/* * usbmidi.c - ALSA USB MIDI driver * * Copyright (c) 2002-2005 Clemens Ladisch * All rights reserved. * * Based on the OSS usb-midi driver by NAGANO Daisuke, * NetBSD's umidi driver by Takuya SHIOZAKI, * the "USB Device Class Definition for MIDI Devices" by Roland * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed and/or modified under the * terms of the GNU General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any later * version. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sound/driver.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/usb.h> #include <sound/core.h> #include <sound/minors.h> #include <sound/rawmidi.h> #include "usbaudio.h" /* * define this to log all USB packets */ /* #define DUMP_PACKETS */ MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); MODULE_DESCRIPTION("USB Audio/MIDI helper module"); MODULE_LICENSE("Dual BSD/GPL"); struct usb_ms_header_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDescriptorSubtype; __u8 bcdMSC[2]; __le16 wTotalLength; } __attribute__ ((packed)); struct usb_ms_endpoint_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDescriptorSubtype; __u8 bNumEmbMIDIJack; __u8 baAssocJackID[0]; } __attribute__ ((packed)); typedef struct snd_usb_midi snd_usb_midi_t; typedef struct snd_usb_midi_endpoint snd_usb_midi_endpoint_t; typedef struct snd_usb_midi_out_endpoint snd_usb_midi_out_endpoint_t; typedef struct snd_usb_midi_in_endpoint snd_usb_midi_in_endpoint_t; typedef struct usbmidi_out_port usbmidi_out_port_t; typedef struct usbmidi_in_port usbmidi_in_port_t; struct usb_protocol_ops { void (*input)(snd_usb_midi_in_endpoint_t*, uint8_t*, int); void (*output)(snd_usb_midi_out_endpoint_t*); void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t); void (*init_out_endpoint)(snd_usb_midi_out_endpoint_t*); void (*finish_out_endpoint)(snd_usb_midi_out_endpoint_t*); }; struct snd_usb_midi { snd_usb_audio_t *chip; struct usb_interface *iface; const snd_usb_audio_quirk_t *quirk; snd_rawmidi_t* rmidi; struct usb_protocol_ops* usb_protocol_ops; struct list_head list; struct snd_usb_midi_endpoint { snd_usb_midi_out_endpoint_t *out; snd_usb_midi_in_endpoint_t *in; } endpoints[MIDI_MAX_ENDPOINTS]; unsigned long input_triggered; }; struct snd_usb_midi_out_endpoint { snd_usb_midi_t* umidi; struct urb* urb; int urb_active; int max_transfer; /* size of urb buffer */ struct tasklet_struct tasklet; spinlock_t buffer_lock; struct usbmidi_out_port { snd_usb_midi_out_endpoint_t* ep; snd_rawmidi_substream_t* substream; int active; uint8_t cable; /* cable number << 4 */ uint8_t state; #define STATE_UNKNOWN 0 #define STATE_1PARAM 1 #define STATE_2PARAM_1 2 #define STATE_2PARAM_2 3 #define STATE_SYSEX_0 4 #define STATE_SYSEX_1 5 #define STATE_SYSEX_2 6 uint8_t data[2]; } ports[0x10]; int current_port; }; struct snd_usb_midi_in_endpoint { snd_usb_midi_t* umidi; struct urb* urb; struct usbmidi_in_port { snd_rawmidi_substream_t* substream; } ports[0x10]; int seen_f5; int current_port; }; static void snd_usbmidi_do_output(snd_usb_midi_out_endpoint_t* ep); static const uint8_t snd_usbmidi_cin_length[] = { 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 }; /* * Submits the URB, with error handling. */ static int snd_usbmidi_submit_urb(struct urb* urb, int flags) { int err = usb_submit_urb(urb, flags); if (err < 0 && err != -ENODEV) snd_printk(KERN_ERR "usb_submit_urb: %d\n", err); return err; } /* * Error handling for URB completion functions. */ static int snd_usbmidi_urb_error(int status) { if (status == -ENOENT) return status; /* killed */ if (status == -EILSEQ || status == -ECONNRESET || status == -ETIMEDOUT) return -ENODEV; /* device removed/shutdown */ snd_printk(KERN_ERR "urb status %d\n", status); return 0; /* continue */ } /* * Receives a chunk of MIDI data. */ static void snd_usbmidi_input_data(snd_usb_midi_in_endpoint_t* ep, int portidx, uint8_t* data, int length) { usbmidi_in_port_t* port = &ep->ports[portidx]; if (!port->substream) { snd_printd("unexpected port %d!\n", portidx); return; } if (!test_bit(port->substream->number, &ep->umidi->input_triggered)) return; snd_rawmidi_receive(port->substream, data, length); } #ifdef DUMP_PACKETS static void dump_urb(const char *type, const u8 *data, int length) { snd_printk(KERN_DEBUG "%s packet: [", type); for (; length > 0; ++data, --length) printk(" %02x", *data); printk(" ]\n"); } #else #define dump_urb(type, data, length) /* nothing */ #endif /* * Processes the data read from the device. */ static void snd_usbmidi_in_urb_complete(struct urb* urb, struct pt_regs *regs) { snd_usb_midi_in_endpoint_t* ep = urb->context; if (urb->status == 0) { dump_urb("received", urb->transfer_buffer, urb->actual_length); ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer, urb->actual_length); } else { if (snd_usbmidi_urb_error(urb->status) < 0) return; } if (usb_pipe_needs_resubmit(urb->pipe)) { urb->dev = ep->umidi->chip->dev; snd_usbmidi_submit_urb(urb, GFP_ATOMIC); } } static void snd_usbmidi_out_urb_complete(struct urb* urb, struct pt_regs *regs) { snd_usb_midi_out_endpoint_t* ep = urb->context; spin_lock(&ep->buffer_lock); ep->urb_active = 0; spin_unlock(&ep->buffer_lock); if (urb->status < 0) { if (snd_usbmidi_urb_error(urb->status) < 0) return; } snd_usbmidi_do_output(ep); } /* * This is called when some data should be transferred to the device * (from one or more substreams). */ static void snd_usbmidi_do_output(snd_usb_midi_out_endpoint_t* ep) { struct urb* urb = ep->urb; unsigned long flags; spin_lock_irqsave(&ep->buffer_lock, flags); if (ep->urb_active || ep->umidi->chip->shutdown) { spin_unlock_irqrestore(&ep->buffer_lock, flags); return; } urb->transfer_buffer_length = 0; ep->umidi->usb_protocol_ops->output(ep); if (urb->transfer_buffer_length > 0) { dump_urb("sending", urb->transfer_buffer, urb->transfer_buffer_length); urb->dev = ep->umidi->chip->dev; ep->urb_active = snd_usbmidi_submit_urb(urb, GFP_ATOMIC) >= 0; } spin_unlock_irqrestore(&ep->buffer_lock, flags); } static void snd_usbmidi_out_tasklet(unsigned long data) { snd_usb_midi_out_endpoint_t* ep = (snd_usb_midi_out_endpoint_t *) data; snd_usbmidi_do_output(ep); } /* helper function to send static data that may not DMA-able */ static int send_bulk_static_data(snd_usb_midi_out_endpoint_t* ep, const void *data, int len) { int err; void *buf = kmalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; memcpy(buf, data, len); dump_urb("sending", buf, len); err = usb_bulk_msg(ep->umidi->chip->dev, ep->urb->pipe, buf, len, NULL, 250); kfree(buf); return err; } /* * Standard USB MIDI protocol: see the spec. * Midiman protocol: like the standard protocol, but the control byte is the * fourth byte in each packet, and uses length instead of CIN. */ static void snd_usbmidi_standard_input(snd_usb_midi_in_endpoint_t* ep, uint8_t* buffer, int buffer_length) { int i; for (i = 0; i + 3 < buffer_length; i += 4) if (buffer[i] != 0) { int cable = buffer[i] >> 4; int length = snd_usbmidi_cin_length[buffer[i] & 0x0f]; snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length); } } static void snd_usbmidi_midiman_input(snd_usb_midi_in_endpoint_t* ep, uint8_t* buffer, int buffer_length) { int i; for (i = 0; i + 3 < buffer_length; i += 4) if (buffer[i + 3] != 0) { int port = buffer[i + 3] >> 4; int length = buffer[i + 3] & 3; snd_usbmidi_input_data(ep, port, &buffer[i], length); } } /* * Adds one USB MIDI packet to the output buffer. */ static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0, uint8_t p1, uint8_t p2, uint8_t p3) { uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; buf[0] = p0; buf[1] = p1; buf[2] = p2; buf[3] = p3; urb->transfer_buffer_length += 4; } /* * Adds one Midiman packet to the output buffer. */ static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0, uint8_t p1, uint8_t p2, uint8_t p3) { uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; buf[0] = p1; buf[1] = p2; buf[2] = p3; buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f]; urb->transfer_buffer_length += 4; } /* * Converts MIDI commands to USB MIDI packets. */ static void snd_usbmidi_transmit_byte(usbmidi_out_port_t* port, uint8_t b, struct urb* urb) { uint8_t p0 = port->cable; void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) = port->ep->umidi->usb_protocol_ops->output_packet; if (b >= 0xf8) { output_packet(urb, p0 | 0x0f, b, 0, 0); } else if (b >= 0xf0) { switch (b) { case 0xf0: port->data[0] = b; port->state = STATE_SYSEX_1; break; case 0xf1: case 0xf3: port->data[0] = b; port->state = STATE_1PARAM; break; case 0xf2: port->data[0] = b; port->state = STATE_2PARAM_1; break; case 0xf4: case 0xf5: port->state = STATE_UNKNOWN; break; case 0xf6: output_packet(urb, p0 | 0x05, 0xf6, 0, 0); port->state = STATE_UNKNOWN; break; case 0xf7: switch (port->state) { case STATE_SYSEX_0: output_packet(urb, p0 | 0x05, 0xf7, 0, 0); break; case STATE_SYSEX_1: output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0); break; case STATE_SYSEX_2: output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7); break; } port->state = STATE_UNKNOWN; break; } } else if (b >= 0x80) { port->data[0] = b; if (b >= 0xc0 && b <= 0xdf) port->state = STATE_1PARAM; else port->state = STATE_2PARAM_1; } else { /* b < 0x80 */ switch (port->state) { case STATE_1PARAM: if (port->data[0] < 0xf0) { p0 |= port->data[0] >> 4; } else { p0 |= 0x02; port->state = STATE_UNKNOWN; } output_packet(urb, p0, port->data[0], b, 0); break; case STATE_2PARAM_1: port->data[1] = b; port->state = STATE_2PARAM_2; break; case STATE_2PARAM_2: if (port->data[0] < 0xf0) { p0 |= port->data[0] >> 4; port->state = STATE_2PARAM_1; } else { p0 |= 0x03; port->state = STATE_UNKNOWN; } output_packet(urb, p0, port->data[0], port->data[1], b); break; case STATE_SYSEX_0: port->data[0] = b; port->state = STATE_SYSEX_1; break; case STATE_SYSEX_1: port->data[1] = b; port->state = STATE_SYSEX_2; break; case STATE_SYSEX_2: output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b); port->state = STATE_SYSEX_0; break; } } } static void snd_usbmidi_standard_output(snd_usb_midi_out_endpoint_t* ep) { struct urb* urb = ep->urb; int p; /* FIXME: lower-numbered ports can starve higher-numbered ports */ for (p = 0; p < 0x10; ++p) { usbmidi_out_port_t* port = &ep->ports[p]; if (!port->active) continue; while (urb->transfer_buffer_length + 3 < ep->max_transfer) { uint8_t b; if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) { port->active = 0; break; } snd_usbmidi_transmit_byte(port, b, urb); } } } static struct usb_protocol_ops snd_usbmidi_standard_ops = { .input = snd_usbmidi_standard_input, .output = snd_usbmidi_standard_output, .output_packet = snd_usbmidi_output_standard_packet, }; static struct usb_protocol_ops snd_usbmidi_midiman_ops = { .input = snd_usbmidi_midiman_input, .output = snd_usbmidi_standard_output, .output_packet = snd_usbmidi_output_midiman_packet, }; /* * Novation USB MIDI protocol: number of data bytes is in the first byte * (when receiving) (+1!) or in the second byte (when sending); data begins * at the third byte. */ static void snd_usbmidi_novation_input(snd_usb_midi_in_endpoint_t* ep, uint8_t* buffer, int buffer_length) { if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1) return; snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1); } static void snd_usbmidi_novation_output(snd_usb_midi_out_endpoint_t* ep) { uint8_t* transfer_buffer; int count; if (!ep->ports[0].active) return; transfer_buffer = ep->urb->transfer_buffer; count = snd_rawmidi_transmit(ep->ports[0].substream, &transfer_buffer[2], ep->max_transfer - 2); if (count < 1) { ep->ports[0].active = 0; return; } transfer_buffer[0] = 0; transfer_buffer[1] = count; ep->urb->transfer_buffer_length = 2 + count; } static struct usb_protocol_ops snd_usbmidi_novation_ops = { .input = snd_usbmidi_novation_input, .output = snd_usbmidi_novation_output, }; /* * Mark of the Unicorn USB MIDI protocol: raw MIDI. */ static void snd_usbmidi_motu_input(snd_usb_midi_in_endpoint_t* ep, uint8_t* buffer, int buffer_length) { snd_usbmidi_input_data(ep, 0, buffer, buffer_length); } static void snd_usbmidi_motu_output(snd_usb_midi_out_endpoint_t* ep) { int count; if (!ep->ports[0].active) return; count = snd_rawmidi_transmit(ep->ports[0].substream, ep->urb->transfer_buffer, ep->max_transfer); if (count < 1) { ep->ports[0].active = 0; return; } ep->urb->transfer_buffer_length = count; } static struct usb_protocol_ops snd_usbmidi_motu_ops = { .input = snd_usbmidi_motu_input, .output = snd_usbmidi_motu_output, }; /* * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching. */ static void snd_usbmidi_emagic_init_out(snd_usb_midi_out_endpoint_t* ep) { static const u8 init_data[] = { /* initialization magic: "get version" */ 0xf0, 0x00, 0x20, 0x31, /* Emagic */ 0x64, /* Unitor8 */ 0x0b, /* version number request */ 0x00, /* command version */ 0x00, /* EEPROM, box 0 */ 0xf7 }; send_bulk_static_data(ep, init_data, sizeof(init_data)); /* while we're at it, pour on more magic */ send_bulk_static_data(ep, init_data, sizeof(init_data)); } static void snd_usbmidi_emagic_finish_out(snd_usb_midi_out_endpoint_t* ep) { static const u8 finish_data[] = { /* switch to patch mode with last preset */ 0xf0, 0x00, 0x20, 0x31, /* Emagic */ 0x64, /* Unitor8 */ 0x10, /* patch switch command */ 0x00, /* command version */ 0x7f, /* to all boxes */ 0x40, /* last preset in EEPROM */ 0xf7 }; send_bulk_static_data(ep, finish_data, sizeof(finish_data)); } static void snd_usbmidi_emagic_input(snd_usb_midi_in_endpoint_t* ep, uint8_t* buffer, int buffer_length) { /* ignore padding bytes at end of buffer */ while (buffer_length > 0 && buffer[buffer_length - 1] == 0xff) --buffer_length; /* handle F5 at end of last buffer */ if (ep->seen_f5) goto switch_port; while (buffer_length > 0) { int i; /* determine size of data until next F5 */ for (i = 0; i < buffer_length; ++i) if (buffer[i] == 0xf5) break; snd_usbmidi_input_data(ep, ep->current_port, buffer, i); buffer += i; buffer_length -= i; if (buffer_length <= 0) break; /* assert(buffer[0] == 0xf5); */ ep->seen_f5 = 1; ++buffer; --buffer_length; switch_port: if (buffer_length <= 0) break; if (buffer[0] < 0x80) { ep->current_port = (buffer[0] - 1) & 15; ++buffer; --buffer_length; } ep->seen_f5 = 0; } } static void snd_usbmidi_emagic_output(snd_usb_midi_out_endpoint_t* ep) { int port0 = ep->current_port; uint8_t* buf = ep->urb->transfer_buffer; int buf_free = ep->max_transfer; int length, i; for (i = 0; i < 0x10; ++i) { /* round-robin, starting at the last current port */ int portnum = (port0 + i) & 15; usbmidi_out_port_t* port = &ep->ports[portnum]; if (!port->active) continue; if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) { port->active = 0; continue; } if (portnum != ep->current_port) { if (buf_free < 2) break; ep->current_port = portnum; buf[0] = 0xf5; buf[1] = (portnum + 1) & 15; buf += 2; buf_free -= 2; } if (buf_free < 1) break; length = snd_rawmidi_transmit(port->substream, buf, buf_free); if (length > 0) { buf += length; buf_free -= length; if (buf_free < 1) break; } } ep->urb->transfer_buffer_length = ep->max_transfer - buf_free; } static struct usb_protocol_ops snd_usbmidi_emagic_ops = { .input = snd_usbmidi_emagic_input, .output = snd_usbmidi_emagic_output, .init_out_endpoint = snd_usbmidi_emagic_init_out, .finish_out_endpoint = snd_usbmidi_emagic_finish_out, }; static int snd_usbmidi_output_open(snd_rawmidi_substream_t* substream) { snd_usb_midi_t* umidi = substream->rmidi->private_data; usbmidi_out_port_t* port = NULL; int i, j; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) if (umidi->endpoints[i].out) for (j = 0; j < 0x10; ++j) if (umidi->endpoints[i].out->ports[j].substream == substream) { port = &umidi->endpoints[i].out->ports[j]; break; } if (!port) { snd_BUG(); return -ENXIO; } substream->runtime->private_data = port; port->state = STATE_UNKNOWN; return 0; } static int snd_usbmidi_output_close(snd_rawmidi_substream_t* substream) { return 0; } static void snd_usbmidi_output_trigger(snd_rawmidi_substream_t* substream, int up) { usbmidi_out_port_t* port = (usbmidi_out_port_t*)substream->runtime->private_data; port->active = up; if (up) { if (port->ep->umidi->chip->shutdown) { /* gobble up remaining bytes to prevent wait in * snd_rawmidi_drain_output */ while (!snd_rawmidi_transmit_empty(substream)) snd_rawmidi_transmit_ack(substream, 1); return; } tasklet_hi_schedule(&port->ep->tasklet); } } static int snd_usbmidi_input_open(snd_rawmidi_substream_t* substream) { return 0; } static int snd_usbmidi_input_close(snd_rawmidi_substream_t* substream) { return 0; } static void snd_usbmidi_input_trigger(snd_rawmidi_substream_t* substream, int up) { snd_usb_midi_t* umidi = substream->rmidi->private_data; if (up) set_bit(substream->number, &umidi->input_triggered); else clear_bit(substream->number, &umidi->input_triggered); } static snd_rawmidi_ops_t snd_usbmidi_output_ops = { .open = snd_usbmidi_output_open, .close = snd_usbmidi_output_close, .trigger = snd_usbmidi_output_trigger, }; static snd_rawmidi_ops_t snd_usbmidi_input_ops = { .open = snd_usbmidi_input_open, .close = snd_usbmidi_input_close, .trigger = snd_usbmidi_input_trigger }; /* * Frees an input endpoint. * May be called when ep hasn't been initialized completely. */ static void snd_usbmidi_in_endpoint_delete(snd_usb_midi_in_endpoint_t* ep) { if (ep->urb) { kfree(ep->urb->transfer_buffer); usb_free_urb(ep->urb); } kfree(ep); } /* * Creates an input endpoint. */ static int snd_usbmidi_in_endpoint_create(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* ep_info, snd_usb_midi_endpoint_t* rep) { snd_usb_midi_in_endpoint_t* ep; void* buffer; unsigned int pipe; int length; rep->in = NULL; ep = kcalloc(1, sizeof(*ep), GFP_KERNEL); if (!ep) return -ENOMEM; ep->umidi = umidi; ep->urb = usb_alloc_urb(0, GFP_KERNEL); if (!ep->urb) { snd_usbmidi_in_endpoint_delete(ep); return -ENOMEM; } if (ep_info->in_interval) pipe = usb_rcvintpipe(umidi->chip->dev, ep_info->in_ep); else pipe = usb_rcvbulkpipe(umidi->chip->dev, ep_info->in_ep); length = usb_maxpacket(umidi->chip->dev, pipe, 0); buffer = kmalloc(length, GFP_KERNEL); if (!buffer) { snd_usbmidi_in_endpoint_delete(ep); return -ENOMEM; } if (ep_info->in_interval) usb_fill_int_urb(ep->urb, umidi->chip->dev, pipe, buffer, length, snd_usb_complete_callback(snd_usbmidi_in_urb_complete), ep, ep_info->in_interval); else usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer, length, snd_usb_complete_callback(snd_usbmidi_in_urb_complete), ep); rep->in = ep; return 0; } static unsigned int snd_usbmidi_count_bits(unsigned int x) { unsigned int bits = 0; for (; x; x >>= 1) bits += x & 1; return bits; } /* * Frees an output endpoint. * May be called when ep hasn't been initialized completely. */ static void snd_usbmidi_out_endpoint_delete(snd_usb_midi_out_endpoint_t* ep) { if (ep->tasklet.func) tasklet_kill(&ep->tasklet); if (ep->urb) { kfree(ep->urb->transfer_buffer); usb_free_urb(ep->urb); } kfree(ep); } /* * Creates an output endpoint, and initializes output ports. */ static int snd_usbmidi_out_endpoint_create(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* ep_info, snd_usb_midi_endpoint_t* rep) { snd_usb_midi_out_endpoint_t* ep; int i; unsigned int pipe; void* buffer; rep->out = NULL; ep = kcalloc(1, sizeof(*ep), GFP_KERNEL); if (!ep) return -ENOMEM; ep->umidi = umidi; ep->urb = usb_alloc_urb(0, GFP_KERNEL); if (!ep->urb) { snd_usbmidi_out_endpoint_delete(ep); return -ENOMEM; } /* we never use interrupt output pipes */ pipe = usb_sndbulkpipe(umidi->chip->dev, ep_info->out_ep); ep->max_transfer = usb_maxpacket(umidi->chip->dev, pipe, 1); buffer = kmalloc(ep->max_transfer, GFP_KERNEL); if (!buffer) { snd_usbmidi_out_endpoint_delete(ep); return -ENOMEM; } usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer, ep->max_transfer, snd_usb_complete_callback(snd_usbmidi_out_urb_complete), ep); spin_lock_init(&ep->buffer_lock); tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep); for (i = 0; i < 0x10; ++i) if (ep_info->out_cables & (1 << i)) { ep->ports[i].ep = ep; ep->ports[i].cable = i << 4; } if (umidi->usb_protocol_ops->init_out_endpoint) umidi->usb_protocol_ops->init_out_endpoint(ep); rep->out = ep; return 0; } /* * Frees everything. */ static void snd_usbmidi_free(snd_usb_midi_t* umidi) { int i; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i]; if (ep->out) snd_usbmidi_out_endpoint_delete(ep->out); if (ep->in) snd_usbmidi_in_endpoint_delete(ep->in); } kfree(umidi); } /* * Unlinks all URBs (must be done before the usb_device is deleted). */ void snd_usbmidi_disconnect(struct list_head* p) { snd_usb_midi_t* umidi; int i; umidi = list_entry(p, snd_usb_midi_t, list); for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i]; if (ep->out && ep->out->urb) { usb_kill_urb(ep->out->urb); if (umidi->usb_protocol_ops->finish_out_endpoint) umidi->usb_protocol_ops->finish_out_endpoint(ep->out); } if (ep->in && ep->in->urb) usb_kill_urb(ep->in->urb); } } static void snd_usbmidi_rawmidi_free(snd_rawmidi_t* rmidi) { snd_usb_midi_t* umidi = rmidi->private_data; snd_usbmidi_free(umidi); } static snd_rawmidi_substream_t* snd_usbmidi_find_substream(snd_usb_midi_t* umidi, int stream, int number) { struct list_head* list; list_for_each(list, &umidi->rmidi->streams[stream].substreams) { snd_rawmidi_substream_t* substream = list_entry(list, snd_rawmidi_substream_t, list); if (substream->number == number) return substream; } return NULL; } /* * This list specifies names for ports that do not fit into the standard * "(product) MIDI (n)" schema because they aren't external MIDI ports, * such as internal control or synthesizer ports. */ static struct { u32 id; int port; const char *name_format; } snd_usbmidi_port_names[] = { /* Roland UA-100 */ { USB_ID(0x0582, 0x0000), 2, "%s Control" }, /* Roland SC-8850 */ { USB_ID(0x0582, 0x0003), 0, "%s Part A" }, { USB_ID(0x0582, 0x0003), 1, "%s Part B" }, { USB_ID(0x0582, 0x0003), 2, "%s Part C" }, { USB_ID(0x0582, 0x0003), 3, "%s Part D" }, { USB_ID(0x0582, 0x0003), 4, "%s MIDI 1" }, { USB_ID(0x0582, 0x0003), 5, "%s MIDI 2" }, /* Roland U-8 */ { USB_ID(0x0582, 0x0004), 0, "%s MIDI" }, { USB_ID(0x0582, 0x0004), 1, "%s Control" }, /* Roland SC-8820 */ { USB_ID(0x0582, 0x0007), 0, "%s Part A" }, { USB_ID(0x0582, 0x0007), 1, "%s Part B" }, { USB_ID(0x0582, 0x0007), 2, "%s MIDI" }, /* Roland SK-500 */ { USB_ID(0x0582, 0x000b), 0, "%s Part A" }, { USB_ID(0x0582, 0x000b), 1, "%s Part B" }, { USB_ID(0x0582, 0x000b), 2, "%s MIDI" }, /* Roland SC-D70 */ { USB_ID(0x0582, 0x000c), 0, "%s Part A" }, { USB_ID(0x0582, 0x000c), 1, "%s Part B" }, { USB_ID(0x0582, 0x000c), 2, "%s MIDI" }, /* Edirol UM-880 */ { USB_ID(0x0582, 0x0014), 8, "%s Control" }, /* Edirol SD-90 */ { USB_ID(0x0582, 0x0016), 0, "%s Part A" }, { USB_ID(0x0582, 0x0016), 1, "%s Part B" }, { USB_ID(0x0582, 0x0016), 2, "%s MIDI 1" }, { USB_ID(0x0582, 0x0016), 3, "%s MIDI 2" }, /* Edirol UM-550 */ { USB_ID(0x0582, 0x0023), 5, "%s Control" }, /* Edirol SD-20 */ { USB_ID(0x0582, 0x0027), 0, "%s Part A" }, { USB_ID(0x0582, 0x0027), 1, "%s Part B" }, { USB_ID(0x0582, 0x0027), 2, "%s MIDI" }, /* Edirol SD-80 */ { USB_ID(0x0582, 0x0029), 0, "%s Part A" }, { USB_ID(0x0582, 0x0029), 1, "%s Part B" }, { USB_ID(0x0582, 0x0029), 2, "%s MIDI 1" }, { USB_ID(0x0582, 0x0029), 3, "%s MIDI 2" }, /* Edirol UA-700 */ { USB_ID(0x0582, 0x002b), 0, "%s MIDI" }, { USB_ID(0x0582, 0x002b), 1, "%s Control" }, /* Roland VariOS */ { USB_ID(0x0582, 0x002f), 0, "%s MIDI" }, { USB_ID(0x0582, 0x002f), 1, "%s External MIDI" }, { USB_ID(0x0582, 0x002f), 2, "%s Sync" }, /* Edirol PCR */ { USB_ID(0x0582, 0x0033), 0, "%s MIDI" }, { USB_ID(0x0582, 0x0033), 1, "%s 1" }, { USB_ID(0x0582, 0x0033), 2, "%s 2" }, /* BOSS GS-10 */ { USB_ID(0x0582, 0x003b), 0, "%s MIDI" }, { USB_ID(0x0582, 0x003b), 1, "%s Control" }, /* Edirol UA-1000 */ { USB_ID(0x0582, 0x0044), 0, "%s MIDI" }, { USB_ID(0x0582, 0x0044), 1, "%s Control" }, /* Edirol UR-80 */ { USB_ID(0x0582, 0x0048), 0, "%s MIDI" }, { USB_ID(0x0582, 0x0048), 1, "%s 1" }, { USB_ID(0x0582, 0x0048), 2, "%s 2" }, /* Edirol PCR-A */ { USB_ID(0x0582, 0x004d), 0, "%s MIDI" }, { USB_ID(0x0582, 0x004d), 1, "%s 1" }, { USB_ID(0x0582, 0x004d), 2, "%s 2" }, /* M-Audio MidiSport 8x8 */ { USB_ID(0x0763, 0x1031), 8, "%s Control" }, { USB_ID(0x0763, 0x1033), 8, "%s Control" }, /* MOTU Fastlane */ { USB_ID(0x07fd, 0x0001), 0, "%s MIDI A" }, { USB_ID(0x07fd, 0x0001), 1, "%s MIDI B" }, /* Emagic Unitor8/AMT8/MT4 */ { USB_ID(0x086a, 0x0001), 8, "%s Broadcast" }, { USB_ID(0x086a, 0x0002), 8, "%s Broadcast" }, { USB_ID(0x086a, 0x0003), 4, "%s Broadcast" }, }; static void snd_usbmidi_init_substream(snd_usb_midi_t* umidi, int stream, int number, snd_rawmidi_substream_t** rsubstream) { int i; const char *name_format; snd_rawmidi_substream_t* substream = snd_usbmidi_find_substream(umidi, stream, number); if (!substream) { snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number); return; } /* TODO: read port name from jack descriptor */ name_format = "%s MIDI %d"; for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_names); ++i) { if (snd_usbmidi_port_names[i].id == umidi->chip->usb_id && snd_usbmidi_port_names[i].port == number) { name_format = snd_usbmidi_port_names[i].name_format; break; } } snprintf(substream->name, sizeof(substream->name), name_format, umidi->chip->card->shortname, number + 1); *rsubstream = substream; } /* * Creates the endpoints and their ports. */ static int snd_usbmidi_create_endpoints(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* endpoints) { int i, j, err; int out_ports = 0, in_ports = 0; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { if (endpoints[i].out_cables) { err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i], &umidi->endpoints[i]); if (err < 0) return err; } if (endpoints[i].in_cables) { err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i], &umidi->endpoints[i]); if (err < 0) return err; } for (j = 0; j < 0x10; ++j) { if (endpoints[i].out_cables & (1 << j)) { snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports, &umidi->endpoints[i].out->ports[j].substream); ++out_ports; } if (endpoints[i].in_cables & (1 << j)) { snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports, &umidi->endpoints[i].in->ports[j].substream); ++in_ports; } } } snd_printdd(KERN_INFO "created %d output and %d input ports\n", out_ports, in_ports); return 0; } /* * Returns MIDIStreaming device capabilities. */ static int snd_usbmidi_get_ms_info(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* endpoints) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; struct usb_ms_header_descriptor* ms_header; struct usb_host_endpoint *hostep; struct usb_endpoint_descriptor* ep; struct usb_ms_endpoint_descriptor* ms_ep; int i, epidx; intf = umidi->iface; if (!intf) return -ENXIO; hostif = &intf->altsetting[0]; intfd = get_iface_desc(hostif); ms_header = (struct usb_ms_header_descriptor*)hostif->extra; if (hostif->extralen >= 7 && ms_header->bLength >= 7 && ms_header->bDescriptorType == USB_DT_CS_INTERFACE && ms_header->bDescriptorSubtype == HEADER) snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n", ms_header->bcdMSC[1], ms_header->bcdMSC[0]); else snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n"); epidx = 0; for (i = 0; i < intfd->bNumEndpoints; ++i) { hostep = &hostif->endpoint[i]; ep = get_ep_desc(hostep); if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK && (ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) continue; ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra; if (hostep->extralen < 4 || ms_ep->bLength < 4 || ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT || ms_ep->bDescriptorSubtype != MS_GENERAL) continue; if ((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) { if (endpoints[epidx].out_ep) { if (++epidx >= MIDI_MAX_ENDPOINTS) { snd_printk(KERN_WARNING "too many endpoints\n"); break; } } endpoints[epidx].out_ep = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) endpoints[epidx].out_interval = ep->bInterval; endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n", ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); } else { if (endpoints[epidx].in_ep) { if (++epidx >= MIDI_MAX_ENDPOINTS) { snd_printk(KERN_WARNING "too many endpoints\n"); break; } } endpoints[epidx].in_ep = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) endpoints[epidx].in_interval = ep->bInterval; endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n", ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); } } return 0; } /* * On Roland devices, use the second alternate setting to be able to use * the interrupt input endpoint. */ static void snd_usbmidi_switch_roland_altsetting(snd_usb_midi_t* umidi) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; intf = umidi->iface; if (!intf || intf->num_altsetting != 2) return; hostif = &intf->altsetting[1]; intfd = get_iface_desc(hostif); if (intfd->bNumEndpoints != 2 || (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK || (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) return; snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n", intfd->bAlternateSetting); usb_set_interface(umidi->chip->dev, intfd->bInterfaceNumber, intfd->bAlternateSetting); } /* * Try to find any usable endpoints in the interface. */ static int snd_usbmidi_detect_endpoints(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* endpoint, int max_endpoints) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; struct usb_endpoint_descriptor* epd; int i, out_eps = 0, in_eps = 0; if (USB_ID_VENDOR(umidi->chip->usb_id) == 0x0582) snd_usbmidi_switch_roland_altsetting(umidi); if (endpoint[0].out_ep || endpoint[0].in_ep) return 0; intf = umidi->iface; if (!intf || intf->num_altsetting < 1) return -ENOENT; hostif = intf->cur_altsetting; intfd = get_iface_desc(hostif); for (i = 0; i < intfd->bNumEndpoints; ++i) { epd = get_endpoint(hostif, i); if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK && (epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) continue; if (out_eps < max_endpoints && (epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) { endpoint[out_eps].out_ep = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) endpoint[out_eps].out_interval = epd->bInterval; ++out_eps; } if (in_eps < max_endpoints && (epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { endpoint[in_eps].in_ep = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) endpoint[in_eps].in_interval = epd->bInterval; ++in_eps; } } return (out_eps || in_eps) ? 0 : -ENOENT; } /* * Detects the endpoints for one-port-per-endpoint protocols. */ static int snd_usbmidi_detect_per_port_endpoints(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* endpoints) { int err, i; err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS); for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { if (endpoints[i].out_ep) endpoints[i].out_cables = 0x0001; if (endpoints[i].in_ep) endpoints[i].in_cables = 0x0001; } return err; } /* * Detects the endpoints and ports of Yamaha devices. */ static int snd_usbmidi_detect_yamaha(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* endpoint) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; uint8_t* cs_desc; intf = umidi->iface; if (!intf) return -ENOENT; hostif = intf->altsetting; intfd = get_iface_desc(hostif); if (intfd->bNumEndpoints < 1) return -ENOENT; /* * For each port there is one MIDI_IN/OUT_JACK descriptor, not * necessarily with any useful contents. So simply count 'em. */ for (cs_desc = hostif->extra; cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; cs_desc += cs_desc[0]) { if (cs_desc[1] == CS_AUDIO_INTERFACE) { if (cs_desc[2] == MIDI_IN_JACK) endpoint->in_cables = (endpoint->in_cables << 1) | 1; else if (cs_desc[2] == MIDI_OUT_JACK) endpoint->out_cables = (endpoint->out_cables << 1) | 1; } } if (!endpoint->in_cables && !endpoint->out_cables) return -ENOENT; return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); } /* * Creates the endpoints and their ports for Midiman devices. */ static int snd_usbmidi_create_endpoints_midiman(snd_usb_midi_t* umidi, snd_usb_midi_endpoint_info_t* endpoint) { snd_usb_midi_endpoint_info_t ep_info; struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; struct usb_endpoint_descriptor* epd; int cable, err; intf = umidi->iface; if (!intf) return -ENOENT; hostif = intf->altsetting; intfd = get_iface_desc(hostif); /* * The various MidiSport devices have more or less random endpoint * numbers, so we have to identify the endpoints by their index in * the descriptor array, like the driver for that other OS does. * * There is one interrupt input endpoint for all input ports, one * bulk output endpoint for even-numbered ports, and one for odd- * numbered ports. Both bulk output endpoints have corresponding * input bulk endpoints (at indices 1 and 3) which aren't used. */ if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) { snd_printdd(KERN_ERR "not enough endpoints\n"); return -ENOENT; } epd = get_endpoint(hostif, 0); if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_IN || (epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) { snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n"); return -ENXIO; } epd = get_endpoint(hostif, 2); if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT || (epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) { snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n"); return -ENXIO; } if (endpoint->out_cables > 0x0001) { epd = get_endpoint(hostif, 4); if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT || (epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) { snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n"); return -ENXIO; } } ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ep_info.out_cables = endpoint->out_cables & 0x5555; err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); if (err < 0) return err; ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ep_info.in_interval = get_endpoint(hostif, 0)->bInterval; ep_info.in_cables = endpoint->in_cables; err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); if (err < 0) return err; if (endpoint->out_cables > 0x0001) { ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ep_info.out_cables = endpoint->out_cables & 0xaaaa; err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]); if (err < 0) return err; } for (cable = 0; cable < 0x10; ++cable) { if (endpoint->out_cables & (1 << cable)) snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable, &umidi->endpoints[cable & 1].out->ports[cable].substream); if (endpoint->in_cables & (1 << cable)) snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable, &umidi->endpoints[0].in->ports[cable].substream); } return 0; } static int snd_usbmidi_create_rawmidi(snd_usb_midi_t* umidi, int out_ports, int in_ports) { snd_rawmidi_t* rmidi; int err; err = snd_rawmidi_new(umidi->chip->card, "USB MIDI", umidi->chip->next_midi_device++, out_ports, in_ports, &rmidi); if (err < 0) return err; strcpy(rmidi->name, umidi->chip->card->shortname); rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX; rmidi->private_data = umidi; rmidi->private_free = snd_usbmidi_rawmidi_free; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops); umidi->rmidi = rmidi; return 0; } /* * Temporarily stop input. */ void snd_usbmidi_input_stop(struct list_head* p) { snd_usb_midi_t* umidi; int i; umidi = list_entry(p, snd_usb_midi_t, list); for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i]; if (ep->in) usb_kill_urb(ep->in->urb); } } static void snd_usbmidi_input_start_ep(snd_usb_midi_in_endpoint_t* ep) { if (ep) { struct urb* urb = ep->urb; urb->dev = ep->umidi->chip->dev; snd_usbmidi_submit_urb(urb, GFP_KERNEL); } } /* * Resume input after a call to snd_usbmidi_input_stop(). */ void snd_usbmidi_input_start(struct list_head* p) { snd_usb_midi_t* umidi; int i; umidi = list_entry(p, snd_usb_midi_t, list); for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) snd_usbmidi_input_start_ep(umidi->endpoints[i].in); } /* * Creates and registers everything needed for a MIDI streaming interface. */ int snd_usb_create_midi_interface(snd_usb_audio_t* chip, struct usb_interface* iface, const snd_usb_audio_quirk_t* quirk) { snd_usb_midi_t* umidi; snd_usb_midi_endpoint_info_t endpoints[MIDI_MAX_ENDPOINTS]; int out_ports, in_ports; int i, err; umidi = kcalloc(1, sizeof(*umidi), GFP_KERNEL); if (!umidi) return -ENOMEM; umidi->chip = chip; umidi->iface = iface; umidi->quirk = quirk; umidi->usb_protocol_ops = &snd_usbmidi_standard_ops; /* detect the endpoint(s) to use */ memset(endpoints, 0, sizeof(endpoints)); if (!quirk) { err = snd_usbmidi_get_ms_info(umidi, endpoints); } else { switch (quirk->type) { case QUIRK_MIDI_FIXED_ENDPOINT: memcpy(&endpoints[0], quirk->data, sizeof(snd_usb_midi_endpoint_info_t)); err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); break; case QUIRK_MIDI_YAMAHA: err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]); break; case QUIRK_MIDI_MIDIMAN: umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops; memcpy(&endpoints[0], quirk->data, sizeof(snd_usb_midi_endpoint_info_t)); err = 0; break; case QUIRK_MIDI_NOVATION: umidi->usb_protocol_ops = &snd_usbmidi_novation_ops; err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); break; case QUIRK_MIDI_MOTU: umidi->usb_protocol_ops = &snd_usbmidi_motu_ops; err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); break; case QUIRK_MIDI_EMAGIC: umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops; memcpy(&endpoints[0], quirk->data, sizeof(snd_usb_midi_endpoint_info_t)); err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); break; default: snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type); err = -ENXIO; break; } } if (err < 0) { kfree(umidi); return err; } /* create rawmidi device */ out_ports = 0; in_ports = 0; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { out_ports += snd_usbmidi_count_bits(endpoints[i].out_cables); in_ports += snd_usbmidi_count_bits(endpoints[i].in_cables); } err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports); if (err < 0) { kfree(umidi); return err; } /* create endpoint/port structures */ if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]); else err = snd_usbmidi_create_endpoints(umidi, endpoints); if (err < 0) { snd_usbmidi_free(umidi); return err; } list_add(&umidi->list, &umidi->chip->midi_list); for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) snd_usbmidi_input_start_ep(umidi->endpoints[i].in); return 0; } EXPORT_SYMBOL(snd_usb_create_midi_interface); EXPORT_SYMBOL(snd_usbmidi_input_stop); EXPORT_SYMBOL(snd_usbmidi_input_start); EXPORT_SYMBOL(snd_usbmidi_disconnect);