/* * omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port * * Copyright (C) 2008 Nokia Corporation * * Contact: Jarkko Nikula * Peter Ujfalusi * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include "omap-mcbsp.h" #include "omap-pcm.h" #define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000) #define OMAP_MCBSP_SOC_SINGLE_S16_EXT(xname, xmin, xmax, \ xhandler_get, xhandler_put) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = omap_mcbsp_st_info_volsw, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = (unsigned long) &(struct soc_mixer_control) \ {.min = xmin, .max = xmax} } struct omap_mcbsp_data { unsigned int bus_id; struct omap_mcbsp_reg_cfg regs; unsigned int fmt; /* * Flags indicating is the bus already activated and configured by * another substream */ int active; int configured; unsigned int in_freq; int clk_div; }; #define to_mcbsp(priv) container_of((priv), struct omap_mcbsp_data, bus_id) static struct omap_mcbsp_data mcbsp_data[NUM_LINKS]; /* * Stream DMA parameters. DMA request line and port address are set runtime * since they are different between OMAP1 and later OMAPs */ static struct omap_pcm_dma_data omap_mcbsp_dai_dma_params[NUM_LINKS][2]; #if defined(CONFIG_ARCH_OMAP15XX) || defined(CONFIG_ARCH_OMAP16XX) static const int omap1_dma_reqs[][2] = { { OMAP_DMA_MCBSP1_TX, OMAP_DMA_MCBSP1_RX }, { OMAP_DMA_MCBSP2_TX, OMAP_DMA_MCBSP2_RX }, { OMAP_DMA_MCBSP3_TX, OMAP_DMA_MCBSP3_RX }, }; static const unsigned long omap1_mcbsp_port[][2] = { { OMAP1510_MCBSP1_BASE + OMAP_MCBSP_REG_DXR1, OMAP1510_MCBSP1_BASE + OMAP_MCBSP_REG_DRR1 }, { OMAP1510_MCBSP2_BASE + OMAP_MCBSP_REG_DXR1, OMAP1510_MCBSP2_BASE + OMAP_MCBSP_REG_DRR1 }, { OMAP1510_MCBSP3_BASE + OMAP_MCBSP_REG_DXR1, OMAP1510_MCBSP3_BASE + OMAP_MCBSP_REG_DRR1 }, }; #else static const int omap1_dma_reqs[][2] = {}; static const unsigned long omap1_mcbsp_port[][2] = {}; #endif #if defined(CONFIG_ARCH_OMAP2) || defined(CONFIG_ARCH_OMAP3) static const int omap24xx_dma_reqs[][2] = { { OMAP24XX_DMA_MCBSP1_TX, OMAP24XX_DMA_MCBSP1_RX }, { OMAP24XX_DMA_MCBSP2_TX, OMAP24XX_DMA_MCBSP2_RX }, #if defined(CONFIG_ARCH_OMAP2430) || defined(CONFIG_ARCH_OMAP3) { OMAP24XX_DMA_MCBSP3_TX, OMAP24XX_DMA_MCBSP3_RX }, { OMAP24XX_DMA_MCBSP4_TX, OMAP24XX_DMA_MCBSP4_RX }, { OMAP24XX_DMA_MCBSP5_TX, OMAP24XX_DMA_MCBSP5_RX }, #endif }; #else static const int omap24xx_dma_reqs[][2] = {}; #endif #if defined(CONFIG_ARCH_OMAP2420) static const unsigned long omap2420_mcbsp_port[][2] = { { OMAP24XX_MCBSP1_BASE + OMAP_MCBSP_REG_DXR1, OMAP24XX_MCBSP1_BASE + OMAP_MCBSP_REG_DRR1 }, { OMAP24XX_MCBSP2_BASE + OMAP_MCBSP_REG_DXR1, OMAP24XX_MCBSP2_BASE + OMAP_MCBSP_REG_DRR1 }, }; #else static const unsigned long omap2420_mcbsp_port[][2] = {}; #endif #if defined(CONFIG_ARCH_OMAP2430) static const unsigned long omap2430_mcbsp_port[][2] = { { OMAP24XX_MCBSP1_BASE + OMAP_MCBSP_REG_DXR, OMAP24XX_MCBSP1_BASE + OMAP_MCBSP_REG_DRR }, { OMAP24XX_MCBSP2_BASE + OMAP_MCBSP_REG_DXR, OMAP24XX_MCBSP2_BASE + OMAP_MCBSP_REG_DRR }, { OMAP2430_MCBSP3_BASE + OMAP_MCBSP_REG_DXR, OMAP2430_MCBSP3_BASE + OMAP_MCBSP_REG_DRR }, { OMAP2430_MCBSP4_BASE + OMAP_MCBSP_REG_DXR, OMAP2430_MCBSP4_BASE + OMAP_MCBSP_REG_DRR }, { OMAP2430_MCBSP5_BASE + OMAP_MCBSP_REG_DXR, OMAP2430_MCBSP5_BASE + OMAP_MCBSP_REG_DRR }, }; #else static const unsigned long omap2430_mcbsp_port[][2] = {}; #endif #if defined(CONFIG_ARCH_OMAP3) static const unsigned long omap34xx_mcbsp_port[][2] = { { OMAP34XX_MCBSP1_BASE + OMAP_MCBSP_REG_DXR, OMAP34XX_MCBSP1_BASE + OMAP_MCBSP_REG_DRR }, { OMAP34XX_MCBSP2_BASE + OMAP_MCBSP_REG_DXR, OMAP34XX_MCBSP2_BASE + OMAP_MCBSP_REG_DRR }, { OMAP34XX_MCBSP3_BASE + OMAP_MCBSP_REG_DXR, OMAP34XX_MCBSP3_BASE + OMAP_MCBSP_REG_DRR }, { OMAP34XX_MCBSP4_BASE + OMAP_MCBSP_REG_DXR, OMAP34XX_MCBSP4_BASE + OMAP_MCBSP_REG_DRR }, { OMAP34XX_MCBSP5_BASE + OMAP_MCBSP_REG_DXR, OMAP34XX_MCBSP5_BASE + OMAP_MCBSP_REG_DRR }, }; #else static const unsigned long omap34xx_mcbsp_port[][2] = {}; #endif static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai; struct omap_mcbsp_data *mcbsp_data = to_mcbsp(cpu_dai->private_data); int dma_op_mode = omap_mcbsp_get_dma_op_mode(mcbsp_data->bus_id); int samples; /* TODO: Currently, MODE_ELEMENT == MODE_FRAME */ if (dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) samples = snd_pcm_lib_period_bytes(substream) >> 1; else samples = 1; /* Configure McBSP internal buffer usage */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) omap_mcbsp_set_tx_threshold(mcbsp_data->bus_id, samples - 1); else omap_mcbsp_set_rx_threshold(mcbsp_data->bus_id, samples - 1); } static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai; struct omap_mcbsp_data *mcbsp_data = to_mcbsp(cpu_dai->private_data); int bus_id = mcbsp_data->bus_id; int err = 0; if (!cpu_dai->active) err = omap_mcbsp_request(bus_id); if (cpu_is_omap343x()) { int dma_op_mode = omap_mcbsp_get_dma_op_mode(bus_id); int max_period; /* * McBSP2 in OMAP3 has 1024 * 32-bit internal audio buffer. * Set constraint for minimum buffer size to the same than FIFO * size in order to avoid underruns in playback startup because * HW is keeping the DMA request active until FIFO is filled. */ if (bus_id == 1) snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 4096, UINT_MAX); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) max_period = omap_mcbsp_get_max_tx_threshold(bus_id); else max_period = omap_mcbsp_get_max_rx_threshold(bus_id); max_period++; max_period <<= 1; if (dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 32, max_period); } return err; } static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai; struct omap_mcbsp_data *mcbsp_data = to_mcbsp(cpu_dai->private_data); if (!cpu_dai->active) { omap_mcbsp_free(mcbsp_data->bus_id); mcbsp_data->configured = 0; } } static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai; struct omap_mcbsp_data *mcbsp_data = to_mcbsp(cpu_dai->private_data); int err = 0, play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: mcbsp_data->active++; omap_mcbsp_start(mcbsp_data->bus_id, play, !play); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: omap_mcbsp_stop(mcbsp_data->bus_id, play, !play); mcbsp_data->active--; break; default: err = -EINVAL; } return err; } static snd_pcm_sframes_t omap_mcbsp_dai_delay( struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai; struct omap_mcbsp_data *mcbsp_data = to_mcbsp(cpu_dai->private_data); u16 fifo_use; snd_pcm_sframes_t delay; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) fifo_use = omap_mcbsp_get_tx_delay(mcbsp_data->bus_id); else fifo_use = omap_mcbsp_get_rx_delay(mcbsp_data->bus_id); /* * Divide the used locations with the channel count to get the * FIFO usage in samples (don't care about partial samples in the * buffer). */ delay = fifo_use / substream->runtime->channels; return delay; } static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai; struct omap_mcbsp_data *mcbsp_data = to_mcbsp(cpu_dai->private_data); struct omap_mcbsp_reg_cfg *regs = &mcbsp_data->regs; int dma, bus_id = mcbsp_data->bus_id, id = cpu_dai->id; int wlen, channels, wpf, sync_mode = OMAP_DMA_SYNC_ELEMENT; unsigned long port; unsigned int format, div, framesize, master; if (cpu_class_is_omap1()) { dma = omap1_dma_reqs[bus_id][substream->stream]; port = omap1_mcbsp_port[bus_id][substream->stream]; } else if (cpu_is_omap2420()) { dma = omap24xx_dma_reqs[bus_id][substream->stream]; port = omap2420_mcbsp_port[bus_id][substream->stream]; } else if (cpu_is_omap2430()) { dma = omap24xx_dma_reqs[bus_id][substream->stream]; port = omap2430_mcbsp_port[bus_id][substream->stream]; } else if (cpu_is_omap343x()) { dma = omap24xx_dma_reqs[bus_id][substream->stream]; port = omap34xx_mcbsp_port[bus_id][substream->stream]; omap_mcbsp_dai_dma_params[id][substream->stream].set_threshold = omap_mcbsp_set_threshold; /* TODO: Currently, MODE_ELEMENT == MODE_FRAME */ if (omap_mcbsp_get_dma_op_mode(bus_id) == MCBSP_DMA_MODE_THRESHOLD) sync_mode = OMAP_DMA_SYNC_FRAME; } else { return -ENODEV; } omap_mcbsp_dai_dma_params[id][substream->stream].name = substream->stream ? "Audio Capture" : "Audio Playback"; omap_mcbsp_dai_dma_params[id][substream->stream].dma_req = dma; omap_mcbsp_dai_dma_params[id][substream->stream].port_addr = port; omap_mcbsp_dai_dma_params[id][substream->stream].sync_mode = sync_mode; omap_mcbsp_dai_dma_params[id][substream->stream].data_type = OMAP_DMA_DATA_TYPE_S16; snd_soc_dai_set_dma_data(cpu_dai, substream, &omap_mcbsp_dai_dma_params[id][substream->stream]); if (mcbsp_data->configured) { /* McBSP already configured by another stream */ return 0; } format = mcbsp_data->fmt & SND_SOC_DAIFMT_FORMAT_MASK; wpf = channels = params_channels(params); if (channels == 2 && (format == SND_SOC_DAIFMT_I2S || format == SND_SOC_DAIFMT_LEFT_J)) { /* Use dual-phase frames */ regs->rcr2 |= RPHASE; regs->xcr2 |= XPHASE; /* Set 1 word per (McBSP) frame for phase1 and phase2 */ wpf--; regs->rcr2 |= RFRLEN2(wpf - 1); regs->xcr2 |= XFRLEN2(wpf - 1); } regs->rcr1 |= RFRLEN1(wpf - 1); regs->xcr1 |= XFRLEN1(wpf - 1); switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: /* Set word lengths */ wlen = 16; regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16); regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16); regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16); regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16); break; default: /* Unsupported PCM format */ return -EINVAL; } /* In McBSP master modes, FRAME (i.e. sample rate) is generated * by _counting_ BCLKs. Calculate frame size in BCLKs */ master = mcbsp_data->fmt & SND_SOC_DAIFMT_MASTER_MASK; if (master == SND_SOC_DAIFMT_CBS_CFS) { div = mcbsp_data->clk_div ? mcbsp_data->clk_div : 1; framesize = (mcbsp_data->in_freq / div) / params_rate(params); if (framesize < wlen * channels) { printk(KERN_ERR "%s: not enough bandwidth for desired rate and " "channels\n", __func__); return -EINVAL; } } else framesize = wlen * channels; /* Set FS period and length in terms of bit clock periods */ switch (format) { case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_LEFT_J: regs->srgr2 |= FPER(framesize - 1); regs->srgr1 |= FWID((framesize >> 1) - 1); break; case SND_SOC_DAIFMT_DSP_A: case SND_SOC_DAIFMT_DSP_B: regs->srgr2 |= FPER(framesize - 1); regs->srgr1 |= FWID(0); break; } omap_mcbsp_config(bus_id, &mcbsp_data->regs); mcbsp_data->configured = 1; return 0; } /* * This must be called before _set_clkdiv and _set_sysclk since McBSP register * cache is initialized here */ static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) { struct omap_mcbsp_data *mcbsp_data = to_mcbsp(cpu_dai->private_data); struct omap_mcbsp_reg_cfg *regs = &mcbsp_data->regs; unsigned int temp_fmt = fmt; if (mcbsp_data->configured) return 0; mcbsp_data->fmt = fmt; memset(regs, 0, sizeof(*regs)); /* Generic McBSP register settings */ regs->spcr2 |= XINTM(3) | FREE; regs->spcr1 |= RINTM(3); /* RFIG and XFIG are not defined in 34xx */ if (!cpu_is_omap34xx()) { regs->rcr2 |= RFIG; regs->xcr2 |= XFIG; } if (cpu_is_omap2430() || cpu_is_omap34xx()) { regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE; regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: /* 1-bit data delay */ regs->rcr2 |= RDATDLY(1); regs->xcr2 |= XDATDLY(1); break; case SND_SOC_DAIFMT_LEFT_J: /* 0-bit data delay */ regs->rcr2 |= RDATDLY(0); regs->xcr2 |= XDATDLY(0); regs->spcr1 |= RJUST(2); /* Invert FS polarity configuration */ temp_fmt ^= SND_SOC_DAIFMT_NB_IF; break; case SND_SOC_DAIFMT_DSP_A: /* 1-bit data delay */ regs->rcr2 |= RDATDLY(1); regs->xcr2 |= XDATDLY(1); /* Invert FS polarity configuration */ temp_fmt ^= SND_SOC_DAIFMT_NB_IF; break; case SND_SOC_DAIFMT_DSP_B: /* 0-bit data delay */ regs->rcr2 |= RDATDLY(0); regs->xcr2 |= XDATDLY(0); /* Invert FS polarity configuration */ temp_fmt ^= SND_SOC_DAIFMT_NB_IF; break; default: /* Unsupported data format */ return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: /* McBSP master. Set FS and bit clocks as outputs */ regs->pcr0 |= FSXM | FSRM | CLKXM | CLKRM; /* Sample rate generator drives the FS */ regs->srgr2 |= FSGM; break; case SND_SOC_DAIFMT_CBM_CFM: /* McBSP slave */ break; default: /* Unsupported master/slave configuration */ return -EINVAL; } /* Set bit clock (CLKX/CLKR) and FS polarities */ switch (temp_fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: /* * Normal BCLK + FS. * FS active low. TX data driven on falling edge of bit clock * and RX data sampled on rising edge of bit clock. */ regs->pcr0 |= FSXP | FSRP | CLKXP | CLKRP; break; case SND_SOC_DAIFMT_NB_IF: regs->pcr0 |= CLKXP | CLKRP; break; case SND_SOC_DAIFMT_IB_NF: regs->pcr0 |= FSXP | FSRP; break; case SND_SOC_DAIFMT_IB_IF: break; default: return -EINVAL; } return 0; } static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai, int div_id, int div) { struct omap_mcbsp_data *mcbsp_data = to_mcbsp(cpu_dai->private_data); struct omap_mcbsp_reg_cfg *regs = &mcbsp_data->regs; if (div_id != OMAP_MCBSP_CLKGDV) return -ENODEV; mcbsp_data->clk_div = div; regs->srgr1 |= CLKGDV(div - 1); return 0; } static int omap_mcbsp_dai_set_clks_src(struct omap_mcbsp_data *mcbsp_data, int clk_id) { int sel_bit; u16 reg, reg_devconf1 = OMAP243X_CONTROL_DEVCONF1; if (cpu_class_is_omap1()) { /* OMAP1's can use only external source clock */ if (unlikely(clk_id == OMAP_MCBSP_SYSCLK_CLKS_FCLK)) return -EINVAL; else return 0; } if (cpu_is_omap2420() && mcbsp_data->bus_id > 1) return -EINVAL; if (cpu_is_omap343x()) reg_devconf1 = OMAP343X_CONTROL_DEVCONF1; switch (mcbsp_data->bus_id) { case 0: reg = OMAP2_CONTROL_DEVCONF0; sel_bit = 2; break; case 1: reg = OMAP2_CONTROL_DEVCONF0; sel_bit = 6; break; case 2: reg = reg_devconf1; sel_bit = 0; break; case 3: reg = reg_devconf1; sel_bit = 2; break; case 4: reg = reg_devconf1; sel_bit = 4; break; default: return -EINVAL; } if (clk_id == OMAP_MCBSP_SYSCLK_CLKS_FCLK) omap_ctrl_writel(omap_ctrl_readl(reg) & ~(1 << sel_bit), reg); else omap_ctrl_writel(omap_ctrl_readl(reg) | (1 << sel_bit), reg); return 0; } static int omap_mcbsp_dai_set_rcvr_src(struct omap_mcbsp_data *mcbsp_data, int clk_id) { int sel_bit, set = 0; u16 reg = OMAP2_CONTROL_DEVCONF0; if (cpu_class_is_omap1()) return -EINVAL; /* TODO: Can this be implemented for OMAP1? */ if (mcbsp_data->bus_id != 0) return -EINVAL; switch (clk_id) { case OMAP_MCBSP_CLKR_SRC_CLKX: set = 1; case OMAP_MCBSP_CLKR_SRC_CLKR: sel_bit = 3; break; case OMAP_MCBSP_FSR_SRC_FSX: set = 1; case OMAP_MCBSP_FSR_SRC_FSR: sel_bit = 4; break; default: return -EINVAL; } if (set) omap_ctrl_writel(omap_ctrl_readl(reg) | (1 << sel_bit), reg); else omap_ctrl_writel(omap_ctrl_readl(reg) & ~(1 << sel_bit), reg); return 0; } static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai, int clk_id, unsigned int freq, int dir) { struct omap_mcbsp_data *mcbsp_data = to_mcbsp(cpu_dai->private_data); struct omap_mcbsp_reg_cfg *regs = &mcbsp_data->regs; int err = 0; mcbsp_data->in_freq = freq; switch (clk_id) { case OMAP_MCBSP_SYSCLK_CLK: regs->srgr2 |= CLKSM; break; case OMAP_MCBSP_SYSCLK_CLKS_FCLK: case OMAP_MCBSP_SYSCLK_CLKS_EXT: err = omap_mcbsp_dai_set_clks_src(mcbsp_data, clk_id); break; case OMAP_MCBSP_SYSCLK_CLKX_EXT: regs->srgr2 |= CLKSM; case OMAP_MCBSP_SYSCLK_CLKR_EXT: regs->pcr0 |= SCLKME; break; case OMAP_MCBSP_CLKR_SRC_CLKR: case OMAP_MCBSP_CLKR_SRC_CLKX: case OMAP_MCBSP_FSR_SRC_FSR: case OMAP_MCBSP_FSR_SRC_FSX: err = omap_mcbsp_dai_set_rcvr_src(mcbsp_data, clk_id); break; default: err = -ENODEV; } return err; } static struct snd_soc_dai_ops omap_mcbsp_dai_ops = { .startup = omap_mcbsp_dai_startup, .shutdown = omap_mcbsp_dai_shutdown, .trigger = omap_mcbsp_dai_trigger, .delay = omap_mcbsp_dai_delay, .hw_params = omap_mcbsp_dai_hw_params, .set_fmt = omap_mcbsp_dai_set_dai_fmt, .set_clkdiv = omap_mcbsp_dai_set_clkdiv, .set_sysclk = omap_mcbsp_dai_set_dai_sysclk, }; #define OMAP_MCBSP_DAI_BUILDER(link_id) \ { \ .name = "omap-mcbsp-dai-"#link_id, \ .id = (link_id), \ .playback = { \ .channels_min = 1, \ .channels_max = 16, \ .rates = OMAP_MCBSP_RATES, \ .formats = SNDRV_PCM_FMTBIT_S16_LE, \ }, \ .capture = { \ .channels_min = 1, \ .channels_max = 16, \ .rates = OMAP_MCBSP_RATES, \ .formats = SNDRV_PCM_FMTBIT_S16_LE, \ }, \ .ops = &omap_mcbsp_dai_ops, \ .private_data = &mcbsp_data[(link_id)].bus_id, \ } struct snd_soc_dai omap_mcbsp_dai[] = { OMAP_MCBSP_DAI_BUILDER(0), OMAP_MCBSP_DAI_BUILDER(1), #if NUM_LINKS >= 3 OMAP_MCBSP_DAI_BUILDER(2), #endif #if NUM_LINKS == 5 OMAP_MCBSP_DAI_BUILDER(3), OMAP_MCBSP_DAI_BUILDER(4), #endif }; EXPORT_SYMBOL_GPL(omap_mcbsp_dai); int omap_mcbsp_st_info_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; int max = mc->max; int min = mc->min; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = min; uinfo->value.integer.max = max; return 0; } #define OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(id, channel) \ static int \ omap_mcbsp##id##_set_st_ch##channel##_volume(struct snd_kcontrol *kc, \ struct snd_ctl_elem_value *uc) \ { \ struct soc_mixer_control *mc = \ (struct soc_mixer_control *)kc->private_value; \ int max = mc->max; \ int min = mc->min; \ int val = uc->value.integer.value[0]; \ \ if (val < min || val > max) \ return -EINVAL; \ \ /* OMAP McBSP implementation uses index values 0..4 */ \ return omap_st_set_chgain((id)-1, channel, val); \ } #define OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(id, channel) \ static int \ omap_mcbsp##id##_get_st_ch##channel##_volume(struct snd_kcontrol *kc, \ struct snd_ctl_elem_value *uc) \ { \ s16 chgain; \ \ if (omap_st_get_chgain((id)-1, channel, &chgain)) \ return -EAGAIN; \ \ uc->value.integer.value[0] = chgain; \ return 0; \ } OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(2, 0) OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(2, 1) OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(3, 0) OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(3, 1) OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(2, 0) OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(2, 1) OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(3, 0) OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(3, 1) static int omap_mcbsp_st_put_mode(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; u8 value = ucontrol->value.integer.value[0]; if (value == omap_st_is_enabled(mc->reg)) return 0; if (value) omap_st_enable(mc->reg); else omap_st_disable(mc->reg); return 1; } static int omap_mcbsp_st_get_mode(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; ucontrol->value.integer.value[0] = omap_st_is_enabled(mc->reg); return 0; } static const struct snd_kcontrol_new omap_mcbsp2_st_controls[] = { SOC_SINGLE_EXT("McBSP2 Sidetone Switch", 1, 0, 1, 0, omap_mcbsp_st_get_mode, omap_mcbsp_st_put_mode), OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP2 Sidetone Channel 0 Volume", -32768, 32767, omap_mcbsp2_get_st_ch0_volume, omap_mcbsp2_set_st_ch0_volume), OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP2 Sidetone Channel 1 Volume", -32768, 32767, omap_mcbsp2_get_st_ch1_volume, omap_mcbsp2_set_st_ch1_volume), }; static const struct snd_kcontrol_new omap_mcbsp3_st_controls[] = { SOC_SINGLE_EXT("McBSP3 Sidetone Switch", 2, 0, 1, 0, omap_mcbsp_st_get_mode, omap_mcbsp_st_put_mode), OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP3 Sidetone Channel 0 Volume", -32768, 32767, omap_mcbsp3_get_st_ch0_volume, omap_mcbsp3_set_st_ch0_volume), OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP3 Sidetone Channel 1 Volume", -32768, 32767, omap_mcbsp3_get_st_ch1_volume, omap_mcbsp3_set_st_ch1_volume), }; int omap_mcbsp_st_add_controls(struct snd_soc_codec *codec, int mcbsp_id) { if (!cpu_is_omap34xx()) return -ENODEV; switch (mcbsp_id) { case 1: /* McBSP 2 */ return snd_soc_add_controls(codec, omap_mcbsp2_st_controls, ARRAY_SIZE(omap_mcbsp2_st_controls)); case 2: /* McBSP 3 */ return snd_soc_add_controls(codec, omap_mcbsp3_st_controls, ARRAY_SIZE(omap_mcbsp3_st_controls)); default: break; } return -EINVAL; } EXPORT_SYMBOL_GPL(omap_mcbsp_st_add_controls); static int __init snd_omap_mcbsp_init(void) { return snd_soc_register_dais(omap_mcbsp_dai, ARRAY_SIZE(omap_mcbsp_dai)); } module_init(snd_omap_mcbsp_init); static void __exit snd_omap_mcbsp_exit(void) { snd_soc_unregister_dais(omap_mcbsp_dai, ARRAY_SIZE(omap_mcbsp_dai)); } module_exit(snd_omap_mcbsp_exit); MODULE_AUTHOR("Jarkko Nikula "); MODULE_DESCRIPTION("OMAP I2S SoC Interface"); MODULE_LICENSE("GPL");