aboutsummaryrefslogtreecommitdiffstats
BranchCommit messageAuthorAge
archive/unc-master-3.0P-FP: fix BUG_ON releated to priority inheritanceBjoern Brandenburg13 years
archived-2013.1uncachedev: mmap memory that is not cached by CPUsGlenn Elliott12 years
archived-private-masterMerge branch 'wip-2.6.34' into old-private-masterAndrea Bastoni15 years
archived-semi-partMerge branch 'wip-semi-part' of ssh://cvs/cvs/proj/litmus/repo/litmus2010 int...Andrea Bastoni15 years
demoFurther refinementsJonathan Herman14 years
ecrts-pgm-finalMerge branch 'wip-ecrts14-pgm' of ssh://rtsrv.cs.unc.edu/home/litmus/litmus-r...Glenn Elliott12 years
ecrts14-pgm-finalMerge branch 'wip-ecrts14-pgm' of ssh://rtsrv.cs.unc.edu/home/litmus/litmus-r...Glenn Elliott12 years
gpusync-rtss12Final GPUSync implementation.Glenn Elliott12 years
gpusync/stagingRename IKGLP R2DGLP.Glenn Elliott12 years
linux-tipMerge branch 'slab/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/p...Linus Torvalds15 years
litmus2008-patch-seriesadd i386 feather-trace implementationBjoern B. Brandenburg16 years
masterPSN-EDF: use inferred_sporadic_job_release_atBjoern Brandenburg9 years
pgmmake it compileGlenn Elliott12 years
prop/litmus-signalsInfrastructure for Litmus signals.Glenn Elliott13 years
prop/robust-tie-breakFixed bug in edf_higher_prio().Glenn Elliott13 years
stagingFix tracepoint compilation errorFelipe Cerqueira13 years
test9/23/2016Namhoon Kim9 years
tracing-develTest kernel tracing events capabilitiesAndrea Bastoni16 years
v2.6.34-with-arm-patchessmsc911x: Add spinlocks around registers accessCatalin Marinas15 years
v2015.1Add ARM syscall def for get_current_budgetBjoern Brandenburg10 years
wip-2011.2-bbbLitmus core: simplify np-section protocolBjoern B. Brandenburg14 years
wip-2011.2-bbb-traceRefactor sched_trace_log_message() -> debug_trace_log_message()Andrea Bastoni14 years
wip-2012.3-gpuSOBLIV draining support for C-EDF.Glenn Elliott12 years
wip-2012.3-gpu-preportpick up last C-RM fileGlenn Elliott12 years
wip-2012.3-gpu-rtss13Fix critical bug in GPU tracker.Glenn Elliott12 years
wip-2012.3-gpu-sobliv-budget-w-ksharkProper sobliv draining and many bug fixes.Glenn Elliott12 years
wip-aedzl-finalMake it easier to compile AEDZL interfaces in liblitmus.Glenn Elliott15 years
wip-aedzl-revisedAdd sched_trace data for Apative EDZLGlenn Elliott15 years
wip-arbit-deadlineFix compilation bug.Glenn Elliott13 years
wip-aux-tasksDescription of refined aux task inheritance.Glenn Elliott13 years
wip-bbbGSN-EDF & Core: improve debug TRACE'ing for NP sectionsBjoern B. Brandenburg14 years
wip-bbb-prio-donuse correct timestampBjoern B. Brandenburg14 years
wip-better-breakImplement hash-based EDF tie-breaking.Glenn Elliott13 years
wip-binary-heapMake C-EDF work with simplified binheap_deleteGlenn Elliott13 years
wip-budgetAdded support for choices in budget policy enforcement.Glenn Elliott15 years
wip-colorSummarize schedulability with final recordJonathan Herman13 years
wip-color-jlhsched_color: Fixed two bugs causing crashing on experiment restart and a rare...Jonathan Herman13 years
wip-d10-hz1000Enable HZ=1000 on District 10Bjoern B. Brandenburg15 years
wip-default-clusteringFeature: Make default C-EDF clustering compile-time configurable.Glenn Elliott15 years
wip-dissipation-jericksoUpdate from 2.6.36 to 2.6.36.4Jeremy Erickson11 years
wip-dissipation2-jericksoUpdate 2.6.36 to 2.6.36.4Jeremy Erickson11 years
wip-ecrts14-pgmMerge branch 'wip-ecrts14-pgm' of ssh://rtsrv.cs.unc.edu/home/litmus/litmus-r...Glenn Elliott12 years
wip-edf-hsblast tested versionJonathan Herman14 years
wip-edf-osLookup table EDF-osJeremy Erickson12 years
wip-edf-tie-breakMerge branch 'wip-edf-tie-break' of ssh://rtsrv.cs.unc.edu/home/litmus/litmus...Glenn Elliott13 years
wip-edzl-critiqueUse hr_timer's active checks instead of having own flag.Glenn Elliott15 years
wip-edzl-finalImplementation of the EDZL scheduler.Glenn Elliott15 years
wip-edzl-revisedClean up comments.Glenn Elliott15 years
wip-eventsAdded support for tracing arbitrary actions.Jonathan Herman15 years
wip-extra-debugDBG: add additional tracingBjoern B. Brandenburg15 years
wip-fix-switch-jericksoAttempt to fix race condition with plugin switchingJeremy Erickson15 years
wip-fix3sched: show length of runqueue clock deactivation in /proc/sched_debugBjoern B. Brandenburg15 years
wip-fmlp-dequeueImprove FMLP queue management.Glenn Elliott14 years
wip-ft-irq-flagFeather-Trace: keep track of interrupt-related interference.Bjoern B. Brandenburg14 years
wip-gpu-cleanupEnable sched_trace log injection from userspaceGlenn Elliott13 years
wip-gpu-interruptsRemove option for threading of all softirqs.Glenn Elliott14 years
wip-gpu-rtas12Generalized GPU cost predictors + EWMA. (untested)Glenn Elliott13 years
wip-gpu-rtss12Final GPUSync implementation.Glenn Elliott13 years
wip-gpu-rtss12-srpexperimental changes to support GPUs under SRPGlenn Elliott13 years
wip-gpusync-mergeCleanup priority tracking for budget enforcement.Glenn Elliott12 years
wip-ikglpMove RSM and IKGLP imp. to own .c filesGlenn Elliott13 years
wip-k-fmlpMerge branch 'mpi-master' into wip-k-fmlpGlenn Elliott14 years
wip-kernel-coloringAdded recolor syscallNamhoon Kim7 years
wip-kernthreadsKludge work-queue processing into klitirqd.Glenn Elliott15 years
wip-klmirqd-to-auxAllow klmirqd threads to be given names.Glenn Elliott13 years
wip-ksharkMerge branch 'mpi-staging' into wip-ksharkJonathan Herman13 years
wip-litmus-3.2Merge commit 'v3.2' into litmus-stagingAndrea Bastoni13 years
wip-litmus2011.2Cleanup: Coding conformance for affinity stuff.Glenn Elliott14 years
wip-litmus3.0-2011.2Feather-Trace: keep track of interrupt-related interference.Bjoern B. Brandenburg14 years
wip-master-2.6.33-rtAvoid deadlock when switching task policy to BACKGROUND (ugly)Andrea Bastoni15 years
wip-mcRemoved ARM-specific hacks which disabled less common mixed-criticality featu...Jonathan Herman12 years
wip-mc-bipasaMC-EDF addedbipasa chattopadhyay13 years
wip-mc-jericksoSplit C/D queuesJeremy Erickson15 years
wip-mc2-cache-slackManually patched mc^2 related codeMing Yang10 years
wip-mcrit-maccosmeticMac Mollison15 years
wip-merge-3.0Prevent Linux to send IPI and queue tasks on remote CPUs.Andrea Bastoni14 years
wip-merge-v3.0Prevent Linux to send IPI and queue tasks on remote CPUs.Andrea Bastoni14 years
wip-migration-affinityNULL affinity dereference in C-EDF.Glenn Elliott14 years
wip-mmap-uncacheshare branch with othersGlenn Elliott13 years
wip-modechangeRTSS 2017 submissionNamhoon Kim8 years
wip-nested-lockingAppears to be working.Bryan Ward12 years
wip-omlp-gedfFirst implementation of G-OMLP.Glenn Elliott15 years
wip-paiSome cleanup of PAIGlenn Elliott14 years
wip-percore-lib9/21/2016Namhoon Kim9 years
wip-performanceCONFIG_DONT_PREEMPT_ON_TIE: Don't preeempt a scheduled task on priority tie.Glenn Elliott14 years
wip-pgmAdd PGM support to C-FLGlenn Elliott12 years
wip-pgm-splitFirst draft of C-FL-splitNamhoon Kim12 years
wip-pm-ovdAdd preemption-and-migration overhead tracing supportAndrea Bastoni15 years
wip-prio-inhP-EDF updated to use the generic pi framework.Glenn Elliott15 years
wip-prioq-dglBUG FIX: Support DGLs with PRIOQ_MUTEXGlenn Elliott13 years
wip-refactored-gedfGeneralizd architecture for GEDF-style scheduelrs to reduce code redundancy.Glenn Elliott15 years
wip-release-master-fixbugfix: release master CPU must signal task was pickedBjoern B. Brandenburg14 years
wip-robust-tie-breakEDF priority tie-breaks.Glenn Elliott13 years
wip-rt-ksharkMove task time accounting into the complete_job method.Jonathan Herman13 years
wip-rtas12-pgmScheduling of PGM jobs.Glenn Elliott13 years
wip-semi-partFix compile error with newer GCCJeremy Erickson12 years
wip-semi-part-edfos-jericksoUse initial CPU set by clientJeremy Erickson12 years
wip-shared-libTODO: Fix condition checks in replicate_page_move_mapping()Namhoon Kim9 years
wip-shared-lib2RTAS 2017 Submission ver.Namhoon Kim9 years
wip-shared-memInitial commit for shared libraryNamhoon Kim9 years
wip-splitting-jericksoFix release behaviorJeremy Erickson13 years
wip-splitting-omlp-jericksoBjoern's Dissertation Code with Priority DonationJeremy Erickson13 years
wip-stage-binheapAn efficient binary heap implementation.Glenn Elliott13 years
wip-sun-portDynamic memory allocation and clean exit for FeatherTraceChristopher Kenna15 years
wip-timer-tracebugfix: C-EDF, clear scheduled field of the correct CPU upon task_exitAndrea Bastoni15 years
wip-tracepointsAdd kernel-style events for sched_trace_XXX() functionsAndrea Bastoni14 years
 
TagDownloadAuthorAge
2015.1commit 8e51b37822...Bjoern Brandenburg10 years
2013.1commit bcaacec1ca...Glenn Elliott12 years
2012.3commit c158b5fbe4...Jonathan Herman13 years
2012.2commit b53c479a0f...Glenn Elliott13 years
2012.1commit 83b11ea1c6...Bjoern B. Brandenburg14 years
rtas12-mc-beta-expcommit 8e236ee20f...Christopher Kenna14 years
2011.1commit d11808b5c6...Christopher Kenna15 years
v2.6.37-rc4commit e8a7e48bb2...Linus Torvalds15 years
v2.6.37-rc3commit 3561d43fd2...Linus Torvalds15 years
v2.6.37-rc2commit e53beacd23...Linus Torvalds15 years
v2.6.37-rc1commit c8ddb2713c...Linus Torvalds15 years
v2.6.36commit f6f94e2ab1...Linus Torvalds15 years
2010.2commit 5c5456402d...Bjoern B. Brandenburg15 years
v2.6.36-rc8commit cd07202cc8...Linus Torvalds15 years
v2.6.36-rc7commit cb655d0f3d...Linus Torvalds15 years
v2.6.36-rc6commit 899611ee7d...Linus Torvalds15 years
v2.6.36-rc5commit b30a3f6257...Linus Torvalds15 years
v2.6.36-rc4commit 49553c2ef8...Linus Torvalds15 years
v2.6.36-rc3commit 2bfc96a127...Linus Torvalds15 years
v2.6.36-rc2commit 76be97c1fc...Linus Torvalds15 years
v2.6.36-rc1commit da5cabf80e...Linus Torvalds15 years
v2.6.35commit 9fe6206f40...Linus Torvalds15 years
v2.6.35-rc6commit b37fa16e78...Linus Torvalds15 years
v2.6.35-rc5commit 1c5474a65b...Linus Torvalds15 years
v2.6.35-rc4commit 815c4163b6...Linus Torvalds15 years
v2.6.35-rc3commit 7e27d6e778...Linus Torvalds15 years
v2.6.35-rc2commit e44a21b726...Linus Torvalds15 years
v2.6.35-rc1commit 67a3e12b05...Linus Torvalds15 years
2010.1commit 7c1ff4c544...Andrea Bastoni15 years
v2.6.34commit e40152ee1e...Linus Torvalds15 years
v2.6.33.4commit 4640b4e7d9...Greg Kroah-Hartman15 years
v2.6.34-rc7commit b57f95a382...Linus Torvalds15 years
v2.6.34-rc6commit 66f41d4c5c...Linus Torvalds15 years
v2.6.33.3commit 3e7ad8ed97...Greg Kroah-Hartman15 years
v2.6.34-rc5commit 01bf0b6457...Linus Torvalds15 years
v2.6.34-rc4commit 0d0fb0f9c5...Linus Torvalds15 years
v2.6.33.2commit 19f00f070c...Greg Kroah-Hartman15 years
v2.6.34-rc3commit 2eaa9cfdf3...Linus Torvalds15 years
v2.6.34-rc2commit 220bf991b0...Linus Torvalds16 years
v2.6.33.1commit dbdafe5ccf...Greg Kroah-Hartman16 years
v2.6.34-rc1commit 57d54889cd...Linus Torvalds16 years
v2.6.33commit 60b341b778...Linus Torvalds16 years
v2.6.33-rc8commit 724e6d3fe8...Linus Torvalds16 years
v2.6.33-rc7commit 29275254ca...Linus Torvalds16 years
v2.6.33-rc6commit abe94c756c...Linus Torvalds16 years
v2.6.33-rc5commit 92dcffb916...Linus Torvalds16 years
v2.6.33-rc4commit 7284ce6c9f...Linus Torvalds16 years
v2.6.33-rc3commit 74d2e4f8d7...Linus Torvalds16 years
v2.6.33-rc2commit 6b7b284958...Linus Torvalds16 years
v2.6.33-rc1commit 55639353a0...Linus Torvalds16 years
v2.6.32commit 22763c5cf3...Linus Torvalds16 years
v2.6.32-rc8commit 648f4e3e50...Linus Torvalds16 years
v2.6.32-rc7commit 156171c71a...Linus Torvalds16 years
v2.6.32-rc6commit b419148e56...Linus Torvalds16 years
v2.6.32-rc5commit 012abeea66...Linus Torvalds16 years
v2.6.32-rc4commit 161291396e...Linus Torvalds16 years
v2.6.32-rc3commit 374576a8b6...Linus Torvalds16 years
v2.6.32-rc1commit 17d857be64...Linus Torvalds16 years
v2.6.32-rc2commit 17d857be64...Linus Torvalds16 years
v2.6.31commit 74fca6a428...Linus Torvalds16 years
v2.6.31-rc9commit e07cccf404...Linus Torvalds16 years
v2.6.31-rc8commit 326ba5010a...Linus Torvalds16 years
v2.6.31-rc7commit 422bef879e...Linus Torvalds16 years
v2.6.31-rc6commit 64f1607ffb...Linus Torvalds16 years
v2.6.31-rc5commit ed680c4ad4...Linus Torvalds16 years
v2.6.31-rc4commit 4be3bd7849...Linus Torvalds16 years
v2.6.31-rc3commit 6847e154e3...Linus Torvalds16 years
v2.6.31-rc2commit 8e4a718ff3...Linus Torvalds16 years
v2.6.31-rc1commit 28d0325ce6...Linus Torvalds16 years
v2.6.30commit 07a2039b8e...Linus Torvalds16 years
v2.6.30-rc8commit 9fa7eb283c...Linus Torvalds16 years
v2.6.30-rc7commit 59a3759d0f...Linus Torvalds16 years
v2.6.30-rc6commit 1406de8e11...Linus Torvalds16 years
v2.6.30-rc5commit 091bf7624d...Linus Torvalds16 years
v2.6.30-rc4commit 091438dd56...Linus Torvalds16 years
v2.6.30-rc3commit 0910697403...Linus Torvalds16 years
v2.6.30-rc2commit 0882e8dd3a...Linus Torvalds16 years
v2.6.30-rc1commit 577c9c456f...Linus Torvalds16 years
v2.6.29commit 8e0ee43bc2...Linus Torvalds16 years
v2.6.29-rc8commit 041b62374c...Linus Torvalds17 years
v2.6.29-rc7commit fec6c6fec3...Linus Torvalds17 years
v2.6.29-rc6commit 20f4d6c3a2...Linus Torvalds17 years
v2.6.29-rc5commit d2f8d7ee1a...Linus Torvalds17 years
v2.6.29-rc4commit 8e4921515c...Linus Torvalds17 years
v2.6.29-rc3commit 18e352e4a7...Linus Torvalds17 years
v2.6.29-rc2commit 1de9e8e70f...Linus Torvalds17 years
v2.6.29-rc1commit c59765042f...Linus Torvalds17 years
v2.6.28commit 4a6908a3a0...Linus Torvalds17 years
v2.6.28-rc9commit 929096fe9f...Linus Torvalds17 years
v2.6.28-rc8commit 8b1fae4e42...Linus Torvalds17 years
v2.6.28-rc7commit 061e41fdb5...Linus Torvalds17 years
v2.6.28-rc6commit 13d428afc0...Linus Torvalds17 years
v2.6.28-rc5commit 9bf1a2445f...Linus Torvalds17 years
v2.6.28-rc4commit f7160c7573...Linus Torvalds17 years
v2.6.28-rc3commit 45beca08dd...Linus Torvalds17 years
v2.6.28-rc2commit 0173a3265b...Linus Torvalds17 years
v2.6.28-rc1commit 57f8f7b60d...Linus Torvalds17 years
v2.6.27commit 3fa8749e58...Linus Torvalds17 years
v2.6.27-rc9commit 4330ed8ed4...Linus Torvalds17 years
v2.6.27-rc8commit 94aca1dac6...Linus Torvalds17 years
v2.6.27-rc7commit 72d31053f6...Linus Torvalds17 years
v2.6.27-rc6commit adee14b2e1...Linus Torvalds17 years
v2.6.27-rc5commit 24342c34a0...Linus Torvalds17 years
v2.6.27-rc4commit 6a55617ed5...Linus Torvalds17 years
v2.6.27-rc3commit 30a2f3c60a...Linus Torvalds17 years
v2.6.27-rc2commit 0967d61ea0...Linus Torvalds17 years
v2.6.27-rc1commit 6e86841d05...Linus Torvalds17 years
v2.6.26commit bce7f793da...Linus Torvalds17 years
v2.6.26-rc9commit b7279469d6...Linus Torvalds17 years
v2.6.26-rc8commit 543cf4cb3f...Linus Torvalds17 years
v2.6.26-rc7commit d70ac829b7...Linus Torvalds17 years
v2.6.26-rc6commit 5dd34572ad...Linus Torvalds17 years
v2.6.26-rc5commit 53c8ba9540...Linus Torvalds17 years
v2.6.26-rc4commit e490517a03...Linus Torvalds17 years
v2.6.26-rc3commit b8291ad07a...Linus Torvalds17 years
v2.6.26-rc2commit 492c2e476e...Linus Torvalds17 years
v2.6.26-rc1commit 2ddcca36c8...Linus Torvalds17 years
v2.6.25commit 4b119e21d0...Linus Torvalds17 years
v2.6.25-rc9commit 120dd64cac...Linus Torvalds17 years
v2.6.25-rc8commit 0e81a8ae37...Linus Torvalds17 years
v2.6.25-rc7commit 05dda977f2...Linus Torvalds17 years
v2.6.25-rc6commit a978b30af3...Linus Torvalds18 years
v2.6.25-rc5commit cdeeeae056...Linus Torvalds18 years
v2.6.25-rc4commit 29e8c3c304...Linus Torvalds18 years
v2.6.25-rc3commit bfa274e243...Linus Torvalds18 years
v2.6.25-rc2commit 101142c37b...Linus Torvalds18 years
v2.6.25-rc1commit 19af35546d...Linus Torvalds18 years
v2.6.24commit 49914084e7...Linus Torvalds18 years
v2.6.24-rc8commit cbd9c88369...Linus Torvalds18 years
v2.6.24-rc7commit 3ce5445046...Linus Torvalds18 years
v2.6.24-rc6commit ea67db4cdb...Linus Torvalds18 years
v2.6.24-rc5commit 82d29bf6dc...Linus Torvalds18 years
v2.6.24-rc4commit 09b56adc98...Linus Torvalds18 years
v2.6.24-rc3commit d9f8bcbf67...Linus Torvalds18 years
v2.6.24-rc2commit dbeeb816e8...Linus Torvalds18 years
v2.6.24-rc1commit c9927c2bf4...Linus Torvalds18 years
v2.6.23commit bbf25010f1...Linus Torvalds18 years
v2.6.23-rc9commit 3146b39c18...Linus Torvalds18 years
v2.6.23-rc8commit 4942de4a0e...Linus Torvalds18 years
v2.6.23-rc7commit 81cfe79b9c...Linus Torvalds18 years
v2.6.23-rc6commit 0d4cbb5e7f...Linus Torvalds18 years
v2.6.23-rc5commit 40ffbfad6b...Linus Torvalds18 years
v2.6.23-rc4commit b07d68b5ca...Linus Torvalds18 years
v2.6.23-rc3commit 39d3520c92...Linus Torvalds18 years
v2.6.23-rc2commit d4ac2477fa...Linus Torvalds18 years
v2.6.23-rc1commit f695baf2df...Linus Torvalds18 years
v2.6.22commit 7dcca30a32...Linus Torvalds18 years
v2.6.22-rc7commit a38d6181ff...Linus Torvalds18 years
v2.6.22-rc6commit 189548642c...Linus Torvalds18 years
v2.6.22-rc5commit 188e1f81ba...Linus Torvalds18 years
v2.6.22-rc4commit 5ecd3100e6...Linus Torvalds18 years
v2.6.22-rc3commit c420bc9f09...Linus Torvalds18 years
v2.6.22-rc2commit 55b637c6a0...Linus Torvalds18 years
v2.6.22-rc1commit 39403865d2...Linus Torvalds18 years
v2.6.21commit de46c33745...Linus Torvalds18 years
v2.6.21-rc7commit 94a05509a9...Linus Torvalds18 years
v2.6.21-rc6commit a21bd69e15...Linus Torvalds18 years
v2.6.21-rc5commit e0f2e3a06b...Linus Torvalds18 years
v2.6.21-rc4commit db98e0b434...Linus Torvalds19 years
v2.6.21-rc3commit 08e15e81a4...Linus Torvalds19 years
v2.6.21-rc2commit 606135a308...Linus Torvalds19 years
v2.6.21-rc1commit c8f71b01a5...Linus Torvalds19 years
v2.6.20commit 62d0cfcb27...Linus Torvalds19 years
v2.6.20-rc7commit f56df2f4db...Linus Torvalds19 years
v2.6.20-rc6commit 99abfeafb5...Linus Torvalds19 years
v2.6.20-rc5commit a8b3485287...Linus Torvalds19 years
v2.6.20-rc4commit bf81b46482...Linus Torvalds19 years
v2.6.20-rc3commit 669df1b478...Linus Torvalds19 years
v2.6.20-rc2commit 3bf8ba38f3...Linus Torvalds19 years
v2.6.20-rc1commit cc016448b0...Linus Torvalds19 years
v2.6.19commit 0215ffb08c...Linus Torvalds19 years
v2.6.19-rc6commit 44597f65f6...Linus Torvalds19 years
v2.6.19-rc5commit 80c2188127...Linus Torvalds19 years
v2.6.19-rc4commit ae99a78af3...Linus Torvalds19 years
v2.6.19-rc3commit 7059abedd2...Linus Torvalds19 years
v2.6.19-rc2commit b4bd8c6643...Linus Torvalds19 years
v2.6.19-rc1commit d223a60106...Linus Torvalds19 years
v2.6.18commit e478bec0ba...Linus Torvalds19 years
v2.6.18-rc7commit 95064a75eb...Linus Torvalds19 years
v2.6.18-rc6commit c336923b66...Linus Torvalds19 years
v2.6.18-rc5commit 60d4684068...Linus Torvalds19 years
v2.6.18-rc4commit 9f737633e6...Linus Torvalds19 years
v2.6.18-rc3commit b6ff50833a...Linus Torvalds19 years
v2.6.18-rc2commit 82d6897fef...Linus Torvalds19 years
v2.6.18-rc1commit 120bda20c6...Linus Torvalds19 years
v2.6.17commit 427abfa28a...Linus Torvalds19 years
v2.6.17-rc6commit 1def630a6a...Linus Torvalds19 years
v2.6.17-rc5commit a8bd60705a...Linus Torvalds19 years
v2.6.17-rc4commit d8c3291c73...Linus Torvalds19 years
v2.6.17-rc3commit 2be4d50295...Linus Torvalds19 years
v2.6.17-rc2commit 8bbde0e6d5...Linus Torvalds19 years
v2.6.17-rc1commit 6246b6128b...Linus Torvalds19 years
v2.6.16commit 7705a8792b...Linus Torvalds20 years
v2.6.16-rc6commit 535744878e...Linus Torvalds20 years
v2.6.16-rc5commit b9a33cebac...Linus Torvalds20 years
v2.6.16-rc4commit bd71c2b174...Linus Torvalds20 years
v2.6.16-rc3commit e9bb4c9929...Linus Torvalds20 years
v2.6.16-rc2commit 826eeb53a6...Linus Torvalds20 years
v2.6.16-rc1commit 2664b25051...Linus Torvalds20 years
v2.6.15commit 88026842b0...Linus Torvalds20 years
v2.6.15-rc7commit f89f5948fc...Linus Torvalds20 years
v2.6.15-rc6commit df7addbb45...Linus Torvalds20 years
v2.6.15-rc5commit 436b0f76f2...Linus Torvalds20 years
v2.6.15-rc4commit 5666c0947e...Linus Torvalds20 years
v2.6.15-rc3commit 624f54be20...Linus Torvalds20 years
v2.6.15-rc2commit 3bedff1d73...Linus Torvalds20 years
v2.6.15-rc1commit cd52d1ee9a...Linus Torvalds20 years
v2.6.14commit 741b2252a5...Linus Torvalds20 years
v2.6.14-rc5commit 93918e9afc...Linus Torvalds20 years
v2.6.14-rc4commit 907a426179...Linus Torvalds20 years
v2.6.14-rc3commit 1c9426e8a5...Linus Torvalds20 years
v2.6.14-rc2commit 676d55ae30...Linus Torvalds20 years
v2.6.14-rc1commit 2f4ba45a75...Linus Torvalds20 years
v2.6.13commit 02b3e4e2d7...Linus Torvalds20 years
v2.6.13-rc7commit 0572e3da3f...Linus Torvalds20 years
v2.6.13-rc6commit 6fc32179de...Linus Torvalds20 years
v2.6.13-rc5commit 9a351e30d7...Linus Torvalds20 years
v2.6.13-rc4commit 6395352334...Linus Torvalds20 years
v2.6.11tree c39ae07f39...
v2.6.11-treetree c39ae07f39...
v2.6.12commit 9ee1c939d1...
v2.6.12-rc2commit 1da177e4c3...
v2.6.12-rc3commit a2755a80f4...
v2.6.12-rc4commit 88d7bd8cb9...
v2.6.12-rc5commit 2a24ab628a...
v2.6.12-rc6commit 7cef5677ef...
v2.6.13-rc1commit 4c91aedb75...
v2.6.13-rc2commit a18bcb7450...
v2.6.13-rc3commit c32511e271...
26 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Implementation of the Transmission Control Protocol(TCP).
 *
 * Authors:	Ross Biro
 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 *		Florian La Roche, <flla@stud.uni-sb.de>
 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 *		Jorge Cwik, <jorge@laser.satlink.net>
 */

/*
 * Changes:
 *		Pedro Roque	:	Fast Retransmit/Recovery.
 *					Two receive queues.
 *					Retransmit queue handled by TCP.
 *					Better retransmit timer handling.
 *					New congestion avoidance.
 *					Header prediction.
 *					Variable renaming.
 *
 *		Eric		:	Fast Retransmit.
 *		Randy Scott	:	MSS option defines.
 *		Eric Schenk	:	Fixes to slow start algorithm.
 *		Eric Schenk	:	Yet another double ACK bug.
 *		Eric Schenk	:	Delayed ACK bug fixes.
 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
 *		David S. Miller	:	Don't allow zero congestion window.
 *		Eric Schenk	:	Fix retransmitter so that it sends
 *					next packet on ack of previous packet.
 *		Andi Kleen	:	Moved open_request checking here
 *					and process RSTs for open_requests.
 *		Andi Kleen	:	Better prune_queue, and other fixes.
 *		Andrey Savochkin:	Fix RTT measurements in the presence of
 *					timestamps.
 *		Andrey Savochkin:	Check sequence numbers correctly when
 *					removing SACKs due to in sequence incoming
 *					data segments.
 *		Andi Kleen:		Make sure we never ack data there is not
 *					enough room for. Also make this condition
 *					a fatal error if it might still happen.
 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
 *					connections with MSS<min(MTU,ann. MSS)
 *					work without delayed acks.
 *		Andi Kleen:		Process packets with PSH set in the
 *					fast path.
 *		J Hadi Salim:		ECN support
 *	 	Andrei Gurtov,
 *		Pasi Sarolahti,
 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
 *					engine. Lots of bugs are found.
 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/sysctl.h>
#include <net/dst.h>
#include <net/tcp.h>
#include <net/inet_common.h>
#include <linux/ipsec.h>
#include <asm/unaligned.h>
#include <net/netdma.h>

int sysctl_tcp_timestamps __read_mostly = 1;
int sysctl_tcp_window_scaling __read_mostly = 1;
int sysctl_tcp_sack __read_mostly = 1;
int sysctl_tcp_fack __read_mostly = 1;
int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
int sysctl_tcp_ecn __read_mostly;
int sysctl_tcp_dsack __read_mostly = 1;
int sysctl_tcp_app_win __read_mostly = 31;
int sysctl_tcp_adv_win_scale __read_mostly = 2;

int sysctl_tcp_stdurg __read_mostly;
int sysctl_tcp_rfc1337 __read_mostly;
int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
int sysctl_tcp_frto __read_mostly = 2;
int sysctl_tcp_frto_response __read_mostly;
int sysctl_tcp_nometrics_save __read_mostly;

int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
int sysctl_tcp_abc __read_mostly;

#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
#define FLAG_ECE		0x40 /* ECE in this ACK				*/
#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */

#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)

#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))

/* Adapt the MSS value used to make delayed ack decision to the
 * real world.
 */
static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
{
	struct inet_connection_sock *icsk = inet_csk(sk);
	const unsigned int lss = icsk->icsk_ack.last_seg_size;
	unsigned int len;

	icsk->icsk_ack.last_seg_size = 0;

	/* skb->len may jitter because of SACKs, even if peer
	 * sends good full-sized frames.
	 */
	len = skb_shinfo(skb)->gso_size ? : skb->len;
	if (len >= icsk->icsk_ack.rcv_mss) {
		icsk->icsk_ack.rcv_mss = len;
	} else {
		/* Otherwise, we make more careful check taking into account,
		 * that SACKs block is variable.
		 *
		 * "len" is invariant segment length, including TCP header.
		 */
		len += skb->data - skb_transport_header(skb);
		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
		    /* If PSH is not set, packet should be
		     * full sized, provided peer TCP is not badly broken.
		     * This observation (if it is correct 8)) allows
		     * to handle super-low mtu links fairly.
		     */
		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
			/* Subtract also invariant (if peer is RFC compliant),
			 * tcp header plus fixed timestamp option length.
			 * Resulting "len" is MSS free of SACK jitter.
			 */
			len -= tcp_sk(sk)->tcp_header_len;
			icsk->icsk_ack.last_seg_size = len;
			if (len == lss) {
				icsk->icsk_ack.rcv_mss = len;
				return;
			}
		}
		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
	}
}

static void tcp_incr_quickack(struct sock *sk)
{
	struct inet_connection_sock *icsk = inet_csk(sk);
	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);

	if (quickacks == 0)
		quickacks = 2;
	if (quickacks > icsk->icsk_ack.quick)
		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
}

void tcp_enter_quickack_mode(struct sock *sk)
{
	struct inet_connection_sock *icsk = inet_csk(sk);
	tcp_incr_quickack(sk);
	icsk->icsk_ack.pingpong = 0;
	icsk->icsk_ack.ato = TCP_ATO_MIN;
}

/* Send ACKs quickly, if "quick" count is not exhausted
 * and the session is not interactive.
 */

static inline int tcp_in_quickack_mode(const struct sock *sk)
{
	const struct inet_connection_sock *icsk = inet_csk(sk);
	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
}

static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
{
	if (tp->ecn_flags & TCP_ECN_OK)
		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
}

static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
{
	if (tcp_hdr(skb)->cwr)
		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
}

static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
{
	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
}

static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
{
	if (tp->ecn_flags & TCP_ECN_OK) {
		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
		/* Funny extension: if ECT is not set on a segment,
		 * it is surely retransmit. It is not in ECN RFC,
		 * but Linux follows this rule. */
		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
			tcp_enter_quickack_mode((struct sock *)tp);
	}
}

static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
{
	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
		tp->ecn_flags &= ~TCP_ECN_OK;
}

static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
{
	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
		tp->ecn_flags &= ~TCP_ECN_OK;
}

static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
{
	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
		return 1;
	return 0;
}

/* Buffer size and advertised window tuning.
 *
 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 */

static void tcp_fixup_sndbuf(struct sock *sk)
{
	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
		     sizeof(struct sk_buff);

	if (sk->sk_sndbuf < 3 * sndmem)
		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
}

/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 *
 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 * forward and advertised in receiver window (tp->rcv_wnd) and
 * "application buffer", required to isolate scheduling/application
 * latencies from network.
 * window_clamp is maximal advertised window. It can be less than
 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 * is reserved for "application" buffer. The less window_clamp is
 * the smoother our behaviour from viewpoint of network, but the lower
 * throughput and the higher sensitivity of the connection to losses. 8)
 *
 * rcv_ssthresh is more strict window_clamp used at "slow start"
 * phase to predict further behaviour of this connection.
 * It is used for two goals:
 * - to enforce header prediction at sender, even when application
 *   requires some significant "application buffer". It is check #1.
 * - to prevent pruning of receive queue because of misprediction
 *   of receiver window. Check #2.
 *
 * The scheme does not work when sender sends good segments opening
 * window and then starts to feed us spaghetti. But it should work
 * in common situations. Otherwise, we have to rely on queue collapsing.
 */

/* Slow part of check#2. */
static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);
	/* Optimize this! */
	int truesize = tcp_win_from_space(skb->truesize) >> 1;
	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;

	while (tp->rcv_ssthresh <= window) {
		if (truesize <= skb->len)
			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;

		truesize >>= 1;
		window >>= 1;
	}
	return 0;
}

static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);

	/* Check #1 */
	if (tp->rcv_ssthresh < tp->window_clamp &&
	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
	    !tcp_memory_pressure) {
		int incr;

		/* Check #2. Increase window, if skb with such overhead
		 * will fit to rcvbuf in future.
		 */
		if (tcp_win_from_space(skb->truesize) <= skb->len)
			incr = 2 * tp->advmss;
		else
			incr = __tcp_grow_window(sk, skb);

		if (incr) {
			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
					       tp->window_clamp);
			inet_csk(sk)->icsk_ack.quick |= 1;
		}
	}
}

/* 3. Tuning rcvbuf, when connection enters established state. */

static void tcp_fixup_rcvbuf(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);

	/* Try to select rcvbuf so that 4 mss-sized segments
	 * will fit to window and corresponding skbs will fit to our rcvbuf.
	 * (was 3; 4 is minimum to allow fast retransmit to work.)
	 */
	while (tcp_win_from_space(rcvmem) < tp->advmss)
		rcvmem += 128;
	if (sk->sk_rcvbuf < 4 * rcvmem)
		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
}

/* 4. Try to fixup all. It is made immediately after connection enters
 *    established state.
 */
static void tcp_init_buffer_space(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	int maxwin;

	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
		tcp_fixup_rcvbuf(sk);
	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
		tcp_fixup_sndbuf(sk);

	tp->rcvq_space.space = tp->rcv_wnd;

	maxwin = tcp_full_space(sk);

	if (tp->window_clamp >= maxwin) {
		tp->window_clamp = maxwin;

		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
			tp->window_clamp = max(maxwin -
					       (maxwin >> sysctl_tcp_app_win),
					       4 * tp->advmss);
	}

	/* Force reservation of one segment. */
	if (sysctl_tcp_app_win &&
	    tp->window_clamp > 2 * tp->advmss &&
	    tp->window_clamp + tp->advmss > maxwin)
		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);

	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
	tp->snd_cwnd_stamp = tcp_time_stamp;
}

/* 5. Recalculate window clamp after socket hit its memory bounds. */
static void tcp_clamp_window(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct inet_connection_sock *icsk = inet_csk(sk);

	icsk->icsk_ack.quick = 0;

	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
	    !tcp_memory_pressure &&
	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
				    sysctl_tcp_rmem[2]);
	}
	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
}

/* Initialize RCV_MSS value.
 * RCV_MSS is an our guess about MSS used by the peer.
 * We haven't any direct information about the MSS.
 * It's better to underestimate the RCV_MSS rather than overestimate.
 * Overestimations make us ACKing less frequently than needed.
 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 */
void tcp_initialize_rcv_mss(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);

	hint = min(hint, tp->rcv_wnd / 2);
	hint = min(hint, TCP_MIN_RCVMSS);
	hint = max(hint, TCP_MIN_MSS);

	inet_csk(sk)->icsk_ack.rcv_mss = hint;
}

/* Receiver "autotuning" code.
 *
 * The algorithm for RTT estimation w/o timestamps is based on
 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
 *
 * More detail on this code can be found at
 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
 * though this reference is out of date.  A new paper
 * is pending.
 */
static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
{
	u32 new_sample = tp->rcv_rtt_est.rtt;
	long m = sample;

	if (m == 0)
		m = 1;

	if (new_sample != 0) {
		/* If we sample in larger samples in the non-timestamp
		 * case, we could grossly overestimate the RTT especially
		 * with chatty applications or bulk transfer apps which
		 * are stalled on filesystem I/O.
		 *
		 * Also, since we are only going for a minimum in the
		 * non-timestamp case, we do not smooth things out
		 * else with timestamps disabled convergence takes too
		 * long.
		 */
		if (!win_dep) {
			m -= (new_sample >> 3);
			new_sample += m;
		} else if (m < new_sample)
			new_sample = m << 3;
	} else {
		/* No previous measure. */
		new_sample = m << 3;
	}

	if (tp->rcv_rtt_est.rtt != new_sample)
		tp->rcv_rtt_est.rtt = new_sample;
}

static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
{
	if (tp->rcv_rtt_est.time == 0)
		goto new_measure;
	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
		return;
	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);

new_measure:
	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
	tp->rcv_rtt_est.time = tcp_time_stamp;
}

static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
					  const struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);
	if (tp->rx_opt.rcv_tsecr &&
	    (TCP_SKB_CB(skb)->end_seq -
	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
}

/*
 * This function should be called every time data is copied to user space.
 * It calculates the appropriate TCP receive buffer space.
 */
void tcp_rcv_space_adjust(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	int time;
	int space;

	if (tp->rcvq_space.time == 0)
		goto new_measure;

	time = tcp_time_stamp - tp->rcvq_space.time;
	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
		return;

	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);

	space = max(tp->rcvq_space.space, space);

	if (tp->rcvq_space.space != space) {
		int rcvmem;

		tp->rcvq_space.space = space;

		if (sysctl_tcp_moderate_rcvbuf &&
		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
			int new_clamp = space;

			/* Receive space grows, normalize in order to
			 * take into account packet headers and sk_buff
			 * structure overhead.
			 */
			space /= tp->advmss;
			if (!space)
				space = 1;
			rcvmem = (tp->advmss + MAX_TCP_HEADER +
				  16 + sizeof(struct sk_buff));
			while (tcp_win_from_space(rcvmem) < tp->advmss)
				rcvmem += 128;
			space *= rcvmem;
			space = min(space, sysctl_tcp_rmem[2]);
			if (space > sk->sk_rcvbuf) {
				sk->sk_rcvbuf = space;

				/* Make the window clamp follow along.  */
				tp->window_clamp = new_clamp;
			}
		}
	}

new_measure:
	tp->rcvq_space.seq = tp->copied_seq;
	tp->rcvq_space.time = tcp_time_stamp;
}

/* There is something which you must keep in mind when you analyze the
 * behavior of the tp->ato delayed ack timeout interval.  When a
 * connection starts up, we want to ack as quickly as possible.  The
 * problem is that "good" TCP's do slow start at the beginning of data
 * transmission.  The means that until we send the first few ACK's the
 * sender will sit on his end and only queue most of his data, because
 * he can only send snd_cwnd unacked packets at any given time.  For
 * each ACK we send, he increments snd_cwnd and transmits more of his
 * queue.  -DaveM
 */
static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct inet_connection_sock *icsk = inet_csk(sk);
	u32 now;

	inet_csk_schedule_ack(sk);

	tcp_measure_rcv_mss(sk, skb);

	tcp_rcv_rtt_measure(tp);

	now = tcp_time_stamp;

	if (!icsk->icsk_ack.ato) {
		/* The _first_ data packet received, initialize
		 * delayed ACK engine.
		 */
		tcp_incr_quickack(sk);
		icsk->icsk_ack.ato = TCP_ATO_MIN;
	} else {
		int m = now - icsk->icsk_ack.lrcvtime;

		if (m <= TCP_ATO_MIN / 2) {
			/* The fastest case is the first. */
			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
		} else if (m < icsk->icsk_ack.ato) {
			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
			if (icsk->icsk_ack.ato > icsk->icsk_rto)
				icsk->icsk_ack.ato = icsk->icsk_rto;
		} else if (m > icsk->icsk_rto) {
			/* Too long gap. Apparently sender failed to
			 * restart window, so that we send ACKs quickly.
			 */
			tcp_incr_quickack(sk);
			sk_mem_reclaim(sk);
		}
	}
	icsk->icsk_ack.lrcvtime = now;

	TCP_ECN_check_ce(tp, skb);

	if (skb->len >= 128)
		tcp_grow_window(sk, skb);
}

static u32 tcp_rto_min(struct sock *sk)
{
	struct dst_entry *dst = __sk_dst_get(sk);
	u32 rto_min = TCP_RTO_MIN;

	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
		rto_min = dst_metric(dst, RTAX_RTO_MIN);
	return rto_min;
}

/* Called to compute a smoothed rtt estimate. The data fed to this
 * routine either comes from timestamps, or from segments that were
 * known _not_ to have been retransmitted [see Karn/Partridge
 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 * piece by Van Jacobson.
 * NOTE: the next three routines used to be one big routine.
 * To save cycles in the RFC 1323 implementation it was better to break
 * it up into three procedures. -- erics
 */
static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
{
	struct tcp_sock *tp = tcp_sk(sk);
	long m = mrtt; /* RTT */

	/*	The following amusing code comes from Jacobson's
	 *	article in SIGCOMM '88.  Note that rtt and mdev
	 *	are scaled versions of rtt and mean deviation.
	 *	This is designed to be as fast as possible
	 *	m stands for "measurement".
	 *
	 *	On a 1990 paper the rto value is changed to:
	 *	RTO = rtt + 4 * mdev
	 *
	 * Funny. This algorithm seems to be very broken.
	 * These formulae increase RTO, when it should be decreased, increase
	 * too slowly, when it should be increased quickly, decrease too quickly
	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
	 * does not matter how to _calculate_ it. Seems, it was trap
	 * that VJ failed to avoid. 8)
	 */
	if (m == 0)
		m = 1;
	if (tp->srtt != 0) {
		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
		if (m < 0) {
			m = -m;		/* m is now abs(error) */
			m -= (tp->mdev >> 2);   /* similar update on mdev */
			/* This is similar to one of Eifel findings.
			 * Eifel blocks mdev updates when rtt decreases.
			 * This solution is a bit different: we use finer gain
			 * for mdev in this case (alpha*beta).
			 * Like Eifel it also prevents growth of rto,
			 * but also it limits too fast rto decreases,
			 * happening in pure Eifel.
			 */
			if (m > 0)
				m >>= 3;
		} else {
			m -= (tp->mdev >> 2);   /* similar update on mdev */
		}
		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
		if (tp->mdev > tp->mdev_max) {
			tp->mdev_max = tp->mdev;
			if (tp->mdev_max > tp->rttvar)
				tp->rttvar = tp->mdev_max;
		}
		if (after(tp->snd_una, tp->rtt_seq)) {
			if (tp->mdev_max < tp->rttvar)
				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
			tp->rtt_seq = tp->snd_nxt;
			tp->mdev_max = tcp_rto_min(sk);
		}
	} else {
		/* no previous measure. */
		tp->srtt = m << 3;	/* take the measured time to be rtt */
		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
		tp->rtt_seq = tp->snd_nxt;
	}
}

/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 * routine referred to above.
 */
static inline void tcp_set_rto(struct sock *sk)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	/* Old crap is replaced with new one. 8)
	 *
	 * More seriously:
	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
	 *    It cannot be less due to utterly erratic ACK generation made
	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
	 *    to do with delayed acks, because at cwnd>2 true delack timeout
	 *    is invisible. Actually, Linux-2.4 also generates erratic
	 *    ACKs in some circumstances.
	 */
	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;

	/* 2. Fixups made earlier cannot be right.
	 *    If we do not estimate RTO correctly without them,
	 *    all the algo is pure shit and should be replaced
	 *    with correct one. It is exactly, which we pretend to do.
	 */
}

/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 * guarantees that rto is higher.
 */
static inline void tcp_bound_rto(struct sock *sk)
{
	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
}

/* Save metrics learned by this TCP session.
   This function is called only, when TCP finishes successfully
   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
 */
void tcp_update_metrics(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct dst_entry *dst = __sk_dst_get(sk);

	if (sysctl_tcp_nometrics_save)
		return;

	dst_confirm(dst);

	if (dst && (dst->flags & DST_HOST)) {
		const struct inet_connection_sock *icsk = inet_csk(sk);
		int m;

		if (icsk->icsk_backoff || !tp->srtt) {
			/* This session failed to estimate rtt. Why?
			 * Probably, no packets returned in time.
			 * Reset our results.
			 */
			if (!(dst_metric_locked(dst, RTAX_RTT)))
				dst->metrics[RTAX_RTT - 1] = 0;
			return;
		}

		m = dst_metric(dst, RTAX_RTT) - tp->srtt;

		/* If newly calculated rtt larger than stored one,
		 * store new one. Otherwise, use EWMA. Remember,
		 * rtt overestimation is always better than underestimation.
		 */
		if (!(dst_metric_locked(dst, RTAX_RTT))) {
			if (m <= 0)
				dst->metrics[RTAX_RTT - 1] = tp->srtt;
			else
				dst->metrics[RTAX_RTT - 1] -= (m >> 3);
		}

		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
			if (m < 0)
				m = -m;

			/* Scale deviation to rttvar fixed point */
			m >>= 1;
			if (m < tp->mdev)
				m = tp->mdev;

			if (m >= dst_metric(dst, RTAX_RTTVAR))
				dst->metrics[RTAX_RTTVAR - 1] = m;
			else
				dst->metrics[RTAX_RTTVAR-1] -=
					(dst_metric(dst, RTAX_RTTVAR) - m)>>2;
		}

		if (tp->snd_ssthresh >= 0xFFFF) {
			/* Slow start still did not finish. */
			if (dst_metric(dst, RTAX_SSTHRESH) &&
			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
			if (!dst_metric_locked(dst, RTAX_CWND) &&
			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
			   icsk->icsk_ca_state == TCP_CA_Open) {
			/* Cong. avoidance phase, cwnd is reliable. */
			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
				dst->metrics[RTAX_SSTHRESH-1] =
					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
			if (!dst_metric_locked(dst, RTAX_CWND))
				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
		} else {
			/* Else slow start did not finish, cwnd is non-sense,
			   ssthresh may be also invalid.
			 */
			if (!dst_metric_locked(dst, RTAX_CWND))
				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
			if (dst_metric(dst, RTAX_SSTHRESH) &&
			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
		}

		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
			    tp->reordering != sysctl_tcp_reordering)
				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
		}
	}
}

/* Numbers are taken from RFC3390.
 *
 * John Heffner states:
 *
 *	The RFC specifies a window of no more than 4380 bytes
 *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
 *	is a bit misleading because they use a clamp at 4380 bytes
 *	rather than use a multiplier in the relevant range.
 */
__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
{
	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);

	if (!cwnd) {
		if (tp->mss_cache > 1460)
			cwnd = 2;
		else
			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
	}
	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
}

/* Set slow start threshold and cwnd not falling to slow start */
void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
{
	struct tcp_sock *tp = tcp_sk(sk);
	const struct inet_connection_sock *icsk = inet_csk(sk);

	tp->prior_ssthresh = 0;
	tp->bytes_acked = 0;
	if (icsk->icsk_ca_state < TCP_CA_CWR) {
		tp->undo_marker = 0;
		if (set_ssthresh)
			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
		tp->snd_cwnd = min(tp->snd_cwnd,
				   tcp_packets_in_flight(tp) + 1U);
		tp->snd_cwnd_cnt = 0;
		tp->high_seq = tp->snd_nxt;
		tp->snd_cwnd_stamp = tcp_time_stamp;
		TCP_ECN_queue_cwr(tp);

		tcp_set_ca_state(sk, TCP_CA_CWR);
	}
}

/*
 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 * disables it when reordering is detected
 */
static void tcp_disable_fack(struct tcp_sock *tp)
{
	/* RFC3517 uses different metric in lost marker => reset on change */
	if (tcp_is_fack(tp))
		tp->lost_skb_hint = NULL;
	tp->rx_opt.sack_ok &= ~2;
}

/* Take a notice that peer is sending D-SACKs */
static void tcp_dsack_seen(struct tcp_sock *tp)
{
	tp->rx_opt.sack_ok |= 4;
}

/* Initialize metrics on socket. */

static void tcp_init_metrics(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct dst_entry *dst = __sk_dst_get(sk);

	if (dst == NULL)
		goto reset;

	dst_confirm(dst);

	if (dst_metric_locked(dst, RTAX_CWND))
		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
	if (dst_metric(dst, RTAX_SSTHRESH)) {
		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
			tp->snd_ssthresh = tp->snd_cwnd_clamp;
	}
	if (dst_metric(dst, RTAX_REORDERING) &&
	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
		tcp_disable_fack(tp);
		tp->reordering = dst_metric(dst, RTAX_REORDERING);
	}

	if (dst_metric(dst, RTAX_RTT) == 0)
		goto reset;

	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
		goto reset;

	/* Initial rtt is determined from SYN,SYN-ACK.
	 * The segment is small and rtt may appear much
	 * less than real one. Use per-dst memory
	 * to make it more realistic.
	 *
	 * A bit of theory. RTT is time passed after "normal" sized packet
	 * is sent until it is ACKed. In normal circumstances sending small
	 * packets force peer to delay ACKs and calculation is correct too.
	 * The algorithm is adaptive and, provided we follow specs, it
	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
	 * tricks sort of "quick acks" for time long enough to decrease RTT
	 * to low value, and then abruptly stops to do it and starts to delay
	 * ACKs, wait for troubles.
	 */
	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
		tp->srtt = dst_metric(dst, RTAX_RTT);
		tp->rtt_seq = tp->snd_nxt;
	}
	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
	}
	tcp_set_rto(sk);
	tcp_bound_rto(sk);
	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
		goto reset;
	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
	tp->snd_cwnd_stamp = tcp_time_stamp;
	return;

reset:
	/* Play conservative. If timestamps are not
	 * supported, TCP will fail to recalculate correct
	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
	 */
	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
		tp->srtt = 0;
		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
	}
}

static void tcp_update_reordering(struct sock *sk, const int metric,
				  const int ts)
{
	struct tcp_sock *tp = tcp_sk(sk);
	if (metric > tp->reordering) {
		tp->reordering = min(TCP_MAX_REORDERING, metric);

		/* This exciting event is worth to be remembered. 8) */
		if (ts)
			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
		else if (tcp_is_reno(tp))
			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
		else if (tcp_is_fack(tp))
			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
		else
			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
#if FASTRETRANS_DEBUG > 1
		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
		       tp->reordering,
		       tp->fackets_out,
		       tp->sacked_out,
		       tp->undo_marker ? tp->undo_retrans : 0);
#endif
		tcp_disable_fack(tp);
	}
}

/* This procedure tags the retransmission queue when SACKs arrive.
 *
 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 * Packets in queue with these bits set are counted in variables
 * sacked_out, retrans_out and lost_out, correspondingly.
 *
 * Valid combinations are:
 * Tag  InFlight	Description
 * 0	1		- orig segment is in flight.
 * S	0		- nothing flies, orig reached receiver.
 * L	0		- nothing flies, orig lost by net.
 * R	2		- both orig and retransmit are in flight.
 * L|R	1		- orig is lost, retransmit is in flight.
 * S|R  1		- orig reached receiver, retrans is still in flight.
 * (L|S|R is logically valid, it could occur when L|R is sacked,
 *  but it is equivalent to plain S and code short-curcuits it to S.
 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 *
 * These 6 states form finite state machine, controlled by the following events:
 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 * 3. Loss detection event of one of three flavors:
 *	A. Scoreboard estimator decided the packet is lost.
 *	   A'. Reno "three dupacks" marks head of queue lost.
 *	   A''. Its FACK modfication, head until snd.fack is lost.
 *	B. SACK arrives sacking data transmitted after never retransmitted
 *	   hole was sent out.
 *	C. SACK arrives sacking SND.NXT at the moment, when the
 *	   segment was retransmitted.
 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 *
 * It is pleasant to note, that state diagram turns out to be commutative,
 * so that we are allowed not to be bothered by order of our actions,
 * when multiple events arrive simultaneously. (see the function below).
 *
 * Reordering detection.
 * --------------------
 * Reordering metric is maximal distance, which a packet can be displaced
 * in packet stream. With SACKs we can estimate it:
 *
 * 1. SACK fills old hole and the corresponding segment was not
 *    ever retransmitted -> reordering. Alas, we cannot use it
 *    when segment was retransmitted.
 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 *    for retransmitted and already SACKed segment -> reordering..
 * Both of these heuristics are not used in Loss state, when we cannot
 * account for retransmits accurately.
 *
 * SACK block validation.
 * ----------------------
 *
 * SACK block range validation checks that the received SACK block fits to
 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 * Note that SND.UNA is not included to the range though being valid because
 * it means that the receiver is rather inconsistent with itself reporting
 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 * perfectly valid, however, in light of RFC2018 which explicitly states
 * that "SACK block MUST reflect the newest segment.  Even if the newest
 * segment is going to be discarded ...", not that it looks very clever
 * in case of head skb. Due to potentional receiver driven attacks, we
 * choose to avoid immediate execution of a walk in write queue due to
 * reneging and defer head skb's loss recovery to standard loss recovery
 * procedure that will eventually trigger (nothing forbids us doing this).
 *
 * Implements also blockage to start_seq wrap-around. Problem lies in the
 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 * there's no guarantee that it will be before snd_nxt (n). The problem
 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 * wrap (s_w):
 *
 *         <- outs wnd ->                          <- wrapzone ->
 *         u     e      n                         u_w   e_w  s n_w
 *         |     |      |                          |     |   |  |
 * |<------------+------+----- TCP seqno space --------------+---------->|
 * ...-- <2^31 ->|                                           |<--------...
 * ...---- >2^31 ------>|                                    |<--------...
 *
 * Current code wouldn't be vulnerable but it's better still to discard such
 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
 * equal to the ideal case (infinite seqno space without wrap caused issues).
 *
 * With D-SACK the lower bound is extended to cover sequence space below
 * SND.UNA down to undo_marker, which is the last point of interest. Yet
 * again, D-SACK block must not to go across snd_una (for the same reason as
 * for the normal SACK blocks, explained above). But there all simplicity
 * ends, TCP might receive valid D-SACKs below that. As long as they reside
 * fully below undo_marker they do not affect behavior in anyway and can
 * therefore be safely ignored. In rare cases (which are more or less
 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
 * fragmentation and packet reordering past skb's retransmission. To consider
 * them correctly, the acceptable range must be extended even more though
 * the exact amount is rather hard to quantify. However, tp->max_window can
 * be used as an exaggerated estimate.
 */
static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
				  u32 start_seq, u32 end_seq)
{
	/* Too far in future, or reversed (interpretation is ambiguous) */
	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
		return 0;

	/* Nasty start_seq wrap-around check (see comments above) */
	if (!before(start_seq, tp->snd_nxt))
		return 0;

	/* In outstanding window? ...This is valid exit for D-SACKs too.
	 * start_seq == snd_una is non-sensical (see comments above)
	 */
	if (after(start_seq, tp->snd_una))
		return 1;

	if (!is_dsack || !tp->undo_marker)
		return 0;

	/* ...Then it's D-SACK, and must reside below snd_una completely */
	if (!after(end_seq, tp->snd_una))
		return 0;

	if (!before(start_seq, tp->undo_marker))
		return 1;

	/* Too old */
	if (!after(end_seq, tp->undo_marker))
		return 0;

	/* Undo_marker boundary crossing (overestimates a lot). Known already:
	 *   start_seq < undo_marker and end_seq >= undo_marker.
	 */
	return !before(start_seq, end_seq - tp->max_window);
}

/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
 * Event "C". Later note: FACK people cheated me again 8), we have to account
 * for reordering! Ugly, but should help.
 *
 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
 * less than what is now known to be received by the other end (derived from
 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
 * retransmitted skbs to avoid some costly processing per ACKs.
 */
static void tcp_mark_lost_retrans(struct sock *sk)
{
	const struct inet_connection_sock *icsk = inet_csk(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;
	int cnt = 0;
	u32 new_low_seq = tp->snd_nxt;
	u32 received_upto = tcp_highest_sack_seq(tp);

	if (!tcp_is_fack(tp) || !tp->retrans_out ||
	    !after(received_upto, tp->lost_retrans_low) ||
	    icsk->icsk_ca_state != TCP_CA_Recovery)
		return;

	tcp_for_write_queue(skb, sk) {
		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;

		if (skb == tcp_send_head(sk))
			break;
		if (cnt == tp->retrans_out)
			break;
		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
			continue;

		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
			continue;

		if (after(received_upto, ack_seq) &&
		    (tcp_is_fack(tp) ||
		     !before(received_upto,
			     ack_seq + tp->reordering * tp->mss_cache))) {
			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
			tp->retrans_out -= tcp_skb_pcount(skb);

			/* clear lost hint */
			tp->retransmit_skb_hint = NULL;

			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
				tp->lost_out += tcp_skb_pcount(skb);
				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
			}
			NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
		} else {
			if (before(ack_seq, new_low_seq))
				new_low_seq = ack_seq;
			cnt += tcp_skb_pcount(skb);
		}
	}

	if (tp->retrans_out)
		tp->lost_retrans_low = new_low_seq;
}

static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
			   struct tcp_sack_block_wire *sp, int num_sacks,
			   u32 prior_snd_una)
{
	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
	int dup_sack = 0;

	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
		dup_sack = 1;
		tcp_dsack_seen(tp);
		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
	} else if (num_sacks > 1) {
		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);

		if (!after(end_seq_0, end_seq_1) &&
		    !before(start_seq_0, start_seq_1)) {
			dup_sack = 1;
			tcp_dsack_seen(tp);
			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
		}
	}

	/* D-SACK for already forgotten data... Do dumb counting. */
	if (dup_sack &&
	    !after(end_seq_0, prior_snd_una) &&
	    after(end_seq_0, tp->undo_marker))
		tp->undo_retrans--;

	return dup_sack;
}

/* Check if skb is fully within the SACK block. In presence of GSO skbs,
 * the incoming SACK may not exactly match but we can find smaller MSS
 * aligned portion of it that matches. Therefore we might need to fragment
 * which may fail and creates some hassle (caller must handle error case
 * returns).
 */
static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
				 u32 start_seq, u32 end_seq)
{
	int in_sack, err;
	unsigned int pkt_len;

	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);

	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {

		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);

		if (!in_sack)
			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
		else
			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
		if (err < 0)
			return err;
	}

	return in_sack;
}

static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
			   int *reord, int dup_sack, int fack_count)
{
	struct tcp_sock *tp = tcp_sk(sk);
	u8 sacked = TCP_SKB_CB(skb)->sacked;
	int flag = 0;

	/* Account D-SACK for retransmitted packet. */
	if (dup_sack && (sacked & TCPCB_RETRANS)) {
		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
			tp->undo_retrans--;
		if (sacked & TCPCB_SACKED_ACKED)
			*reord = min(fack_count, *reord);
	}

	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
		return flag;

	if (!(sacked & TCPCB_SACKED_ACKED)) {
		if (sacked & TCPCB_SACKED_RETRANS) {
			/* If the segment is not tagged as lost,
			 * we do not clear RETRANS, believing
			 * that retransmission is still in flight.
			 */
			if (sacked & TCPCB_LOST) {
				TCP_SKB_CB(skb)->sacked &=
					~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
				tp->lost_out -= tcp_skb_pcount(skb);
				tp->retrans_out -= tcp_skb_pcount(skb);

				/* clear lost hint */
				tp->retransmit_skb_hint = NULL;
			}
		} else {
			if (!(sacked & TCPCB_RETRANS)) {
				/* New sack for not retransmitted frame,
				 * which was in hole. It is reordering.
				 */
				if (before(TCP_SKB_CB(skb)->seq,
					   tcp_highest_sack_seq(tp)))
					*reord = min(fack_count, *reord);

				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
					flag |= FLAG_ONLY_ORIG_SACKED;
			}

			if (sacked & TCPCB_LOST) {
				TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
				tp->lost_out -= tcp_skb_pcount(skb);

				/* clear lost hint */
				tp->retransmit_skb_hint = NULL;
			}
		}

		TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
		flag |= FLAG_DATA_SACKED;
		tp->sacked_out += tcp_skb_pcount(skb);

		fack_count += tcp_skb_pcount(skb);

		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
		    before(TCP_SKB_CB(skb)->seq,
			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
			tp->lost_cnt_hint += tcp_skb_pcount(skb);

		if (fack_count > tp->fackets_out)
			tp->fackets_out = fack_count;

		if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
			tcp_advance_highest_sack(sk, skb);
	}

	/* D-SACK. We can detect redundant retransmission in S|R and plain R
	 * frames and clear it. undo_retrans is decreased above, L|R frames
	 * are accounted above as well.
	 */
	if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
		tp->retrans_out -= tcp_skb_pcount(skb);
		tp->retransmit_skb_hint = NULL;
	}

	return flag;
}

static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
					struct tcp_sack_block *next_dup,
					u32 start_seq, u32 end_seq,
					int dup_sack_in, int *fack_count,
					int *reord, int *flag)
{
	tcp_for_write_queue_from(skb, sk) {
		int in_sack = 0;
		int dup_sack = dup_sack_in;

		if (skb == tcp_send_head(sk))
			break;

		/* queue is in-order => we can short-circuit the walk early */
		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
			break;

		if ((next_dup != NULL) &&
		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
			in_sack = tcp_match_skb_to_sack(sk, skb,
							next_dup->start_seq,
							next_dup->end_seq);
			if (in_sack > 0)
				dup_sack = 1;
		}

		if (in_sack <= 0)
			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
							end_seq);
		if (unlikely(in_sack < 0))
			break;

		if (in_sack)
			*flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
						 *fack_count);

		*fack_count += tcp_skb_pcount(skb);
	}
	return skb;
}

/* Avoid all extra work that is being done by sacktag while walking in
 * a normal way
 */
static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
					u32 skip_to_seq, int *fack_count)
{
	tcp_for_write_queue_from(skb, sk) {
		if (skb == tcp_send_head(sk))
			break;

		if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
			break;

		*fack_count += tcp_skb_pcount(skb);
	}
	return skb;
}

static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
						struct sock *sk,
						struct tcp_sack_block *next_dup,
						u32 skip_to_seq,
						int *fack_count, int *reord,
						int *flag)
{
	if (next_dup == NULL)
		return skb;

	if (before(next_dup->start_seq, skip_to_seq)) {
		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
		skb = tcp_sacktag_walk(skb, sk, NULL,
				     next_dup->start_seq, next_dup->end_seq,
				     1, fack_count, reord, flag);
	}

	return skb;
}

static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
{
	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
}

static int
tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
			u32 prior_snd_una)
{
	const struct inet_connection_sock *icsk = inet_csk(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	unsigned char *ptr = (skb_transport_header(ack_skb) +
			      TCP_SKB_CB(ack_skb)->sacked);
	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
	struct tcp_sack_block sp[4];
	struct tcp_sack_block *cache;
	struct sk_buff *skb;
	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
	int used_sacks;
	int reord = tp->packets_out;
	int flag = 0;
	int found_dup_sack = 0;
	int fack_count;
	int i, j;
	int first_sack_index;

	if (!tp->sacked_out) {
		if (WARN_ON(tp->fackets_out))
			tp->fackets_out = 0;
		tcp_highest_sack_reset(sk);
	}

	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
					 num_sacks, prior_snd_una);
	if (found_dup_sack)
		flag |= FLAG_DSACKING_ACK;

	/* Eliminate too old ACKs, but take into
	 * account more or less fresh ones, they can
	 * contain valid SACK info.
	 */
	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
		return 0;

	if (!tp->packets_out)
		goto out;

	used_sacks = 0;
	first_sack_index = 0;
	for (i = 0; i < num_sacks; i++) {
		int dup_sack = !i && found_dup_sack;

		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);

		if (!tcp_is_sackblock_valid(tp, dup_sack,
					    sp[used_sacks].start_seq,
					    sp[used_sacks].end_seq)) {
			if (dup_sack) {
				if (!tp->undo_marker)
					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
				else
					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
			} else {
				/* Don't count olds caused by ACK reordering */
				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
				    !after(sp[used_sacks].end_seq, tp->snd_una))
					continue;
				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
			}
			if (i == 0)
				first_sack_index = -1;
			continue;
		}

		/* Ignore very old stuff early */
		if (!after(sp[used_sacks].end_seq, prior_snd_una))
			continue;

		used_sacks++;
	}

	/* order SACK blocks to allow in order walk of the retrans queue */
	for (i = used_sacks - 1; i > 0; i--) {
		for (j = 0; j < i; j++) {
			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
				struct tcp_sack_block tmp;

				tmp = sp[j];
				sp[j] = sp[j + 1];
				sp[j + 1] = tmp;

				/* Track where the first SACK block goes to */
				if (j == first_sack_index)
					first_sack_index = j + 1;
			}
		}
	}

	skb = tcp_write_queue_head(sk);
	fack_count = 0;
	i = 0;

	if (!tp->sacked_out) {
		/* It's already past, so skip checking against it */
		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
	} else {
		cache = tp->recv_sack_cache;
		/* Skip empty blocks in at head of the cache */
		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
		       !cache->end_seq)
			cache++;
	}

	while (i < used_sacks) {
		u32 start_seq = sp[i].start_seq;
		u32 end_seq = sp[i].end_seq;
		int dup_sack = (found_dup_sack && (i == first_sack_index));
		struct tcp_sack_block *next_dup = NULL;

		if (found_dup_sack && ((i + 1) == first_sack_index))
			next_dup = &sp[i + 1];

		/* Event "B" in the comment above. */
		if (after(end_seq, tp->high_seq))
			flag |= FLAG_DATA_LOST;

		/* Skip too early cached blocks */
		while (tcp_sack_cache_ok(tp, cache) &&
		       !before(start_seq, cache->end_seq))
			cache++;

		/* Can skip some work by looking recv_sack_cache? */
		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
		    after(end_seq, cache->start_seq)) {

			/* Head todo? */
			if (before(start_seq, cache->start_seq)) {
				skb = tcp_sacktag_skip(skb, sk, start_seq,
						       &fack_count);
				skb = tcp_sacktag_walk(skb, sk, next_dup,
						       start_seq,
						       cache->start_seq,
						       dup_sack, &fack_count,
						       &reord, &flag);
			}

			/* Rest of the block already fully processed? */
			if (!after(end_seq, cache->end_seq))
				goto advance_sp;

			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
						       cache->end_seq,
						       &fack_count, &reord,
						       &flag);

			/* ...tail remains todo... */
			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
				/* ...but better entrypoint exists! */
				skb = tcp_highest_sack(sk);
				if (skb == NULL)
					break;
				fack_count = tp->fackets_out;
				cache++;
				goto walk;
			}

			skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
					       &fack_count);
			/* Check overlap against next cached too (past this one already) */
			cache++;
			continue;
		}

		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
			skb = tcp_highest_sack(sk);
			if (skb == NULL)
				break;
			fack_count = tp->fackets_out;
		}
		skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);

walk:
		skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
				       dup_sack, &fack_count, &reord, &flag);

advance_sp:
		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
		 * due to in-order walk
		 */
		if (after(end_seq, tp->frto_highmark))
			flag &= ~FLAG_ONLY_ORIG_SACKED;

		i++;
	}

	/* Clear the head of the cache sack blocks so we can skip it next time */
	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
		tp->recv_sack_cache[i].start_seq = 0;
		tp->recv_sack_cache[i].end_seq = 0;
	}
	for (j = 0; j < used_sacks; j++)
		tp->recv_sack_cache[i++] = sp[j];

	tcp_mark_lost_retrans(sk);

	tcp_verify_left_out(tp);

	if ((reord < tp->fackets_out) &&
	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
		tcp_update_reordering(sk, tp->fackets_out - reord, 0);

out:

#if FASTRETRANS_DEBUG > 0
	BUG_TRAP((int)tp->sacked_out >= 0);
	BUG_TRAP((int)tp->lost_out >= 0);
	BUG_TRAP((int)tp->retrans_out >= 0);
	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
#endif
	return flag;
}

/* Limits sacked_out so that sum with lost_out isn't ever larger than
 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
 */
int tcp_limit_reno_sacked(struct tcp_sock *tp)
{
	u32 holes;

	holes = max(tp->lost_out, 1U);
	holes = min(holes, tp->packets_out);

	if ((tp->sacked_out + holes) > tp->packets_out) {
		tp->sacked_out = tp->packets_out - holes;
		return 1;
	}
	return 0;
}

/* If we receive more dupacks than we expected counting segments
 * in assumption of absent reordering, interpret this as reordering.
 * The only another reason could be bug in receiver TCP.
 */
static void tcp_check_reno_reordering(struct sock *sk, const int addend)
{
	struct tcp_sock *tp = tcp_sk(sk);
	if (tcp_limit_reno_sacked(tp))
		tcp_update_reordering(sk, tp->packets_out + addend, 0);
}

/* Emulate SACKs for SACKless connection: account for a new dupack. */

static void tcp_add_reno_sack(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	tp->sacked_out++;
	tcp_check_reno_reordering(sk, 0);
	tcp_verify_left_out(tp);
}

/* Account for ACK, ACKing some data in Reno Recovery phase. */

static void tcp_remove_reno_sacks(struct sock *sk, int acked)
{
	struct tcp_sock *tp = tcp_sk(sk);

	if (acked > 0) {
		/* One ACK acked hole. The rest eat duplicate ACKs. */
		if (acked - 1 >= tp->sacked_out)
			tp->sacked_out = 0;
		else
			tp->sacked_out -= acked - 1;
	}
	tcp_check_reno_reordering(sk, acked);
	tcp_verify_left_out(tp);
}

static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
{
	tp->sacked_out = 0;
}

static int tcp_is_sackfrto(const struct tcp_sock *tp)
{
	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
}

/* F-RTO can only be used if TCP has never retransmitted anything other than
 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
 */
int tcp_use_frto(struct sock *sk)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	const struct inet_connection_sock *icsk = inet_csk(sk);
	struct sk_buff *skb;

	if (!sysctl_tcp_frto)
		return 0;

	/* MTU probe and F-RTO won't really play nicely along currently */
	if (icsk->icsk_mtup.probe_size)
		return 0;

	if (tcp_is_sackfrto(tp))
		return 1;

	/* Avoid expensive walking of rexmit queue if possible */
	if (tp->retrans_out > 1)
		return 0;

	skb = tcp_write_queue_head(sk);
	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
	tcp_for_write_queue_from(skb, sk) {
		if (skb == tcp_send_head(sk))
			break;
		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
			return 0;
		/* Short-circuit when first non-SACKed skb has been checked */
		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
			break;
	}
	return 1;
}

/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
 * recovery a bit and use heuristics in tcp_process_frto() to detect if
 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
 * keep retrans_out counting accurate (with SACK F-RTO, other than head
 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
 * bits are handled if the Loss state is really to be entered (in
 * tcp_enter_frto_loss).
 *
 * Do like tcp_enter_loss() would; when RTO expires the second time it
 * does:
 *  "Reduce ssthresh if it has not yet been made inside this window."
 */
void tcp_enter_frto(struct sock *sk)
{
	const struct inet_connection_sock *icsk = inet_csk(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;

	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
	    tp->snd_una == tp->high_seq ||
	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
	     !icsk->icsk_retransmits)) {
		tp->prior_ssthresh = tcp_current_ssthresh(sk);
		/* Our state is too optimistic in ssthresh() call because cwnd
		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
		 * recovery has not yet completed. Pattern would be this: RTO,
		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
		 * up here twice).
		 * RFC4138 should be more specific on what to do, even though
		 * RTO is quite unlikely to occur after the first Cumulative ACK
		 * due to back-off and complexity of triggering events ...
		 */
		if (tp->frto_counter) {
			u32 stored_cwnd;
			stored_cwnd = tp->snd_cwnd;
			tp->snd_cwnd = 2;
			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
			tp->snd_cwnd = stored_cwnd;
		} else {
			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
		}
		/* ... in theory, cong.control module could do "any tricks" in
		 * ssthresh(), which means that ca_state, lost bits and lost_out
		 * counter would have to be faked before the call occurs. We
		 * consider that too expensive, unlikely and hacky, so modules
		 * using these in ssthresh() must deal these incompatibility
		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
		 */
		tcp_ca_event(sk, CA_EVENT_FRTO);
	}

	tp->undo_marker = tp->snd_una;
	tp->undo_retrans = 0;

	skb = tcp_write_queue_head(sk);
	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
		tp->undo_marker = 0;
	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
		tp->retrans_out -= tcp_skb_pcount(skb);
	}
	tcp_verify_left_out(tp);

	/* Too bad if TCP was application limited */
	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);

	/* Earlier loss recovery underway (see RFC4138; Appendix B).
	 * The last condition is necessary at least in tp->frto_counter case.
	 */
	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
	    after(tp->high_seq, tp->snd_una)) {
		tp->frto_highmark = tp->high_seq;
	} else {
		tp->frto_highmark = tp->snd_nxt;
	}
	tcp_set_ca_state(sk, TCP_CA_Disorder);
	tp->high_seq = tp->snd_nxt;
	tp->frto_counter = 1;
}

/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
 * which indicates that we should follow the traditional RTO recovery,
 * i.e. mark everything lost and do go-back-N retransmission.
 */
static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;

	tp->lost_out = 0;
	tp->retrans_out = 0;
	if (tcp_is_reno(tp))
		tcp_reset_reno_sack(tp);

	tcp_for_write_queue(skb, sk) {
		if (skb == tcp_send_head(sk))
			break;

		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
		/*
		 * Count the retransmission made on RTO correctly (only when
		 * waiting for the first ACK and did not get it)...
		 */
		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
			/* For some reason this R-bit might get cleared? */
			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
				tp->retrans_out += tcp_skb_pcount(skb);
			/* ...enter this if branch just for the first segment */
			flag |= FLAG_DATA_ACKED;
		} else {
			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
				tp->undo_marker = 0;
			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
		}

		/* Marking forward transmissions that were made after RTO lost
		 * can cause unnecessary retransmissions in some scenarios,
		 * SACK blocks will mitigate that in some but not in all cases.
		 * We used to not mark them but it was causing break-ups with
		 * receivers that do only in-order receival.
		 *
		 * TODO: we could detect presence of such receiver and select
		 * different behavior per flow.
		 */
		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
			tp->lost_out += tcp_skb_pcount(skb);
		}
	}
	tcp_verify_left_out(tp);

	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
	tp->snd_cwnd_cnt = 0;
	tp->snd_cwnd_stamp = tcp_time_stamp;
	tp->frto_counter = 0;
	tp->bytes_acked = 0;

	tp->reordering = min_t(unsigned int, tp->reordering,
			       sysctl_tcp_reordering);
	tcp_set_ca_state(sk, TCP_CA_Loss);
	tp->high_seq = tp->snd_nxt;
	TCP_ECN_queue_cwr(tp);

	tcp_clear_retrans_hints_partial(tp);
}

static void tcp_clear_retrans_partial(struct tcp_sock *tp)
{
	tp->retrans_out = 0;
	tp->lost_out = 0;

	tp->undo_marker = 0;
	tp->undo_retrans = 0;
}

void tcp_clear_retrans(struct tcp_sock *tp)
{
	tcp_clear_retrans_partial(tp);

	tp->fackets_out = 0;
	tp->sacked_out = 0;
}

/* Enter Loss state. If "how" is not zero, forget all SACK information
 * and reset tags completely, otherwise preserve SACKs. If receiver
 * dropped its ofo queue, we will know this due to reneging detection.
 */
void tcp_enter_loss(struct sock *sk, int how)
{
	const struct inet_connection_sock *icsk = inet_csk(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;

	/* Reduce ssthresh if it has not yet been made inside this window. */
	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
		tp->prior_ssthresh = tcp_current_ssthresh(sk);
		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
		tcp_ca_event(sk, CA_EVENT_LOSS);
	}
	tp->snd_cwnd	   = 1;
	tp->snd_cwnd_cnt   = 0;
	tp->snd_cwnd_stamp = tcp_time_stamp;

	tp->bytes_acked = 0;
	tcp_clear_retrans_partial(tp);

	if (tcp_is_reno(tp))
		tcp_reset_reno_sack(tp);

	if (!how) {
		/* Push undo marker, if it was plain RTO and nothing
		 * was retransmitted. */
		tp->undo_marker = tp->snd_una;
		tcp_clear_retrans_hints_partial(tp);
	} else {
		tp->sacked_out = 0;
		tp->fackets_out = 0;
		tcp_clear_all_retrans_hints(tp);
	}

	tcp_for_write_queue(skb, sk) {
		if (skb == tcp_send_head(sk))
			break;

		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
			tp->undo_marker = 0;
		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
			tp->lost_out += tcp_skb_pcount(skb);
		}
	}
	tcp_verify_left_out(tp);

	tp->reordering = min_t(unsigned int, tp->reordering,
			       sysctl_tcp_reordering);
	tcp_set_ca_state(sk, TCP_CA_Loss);
	tp->high_seq = tp->snd_nxt;
	TCP_ECN_queue_cwr(tp);
	/* Abort F-RTO algorithm if one is in progress */
	tp->frto_counter = 0;
}

/* If ACK arrived pointing to a remembered SACK, it means that our
 * remembered SACKs do not reflect real state of receiver i.e.
 * receiver _host_ is heavily congested (or buggy).
 *
 * Do processing similar to RTO timeout.
 */
static int tcp_check_sack_reneging(struct sock *sk, int flag)
{
	if (flag & FLAG_SACK_RENEGING) {
		struct inet_connection_sock *icsk = inet_csk(sk);
		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);

		tcp_enter_loss(sk, 1);
		icsk->icsk_retransmits++;
		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
					  icsk->icsk_rto, TCP_RTO_MAX);
		return 1;
	}
	return 0;
}

static inline int tcp_fackets_out(struct tcp_sock *tp)
{
	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
}

/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
 * counter when SACK is enabled (without SACK, sacked_out is used for
 * that purpose).
 *
 * Instead, with FACK TCP uses fackets_out that includes both SACKed
 * segments up to the highest received SACK block so far and holes in
 * between them.
 *
 * With reordering, holes may still be in flight, so RFC3517 recovery
 * uses pure sacked_out (total number of SACKed segments) even though
 * it violates the RFC that uses duplicate ACKs, often these are equal
 * but when e.g. out-of-window ACKs or packet duplication occurs,
 * they differ. Since neither occurs due to loss, TCP should really
 * ignore them.
 */
static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
{
	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
}

static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
{
	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
}

static inline int tcp_head_timedout(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);

	return tp->packets_out &&
	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
}

/* Linux NewReno/SACK/FACK/ECN state machine.
 * --------------------------------------
 *
 * "Open"	Normal state, no dubious events, fast path.
 * "Disorder"   In all the respects it is "Open",
 *		but requires a bit more attention. It is entered when
 *		we see some SACKs or dupacks. It is split of "Open"
 *		mainly to move some processing from fast path to slow one.
 * "CWR"	CWND was reduced due to some Congestion Notification event.
 *		It can be ECN, ICMP source quench, local device congestion.
 * "Recovery"	CWND was reduced, we are fast-retransmitting.
 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
 *
 * tcp_fastretrans_alert() is entered:
 * - each incoming ACK, if state is not "Open"
 * - when arrived ACK is unusual, namely:
 *	* SACK
 *	* Duplicate ACK.
 *	* ECN ECE.
 *
 * Counting packets in flight is pretty simple.
 *
 *	in_flight = packets_out - left_out + retrans_out
 *
 *	packets_out is SND.NXT-SND.UNA counted in packets.
 *
 *	retrans_out is number of retransmitted segments.
 *
 *	left_out is number of segments left network, but not ACKed yet.
 *
 *		left_out = sacked_out + lost_out
 *
 *     sacked_out: Packets, which arrived to receiver out of order
 *		   and hence not ACKed. With SACKs this number is simply
 *		   amount of SACKed data. Even without SACKs
 *		   it is easy to give pretty reliable estimate of this number,
 *		   counting duplicate ACKs.
 *
 *       lost_out: Packets lost by network. TCP has no explicit
 *		   "loss notification" feedback from network (for now).
 *		   It means that this number can be only _guessed_.
 *		   Actually, it is the heuristics to predict lossage that
 *		   distinguishes different algorithms.
 *
 *	F.e. after RTO, when all the queue is considered as lost,
 *	lost_out = packets_out and in_flight = retrans_out.
 *
 *		Essentially, we have now two algorithms counting
 *		lost packets.
 *
 *		FACK: It is the simplest heuristics. As soon as we decided
 *		that something is lost, we decide that _all_ not SACKed
 *		packets until the most forward SACK are lost. I.e.
 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
 *		It is absolutely correct estimate, if network does not reorder
 *		packets. And it loses any connection to reality when reordering
 *		takes place. We use FACK by default until reordering
 *		is suspected on the path to this destination.
 *
 *		NewReno: when Recovery is entered, we assume that one segment
 *		is lost (classic Reno). While we are in Recovery and
 *		a partial ACK arrives, we assume that one more packet
 *		is lost (NewReno). This heuristics are the same in NewReno
 *		and SACK.
 *
 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
 *  deflation etc. CWND is real congestion window, never inflated, changes
 *  only according to classic VJ rules.
 *
 * Really tricky (and requiring careful tuning) part of algorithm
 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
 * The first determines the moment _when_ we should reduce CWND and,
 * hence, slow down forward transmission. In fact, it determines the moment
 * when we decide that hole is caused by loss, rather than by a reorder.
 *
 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
 * holes, caused by lost packets.
 *
 * And the most logically complicated part of algorithm is undo
 * heuristics. We detect false retransmits due to both too early
 * fast retransmit (reordering) and underestimated RTO, analyzing
 * timestamps and D-SACKs. When we detect that some segments were
 * retransmitted by mistake and CWND reduction was wrong, we undo
 * window reduction and abort recovery phase. This logic is hidden
 * inside several functions named tcp_try_undo_<something>.
 */

/* This function decides, when we should leave Disordered state
 * and enter Recovery phase, reducing congestion window.
 *
 * Main question: may we further continue forward transmission
 * with the same cwnd?
 */
static int tcp_time_to_recover(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	__u32 packets_out;

	/* Do not perform any recovery during F-RTO algorithm */
	if (tp->frto_counter)
		return 0;

	/* Trick#1: The loss is proven. */
	if (tp->lost_out)
		return 1;

	/* Not-A-Trick#2 : Classic rule... */
	if (tcp_dupack_heurestics(tp) > tp->reordering)
		return 1;

	/* Trick#3 : when we use RFC2988 timer restart, fast
	 * retransmit can be triggered by timeout of queue head.
	 */
	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
		return 1;

	/* Trick#4: It is still not OK... But will it be useful to delay
	 * recovery more?
	 */
	packets_out = tp->packets_out;
	if (packets_out <= tp->reordering &&
	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
	    !tcp_may_send_now(sk)) {
		/* We have nothing to send. This connection is limited
		 * either by receiver window or by application.
		 */
		return 1;
	}

	return 0;
}

/* RFC: This is from the original, I doubt that this is necessary at all:
 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
 * retransmitted past LOST markings in the first place? I'm not fully sure
 * about undo and end of connection cases, which can cause R without L?
 */
static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
{
	if ((tp->retransmit_skb_hint != NULL) &&
	    before(TCP_SKB_CB(skb)->seq,
		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
		tp->retransmit_skb_hint = NULL;
}

/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
 * is against sacked "cnt", otherwise it's against facked "cnt"
 */
static void tcp_mark_head_lost(struct sock *sk, int packets)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;
	int cnt, oldcnt;
	int err;
	unsigned int mss;

	BUG_TRAP(packets <= tp->packets_out);
	if (tp->lost_skb_hint) {
		skb = tp->lost_skb_hint;
		cnt = tp->lost_cnt_hint;
	} else {
		skb = tcp_write_queue_head(sk);
		cnt = 0;
	}

	tcp_for_write_queue_from(skb, sk) {
		if (skb == tcp_send_head(sk))
			break;
		/* TODO: do this better */
		/* this is not the most efficient way to do this... */
		tp->lost_skb_hint = skb;
		tp->lost_cnt_hint = cnt;

		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
			break;

		oldcnt = cnt;
		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
			cnt += tcp_skb_pcount(skb);

		if (cnt > packets) {
			if (tcp_is_sack(tp) || (oldcnt >= packets))
				break;

			mss = skb_shinfo(skb)->gso_size;
			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
			if (err < 0)
				break;
			cnt = packets;
		}

		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
			tp->lost_out += tcp_skb_pcount(skb);
			tcp_verify_retransmit_hint(tp, skb);
		}
	}
	tcp_verify_left_out(tp);
}

/* Account newly detected lost packet(s) */

static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
{
	struct tcp_sock *tp = tcp_sk(sk);

	if (tcp_is_reno(tp)) {
		tcp_mark_head_lost(sk, 1);
	} else if (tcp_is_fack(tp)) {
		int lost = tp->fackets_out - tp->reordering;
		if (lost <= 0)
			lost = 1;
		tcp_mark_head_lost(sk, lost);
	} else {
		int sacked_upto = tp->sacked_out - tp->reordering;
		if (sacked_upto < fast_rexmit)
			sacked_upto = fast_rexmit;
		tcp_mark_head_lost(sk, sacked_upto);
	}

	/* New heuristics: it is possible only after we switched
	 * to restart timer each time when something is ACKed.
	 * Hence, we can detect timed out packets during fast
	 * retransmit without falling to slow start.
	 */
	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
		struct sk_buff *skb;

		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
			: tcp_write_queue_head(sk);

		tcp_for_write_queue_from(skb, sk) {
			if (skb == tcp_send_head(sk))
				break;
			if (!tcp_skb_timedout(sk, skb))
				break;

			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
				tp->lost_out += tcp_skb_pcount(skb);
				tcp_verify_retransmit_hint(tp, skb);
			}
		}

		tp->scoreboard_skb_hint = skb;

		tcp_verify_left_out(tp);
	}
}

/* CWND moderation, preventing bursts due to too big ACKs
 * in dubious situations.
 */
static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
{
	tp->snd_cwnd = min(tp->snd_cwnd,
			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
	tp->snd_cwnd_stamp = tcp_time_stamp;
}

/* Lower bound on congestion window is slow start threshold
 * unless congestion avoidance choice decides to overide it.
 */
static inline u32 tcp_cwnd_min(const struct sock *sk)
{
	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;

	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
}

/* Decrease cwnd each second ack. */
static void tcp_cwnd_down(struct sock *sk, int flag)
{
	struct tcp_sock *tp = tcp_sk(sk);
	int decr = tp->snd_cwnd_cnt + 1;

	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
		tp->snd_cwnd_cnt = decr & 1;
		decr >>= 1;

		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
			tp->snd_cwnd -= decr;

		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
		tp->snd_cwnd_stamp = tcp_time_stamp;
	}
}

/* Nothing was retransmitted or returned timestamp is less
 * than timestamp of the first retransmission.
 */
static inline int tcp_packet_delayed(struct tcp_sock *tp)
{
	return !tp->retrans_stamp ||
		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
}

/* Undo procedures. */

#if FASTRETRANS_DEBUG > 1
static void DBGUNDO(struct sock *sk, const char *msg)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct inet_sock *inet = inet_sk(sk);

	if (sk->sk_family == AF_INET) {
		printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
		       msg,
		       NIPQUAD(inet->daddr), ntohs(inet->dport),
		       tp->snd_cwnd, tcp_left_out(tp),
		       tp->snd_ssthresh, tp->prior_ssthresh,
		       tp->packets_out);
	}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
	else if (sk->sk_family == AF_INET6) {
		struct ipv6_pinfo *np = inet6_sk(sk);
		printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
		       msg,
		       NIP6(np->daddr), ntohs(inet->dport),
		       tp->snd_cwnd, tcp_left_out(tp),
		       tp->snd_ssthresh, tp->prior_ssthresh,
		       tp->packets_out);
	}
#endif
}
#else
#define DBGUNDO(x...) do { } while (0)
#endif

static void tcp_undo_cwr(struct sock *sk, const int undo)
{
	struct tcp_sock *tp = tcp_sk(sk);

	if (tp->prior_ssthresh) {
		const struct inet_connection_sock *icsk = inet_csk(sk);

		if (icsk->icsk_ca_ops->undo_cwnd)
			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
		else
			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);

		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
			tp->snd_ssthresh = tp->prior_ssthresh;
			TCP_ECN_withdraw_cwr(tp);
		}
	} else {
		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
	}
	tcp_moderate_cwnd(tp);
	tp->snd_cwnd_stamp = tcp_time_stamp;

	/* There is something screwy going on with the retrans hints after
	   an undo */
	tcp_clear_all_retrans_hints(tp);
}

static inline int tcp_may_undo(struct tcp_sock *tp)
{
	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
}

/* People celebrate: "We love our President!" */
static int tcp_try_undo_recovery(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);

	if (tcp_may_undo(tp)) {
		/* Happy end! We did not retransmit anything
		 * or our original transmission succeeded.
		 */
		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
		tcp_undo_cwr(sk, 1);
		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
		else
			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
		tp->undo_marker = 0;
	}
	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
		/* Hold old state until something *above* high_seq
		 * is ACKed. For Reno it is MUST to prevent false
		 * fast retransmits (RFC2582). SACK TCP is safe. */
		tcp_moderate_cwnd(tp);
		return 1;
	}
	tcp_set_ca_state(sk, TCP_CA_Open);
	return 0;
}

/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
static void tcp_try_undo_dsack(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);

	if (tp->undo_marker && !tp->undo_retrans) {
		DBGUNDO(sk, "D-SACK");
		tcp_undo_cwr(sk, 1);
		tp->undo_marker = 0;
		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
	}
}

/* Undo during fast recovery after partial ACK. */

static int tcp_try_undo_partial(struct sock *sk, int acked)
{
	struct tcp_sock *tp = tcp_sk(sk);
	/* Partial ACK arrived. Force Hoe's retransmit. */
	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);

	if (tcp_may_undo(tp)) {
		/* Plain luck! Hole if filled with delayed
		 * packet, rather than with a retransmit.
		 */
		if (tp->retrans_out == 0)
			tp->retrans_stamp = 0;

		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);

		DBGUNDO(sk, "Hoe");
		tcp_undo_cwr(sk, 0);
		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);

		/* So... Do not make Hoe's retransmit yet.
		 * If the first packet was delayed, the rest
		 * ones are most probably delayed as well.
		 */
		failed = 0;
	}
	return failed;
}

/* Undo during loss recovery after partial ACK. */
static int tcp_try_undo_loss(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);

	if (tcp_may_undo(tp)) {
		struct sk_buff *skb;
		tcp_for_write_queue(skb, sk) {
			if (skb == tcp_send_head(sk))
				break;
			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
		}

		tcp_clear_all_retrans_hints(tp);

		DBGUNDO(sk, "partial loss");
		tp->lost_out = 0;
		tcp_undo_cwr(sk, 1);
		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
		inet_csk(sk)->icsk_retransmits = 0;
		tp->undo_marker = 0;
		if (tcp_is_sack(tp))
			tcp_set_ca_state(sk, TCP_CA_Open);
		return 1;
	}
	return 0;
}

static inline void tcp_complete_cwr(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
	tp->snd_cwnd_stamp = tcp_time_stamp;
	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
}

static void tcp_try_keep_open(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	int state = TCP_CA_Open;

	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
		state = TCP_CA_Disorder;

	if (inet_csk(sk)->icsk_ca_state != state) {
		tcp_set_ca_state(sk, state);
		tp->high_seq = tp->snd_nxt;
	}
}

static void tcp_try_to_open(struct sock *sk, int flag)
{
	struct tcp_sock *tp = tcp_sk(sk);

	tcp_verify_left_out(tp);

	if (!tp->frto_counter && tp->retrans_out == 0)
		tp->retrans_stamp = 0;

	if (flag & FLAG_ECE)
		tcp_enter_cwr(sk, 1);

	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
		tcp_try_keep_open(sk);
		tcp_moderate_cwnd(tp);
	} else {
		tcp_cwnd_down(sk, flag);
	}
}

static void tcp_mtup_probe_failed(struct sock *sk)
{
	struct inet_connection_sock *icsk = inet_csk(sk);

	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
	icsk->icsk_mtup.probe_size = 0;
}

static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct inet_connection_sock *icsk = inet_csk(sk);

	/* FIXME: breaks with very large cwnd */
	tp->prior_ssthresh = tcp_current_ssthresh(sk);
	tp->snd_cwnd = tp->snd_cwnd *
		       tcp_mss_to_mtu(sk, tp->mss_cache) /
		       icsk->icsk_mtup.probe_size;
	tp->snd_cwnd_cnt = 0;
	tp->snd_cwnd_stamp = tcp_time_stamp;
	tp->rcv_ssthresh = tcp_current_ssthresh(sk);

	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
	icsk->icsk_mtup.probe_size = 0;
	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
}

/* Process an event, which can update packets-in-flight not trivially.
 * Main goal of this function is to calculate new estimate for left_out,
 * taking into account both packets sitting in receiver's buffer and
 * packets lost by network.
 *
 * Besides that it does CWND reduction, when packet loss is detected
 * and changes state of machine.
 *
 * It does _not_ decide what to send, it is made in function
 * tcp_xmit_retransmit_queue().
 */
static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
{
	struct inet_connection_sock *icsk = inet_csk(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
				    (tcp_fackets_out(tp) > tp->reordering));
	int fast_rexmit = 0;

	if (WARN_ON(!tp->packets_out && tp->sacked_out))
		tp->sacked_out = 0;
	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
		tp->fackets_out = 0;

	/* Now state machine starts.
	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
	if (flag & FLAG_ECE)
		tp->prior_ssthresh = 0;

	/* B. In all the states check for reneging SACKs. */
	if (tcp_check_sack_reneging(sk, flag))
		return;

	/* C. Process data loss notification, provided it is valid. */
	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
	    before(tp->snd_una, tp->high_seq) &&
	    icsk->icsk_ca_state != TCP_CA_Open &&
	    tp->fackets_out > tp->reordering) {
		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
	}

	/* D. Check consistency of the current state. */
	tcp_verify_left_out(tp);

	/* E. Check state exit conditions. State can be terminated
	 *    when high_seq is ACKed. */
	if (icsk->icsk_ca_state == TCP_CA_Open) {
		BUG_TRAP(tp->retrans_out == 0);
		tp->retrans_stamp = 0;
	} else if (!before(tp->snd_una, tp->high_seq)) {
		switch (icsk->icsk_ca_state) {
		case TCP_CA_Loss:
			icsk->icsk_retransmits = 0;
			if (tcp_try_undo_recovery(sk))
				return;
			break;

		case TCP_CA_CWR:
			/* CWR is to be held something *above* high_seq
			 * is ACKed for CWR bit to reach receiver. */
			if (tp->snd_una != tp->high_seq) {
				tcp_complete_cwr(sk);
				tcp_set_ca_state(sk, TCP_CA_Open);
			}
			break;

		case TCP_CA_Disorder:
			tcp_try_undo_dsack(sk);
			if (!tp->undo_marker ||
			    /* For SACK case do not Open to allow to undo
			     * catching for all duplicate ACKs. */
			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
				tp->undo_marker = 0;
				tcp_set_ca_state(sk, TCP_CA_Open);
			}
			break;

		case TCP_CA_Recovery:
			if (tcp_is_reno(tp))
				tcp_reset_reno_sack(tp);
			if (tcp_try_undo_recovery(sk))
				return;
			tcp_complete_cwr(sk);
			break;
		}
	}

	/* F. Process state. */
	switch (icsk->icsk_ca_state) {
	case TCP_CA_Recovery:
		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
			if (tcp_is_reno(tp) && is_dupack)
				tcp_add_reno_sack(sk);
		} else
			do_lost = tcp_try_undo_partial(sk, pkts_acked);
		break;
	case TCP_CA_Loss:
		if (flag & FLAG_DATA_ACKED)
			icsk->icsk_retransmits = 0;
		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
			tcp_reset_reno_sack(tp);
		if (!tcp_try_undo_loss(sk)) {
			tcp_moderate_cwnd(tp);
			tcp_xmit_retransmit_queue(sk);
			return;
		}
		if (icsk->icsk_ca_state != TCP_CA_Open)
			return;
		/* Loss is undone; fall through to processing in Open state. */
	default:
		if (tcp_is_reno(tp)) {
			if (flag & FLAG_SND_UNA_ADVANCED)
				tcp_reset_reno_sack(tp);
			if (is_dupack)
				tcp_add_reno_sack(sk);
		}

		if (icsk->icsk_ca_state == TCP_CA_Disorder)
			tcp_try_undo_dsack(sk);

		if (!tcp_time_to_recover(sk)) {
			tcp_try_to_open(sk, flag);
			return;
		}

		/* MTU probe failure: don't reduce cwnd */
		if (icsk->icsk_ca_state < TCP_CA_CWR &&
		    icsk->icsk_mtup.probe_size &&
		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
			tcp_mtup_probe_failed(sk);
			/* Restores the reduction we did in tcp_mtup_probe() */
			tp->snd_cwnd++;
			tcp_simple_retransmit(sk);
			return;
		}

		/* Otherwise enter Recovery state */

		if (tcp_is_reno(tp))
			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
		else
			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);

		tp->high_seq = tp->snd_nxt;
		tp->prior_ssthresh = 0;
		tp->undo_marker = tp->snd_una;
		tp->undo_retrans = tp->retrans_out;

		if (icsk->icsk_ca_state < TCP_CA_CWR) {
			if (!(flag & FLAG_ECE))
				tp->prior_ssthresh = tcp_current_ssthresh(sk);
			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
			TCP_ECN_queue_cwr(tp);
		}

		tp->bytes_acked = 0;
		tp->snd_cwnd_cnt = 0;
		tcp_set_ca_state(sk, TCP_CA_Recovery);
		fast_rexmit = 1;
	}

	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
		tcp_update_scoreboard(sk, fast_rexmit);
	tcp_cwnd_down(sk, flag);
	tcp_xmit_retransmit_queue(sk);
}

/* Read draft-ietf-tcplw-high-performance before mucking
 * with this code. (Supersedes RFC1323)
 */
static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
{
	/* RTTM Rule: A TSecr value received in a segment is used to
	 * update the averaged RTT measurement only if the segment
	 * acknowledges some new data, i.e., only if it advances the
	 * left edge of the send window.
	 *
	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
	 *
	 * Changed: reset backoff as soon as we see the first valid sample.
	 * If we do not, we get strongly overestimated rto. With timestamps
	 * samples are accepted even from very old segments: f.e., when rtt=1
	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
	 * answer arrives rto becomes 120 seconds! If at least one of segments
	 * in window is lost... Voila.	 			--ANK (010210)
	 */
	struct tcp_sock *tp = tcp_sk(sk);
	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
	tcp_rtt_estimator(sk, seq_rtt);
	tcp_set_rto(sk);
	inet_csk(sk)->icsk_backoff = 0;
	tcp_bound_rto(sk);
}

static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
{
	/* We don't have a timestamp. Can only use
	 * packets that are not retransmitted to determine
	 * rtt estimates. Also, we must not reset the
	 * backoff for rto until we get a non-retransmitted
	 * packet. This allows us to deal with a situation
	 * where the network delay has increased suddenly.
	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
	 */

	if (flag & FLAG_RETRANS_DATA_ACKED)
		return;

	tcp_rtt_estimator(sk, seq_rtt);
	tcp_set_rto(sk);
	inet_csk(sk)->icsk_backoff = 0;
	tcp_bound_rto(sk);
}

static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
				      const s32 seq_rtt)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
		tcp_ack_saw_tstamp(sk, flag);
	else if (seq_rtt >= 0)
		tcp_ack_no_tstamp(sk, seq_rtt, flag);
}

static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
{
	const struct inet_connection_sock *icsk = inet_csk(sk);
	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
}

/* Restart timer after forward progress on connection.
 * RFC2988 recommends to restart timer to now+rto.
 */
static void tcp_rearm_rto(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);

	if (!tp->packets_out) {
		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
	} else {
		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
	}
}

/* If we get here, the whole TSO packet has not been acked. */
static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);
	u32 packets_acked;

	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));

	packets_acked = tcp_skb_pcount(skb);
	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
		return 0;
	packets_acked -= tcp_skb_pcount(skb);

	if (packets_acked) {
		BUG_ON(tcp_skb_pcount(skb) == 0);
		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
	}

	return packets_acked;
}

/* Remove acknowledged frames from the retransmission queue. If our packet
 * is before the ack sequence we can discard it as it's confirmed to have
 * arrived at the other end.
 */
static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
{
	struct tcp_sock *tp = tcp_sk(sk);
	const struct inet_connection_sock *icsk = inet_csk(sk);
	struct sk_buff *skb;
	u32 now = tcp_time_stamp;
	int fully_acked = 1;
	int flag = 0;
	u32 pkts_acked = 0;
	u32 reord = tp->packets_out;
	s32 seq_rtt = -1;
	s32 ca_seq_rtt = -1;
	ktime_t last_ackt = net_invalid_timestamp();

	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
		u32 end_seq;
		u32 acked_pcount;
		u8 sacked = scb->sacked;

		/* Determine how many packets and what bytes were acked, tso and else */
		if (after(scb->end_seq, tp->snd_una)) {
			if (tcp_skb_pcount(skb) == 1 ||
			    !after(tp->snd_una, scb->seq))
				break;

			acked_pcount = tcp_tso_acked(sk, skb);
			if (!acked_pcount)
				break;

			fully_acked = 0;
			end_seq = tp->snd_una;
		} else {
			acked_pcount = tcp_skb_pcount(skb);
			end_seq = scb->end_seq;
		}

		/* MTU probing checks */
		if (fully_acked && icsk->icsk_mtup.probe_size &&
		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
			tcp_mtup_probe_success(sk, skb);
		}

		if (sacked & TCPCB_RETRANS) {
			if (sacked & TCPCB_SACKED_RETRANS)
				tp->retrans_out -= acked_pcount;
			flag |= FLAG_RETRANS_DATA_ACKED;
			ca_seq_rtt = -1;
			seq_rtt = -1;
			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
				flag |= FLAG_NONHEAD_RETRANS_ACKED;
		} else {
			ca_seq_rtt = now - scb->when;
			last_ackt = skb->tstamp;
			if (seq_rtt < 0) {
				seq_rtt = ca_seq_rtt;
			}
			if (!(sacked & TCPCB_SACKED_ACKED))
				reord = min(pkts_acked, reord);
		}

		if (sacked & TCPCB_SACKED_ACKED)
			tp->sacked_out -= acked_pcount;
		if (sacked & TCPCB_LOST)
			tp->lost_out -= acked_pcount;

		if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
			tp->urg_mode = 0;

		tp->packets_out -= acked_pcount;
		pkts_acked += acked_pcount;

		/* Initial outgoing SYN's get put onto the write_queue
		 * just like anything else we transmit.  It is not
		 * true data, and if we misinform our callers that
		 * this ACK acks real data, we will erroneously exit
		 * connection startup slow start one packet too
		 * quickly.  This is severely frowned upon behavior.
		 */
		if (!(scb->flags & TCPCB_FLAG_SYN)) {
			flag |= FLAG_DATA_ACKED;
		} else {
			flag |= FLAG_SYN_ACKED;
			tp->retrans_stamp = 0;
		}

		if (!fully_acked)
			break;

		tcp_unlink_write_queue(skb, sk);
		sk_wmem_free_skb(sk, skb);
		tcp_clear_all_retrans_hints(tp);
	}

	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
		flag |= FLAG_SACK_RENEGING;

	if (flag & FLAG_ACKED) {
		const struct tcp_congestion_ops *ca_ops
			= inet_csk(sk)->icsk_ca_ops;

		tcp_ack_update_rtt(sk, flag, seq_rtt);
		tcp_rearm_rto(sk);

		if (tcp_is_reno(tp)) {
			tcp_remove_reno_sacks(sk, pkts_acked);
		} else {
			/* Non-retransmitted hole got filled? That's reordering */
			if (reord < prior_fackets)
				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
		}

		tp->fackets_out -= min(pkts_acked, tp->fackets_out);

		if (ca_ops->pkts_acked) {
			s32 rtt_us = -1;

			/* Is the ACK triggering packet unambiguous? */
			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
				/* High resolution needed and available? */
				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
				    !ktime_equal(last_ackt,
						 net_invalid_timestamp()))
					rtt_us = ktime_us_delta(ktime_get_real(),
								last_ackt);
				else if (ca_seq_rtt > 0)
					rtt_us = jiffies_to_usecs(ca_seq_rtt);
			}

			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
		}
	}

#if FASTRETRANS_DEBUG > 0
	BUG_TRAP((int)tp->sacked_out >= 0);
	BUG_TRAP((int)tp->lost_out >= 0);
	BUG_TRAP((int)tp->retrans_out >= 0);
	if (!tp->packets_out && tcp_is_sack(tp)) {
		icsk = inet_csk(sk);
		if (tp->lost_out) {
			printk(KERN_DEBUG "Leak l=%u %d\n",
			       tp->lost_out, icsk->icsk_ca_state);
			tp->lost_out = 0;
		}
		if (tp->sacked_out) {
			printk(KERN_DEBUG "Leak s=%u %d\n",
			       tp->sacked_out, icsk->icsk_ca_state);
			tp->sacked_out = 0;
		}
		if (tp->retrans_out) {
			printk(KERN_DEBUG "Leak r=%u %d\n",
			       tp->retrans_out, icsk->icsk_ca_state);
			tp->retrans_out = 0;
		}
	}
#endif
	return flag;
}

static void tcp_ack_probe(struct sock *sk)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	struct inet_connection_sock *icsk = inet_csk(sk);

	/* Was it a usable window open? */

	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
		icsk->icsk_backoff = 0;
		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
		/* Socket must be waked up by subsequent tcp_data_snd_check().
		 * This function is not for random using!
		 */
	} else {
		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
					  TCP_RTO_MAX);
	}
}

static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
{
	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
}

static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
}

/* Check that window update is acceptable.
 * The function assumes that snd_una<=ack<=snd_next.
 */
static inline int tcp_may_update_window(const struct tcp_sock *tp,
					const u32 ack, const u32 ack_seq,
					const u32 nwin)
{
	return (after(ack, tp->snd_una) ||
		after(ack_seq, tp->snd_wl1) ||
		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
}

/* Update our send window.
 *
 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
 */
static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
				 u32 ack_seq)
{
	struct tcp_sock *tp = tcp_sk(sk);
	int flag = 0;
	u32 nwin = ntohs(tcp_hdr(skb)->window);

	if (likely(!tcp_hdr(skb)->syn))
		nwin <<= tp->rx_opt.snd_wscale;

	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
		flag |= FLAG_WIN_UPDATE;
		tcp_update_wl(tp, ack, ack_seq);

		if (tp->snd_wnd != nwin) {
			tp->snd_wnd = nwin;

			/* Note, it is the only place, where
			 * fast path is recovered for sending TCP.
			 */
			tp->pred_flags = 0;
			tcp_fast_path_check(sk);

			if (nwin > tp->max_window) {
				tp->max_window = nwin;
				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
			}
		}
	}

	tp->snd_una = ack;

	return flag;
}

/* A very conservative spurious RTO response algorithm: reduce cwnd and
 * continue in congestion avoidance.
 */
static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
{
	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
	tp->snd_cwnd_cnt = 0;
	tp->bytes_acked = 0;
	TCP_ECN_queue_cwr(tp);
	tcp_moderate_cwnd(tp);
}

/* A conservative spurious RTO response algorithm: reduce cwnd using
 * rate halving and continue in congestion avoidance.
 */
static void tcp_ratehalving_spur_to_response(struct sock *sk)
{
	tcp_enter_cwr(sk, 0);
}

static void tcp_undo_spur_to_response(struct sock *sk, int flag)
{
	if (flag & FLAG_ECE)
		tcp_ratehalving_spur_to_response(sk);
	else
		tcp_undo_cwr(sk, 1);
}

/* F-RTO spurious RTO detection algorithm (RFC4138)
 *
 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
 * comments). State (ACK number) is kept in frto_counter. When ACK advances
 * window (but not to or beyond highest sequence sent before RTO):
 *   On First ACK,  send two new segments out.
 *   On Second ACK, RTO was likely spurious. Do spurious response (response
 *                  algorithm is not part of the F-RTO detection algorithm
 *                  given in RFC4138 but can be selected separately).
 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
 *
 * Rationale: if the RTO was spurious, new ACKs should arrive from the
 * original window even after we transmit two new data segments.
 *
 * SACK version:
 *   on first step, wait until first cumulative ACK arrives, then move to
 *   the second step. In second step, the next ACK decides.
 *
 * F-RTO is implemented (mainly) in four functions:
 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
 *     called when tcp_use_frto() showed green light
 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
 *   - tcp_enter_frto_loss() is called if there is not enough evidence
 *     to prove that the RTO is indeed spurious. It transfers the control
 *     from F-RTO to the conventional RTO recovery
 */
static int tcp_process_frto(struct sock *sk, int flag)
{
	struct tcp_sock *tp = tcp_sk(sk);

	tcp_verify_left_out(tp);

	/* Duplicate the behavior from Loss state (fastretrans_alert) */
	if (flag & FLAG_DATA_ACKED)
		inet_csk(sk)->icsk_retransmits = 0;

	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
		tp->undo_marker = 0;

	if (!before(tp->snd_una, tp->frto_highmark)) {
		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
		return 1;
	}

	if (!tcp_is_sackfrto(tp)) {
		/* RFC4138 shortcoming in step 2; should also have case c):
		 * ACK isn't duplicate nor advances window, e.g., opposite dir
		 * data, winupdate
		 */
		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
			return 1;

		if (!(flag & FLAG_DATA_ACKED)) {
			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
					    flag);
			return 1;
		}
	} else {
		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
			/* Prevent sending of new data. */
			tp->snd_cwnd = min(tp->snd_cwnd,
					   tcp_packets_in_flight(tp));
			return 1;
		}

		if ((tp->frto_counter >= 2) &&
		    (!(flag & FLAG_FORWARD_PROGRESS) ||
		     ((flag & FLAG_DATA_SACKED) &&
		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
			/* RFC4138 shortcoming (see comment above) */
			if (!(flag & FLAG_FORWARD_PROGRESS) &&
			    (flag & FLAG_NOT_DUP))
				return 1;

			tcp_enter_frto_loss(sk, 3, flag);
			return 1;
		}
	}

	if (tp->frto_counter == 1) {
		/* tcp_may_send_now needs to see updated state */
		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
		tp->frto_counter = 2;

		if (!tcp_may_send_now(sk))
			tcp_enter_frto_loss(sk, 2, flag);

		return 1;
	} else {
		switch (sysctl_tcp_frto_response) {
		case 2:
			tcp_undo_spur_to_response(sk, flag);
			break;
		case 1:
			tcp_conservative_spur_to_response(tp);
			break;
		default:
			tcp_ratehalving_spur_to_response(sk);
			break;
		}
		tp->frto_counter = 0;
		tp->undo_marker = 0;
		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
	}
	return 0;
}

/* This routine deals with incoming acks, but not outgoing ones. */
static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
{
	struct inet_connection_sock *icsk = inet_csk(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	u32 prior_snd_una = tp->snd_una;
	u32 ack_seq = TCP_SKB_CB(skb)->seq;
	u32 ack = TCP_SKB_CB(skb)->ack_seq;
	u32 prior_in_flight;
	u32 prior_fackets;
	int prior_packets;
	int frto_cwnd = 0;

	/* If the ack is newer than sent or older than previous acks
	 * then we can probably ignore it.
	 */
	if (after(ack, tp->snd_nxt))
		goto uninteresting_ack;

	if (before(ack, prior_snd_una))
		goto old_ack;

	if (after(ack, prior_snd_una))
		flag |= FLAG_SND_UNA_ADVANCED;

	if (sysctl_tcp_abc) {
		if (icsk->icsk_ca_state < TCP_CA_CWR)
			tp->bytes_acked += ack - prior_snd_una;
		else if (icsk->icsk_ca_state == TCP_CA_Loss)
			/* we assume just one segment left network */
			tp->bytes_acked += min(ack - prior_snd_una,
					       tp->mss_cache);
	}

	prior_fackets = tp->fackets_out;
	prior_in_flight = tcp_packets_in_flight(tp);

	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
		/* Window is constant, pure forward advance.
		 * No more checks are required.
		 * Note, we use the fact that SND.UNA>=SND.WL2.
		 */
		tcp_update_wl(tp, ack, ack_seq);
		tp->snd_una = ack;
		flag |= FLAG_WIN_UPDATE;

		tcp_ca_event(sk, CA_EVENT_FAST_ACK);

		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
	} else {
		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
			flag |= FLAG_DATA;
		else
			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);

		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);

		if (TCP_SKB_CB(skb)->sacked)
			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);

		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
			flag |= FLAG_ECE;

		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
	}

	/* We passed data and got it acked, remove any soft error
	 * log. Something worked...
	 */
	sk->sk_err_soft = 0;
	tp->rcv_tstamp = tcp_time_stamp;
	prior_packets = tp->packets_out;
	if (!prior_packets)
		goto no_queue;

	/* See if we can take anything off of the retransmit queue. */
	flag |= tcp_clean_rtx_queue(sk, prior_fackets);

	if (tp->frto_counter)
		frto_cwnd = tcp_process_frto(sk, flag);
	/* Guarantee sacktag reordering detection against wrap-arounds */
	if (before(tp->frto_highmark, tp->snd_una))
		tp->frto_highmark = 0;

	if (tcp_ack_is_dubious(sk, flag)) {
		/* Advance CWND, if state allows this. */
		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
		    tcp_may_raise_cwnd(sk, flag))
			tcp_cong_avoid(sk, ack, prior_in_flight);
		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
				      flag);
	} else {
		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
			tcp_cong_avoid(sk, ack, prior_in_flight);
	}

	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
		dst_confirm(sk->sk_dst_cache);

	return 1;

no_queue:
	icsk->icsk_probes_out = 0;

	/* If this ack opens up a zero window, clear backoff.  It was
	 * being used to time the probes, and is probably far higher than
	 * it needs to be for normal retransmission.
	 */
	if (tcp_send_head(sk))
		tcp_ack_probe(sk);
	return 1;

old_ack:
	if (TCP_SKB_CB(skb)->sacked) {
		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
		if (icsk->icsk_ca_state == TCP_CA_Open)
			tcp_try_keep_open(sk);
	}

uninteresting_ack:
	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
	return 0;
}

/* Look for tcp options. Normally only called on SYN and SYNACK packets.
 * But, this can also be called on packets in the established flow when
 * the fast version below fails.
 */
void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
		       int estab)
{
	unsigned char *ptr;
	struct tcphdr *th = tcp_hdr(skb);
	int length = (th->doff * 4) - sizeof(struct tcphdr);

	ptr = (unsigned char *)(th + 1);
	opt_rx->saw_tstamp = 0;

	while (length > 0) {
		int opcode = *ptr++;
		int opsize;

		switch (opcode) {
		case TCPOPT_EOL:
			return;
		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
			length--;
			continue;
		default:
			opsize = *ptr++;
			if (opsize < 2) /* "silly options" */
				return;
			if (opsize > length)
				return;	/* don't parse partial options */
			switch (opcode) {
			case TCPOPT_MSS:
				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
					u16 in_mss = get_unaligned_be16(ptr);
					if (in_mss) {
						if (opt_rx->user_mss &&
						    opt_rx->user_mss < in_mss)
							in_mss = opt_rx->user_mss;
						opt_rx->mss_clamp = in_mss;
					}
				}
				break;
			case TCPOPT_WINDOW:
				if (opsize == TCPOLEN_WINDOW && th->syn &&
				    !estab && sysctl_tcp_window_scaling) {
					__u8 snd_wscale = *(__u8 *)ptr;
					opt_rx->wscale_ok = 1;
					if (snd_wscale > 14) {
						if (net_ratelimit())
							printk(KERN_INFO "tcp_parse_options: Illegal window "
							       "scaling value %d >14 received.\n",
							       snd_wscale);
						snd_wscale = 14;
					}
					opt_rx->snd_wscale = snd_wscale;
				}
				break;
			case TCPOPT_TIMESTAMP:
				if ((opsize == TCPOLEN_TIMESTAMP) &&
				    ((estab && opt_rx->tstamp_ok) ||
				     (!estab && sysctl_tcp_timestamps))) {
					opt_rx->saw_tstamp = 1;
					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
				}
				break;
			case TCPOPT_SACK_PERM:
				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
				    !estab && sysctl_tcp_sack) {
					opt_rx->sack_ok = 1;
					tcp_sack_reset(opt_rx);
				}
				break;

			case TCPOPT_SACK:
				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
				   opt_rx->sack_ok) {
					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
				}
				break;
#ifdef CONFIG_TCP_MD5SIG
			case TCPOPT_MD5SIG:
				/*
				 * The MD5 Hash has already been
				 * checked (see tcp_v{4,6}_do_rcv()).
				 */
				break;
#endif
			}

			ptr += opsize-2;
			length -= opsize;
		}
	}
}

/* Fast parse options. This hopes to only see timestamps.
 * If it is wrong it falls back on tcp_parse_options().
 */
static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
				  struct tcp_sock *tp)
{
	if (th->doff == sizeof(struct tcphdr) >> 2) {
		tp->rx_opt.saw_tstamp = 0;
		return 0;
	} else if (tp->rx_opt.tstamp_ok &&
		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
		__be32 *ptr = (__be32 *)(th + 1);
		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
			tp->rx_opt.saw_tstamp = 1;
			++ptr;
			tp->rx_opt.rcv_tsval = ntohl(*ptr);
			++ptr;
			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
			return 1;
		}
	}
	tcp_parse_options(skb, &tp->rx_opt, 1);
	return 1;
}

static inline void tcp_store_ts_recent(struct tcp_sock *tp)
{
	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
	tp->rx_opt.ts_recent_stamp = get_seconds();
}

static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
{
	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
		 * extra check below makes sure this can only happen
		 * for pure ACK frames.  -DaveM
		 *
		 * Not only, also it occurs for expired timestamps.
		 */

		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
			tcp_store_ts_recent(tp);
	}
}

/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
 *
 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
 * it can pass through stack. So, the following predicate verifies that
 * this segment is not used for anything but congestion avoidance or
 * fast retransmit. Moreover, we even are able to eliminate most of such
 * second order effects, if we apply some small "replay" window (~RTO)
 * to timestamp space.
 *
 * All these measures still do not guarantee that we reject wrapped ACKs
 * on networks with high bandwidth, when sequence space is recycled fastly,
 * but it guarantees that such events will be very rare and do not affect
 * connection seriously. This doesn't look nice, but alas, PAWS is really
 * buggy extension.
 *
 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
 * states that events when retransmit arrives after original data are rare.
 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
 * the biggest problem on large power networks even with minor reordering.
 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
 * up to bandwidth of 18Gigabit/sec. 8) ]
 */

static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct tcphdr *th = tcp_hdr(skb);
	u32 seq = TCP_SKB_CB(skb)->seq;
	u32 ack = TCP_SKB_CB(skb)->ack_seq;

	return (/* 1. Pure ACK with correct sequence number. */
		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&

		/* 2. ... and duplicate ACK. */
		ack == tp->snd_una &&

		/* 3. ... and does not update window. */
		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&

		/* 4. ... and sits in replay window. */
		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
}

static inline int tcp_paws_discard(const struct sock *sk,
				   const struct sk_buff *skb)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
		!tcp_disordered_ack(sk, skb));
}

/* Check segment sequence number for validity.
 *
 * Segment controls are considered valid, if the segment
 * fits to the window after truncation to the window. Acceptability
 * of data (and SYN, FIN, of course) is checked separately.
 * See tcp_data_queue(), for example.
 *
 * Also, controls (RST is main one) are accepted using RCV.WUP instead
 * of RCV.NXT. Peer still did not advance his SND.UNA when we
 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
 * (borrowed from freebsd)
 */

static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
{
	return	!before(end_seq, tp->rcv_wup) &&
		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
}

/* When we get a reset we do this. */
static void tcp_reset(struct sock *sk)
{
	/* We want the right error as BSD sees it (and indeed as we do). */
	switch (sk->sk_state) {
	case TCP_SYN_SENT:
		sk->sk_err = ECONNREFUSED;
		break;
	case TCP_CLOSE_WAIT:
		sk->sk_err = EPIPE;
		break;
	case TCP_CLOSE:
		return;
	default:
		sk->sk_err = ECONNRESET;
	}

	if (!sock_flag(sk, SOCK_DEAD))
		sk->sk_error_report(sk);

	tcp_done(sk);
}

/*
 * 	Process the FIN bit. This now behaves as it is supposed to work
 *	and the FIN takes effect when it is validly part of sequence
 *	space. Not before when we get holes.
 *
 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
 *	TIME-WAIT)
 *
 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
 *	close and we go into CLOSING (and later onto TIME-WAIT)
 *
 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
 */
static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
{
	struct tcp_sock *tp = tcp_sk(sk);

	inet_csk_schedule_ack(sk);

	sk->sk_shutdown |= RCV_SHUTDOWN;
	sock_set_flag(sk, SOCK_DONE);

	switch (sk->sk_state) {
	case TCP_SYN_RECV:
	case TCP_ESTABLISHED:
		/* Move to CLOSE_WAIT */
		tcp_set_state(sk, TCP_CLOSE_WAIT);
		inet_csk(sk)->icsk_ack.pingpong = 1;
		break;

	case TCP_CLOSE_WAIT:
	case TCP_CLOSING:
		/* Received a retransmission of the FIN, do
		 * nothing.
		 */
		break;
	case TCP_LAST_ACK:
		/* RFC793: Remain in the LAST-ACK state. */
		break;

	case TCP_FIN_WAIT1:
		/* This case occurs when a simultaneous close
		 * happens, we must ack the received FIN and
		 * enter the CLOSING state.
		 */
		tcp_send_ack(sk);
		tcp_set_state(sk, TCP_CLOSING);
		break;
	case TCP_FIN_WAIT2:
		/* Received a FIN -- send ACK and enter TIME_WAIT. */
		tcp_send_ack(sk);
		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
		break;
	default:
		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
		 * cases we should never reach this piece of code.
		 */
		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
		       __func__, sk->sk_state);
		break;
	}

	/* It _is_ possible, that we have something out-of-order _after_ FIN.
	 * Probably, we should reset in this case. For now drop them.
	 */
	__skb_queue_purge(&tp->out_of_order_queue);
	if (tcp_is_sack(tp))
		tcp_sack_reset(&tp->rx_opt);
	sk_mem_reclaim(sk);

	if (!sock_flag(sk, SOCK_DEAD)) {
		sk->sk_state_change(sk);

		/* Do not send POLL_HUP for half duplex close. */
		if (sk->sk_shutdown == SHUTDOWN_MASK ||
		    sk->sk_state == TCP_CLOSE)
			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
		else
			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
	}
}

static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
				  u32 end_seq)
{
	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
		if (before(seq, sp->start_seq))
			sp->start_seq = seq;
		if (after(end_seq, sp->end_seq))
			sp->end_seq = end_seq;
		return 1;
	}
	return 0;
}

static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
{
	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
		if (before(seq, tp->rcv_nxt))
			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
		else
			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);

		tp->rx_opt.dsack = 1;
		tp->duplicate_sack[0].start_seq = seq;
		tp->duplicate_sack[0].end_seq = end_seq;
		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
					   4 - tp->rx_opt.tstamp_ok);
	}
}

static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
{
	if (!tp->rx_opt.dsack)
		tcp_dsack_set(tp, seq, end_seq);
	else
		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
}

static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_sock *tp = tcp_sk(sk);

	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
		tcp_enter_quickack_mode(sk);

		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
			u32 end_seq = TCP_SKB_CB(skb)->end_seq;

			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
				end_seq = tp->rcv_nxt;
			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
		}
	}

	tcp_send_ack(sk);
}

/* These routines update the SACK block as out-of-order packets arrive or
 * in-order packets close up the sequence space.
 */
static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
{
	int this_sack;
	struct tcp_sack_block *sp = &tp->selective_acks[0];
	struct tcp_sack_block *swalk = sp + 1;

	/* See if the recent change to the first SACK eats into
	 * or hits the sequence space of other SACK blocks, if so coalesce.
	 */
	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
			int i;

			/* Zap SWALK, by moving every further SACK up by one slot.
			 * Decrease num_sacks.
			 */
			tp->rx_opt.num_sacks--;
			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
						   tp->rx_opt.dsack,
						   4 - tp->rx_opt.tstamp_ok);
			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
				sp[i] = sp[i + 1];
			continue;
		}
		this_sack++, swalk++;
	}
}

static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
				 struct tcp_sack_block *sack2)
{
	__u32 tmp;

	tmp = sack1->start_seq;
	sack1->start_seq = sack2->start_seq;
	sack2->start_seq = tmp;

	tmp = sack1->end_seq;
	sack1->end_seq = sack2->end_seq;
	sack2->end_seq = tmp;
}

static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct tcp_sack_block *sp = &tp->selective_acks[0];
	int cur_sacks = tp->rx_opt.num_sacks;
	int this_sack;

	if (!cur_sacks)
		goto new_sack;

	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
		if (tcp_sack_extend(sp, seq, end_seq)) {
			/* Rotate this_sack to the first one. */
			for (; this_sack > 0; this_sack--, sp--)
				tcp_sack_swap(sp, sp - 1);
			if (cur_sacks > 1)
				tcp_sack_maybe_coalesce(tp);
			return;
		}
	}

	/* Could not find an adjacent existing SACK, build a new one,
	 * put it at the front, and shift everyone else down.  We
	 * always know there is at least one SACK present already here.
	 *
	 * If the sack array is full, forget about the last one.
	 */
	if (this_sack >= 4) {
		this_sack--;
		tp->rx_opt.num_sacks--;
		sp--;
	}
	for (; this_sack > 0; this_sack--, sp--)
		*sp = *(sp - 1);

new_sack:
	/* Build the new head SACK, and we're done. */
	sp->start_seq = seq;
	sp->end_seq = end_seq;
	tp->rx_opt.num_sacks++;
	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
				   4 - tp->rx_opt.tstamp_ok);
}

/* RCV.NXT advances, some SACKs should be eaten. */

static void tcp_sack_remove(struct tcp_sock *tp)
{
	struct tcp_sack_block *sp = &tp->selective_acks[0];
	int num_sacks = tp->rx_opt.num_sacks;
	int this_sack;

	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
	if (skb_queue_empty(&tp->out_of_order_queue)) {
		tp->rx_opt.num_sacks = 0;
		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
		return;
	}

	for (this_sack = 0; this_sack < num_sacks;) {
		/* Check if the start of the sack is covered by RCV.NXT. */
		if (!before(tp->rcv_nxt, sp->start_seq)) {
			int i;

			/* RCV.NXT must cover all the block! */
			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));

			/* Zap this SACK, by moving forward any other SACKS. */
			for (i=this_sack+1; i < num_sacks; i++)
				tp->selective_acks[i-1] = tp->selective_acks[i];
			num_sacks--;
			continue;
		}
		this_sack++;
		sp++;
	}
	if (num_sacks != tp->rx_opt.num_sacks) {
		tp->rx_opt.num_sacks = num_sacks;
		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
					   tp->rx_opt.dsack,
					   4 - tp->rx_opt.tstamp_ok);
	}
}

/* This one checks to see if we can put data from the
 * out_of_order queue into the receive_queue.
 */
static void tcp_ofo_queue(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	__u32 dsack_high = tp->rcv_nxt;
	struct sk_buff *skb;

	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
			break;

		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
			__u32 dsack = dsack_high;
			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
				dsack_high = TCP_SKB_CB(skb)->end_seq;
			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
		}

		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
			SOCK_DEBUG(sk, "ofo packet was already received \n");
			__skb_unlink(skb, &tp->out_of_order_queue);
			__kfree_skb(skb);
			continue;
		}
		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
			   TCP_SKB_CB(skb)->end_seq);

		__skb_unlink(skb, &tp->out_of_order_queue);
		__skb_queue_tail(&sk->sk_receive_queue, skb);
		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
		if (tcp_hdr(skb)->fin)
			tcp_fin(skb, sk, tcp_hdr(skb));
	}
}

static int tcp_prune_ofo_queue(struct sock *sk);
static int tcp_prune_queue(struct sock *sk);

static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
{
	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
	    !sk_rmem_schedule(sk, size)) {

		if (tcp_prune_queue(sk) < 0)
			return -1;

		if (!sk_rmem_schedule(sk, size)) {
			if (!tcp_prune_ofo_queue(sk))
				return -1;

			if (!sk_rmem_schedule(sk, size))
				return -1;
		}
	}
	return 0;
}

static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
{
	struct tcphdr *th = tcp_hdr(skb);
	struct tcp_sock *tp = tcp_sk(sk);
	int eaten = -1;

	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
		goto drop;

	__skb_pull(skb, th->doff * 4);

	TCP_ECN_accept_cwr(tp, skb);

	if (tp->rx_opt.dsack) {
		tp->rx_opt.dsack = 0;
		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
					     4 - tp->rx_opt.tstamp_ok);
	}

	/*  Queue data for delivery to the user.
	 *  Packets in sequence go to the receive queue.
	 *  Out of sequence packets to the out_of_order_queue.
	 */
	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
		if (tcp_receive_window(tp) == 0)
			goto out_of_window;

		/* Ok. In sequence. In window. */
		if (tp->ucopy.task == current &&
		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
		    sock_owned_by_user(sk) && !tp->urg_data) {
			int chunk = min_t(unsigned int, skb->len,
					  tp->ucopy.len);

			__set_current_state(TASK_RUNNING);

			local_bh_enable();
			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
				tp->ucopy.len -= chunk;
				tp->copied_seq += chunk;
				eaten = (chunk == skb->len && !th->fin);
				tcp_rcv_space_adjust(sk);
			}
			local_bh_disable();
		}

		if (eaten <= 0) {
queue_and_out:
			if (eaten < 0 &&
			    tcp_try_rmem_schedule(sk, skb->truesize))
				goto drop;

			skb_set_owner_r(skb, sk);
			__skb_queue_tail(&sk->sk_receive_queue, skb);
		}
		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
		if (skb->len)
			tcp_event_data_recv(sk, skb);
		if (th->fin)
			tcp_fin(skb, sk, th);

		if (!skb_queue_empty(&tp->out_of_order_queue)) {
			tcp_ofo_queue(sk);

			/* RFC2581. 4.2. SHOULD send immediate ACK, when
			 * gap in queue is filled.
			 */
			if (skb_queue_empty(&tp->out_of_order_queue))
				inet_csk(sk)->icsk_ack.pingpong = 0;
		}

		if (tp->rx_opt.num_sacks)
			tcp_sack_remove(tp);

		tcp_fast_path_check(sk);

		if (eaten > 0)
			__kfree_skb(skb);
		else if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_data_ready(sk, 0);
		return;
	}

	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
		/* A retransmit, 2nd most common case.  Force an immediate ack. */
		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);

out_of_window:
		tcp_enter_quickack_mode(sk);
		inet_csk_schedule_ack(sk);
drop:
		__kfree_skb(skb);
		return;
	}

	/* Out of window. F.e. zero window probe. */
	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
		goto out_of_window;

	tcp_enter_quickack_mode(sk);

	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
		/* Partial packet, seq < rcv_next < end_seq */
		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
			   TCP_SKB_CB(skb)->end_seq);

		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);

		/* If window is closed, drop tail of packet. But after
		 * remembering D-SACK for its head made in previous line.
		 */
		if (!tcp_receive_window(tp))
			goto out_of_window;
		goto queue_and_out;
	}

	TCP_ECN_check_ce(tp, skb);

	if (tcp_try_rmem_schedule(sk, skb->truesize))
		goto drop;

	/* Disable header prediction. */
	tp->pred_flags = 0;
	inet_csk_schedule_ack(sk);

	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);

	skb_set_owner_r(skb, sk);

	if (!skb_peek(&tp->out_of_order_queue)) {
		/* Initial out of order segment, build 1 SACK. */
		if (tcp_is_sack(tp)) {
			tp->rx_opt.num_sacks = 1;
			tp->rx_opt.dsack     = 0;
			tp->rx_opt.eff_sacks = 1;