 0x64, 0) #define ZORRO_MANUF_VORTEX 0x2017 #define ZORRO_PROD_VORTEX_GOLDEN_GATE_80386SX ZORRO_ID(VORTEX, 0x07, 0) #define ZORRO_PROD_VORTEX_GOLDEN_GATE_RAM ZORRO_ID(VORTEX, 0x08, 0) #define ZORRO_PROD_VORTEX_GOLDEN_GATE_80486 ZORRO_ID(VORTEX, 0x09, 0) #define ZORRO_MANUF_EXPANSION_SYSTEMS 0x2062 #define ZORRO_PROD_EXPANSION_SYSTEMS_DATAFLYER_4000SX ZORRO_ID(EXPANSION_SYSTEMS, 0x01, 0) #define ZORRO_PROD_EXPANSION_SYSTEMS_DATAFLYER_4000SX_RAM ZORRO_ID(EXPANSION_SYSTEMS, 0x02, 0) #define ZORRO_MANUF_READYSOFT 0x2100 #define ZORRO_PROD_READYSOFT_AMAX_II_IV ZORRO_ID(READYSOFT, 0x01, 0) #define ZORRO_MANUF_PHASE5 0x2140 #define ZORRO_PROD_PHASE5_BLIZZARD_RAM ZORRO_ID(PHASE5, 0x01, 0) #define ZORRO_PROD_PHASE5_BLIZZARD ZORRO_ID(PHASE5, 0x02, 0) #define ZORRO_PROD_PHASE5_BLIZZARD_1220_IV ZORRO_ID(PHASE5, 0x06, 0) #define ZORRO_PROD_PHASE5_FASTLANE_Z3_RAM ZORRO_ID(PHASE5, 0x0A, 0) #define ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060 ZORRO_ID(PHASE5, 0x0B, 0) #define ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM ZORRO_ID(PHASE5, 0x0C, 0) #define ZORRO_PROD_PHASE5_BLIZZARD_1230 ZORRO_ID(PHASE5, 0x0D, 0) #define ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260 ZORRO_ID(PHASE5, 0x11, 0) #define ZORRO_PROD_PHASE5_BLIZZARD_2060 ZORRO_ID(PHASE5, 0x18, 0) #define ZORRO_PROD_PHASE5_CYBERSTORM_MK_II ZORRO_ID(PHASE5, 0x19, 0) #define ZORRO_PROD_PHASE5_CYBERVISION64 ZORRO_ID(PHASE5, 0x22, 0) #define ZORRO_PROD_PHASE5_CYBERVISION64_3D_PROTOTYPE ZORRO_ID(PHASE5, 0x32, 0) #define ZORRO_PROD_PHASE5_CYBERVISION64_3D ZORRO_ID(PHASE5, 0x43, 0) #define ZORRO_PROD_PHASE5_CYBERSTORM_MK_III ZORRO_ID(PHASE5, 0x64, 0) #define ZORRO_PROD_PHASE5_BLIZZARD_603E_PLUS ZORRO_ID(PHASE5, 0x6e, 0) #define ZORRO_MANUF_DPS 0x2169 #define ZORRO_PROD_DPS_PERSONAL_ANIMATION_RECORDER ZORRO_ID(DPS, 0x01, 0) #define ZORRO_MANUF_APOLLO_2 0x2200 #define ZORRO_PROD_APOLLO_A620_68020_1 ZORRO_ID(APOLLO_2, 0x00, 0) #define ZORRO_PROD_APOLLO_A620_68020_2 ZORRO_ID(APOLLO_2, 0x01, 0) #define ZORRO_MANUF_APOLLO_3 0x2222 #define ZORRO_PROD_APOLLO_AT_APOLLO ZORRO_ID(APOLLO_3, 0x22, 0) #define ZORRO_PROD_APOLLO_1230_1240_1260_2030_4040_4060 ZORRO_ID(APOLLO_3, 0x23, 0) #define ZORRO_MANUF_PETSOFF_LP 0x38A5 #define ZORRO_PROD_PETSOFF_LP_DELFINA ZORRO_ID(PETSOFF_LP, 0x00, 0) #define ZORRO_PROD_PETSOFF_LP_DELFINA_LITE ZORRO_ID(PETSOFF_LP, 0x01, 0) #define ZORRO_MANUF_UWE_GERLACH 0x3FF7 #define ZORRO_PROD_UWE_GERLACH_RAM_ROM ZORRO_ID(UWE_GERLACH, 0xd4, 0) #define ZORRO_MANUF_ACT 0x4231 #define ZORRO_PROD_ACT_PRELUDE ZORRO_ID(ACT, 0x01, 0) #define ZORRO_MANUF_MACROSYSTEMS_GERMANY 0x4754 #define ZORRO_PROD_MACROSYSTEMS_MAESTRO ZORRO_ID(MACROSYSTEMS_GERMANY, 0x03, 0) #define ZORRO_PROD_MACROSYSTEMS_VLAB ZORRO_ID(MACROSYSTEMS_GERMANY, 0x04, 0) #define ZORRO_PROD_MACROSYSTEMS_MAESTRO_PRO ZORRO_ID(MACROSYSTEMS_GERMANY, 0x05, 0) #define ZORRO_PROD_MACROSYSTEMS_RETINA ZORRO_ID(MACROSYSTEMS_GERMANY, 0x06, 0) #define ZORRO_PROD_MACROSYSTEMS_MULTI_EVOLUTION ZORRO_ID(MACROSYSTEMS_GERMANY, 0x08, 0) #define ZORRO_PROD_MACROSYSTEMS_TOCCATA ZORRO_ID(MACROSYSTEMS_GERMANY, 0x0C, 0) #define ZORRO_PROD_MACROSYSTEMS_RETINA_Z3 ZORRO_ID(MACROSYSTEMS_GERMANY, 0x10, 0) #define ZORRO_PROD_MACROSYSTEMS_VLAB_MOTION ZORRO_ID(MACROSYSTEMS_GERMANY, 0x12, 0) #define ZORRO_PROD_MACROSYSTEMS_ALTAIS ZORRO_ID(MACROSYSTEMS_GERMANY, 0x13, 0) #define ZORRO_PROD_MACROSYSTEMS_FALCON_040 ZORRO_ID(MACROSYSTEMS_GERMANY, 0xFD, 0) #define ZORRO_MANUF_COMBITEC 0x6766 #define ZORRO_MANUF_SKI_PERIPHERALS 0x8000 #define ZORRO_PROD_SKI_PERIPHERALS_MAST_FIREBALL ZORRO_ID(SKI_PERIPHERALS, 0x08, 0) #define ZORRO_PROD_SKI_PERIPHERALS_SCSI_DUAL_SERIAL ZORRO_ID(SKI_PERIPHERALS, 0x80, 0) #define ZORRO_MANUF_REIS_WARE_2 0xA9AD #define ZORRO_PROD_REIS_WARE_SCAN_KING ZORRO_ID(REIS_WARE_2, 0x11, 0) #define ZORRO_MANUF_CAMERON 0xAA01 #define ZORRO_PROD_CAMERON_PERSONAL_A4 ZORRO_ID(CAMERON, 0x10, 0) #define ZORRO_MANUF_REIS_WARE 0xAA11 #define ZORRO_PROD_REIS_WARE_HANDYSCANNER ZORRO_ID(REIS_WARE, 0x11, 0) #define ZORRO_MANUF_PHOENIX_2 0xB5A8 #define ZORRO_PROD_PHOENIX_ST506_2 ZORRO_ID(PHOENIX_2, 0x21, 0) #define ZORRO_PROD_PHOENIX_SCSI_2 ZORRO_ID(PHOENIX_2, 0x22, 0) #define ZORRO_PROD_PHOENIX_RAM_2 ZORRO_ID(PHOENIX_2, 0xBE, 0) #define ZORRO_MANUF_COMBITEC_2 0xC008 #define ZORRO_PROD_COMBITEC_HD ZORRO_ID(COMBITEC_2, 0x2A, 0) #define ZORRO_PROD_COMBITEC_SRAM ZORRO_ID(COMBITEC_2, 0x2B, 0) /* * Test and illegal Manufacturer IDs. */ #define ZORRO_MANUF_HACKER 0x07DB #define ZORRO_PROD_GENERAL_PROTOTYPE ZORRO_ID(HACKER, 0x00, 0) #define ZORRO_PROD_HACKER_SCSI ZORRO_ID(HACKER, 0x01, 0) #define ZORRO_PROD_RESOURCE_MANAGEMENT_FORCE_QUICKNET_QN2000 ZORRO_ID(HACKER, 0x02, 0) #define ZORRO_PROD_VECTOR_CONNECTION_2 ZORRO_ID(HACKER, 0xE0, 0) #define ZORRO_PROD_VECTOR_CONNECTION_3 ZORRO_ID(HACKER, 0xE1, 0) #define ZORRO_PROD_VECTOR_CONNECTION_4 ZORRO_ID(HACKER, 0xE2, 0) #define ZORRO_PROD_VECTOR_CONNECTION_5 ZORRO_ID(HACKER, 0xE3, 0)