aboutsummaryrefslogtreecommitdiffstats
ModeNameSize
-rw-r--r--.gitignore644logstatsplainblame
-rw-r--r--.mailmap3657logstatsplainblame
-rw-r--r--COPYING18693logstatsplainblame
-rw-r--r--CREDITS92549logstatsplainblame
d---------Documentation8176logstatsplain
-rw-r--r--Kbuild1596logstatsplainblame
-rw-r--r--MAINTAINERS97163logstatsplainblame
-rw-r--r--Makefile54115logstatsplainblame
-rw-r--r--README16930logstatsplainblame
-rw-r--r--REPORTING-BUGS3172logstatsplainblame
d---------arch835logstatsplain
d---------block925logstatsplain
d---------crypto2288logstatsplain
d---------drivers2496logstatsplain
d---------fs4735logstatsplain
d---------include1405logstatsplain
d---------init469logstatsplain
d---------ipc430logstatsplain
d---------kernel4068logstatsplain
d---------lib3849logstatsplain
d---------mm2136logstatsplain
d---------net1576logstatsplain
d---------samples173logstatsplain
d---------scripts2121logstatsplain
d---------security394logstatsplain
d---------sound782logstatsplain
d---------usr196logstatsplain
d---------virt / kvm30logstatsplain
ppc"> do { \ union _FP_UNION_##fs *_flo = \ (union _FP_UNION_##fs *)(val); \ \ _flo->bits.frac = X##_f; \ _flo->bits.exp = X##_e; \ _flo->bits.sign = X##_s; \ } while (0) /* * Multiplication algorithms: */ /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the multiplication immediately. */ #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \ do { \ R##_f = X##_f * Y##_f; \ /* Normalize since we know where the msb of the multiplicands \ were (bit B), we know that the msb of the of the product is \ at either 2B or 2B-1. */ \ _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits); \ } while (0) /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \ do { \ _FP_W_TYPE _Z_f0, _Z_f1; \ doit(_Z_f1, _Z_f0, X##_f, Y##_f); \ /* Normalize since we know where the msb of the multiplicands \ were (bit B), we know that the msb of the of the product is \ at either 2B or 2B-1. */ \ _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits); \ R##_f = _Z_f0; \ } while (0) /* Finally, a simple widening multiply algorithm. What fun! */ #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \ do { \ _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \ \ /* split the words in half */ \ _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \ _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \ _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ \ /* multiply the pieces */ \ _z_f0 = _xl * _yl; \ _a_f0 = _xh * _yl; \ _a_f1 = _xl * _yh; \ _z_f1 = _xh * _yh; \ \ /* reassemble into two full words */ \ if ((_a_f0 += _a_f1) < _a_f1) \ _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \ _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \ _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \ _FP_FRAC_ADD_2(_z, _z, _a); \ \ /* normalize */ \ _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits); \ R##_f = _z_f0; \ } while (0) /* * Division algorithms: */ /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the division immediately. Give this macro either _FP_DIV_HELP_imm for C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you choose will depend on what the compiler does with divrem4. */ #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \ do { \ _FP_W_TYPE _q, _r; \ X##_f <<= (X##_f < Y##_f \ ? R##_e--, _FP_WFRACBITS_##fs \ : _FP_WFRACBITS_##fs - 1); \ doit(_q, _r, X##_f, Y##_f); \ R##_f = _q | (_r != 0); \ } while (0) /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd that may be useful in this situation. This first is for a primitive that requires normalization, the second for one that does not. Look for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */ #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \ do { \ _FP_W_TYPE _nh, _nl, _q, _r, _y; \ \ /* Normalize Y -- i.e. make the most significant bit set. */ \ _y = Y##_f << _FP_WFRACXBITS_##fs; \ \ /* Shift X op correspondingly high, that is, up one full word. */ \ if (X##_f < Y##_f) \ { \ R##_e--; \ _nl = 0; \ _nh = X##_f; \ } \ else \ { \ _nl = X##_f << (_FP_W_TYPE_SIZE - 1); \ _nh = X##_f >> 1; \ } \ \ udiv_qrnnd(_q, _r, _nh, _nl, _y); \ R##_f = _q | (_r != 0); \ } while (0) #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \ do { \ _FP_W_TYPE _nh, _nl, _q, _r; \ if (X##_f < Y##_f) \ { \ R##_e--; \ _nl = X##_f << _FP_WFRACBITS_##fs; \ _nh = X##_f >> _FP_WFRACXBITS_##fs; \ } \ else \ { \ _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \ _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \ } \ udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \ R##_f = _q | (_r != 0); \ } while (0) /* * Square root algorithms: * We have just one right now, maybe Newton approximation * should be added for those machines where division is fast. */ #define _FP_SQRT_MEAT_1(R, S, T, X, q) \ do { \ while (q != _FP_WORK_ROUND) \ { \ T##_f = S##_f + q; \ if (T##_f <= X##_f) \ { \ S##_f = T##_f + q; \ X##_f -= T##_f; \ R##_f += q; \ } \ _FP_FRAC_SLL_1(X, 1); \ q >>= 1; \ } \ if (X##_f) \ { \ if (S##_f < X##_f) \ R##_f |= _FP_WORK_ROUND; \ R##_f |= _FP_WORK_STICKY; \ } \ } while (0) /* * Assembly/disassembly for converting to/from integral types. * No shifting or overflow handled here. */ #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f) #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r) /* * Convert FP values between word sizes */ #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \ do { \ D##_f = S##_f; \ if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \ { \ if (S##_c != FP_CLS_NAN) \ _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \ _FP_WFRACBITS_##sfs); \ else \ _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs)); \ } \ else \ D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \ } while (0) #endif /* __MATH_EMU_OP_1_H__ */