/* * Edirol UA-101/UA-1000 driver * Copyright (c) Clemens Ladisch <clemens@ladisch.de> * * This driver is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this driver. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/usb/audio.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include "../usbaudio.h" #include "../midi.h" MODULE_DESCRIPTION("Edirol UA-101/1000 driver"); MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); MODULE_LICENSE("GPL v2"); MODULE_SUPPORTED_DEVICE("{{Edirol,UA-101},{Edirol,UA-1000}}"); /* * Should not be lower than the minimum scheduling delay of the host * controller. Some Intel controllers need more than one frame; as long as * that driver doesn't tell us about this, use 1.5 frames just to be sure. */ #define MIN_QUEUE_LENGTH 12 /* Somewhat random. */ #define MAX_QUEUE_LENGTH 30 /* * This magic value optimizes memory usage efficiency for the UA-101's packet * sizes at all sample rates, taking into account the stupid cache pool sizes * that usb_alloc_coherent() uses. */ #define DEFAULT_QUEUE_LENGTH 21 #define MAX_PACKET_SIZE 672 /* hardware specific */ #define MAX_MEMORY_BUFFERS DIV_ROUND_UP(MAX_QUEUE_LENGTH, \ PAGE_SIZE / MAX_PACKET_SIZE) static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; static unsigned int queue_length = 21; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "card index"); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string"); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "enable card"); module_param(queue_length, uint, 0644); MODULE_PARM_DESC(queue_length, "USB queue length in microframes, " __stringify(MIN_QUEUE_LENGTH)"-"__stringify(MAX_QUEUE_LENGTH)); enum { INTF_PLAYBACK, INTF_CAPTURE, INTF_MIDI, INTF_COUNT }; /* bits in struct ua101::states */ enum { USB_CAPTURE_RUNNING, USB_PLAYBACK_RUNNING, ALSA_CAPTURE_OPEN, ALSA_PLAYBACK_OPEN, ALSA_CAPTURE_RUNNING, ALSA_PLAYBACK_RUNNING, CAPTURE_URB_COMPLETED, PLAYBACK_URB_COMPLETED, DISCONNECTED, }; struct ua101 { struct usb_device *dev; struct snd_card *card; struct usb_interface *intf[INTF_COUNT]; int card_index; struct snd_pcm *pcm; struct list_head midi_list; u64 format_bit; unsigned int rate; unsigned int packets_per_second; spinlock_t lock; struct mutex mutex; unsigned long states; /* FIFO to synchronize playback rate to capture rate */ unsigned int rate_feedback_start; unsigned int rate_feedback_count; u8 rate_feedback[MAX_QUEUE_LENGTH]; struct list_head ready_playback_urbs; struct tasklet_struct playback_tasklet; wait_queue_head_t alsa_capture_wait; wait_queue_head_t rate_feedback_wait; wait_queue_head_t alsa_playback_wait; struct ua101_stream { struct snd_pcm_substream *substream; unsigned int usb_pipe; unsigned int channels; unsigned int frame_bytes; unsigned int max_packet_bytes; unsigned int period_pos; unsigned int buffer_pos; unsigned int queue_length; struct ua101_urb { struct urb urb; struct usb_iso_packet_descriptor iso_frame_desc[1]; struct list_head ready_list; } *urbs[MAX_QUEUE_LENGTH]; struct { unsigned int size; void *addr; dma_addr_t dma; } buffers[MAX_MEMORY_BUFFERS]; } capture, playback; }; static DEFINE_MUTEX(devices_mutex); static unsigned int devices_used; static struct usb_driver ua101_driver; static void abort_alsa_playback(struct ua101 *ua); static void abort_alsa_capture(struct ua101 *ua); static const char *usb_error_string(int err) { switch (err) { case -ENODEV: return "no device"; case -ENOENT: return "endpoint not enabled"; case -EPIPE: return "endpoint stalled"; case -ENOSPC: return "not enough bandwidth"; case -ESHUTDOWN: return "device disabled"; case -EHOSTUNREACH: return "device suspended"; case -EINVAL: case -EAGAIN: case -EFBIG: case -EMSGSIZE: return "internal error"; default: return "unknown error"; } } static void abort_usb_capture(struct ua101 *ua) { if (test_and_clear_bit(USB_CAPTURE_RUNNING, &ua->states)) { wake_up(&ua->alsa_capture_wait); wake_up(&ua->rate_feedback_wait); } } static void abort_usb_playback(struct ua101 *ua) { if (test_and_clear_bit(USB_PLAYBACK_RUNNING, &ua->states)) wake_up(&ua->alsa_playback_wait); } static void playback_urb_complete(struct urb *usb_urb) { struct ua101_urb *urb = (struct ua101_urb *)usb_urb; struct ua101 *ua = urb->urb.context; unsigned long flags; if (unlikely(urb->urb.status == -ENOENT || /* unlinked */ urb->urb.status == -ENODEV || /* device removed */ urb->urb.status == -ECONNRESET || /* unlinked */ urb->urb.status == -ESHUTDOWN)) { /* device disabled */ abort_usb_playback(ua); abort_alsa_playback(ua); return; } if (test_bit(USB_PLAYBACK_RUNNING, &ua->states)) { /* append URB to FIFO */ spin_lock_irqsave(&ua->lock, flags); list_add_tail(&urb->ready_list, &ua->ready_playback_urbs); if (ua->rate_feedback_count > 0) tasklet_schedule(&ua->playback_tasklet); ua->playback.substream->runtime->delay -= urb->urb.iso_frame_desc[0].length / ua->playback.frame_bytes; spin_unlock_irqrestore(&ua->lock, flags); } } static void first_playback_urb_complete(struct urb *urb) { struct ua101 *ua = urb->context; urb->complete = playback_urb_complete; playback_urb_complete(urb); set_bit(PLAYBACK_URB_COMPLETED, &ua->states); wake_up(&ua->alsa_playback_wait); } /* copy data from the ALSA ring buffer into the URB buffer */ static bool copy_playback_data(struct ua101_stream *stream, struct urb *urb, unsigned int frames) { struct snd_pcm_runtime *runtime; unsigned int frame_bytes, frames1; const u8 *source; runtime = stream->substream->runtime; frame_bytes = stream->frame_bytes; source = runtime->dma_area + stream->buffer_pos * frame_bytes; if (stream->buffer_pos + frames <= runtime->buffer_size) { memcpy(urb->transfer_buffer, source, frames * frame_bytes); } else { /* wrap around at end of ring buffer */ frames1 = runtime->buffer_size - stream->buffer_pos; memcpy(urb->transfer_buffer, source, frames1 * frame_bytes); memcpy(urb->transfer_buffer + frames1 * frame_bytes, runtime->dma_area, (frames - frames1) * frame_bytes); } stream->buffer_pos += frames; if (stream->buffer_pos >= runtime->buffer_size) stream->buffer_pos -= runtime->buffer_size; stream->period_pos += frames; if (stream->period_pos >= runtime->period_size) { stream->period_pos -= runtime->period_size; return true; } return false; } static inline void add_with_wraparound(struct ua101 *ua, unsigned int *value, unsigned int add) { *value += add; if (*value >= ua->playback.queue_length) *value -= ua->playback.queue_length; } static void playback_tasklet(unsigned long data) { struct ua101 *ua = (void *)data; unsigned long flags; unsigned int frames; struct ua101_urb *urb; bool do_period_elapsed = false; int err; if (unlikely(!test_bit(USB_PLAYBACK_RUNNING, &ua->states))) return; /* * Synchronizing the playback rate to the capture rate is done by using * the same sequence of packet sizes for both streams. * Submitting a playback URB therefore requires both a ready URB and * the size of the corresponding capture packet, i.e., both playback * and capture URBs must have been completed. Since the USB core does * not guarantee that playback and capture complete callbacks are * called alternately, we use two FIFOs for packet sizes and read URBs; * submitting playback URBs is possible as long as both FIFOs are * nonempty. */ spin_lock_irqsave(&ua->lock, flags); while (ua->rate_feedback_count > 0 && !list_empty(&ua->ready_playback_urbs)) { /* take packet size out of FIFO */ frames = ua->rate_feedback[ua->rate_feedback_start]; add_with_wraparound(ua, &ua->rate_feedback_start, 1); ua->rate_feedback_count--; /* take URB out of FIFO */ urb = list_first_entry(&ua->ready_playback_urbs, struct ua101_urb, ready_list); list_del(&urb->ready_list); /* fill packet with data or silence */ urb->urb.iso_frame_desc[0].length = frames * ua->playback.frame_bytes; if (test_bit(ALSA_PLAYBACK_RUNNING, &ua->states)) do_period_elapsed |= copy_playback_data(&ua->playback, &urb->urb, frames); else memset(urb->urb.transfer_buffer, 0, urb->urb.iso_frame_desc[0].length); /* and off you go ... */ err = usb_submit_urb(&urb->urb, GFP_ATOMIC); if (unlikely(err < 0)) { spin_unlock_irqrestore(&ua->lock, flags); abort_usb_playback(ua); abort_alsa_playback(ua); dev_err(&ua->dev->dev, "USB request error %d: %s\n", err, usb_error_string(err)); return; } ua->playback.substream->runtime->delay += frames; } spin_unlock_irqrestore(&ua->lock, flags); if (do_period_elapsed) snd_pcm_period_elapsed(ua->playback.substream); } /* copy data from the URB buffer into the ALSA ring buffer */ static bool copy_capture_data(struct ua101_stream *stream, struct urb *urb, unsigned int frames) { struct snd_pcm_runtime *runtime; unsigned int frame_bytes, frames1; u8 *dest; runtime = stream->substream->runtime; frame_bytes = stream->frame_bytes; dest = runtime->dma_area + stream->buffer_pos * frame_bytes; if (stream->buffer_pos + frames <= runtime->buffer_size) { memcpy(dest, urb->transfer_buffer, frames * frame_bytes); } else { /* wrap around at end of ring buffer */ frames1 = runtime->buffer_size - stream->buffer_pos; memcpy(dest, urb->transfer_buffer, frames1 * frame_bytes); memcpy(runtime->dma_area, urb->transfer_buffer + frames1 * frame_bytes, (frames - frames1) * frame_bytes); } stream->buffer_pos += frames; if (stream->buffer_pos >= runtime->buffer_size) stream->buffer_pos -= runtime->buffer_size; stream->period_pos += frames; if (stream->period_pos >= runtime->period_size) { stream->period_pos -= runtime->period_size; return true; } return false; } static void capture_urb_complete(struct urb *urb) { struct ua101 *ua = urb->context; struct ua101_stream *stream = &ua->capture; unsigned long flags; unsigned int frames, write_ptr; bool do_period_elapsed; int err; if (unlikely(urb->status == -ENOENT || /* unlinked */ urb->status == -ENODEV || /* device removed */ urb->status == -ECONNRESET || /* unlinked */ urb->status == -ESHUTDOWN)) /* device disabled */ goto stream_stopped; if (urb->status >= 0 && urb->iso_frame_desc[0].status >= 0) frames = urb->iso_frame_desc[0].actual_length / stream->frame_bytes; else frames = 0; spin_lock_irqsave(&ua->lock, flags); if (frames > 0 && test_bit(ALSA_CAPTURE_RUNNING, &ua->states)) do_period_elapsed = copy_capture_data(stream, urb, frames); else do_period_elapsed = false; if (test_bit(USB_CAPTURE_RUNNING, &ua->states)) { err = usb_submit_urb(urb, GFP_ATOMIC); if (unlikely(err < 0)) { spin_unlock_irqrestore(&ua->lock, flags); dev_err(&ua->dev->dev, "USB request error %d: %s\n", err, usb_error_string(err)); goto stream_stopped; } /* append packet size to FIFO */ write_ptr = ua->rate_feedback_start; add_with_wraparound(ua, &write_ptr, ua->rate_feedback_count); ua->rate_feedback[write_ptr] = frames; if (ua->rate_feedback_count < ua->playback.queue_length) { ua->rate_feedback_count++; if (ua->rate_feedback_count == ua->playback.queue_length) wake_up(&ua->rate_feedback_wait); } else { /* * Ring buffer overflow; this happens when the playback * stream is not running. Throw away the oldest entry, * so that the playback stream, when it starts, sees * the most recent packet sizes. */ add_with_wraparound(ua, &ua->rate_feedback_start, 1); } if (test_bit(USB_PLAYBACK_RUNNING, &ua->states) && !list_empty(&ua->ready_playback_urbs)) tasklet_schedule(&ua->playback_tasklet); } spin_unlock_irqrestore(&ua->lock, flags); if (do_period_elapsed) snd_pcm_period_elapsed(stream->substream); return; stream_stopped: abort_usb_playback(ua); abort_usb_capture(ua); abort_alsa_playback(ua); abort_alsa_capture(ua); } static void first_capture_urb_complete(struct urb *urb) { struct ua101 *ua = urb->context; urb->complete = capture_urb_complete; capture_urb_complete(urb); set_bit(CAPTURE_URB_COMPLETED, &ua->states); wake_up(&ua->alsa_capture_wait); } static int submit_stream_urbs(struct ua101 *ua, struct ua101_stream *stream) { unsigned int i; for (i = 0; i < stream->queue_length; ++i) { int err = usb_submit_urb(&stream->urbs[i]->urb, GFP_KERNEL); if (err < 0) { dev_err(&ua->dev->dev, "USB request error %d: %s\n", err, usb_error_string(err)); return err; } } return 0; } static void kill_stream_urbs(struct ua101_stream *stream) { unsigned int i; for (i = 0; i < stream->queue_length; ++i) usb_kill_urb(&stream->urbs[i]->urb); } static int enable_iso_interface(struct ua101 *ua, unsigned int intf_index) { struct usb_host_interface *alts; alts = ua->intf[intf_index]->cur_altsetting; if (alts->desc.bAlternateSetting != 1) { int err = usb_set_interface(ua->dev, alts->desc.bInterfaceNumber, 1); if (err < 0) { dev_err(&ua->dev->dev, "cannot initialize interface; error %d: %s\n", err, usb_error_string(err)); return err; } } return 0; } static void disable_iso_interface(struct ua101 *ua, unsigned int intf_index) { struct usb_host_interface *alts; alts = ua->intf[intf_index]->cur_altsetting; if (alts->desc.bAlternateSetting != 0) { int err = usb_set_interface(ua->dev, alts->desc.bInterfaceNumber, 0); if (err < 0 && !test_bit(DISCONNECTED, &ua->states)) dev_warn(&ua->dev->dev, "interface reset failed; error %d: %s\n", err, usb_error_string(err)); } } static void stop_usb_capture(struct ua101 *ua) { clear_bit(USB_CAPTURE_RUNNING, &ua->states); kill_stream_urbs(&ua->capture); disable_iso_interface(ua, INTF_CAPTURE); } static int start_usb_capture(struct ua101 *ua) { int err; if (test_bit(DISCONNECTED, &ua->states)) return -ENODEV; if (test_bit(USB_CAPTURE_RUNNING, &ua->states)) return 0; kill_stream_urbs(&ua->capture); err = enable_iso_interface(ua, INTF_CAPTURE); if (err < 0) return err; clear_bit(CAPTURE_URB_COMPLETED, &ua->states); ua->capture.urbs[0]->urb.complete = first_capture_urb_complete; ua->rate_feedback_start = 0; ua->rate_feedback_count = 0; set_bit(USB_CAPTURE_RUNNING, &ua->states); err = submit_stream_urbs(ua, &ua->capture); if (err < 0) stop_usb_capture(ua); return err; } static void stop_usb_playback(struct ua101 *ua) { clear_bit(USB_PLAYBACK_RUNNING, &ua->states); kill_stream_urbs(&ua->playback); tasklet_kill(&ua->playback_tasklet); disable_iso_interface(ua, INTF_PLAYBACK); } static int start_usb_playback(struct ua101 *ua) { unsigned int i, frames; struct urb *urb; int err = 0; if (test_bit(DISCONNECTED, &ua->states)) return -ENODEV; if (test_bit(USB_PLAYBACK_RUNNING, &ua->states)) return 0; kill_stream_urbs(&ua->playback); tasklet_kill(&ua->playback_tasklet); err = enable_iso_interface(ua, INTF_PLAYBACK); if (err < 0) return err; clear_bit(PLAYBACK_URB_COMPLETED, &ua->states); ua->playback.urbs[0]->urb.complete = first_playback_urb_complete; spin_lock_irq(&ua->lock); INIT_LIST_HEAD(&ua->ready_playback_urbs); spin_unlock_irq(&ua->lock); /* * We submit the initial URBs all at once, so we have to wait for the * packet size FIFO to be full. */ wait_event(ua->rate_feedback_wait, ua->rate_feedback_count >= ua->playback.queue_length || !test_bit(USB_CAPTURE_RUNNING, &ua->states) || test_bit(DISCONNECTED, &ua->states)); if (test_bit(DISCONNECTED, &ua->states)) { stop_usb_playback(ua); return -ENODEV; } if (!test_bit(USB_CAPTURE_RUNNING, &ua->states)) { stop_usb_playback(ua); return -EIO; } for (i = 0; i < ua->playback.queue_length; ++i) { /* all initial URBs contain silence */ spin_lock_irq(&ua->lock); frames = ua->rate_feedback[ua->rate_feedback_start]; add_with_wraparound(ua, &ua->rate_feedback_start, 1); ua->rate_feedback_count--; spin_unlock_irq(&ua->lock); urb = &ua->playback.urbs[i]->urb; urb->iso_frame_desc[0].length = frames * ua->playback.frame_bytes; memset(urb->transfer_buffer, 0, urb->iso_frame_desc[0].length); } set_bit(USB_PLAYBACK_RUNNING, &ua->states); err = submit_stream_urbs(ua, &ua->playback); if (err < 0) stop_usb_playback(ua); return err; } static void abort_alsa_capture(struct ua101 *ua) { if (test_bit(ALSA_CAPTURE_RUNNING, &ua->states)) snd_pcm_stop(ua->capture.substream, SNDRV_PCM_STATE_XRUN); } static void abort_alsa_playback(struct ua101 *ua) { if (test_bit(ALSA_PLAYBACK_RUNNING, &ua->states)) snd_pcm_stop(ua->playback.substream, SNDRV_PCM_STATE_XRUN); } static int set_stream_hw(struct ua101 *ua, struct snd_pcm_substream *substream, unsigned int channels) { int err; substream->runtime->hw.info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_FIFO_IN_FRAMES; substream->runtime->hw.formats = ua->format_bit; substream->runtime->hw.rates = snd_pcm_rate_to_rate_bit(ua->rate); substream->runtime->hw.rate_min = ua->rate; substream->runtime->hw.rate_max = ua->rate; substream->runtime->hw.channels_min = channels; substream->runtime->hw.channels_max = channels; substream->runtime->hw.buffer_bytes_max = 45000 * 1024; substream->runtime->hw.period_bytes_min = 1; substream->runtime->hw.period_bytes_max = UINT_MAX; substream->runtime->hw.periods_min = 2; substream->runtime->hw.periods_max = UINT_MAX; err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1500000 / ua->packets_per_second, 8192000); if (err < 0) return err; err = snd_pcm_hw_constraint_msbits(substream->runtime, 0, 32, 24); return err; } static int capture_pcm_open(struct snd_pcm_substream *substream) { struct ua101 *ua = substream->private_data; int err; ua->capture.substream = substream; err = set_stream_hw(ua, substream, ua->capture.channels); if (err < 0) return err; substream->runtime->hw.fifo_size = DIV_ROUND_CLOSEST(ua->rate, ua->packets_per_second); substream->runtime->delay = substream->runtime->hw.fifo_size; mutex_lock(&ua->mutex); err = start_usb_capture(ua); if (err >= 0) set_bit(ALSA_CAPTURE_OPEN, &ua->states); mutex_unlock(&ua->mutex); return err; } static int playback_pcm_open(struct snd_pcm_substream *substream) { struct ua101 *ua = substream->private_data; int err; ua->playback.substream = substream; err = set_stream_hw(ua, substream, ua->playback.channels); if (err < 0) return err; substream->runtime->hw.fifo_size = DIV_ROUND_CLOSEST(ua->rate * ua->playback.queue_length, ua->packets_per_second); mutex_lock(&ua->mutex); err = start_usb_capture(ua); if (err < 0) goto error; err = start_usb_playback(ua); if (err < 0) { if (!test_bit(ALSA_CAPTURE_OPEN, &ua->states)) stop_usb_capture(ua); goto error; } set_bit(ALSA_PLAYBACK_OPEN, &ua->states); error: mutex_unlock(&ua->mutex); return err; } static int capture_pcm_close(struct snd_pcm_substream *substream) { struct ua101 *ua = substream->private_data; mutex_lock(&ua->mutex); clear_bit(ALSA_CAPTURE_OPEN, &ua->states); if (!test_bit(ALSA_PLAYBACK_OPEN, &ua->states)) stop_usb_capture(ua); mutex_unlock(&ua->mutex); return 0; } static int playback_pcm_close(struct snd_pcm_substream *substream) { struct ua101 *ua = substream->private_data; mutex_lock(&ua->mutex); stop_usb_playback(ua); clear_bit(ALSA_PLAYBACK_OPEN, &ua->states); if (!test_bit(ALSA_CAPTURE_OPEN, &ua->states)) stop_usb_capture(ua); mutex_unlock(&ua->mutex); return 0; } static int capture_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct ua101 *ua = substream->private_data; int err; mutex_lock(&ua->mutex); err = start_usb_capture(ua); mutex_unlock(&ua->mutex); if (err < 0) return err; return snd_pcm_lib_alloc_vmalloc_buffer(substream, params_buffer_bytes(hw_params)); } static int playback_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct ua101 *ua = substream->private_data; int err; mutex_lock(&ua->mutex); err = start_usb_capture(ua); if (err >= 0) err = start_usb_playback(ua); mutex_unlock(&ua->mutex); if (err < 0) return err; return snd_pcm_lib_alloc_vmalloc_buffer(substream, params_buffer_bytes(hw_params)); } static int ua101_pcm_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_vmalloc_buffer(substream); } static int capture_pcm_prepare(struct snd_pcm_substream *substream) { struct ua101 *ua = substream->private_data; int err; mutex_lock(&ua->mutex); err = start_usb_capture(ua); mutex_unlock(&ua->mutex); if (err < 0) return err; /* * The EHCI driver schedules the first packet of an iso stream at 10 ms * in the future, i.e., no data is actually captured for that long. * Take the wait here so that the stream is known to be actually * running when the start trigger has been called. */ wait_event(ua->alsa_capture_wait, test_bit(CAPTURE_URB_COMPLETED, &ua->states) || !test_bit(USB_CAPTURE_RUNNING, &ua->states)); if (test_bit(DISCONNECTED, &ua->states)) return -ENODEV; if (!test_bit(USB_CAPTURE_RUNNING, &ua->states)) return -EIO; ua->capture.period_pos = 0; ua->capture.buffer_pos = 0; return 0; } static int playback_pcm_prepare(struct snd_pcm_substream *substream) { struct ua101 *ua = substream->private_data; int err; mutex_lock(&ua->mutex); err = start_usb_capture(ua); if (err >= 0) err = start_usb_playback(ua); mutex_unlock(&ua->mutex); if (err < 0) return err; /* see the comment in capture_pcm_prepare() */ wait_event(ua->alsa_playback_wait, test_bit(PLAYBACK_URB_COMPLETED, &ua->states) || !test_bit(USB_PLAYBACK_RUNNING, &ua->states)); if (test_bit(DISCONNECTED, &ua->states)) return -ENODEV; if (!test_bit(USB_PLAYBACK_RUNNING, &ua->states)) return -EIO; substream->runtime->delay = 0; ua->playback.period_pos = 0; ua->playback.buffer_pos = 0; return 0; } static int capture_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct ua101 *ua = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: if (!test_bit(USB_CAPTURE_RUNNING, &ua->states)) return -EIO; set_bit(ALSA_CAPTURE_RUNNING, &ua->states); return 0; case SNDRV_PCM_TRIGGER_STOP: clear_bit(ALSA_CAPTURE_RUNNING, &ua->states); return 0; default: return -EINVAL; } } static int playback_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct ua101 *ua = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: if (!test_bit(USB_PLAYBACK_RUNNING, &ua->states)) return -EIO; set_bit(ALSA_PLAYBACK_RUNNING, &ua->states); return 0; case SNDRV_PCM_TRIGGER_STOP: clear_bit(ALSA_PLAYBACK_RUNNING, &ua->states); return 0; default: return -EINVAL; } } static inline snd_pcm_uframes_t ua101_pcm_pointer(struct ua101 *ua, struct ua101_stream *stream) { unsigned long flags; unsigned int pos; spin_lock_irqsave(&ua->lock, flags); pos = stream->buffer_pos; spin_unlock_irqrestore(&ua->lock, flags); return pos; } static snd_pcm_uframes_t capture_pcm_pointer(struct snd_pcm_substream *subs) { struct ua101 *ua = subs->private_data; return ua101_pcm_pointer(ua, &ua->capture); } static snd_pcm_uframes_t playback_pcm_pointer(struct snd_pcm_substream *subs) { struct ua101 *ua = subs->private_data; return ua101_pcm_pointer(ua, &ua->playback); } static struct snd_pcm_ops capture_pcm_ops = { .open = capture_pcm_open, .close = capture_pcm_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = capture_pcm_hw_params, .hw_free = ua101_pcm_hw_free, .prepare = capture_pcm_prepare, .trigger = capture_pcm_trigger, .pointer = capture_pcm_pointer, .page = snd_pcm_lib_get_vmalloc_page, .mmap = snd_pcm_lib_mmap_vmalloc, }; static struct snd_pcm_ops playback_pcm_ops = { .open = playback_pcm_open, .close = playback_pcm_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = playback_pcm_hw_params, .hw_free = ua101_pcm_hw_free, .prepare = playback_pcm_prepare, .trigger = playback_pcm_trigger, .pointer = playback_pcm_pointer, .page = snd_pcm_lib_get_vmalloc_page, .mmap = snd_pcm_lib_mmap_vmalloc, }; static const struct uac_format_type_i_discrete_descriptor * find_format_descriptor(struct usb_interface *interface) { struct usb_host_interface *alt; u8 *extra; int extralen; if (interface->num_altsetting != 2) { dev_err(&interface->dev, "invalid num_altsetting\n"); return NULL; } alt = &interface->altsetting[0]; if (alt->desc.bNumEndpoints != 0) { dev_err(&interface->dev, "invalid bNumEndpoints\n"); return NULL; } alt = &interface->altsetting[1]; if (alt->desc.bNumEndpoints != 1) { dev_err(&interface->dev, "invalid bNumEndpoints\n"); return NULL; } extra = alt->extra; extralen = alt->extralen; while (extralen >= sizeof(struct usb_descriptor_header)) { struct uac_format_type_i_discrete_descriptor *desc; desc = (struct uac_format_type_i_discrete_descriptor *)extra; if (desc->bLength > extralen) { dev_err(&interface->dev, "descriptor overflow\n"); return NULL; } if (desc->bLength == UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(1) && desc->bDescriptorType == USB_DT_CS_INTERFACE && desc->bDescriptorSubtype == UAC_FORMAT_TYPE) { if (desc->bFormatType != UAC_FORMAT_TYPE_I_PCM || desc->bSamFreqType != 1) { dev_err(&interface->dev, "invalid format type\n"); return NULL; } return desc; } extralen -= desc->bLength; extra += desc->bLength; } dev_err(&interface->dev, "sample format descriptor not found\n"); return NULL; } static int detect_usb_format(struct ua101 *ua) { const struct uac_format_type_i_discrete_descriptor *fmt_capture; const struct uac_format_type_i_discrete_descriptor *fmt_playback; const struct usb_endpoint_descriptor *epd; unsigned int rate2; fmt_capture = find_format_descriptor(ua->intf[INTF_CAPTURE]); fmt_playback = find_format_descriptor(ua->intf[INTF_PLAYBACK]); if (!fmt_capture || !fmt_playback) return -ENXIO; switch (fmt_capture->bSubframeSize) { case 3: ua->format_bit = SNDRV_PCM_FMTBIT_S24_3LE; break; case 4: ua->format_bit = SNDRV_PCM_FMTBIT_S32_LE; break; default: dev_err(&ua->dev->dev, "sample width is not 24 or 32 bits\n"); return -ENXIO; } if (fmt_capture->bSubframeSize != fmt_playback->bSubframeSize) { dev_err(&ua->dev->dev, "playback/capture sample widths do not match\n"); return -ENXIO; } if (fmt_capture->bBitResolution != 24 || fmt_playback->bBitResolution != 24) { dev_err(&ua->dev->dev, "sample width is not 24 bits\n"); return -ENXIO; } ua->rate = combine_triple(fmt_capture->tSamFreq[0]); rate2 = combine_triple(fmt_playback->tSamFreq[0]); if (ua->rate != rate2) { dev_err(&ua->dev->dev, "playback/capture rates do not match: %u/%u\n", rate2, ua->rate); return -ENXIO; } switch (ua->dev->speed) { case USB_SPEED_FULL: ua->packets_per_second = 1000; break; case USB_SPEED_HIGH: ua->packets_per_second = 8000; break; default: dev_err(&ua->dev->dev, "unknown device speed\n"); return -ENXIO; } ua->capture.channels = fmt_capture->bNrChannels; ua->playback.channels = fmt_playback->bNrChannels; ua->capture.frame_bytes = fmt_capture->bSubframeSize * ua->capture.channels; ua->playback.frame_bytes = fmt_playback->bSubframeSize * ua->playback.channels; epd = &ua->intf[INTF_CAPTURE]->altsetting[1].endpoint[0].desc; if (!usb_endpoint_is_isoc_in(epd)) { dev_err(&ua->dev->dev, "invalid capture endpoint\n"); return -ENXIO; } ua->capture.usb_pipe = usb_rcvisocpipe(ua->dev, usb_endpoint_num(epd)); ua->capture.max_packet_bytes = le16_to_cpu(epd->wMaxPacketSize); epd = &ua->intf[INTF_PLAYBACK]->altsetting[1].endpoint[0].desc; if (!usb_endpoint_is_isoc_out(epd)) { dev_err(&ua->dev->dev, "invalid playback endpoint\n"); return -ENXIO; } ua->playback.usb_pipe = usb_sndisocpipe(ua->dev, usb_endpoint_num(epd)); ua->playback.max_packet_bytes = le16_to_cpu(epd->wMaxPacketSize); return 0; } static int alloc_stream_buffers(struct ua101 *ua, struct ua101_stream *stream) { unsigned int remaining_packets, packets, packets_per_page, i; size_t size; stream->queue_length = queue_length; stream->queue_length = max(stream->queue_length, (unsigned int)MIN_QUEUE_LENGTH); stream->queue_length = min(stream->queue_length, (unsigned int)MAX_QUEUE_LENGTH); /* * The cache pool sizes used by usb_alloc_coherent() (128, 512, 2048) are * quite bad when used with the packet sizes of this device (e.g. 280, * 520, 624). Therefore, we allocate and subdivide entire pages, using * a smaller buffer only for the last chunk. */ remaining_packets = stream->queue_length; packets_per_page = PAGE_SIZE / stream->max_packet_bytes; for (i = 0; i < ARRAY_SIZE(stream->buffers); ++i) { packets = min(remaining_packets, packets_per_page); size = packets * stream->max_packet_bytes; stream->buffers[i].addr = usb_alloc_coherent(ua->dev, size, GFP_KERNEL, &stream->buffers[i].dma); if (!stream->buffers[i].addr) return -ENOMEM; stream->buffers[i].size = size; remaining_packets -= packets; if (!remaining_packets) break; } if (remaining_packets) { dev_err(&ua->dev->dev, "too many packets\n"); return -ENXIO; } return 0; } static void free_stream_buffers(struct ua101 *ua, struct ua101_stream *stream) { unsigned int i; for (i = 0; i < ARRAY_SIZE(stream->buffers); ++i) usb_free_coherent(ua->dev, stream->buffers[i].size, stream->buffers[i].addr, stream->buffers[i].dma); } static int alloc_stream_urbs(struct ua101 *ua, struct ua101_stream *stream, void (*urb_complete)(struct urb *)) { unsigned max_packet_size = stream->max_packet_bytes; struct ua101_urb *urb; unsigned int b, u = 0; for (b = 0; b < ARRAY_SIZE(stream->buffers); ++b) { unsigned int size = stream->buffers[b].size; u8 *addr = stream->buffers[b].addr; dma_addr_t dma = stream->buffers[b].dma; while (size >= max_packet_size) { if (u >= stream->queue_length) goto bufsize_error; urb = kmalloc(sizeof(*urb), GFP_KERNEL); if (!urb) return -ENOMEM; usb_init_urb(&urb->urb); urb->urb.dev = ua->dev; urb->urb.pipe = stream->usb_pipe; urb->urb.transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; urb->urb.transfer_buffer = addr; urb->urb.transfer_dma = dma; urb->urb.transfer_buffer_length = max_packet_size; urb->urb.number_of_packets = 1; urb->urb.interval = 1; urb->urb.context = ua; urb->urb.complete = urb_complete; urb->urb.iso_frame_desc[0].offset = 0; urb->urb.iso_frame_desc[0].length = max_packet_size; stream->urbs[u++] = urb; size -= max_packet_size; addr += max_packet_size; dma += max_packet_size; } } if (u == stream->queue_length) return 0; bufsize_error: dev_err(&ua->dev->dev, "internal buffer size error\n"); return -ENXIO; } static void free_stream_urbs(struct ua101_stream *stream) { unsigned int i; for (i = 0; i < stream->queue_length; ++i) kfree(stream->urbs[i]); } static void free_usb_related_resources(struct ua101 *ua, struct usb_interface *interface) { unsigned int i; free_stream_urbs(&ua->capture); free_stream_urbs(&ua->playback); free_stream_buffers(ua, &ua->capture); free_stream_buffers(ua, &ua->playback); for (i = 0; i < ARRAY_SIZE(ua->intf); ++i) if (ua->intf[i]) { usb_set_intfdata(ua->intf[i], NULL); if (ua->intf[i] != interface) usb_driver_release_interface(&ua101_driver, ua->intf[i]); } } static void ua101_card_free(struct snd_card *card) { struct ua101 *ua = card->private_data; mutex_destroy(&ua->mutex); } static int ua101_probe(struct usb_interface *interface, const struct usb_device_id *usb_id) { static const struct snd_usb_midi_endpoint_info midi_ep = { .out_cables = 0x0001, .in_cables = 0x0001 }; static const struct snd_usb_audio_quirk midi_quirk = { .type = QUIRK_MIDI_FIXED_ENDPOINT, .data = &midi_ep }; static const int intf_numbers[2][3] = { { /* UA-101 */ [INTF_PLAYBACK] = 0, [INTF_CAPTURE] = 1, [INTF_MIDI] = 2, }, { /* UA-1000 */ [INTF_CAPTURE] = 1, [INTF_PLAYBACK] = 2, [INTF_MIDI] = 3, }, }; struct snd_card *card; struct ua101 *ua; unsigned int card_index, i; int is_ua1000; const char *name; char usb_path[32]; int err; is_ua1000 = usb_id->idProduct == 0x0044; if (interface->altsetting->desc.bInterfaceNumber != intf_numbers[is_ua1000][0]) return -ENODEV; mutex_lock(&devices_mutex); for (card_index = 0; card_index < SNDRV_CARDS; ++card_index) if (enable[card_index] && !(devices_used & (1 << card_index))) break; if (card_index >= SNDRV_CARDS) { mutex_unlock(&devices_mutex); return -ENOENT; } err = snd_card_create(index[card_index], id[card_index], THIS_MODULE, sizeof(*ua), &card); if (err < 0) { mutex_unlock(&devices_mutex); return err; } card->private_free = ua101_card_free; ua = card->private_data; ua->dev = interface_to_usbdev(interface); ua->card = card; ua->card_index = card_index; INIT_LIST_HEAD(&ua->midi_list); spin_lock_init(&ua->lock); mutex_init(&ua->mutex); INIT_LIST_HEAD(&ua->ready_playback_urbs); tasklet_init(&ua->playback_tasklet, playback_tasklet, (unsigned long)ua); init_waitqueue_head(&ua->alsa_capture_wait); init_waitqueue_head(&ua->rate_feedback_wait); init_waitqueue_head(&ua->alsa_playback_wait); ua->intf[0] = interface; for (i = 1; i < ARRAY_SIZE(ua->intf); ++i) { ua->intf[i] = usb_ifnum_to_if(ua->dev, intf_numbers[is_ua1000][i]); if (!ua->intf[i]) { dev_err(&ua->dev->dev, "interface %u not found\n", intf_numbers[is_ua1000][i]); err = -ENXIO; goto probe_error; } err = usb_driver_claim_interface(&ua101_driver, ua->intf[i], ua); if (err < 0) { ua->intf[i] = NULL; err = -EBUSY; goto probe_error; } } snd_card_set_dev(card, &interface->dev); err = detect_usb_format(ua); if (err < 0) goto probe_error; name = usb_id->idProduct == 0x0044 ? "UA-1000" : "UA-101"; strcpy(card->driver, "UA-101"); strcpy(card->shortname, name); usb_make_path(ua->dev, usb_path, sizeof(usb_path)); snprintf(ua->card->longname, sizeof(ua->card->longname), "EDIROL %s (serial %s), %u Hz at %s, %s speed", name, ua->dev->serial ? ua->dev->serial : "?", ua->rate, usb_path, ua->dev->speed == USB_SPEED_HIGH ? "high" : "full"); err = alloc_stream_buffers(ua, &ua->capture); if (err < 0) goto probe_error; err = alloc_stream_buffers(ua, &ua->playback); if (err < 0) goto probe_error; err = alloc_stream_urbs(ua, &ua->capture, capture_urb_complete); if (err < 0) goto probe_error; err = alloc_stream_urbs(ua, &ua->playback, playback_urb_complete); if (err < 0) goto probe_error; err = snd_pcm_new(card, name, 0, 1, 1, &ua->pcm); if (err < 0) goto probe_error; ua->pcm->private_data = ua; strcpy(ua->pcm->name, name); snd_pcm_set_ops(ua->pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_pcm_ops); snd_pcm_set_ops(ua->pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_pcm_ops); err = snd_usbmidi_create(card, ua->intf[INTF_MIDI], &ua->midi_list, &midi_quirk); if (err < 0) goto probe_error; err = snd_card_register(card); if (err < 0) goto probe_error; usb_set_intfdata(interface, ua); devices_used |= 1 << card_index; mutex_unlock(&devices_mutex); return 0; probe_error: free_usb_related_resources(ua, interface); snd_card_free(card); mutex_unlock(&devices_mutex); return err; } static void ua101_disconnect(struct usb_interface *interface) { struct ua101 *ua = usb_get_intfdata(interface); struct list_head *midi; if (!ua) return; mutex_lock(&devices_mutex); set_bit(DISCONNECTED, &ua->states); wake_up(&ua->rate_feedback_wait); /* make sure that userspace cannot create new requests */ snd_card_disconnect(ua->card); /* make sure that there are no pending USB requests */ __list_for_each(midi, &ua->midi_list) snd_usbmidi_disconnect(midi); abort_alsa_playback(ua); abort_alsa_capture(ua); mutex_lock(&ua->mutex); stop_usb_playback(ua); stop_usb_capture(ua); mutex_unlock(&ua->mutex); free_usb_related_resources(ua, interface); devices_used &= ~(1 << ua->card_index); snd_card_free_when_closed(ua->card); mutex_unlock(&devices_mutex); } static struct usb_device_id ua101_ids[] = { { USB_DEVICE(0x0582, 0x0044) }, /* UA-1000 high speed */ { USB_DEVICE(0x0582, 0x007d) }, /* UA-101 high speed */ { USB_DEVICE(0x0582, 0x008d) }, /* UA-101 full speed */ { } }; MODULE_DEVICE_TABLE(usb, ua101_ids); static struct usb_driver ua101_driver = { .name = "snd-ua101", .id_table = ua101_ids, .probe = ua101_probe, .disconnect = ua101_disconnect, #if 0 .suspend = ua101_suspend, .resume = ua101_resume, #endif }; static int __init alsa_card_ua101_init(void) { return usb_register(&ua101_driver); } static void __exit alsa_card_ua101_exit(void) { usb_deregister(&ua101_driver); mutex_destroy(&devices_mutex); } module_init(alsa_card_ua101_init); module_exit(alsa_card_ua101_exit);