/* * PMac Tumbler/Snapper lowlevel functions * * Copyright (c) by Takashi Iwai <tiwai@suse.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Rene Rebe <rene.rebe@gmx.net>: * * update from shadow registers on wakeup and headphone plug * * automatically toggle DRC on headphone plug * */ #include <sound/driver.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/i2c-dev.h> #include <linux/kmod.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <sound/core.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/machdep.h> #include <asm/pmac_feature.h> #include "pmac.h" #include "tumbler_volume.h" #undef DEBUG #ifdef DEBUG #define DBG(fmt...) printk(fmt) #else #define DBG(fmt...) #endif /* i2c address for tumbler */ #define TAS_I2C_ADDR 0x34 /* registers */ #define TAS_REG_MCS 0x01 /* main control */ #define TAS_REG_DRC 0x02 #define TAS_REG_VOL 0x04 #define TAS_REG_TREBLE 0x05 #define TAS_REG_BASS 0x06 #define TAS_REG_INPUT1 0x07 #define TAS_REG_INPUT2 0x08 /* tas3001c */ #define TAS_REG_PCM TAS_REG_INPUT1 /* tas3004 */ #define TAS_REG_LMIX TAS_REG_INPUT1 #define TAS_REG_RMIX TAS_REG_INPUT2 #define TAS_REG_MCS2 0x43 /* main control 2 */ #define TAS_REG_ACS 0x40 /* analog control */ /* mono volumes for tas3001c/tas3004 */ enum { VOL_IDX_PCM_MONO, /* tas3001c only */ VOL_IDX_BASS, VOL_IDX_TREBLE, VOL_IDX_LAST_MONO }; /* stereo volumes for tas3004 */ enum { VOL_IDX_PCM, VOL_IDX_PCM2, VOL_IDX_ADC, VOL_IDX_LAST_MIX }; struct pmac_gpio { unsigned int addr; u8 active_val; u8 inactive_val; u8 active_state; }; struct pmac_tumbler { struct pmac_keywest i2c; struct pmac_gpio audio_reset; struct pmac_gpio amp_mute; struct pmac_gpio line_mute; struct pmac_gpio line_detect; struct pmac_gpio hp_mute; struct pmac_gpio hp_detect; int headphone_irq; int lineout_irq; unsigned int save_master_vol[2]; unsigned int master_vol[2]; unsigned int save_master_switch[2]; unsigned int master_switch[2]; unsigned int mono_vol[VOL_IDX_LAST_MONO]; unsigned int mix_vol[VOL_IDX_LAST_MIX][2]; /* stereo volumes for tas3004 */ int drc_range; int drc_enable; int capture_source; int anded_reset; int auto_mute_notify; int reset_on_sleep; u8 acs; }; /* */ static int send_init_client(struct pmac_keywest *i2c, unsigned int *regs) { while (*regs > 0) { int err, count = 10; do { err = i2c_smbus_write_byte_data(i2c->client, regs[0], regs[1]); if (err >= 0) break; DBG("(W) i2c error %d\n", err); mdelay(10); } while (count--); if (err < 0) return -ENXIO; regs += 2; } return 0; } static int tumbler_init_client(struct pmac_keywest *i2c) { static unsigned int regs[] = { /* normal operation, SCLK=64fps, i2s output, i2s input, 16bit width */ TAS_REG_MCS, (1<<6)|(2<<4)|(2<<2)|0, 0, /* terminator */ }; DBG("(I) tumbler init client\n"); return send_init_client(i2c, regs); } static int snapper_init_client(struct pmac_keywest *i2c) { static unsigned int regs[] = { /* normal operation, SCLK=64fps, i2s output, 16bit width */ TAS_REG_MCS, (1<<6)|(2<<4)|0, /* normal operation, all-pass mode */ TAS_REG_MCS2, (1<<1), /* normal output, no deemphasis, A input, power-up, line-in */ TAS_REG_ACS, 0, 0, /* terminator */ }; DBG("(I) snapper init client\n"); return send_init_client(i2c, regs); } /* * gpio access */ #define do_gpio_write(gp, val) \ pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, (gp)->addr, val) #define do_gpio_read(gp) \ pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, (gp)->addr, 0) #define tumbler_gpio_free(gp) /* NOP */ static void write_audio_gpio(struct pmac_gpio *gp, int active) { if (! gp->addr) return; active = active ? gp->active_val : gp->inactive_val; do_gpio_write(gp, active); DBG("(I) gpio %x write %d\n", gp->addr, active); } static int check_audio_gpio(struct pmac_gpio *gp) { int ret; if (! gp->addr) return 0; ret = do_gpio_read(gp); return (ret & 0xd) == (gp->active_val & 0xd); } static int read_audio_gpio(struct pmac_gpio *gp) { int ret; if (! gp->addr) return 0; ret = ((do_gpio_read(gp) & 0x02) !=0); return ret == gp->active_state; } /* * update master volume */ static int tumbler_set_master_volume(struct pmac_tumbler *mix) { unsigned char block[6]; unsigned int left_vol, right_vol; if (! mix->i2c.client) return -ENODEV; if (! mix->master_switch[0]) left_vol = 0; else { left_vol = mix->master_vol[0]; if (left_vol >= ARRAY_SIZE(master_volume_table)) left_vol = ARRAY_SIZE(master_volume_table) - 1; left_vol = master_volume_table[left_vol]; } if (! mix->master_switch[1]) right_vol = 0; else { right_vol = mix->master_vol[1]; if (right_vol >= ARRAY_SIZE(master_volume_table)) right_vol = ARRAY_SIZE(master_volume_table) - 1; right_vol = master_volume_table[right_vol]; } block[0] = (left_vol >> 16) & 0xff; block[1] = (left_vol >> 8) & 0xff; block[2] = (left_vol >> 0) & 0xff; block[3] = (right_vol >> 16) & 0xff; block[4] = (right_vol >> 8) & 0xff; block[5] = (right_vol >> 0) & 0xff; if (i2c_smbus_write_block_data(mix->i2c.client, TAS_REG_VOL, 6, block) < 0) { snd_printk("failed to set volume \n"); return -EINVAL; } return 0; } /* output volume */ static int tumbler_info_master_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = ARRAY_SIZE(master_volume_table) - 1; return 0; } static int tumbler_get_master_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; snd_assert(mix, return -ENODEV); ucontrol->value.integer.value[0] = mix->master_vol[0]; ucontrol->value.integer.value[1] = mix->master_vol[1]; return 0; } static int tumbler_put_master_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; int change; snd_assert(mix, return -ENODEV); change = mix->master_vol[0] != ucontrol->value.integer.value[0] || mix->master_vol[1] != ucontrol->value.integer.value[1]; if (change) { mix->master_vol[0] = ucontrol->value.integer.value[0]; mix->master_vol[1] = ucontrol->value.integer.value[1]; tumbler_set_master_volume(mix); } return change; } /* output switch */ static int tumbler_get_master_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; snd_assert(mix, return -ENODEV); ucontrol->value.integer.value[0] = mix->master_switch[0]; ucontrol->value.integer.value[1] = mix->master_switch[1]; return 0; } static int tumbler_put_master_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; int change; snd_assert(mix, return -ENODEV); change = mix->master_switch[0] != ucontrol->value.integer.value[0] || mix->master_switch[1] != ucontrol->value.integer.value[1]; if (change) { mix->master_switch[0] = !!ucontrol->value.integer.value[0]; mix->master_switch[1] = !!ucontrol->value.integer.value[1]; tumbler_set_master_volume(mix); } return change; } /* * TAS3001c dynamic range compression */ #define TAS3001_DRC_MAX 0x5f static int tumbler_set_drc(struct pmac_tumbler *mix) { unsigned char val[2]; if (! mix->i2c.client) return -ENODEV; if (mix->drc_enable) { val[0] = 0xc1; /* enable, 3:1 compression */ if (mix->drc_range > TAS3001_DRC_MAX) val[1] = 0xf0; else if (mix->drc_range < 0) val[1] = 0x91; else val[1] = mix->drc_range + 0x91; } else { val[0] = 0; val[1] = 0; } if (i2c_smbus_write_block_data(mix->i2c.client, TAS_REG_DRC, 2, val) < 0) { snd_printk("failed to set DRC\n"); return -EINVAL; } return 0; } /* * TAS3004 */ #define TAS3004_DRC_MAX 0xef static int snapper_set_drc(struct pmac_tumbler *mix) { unsigned char val[6]; if (! mix->i2c.client) return -ENODEV; if (mix->drc_enable) val[0] = 0x50; /* 3:1 above threshold */ else val[0] = 0x51; /* disabled */ val[1] = 0x02; /* 1:1 below threshold */ if (mix->drc_range > 0xef) val[2] = 0xef; else if (mix->drc_range < 0) val[2] = 0x00; else val[2] = mix->drc_range; val[3] = 0xb0; val[4] = 0x60; val[5] = 0xa0; if (i2c_smbus_write_block_data(mix->i2c.client, TAS_REG_DRC, 6, val) < 0) { snd_printk("failed to set DRC\n"); return -EINVAL; } return 0; } static int tumbler_info_drc_value(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = chip->model == PMAC_TUMBLER ? TAS3001_DRC_MAX : TAS3004_DRC_MAX; return 0; } static int tumbler_get_drc_value(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; if (! (mix = chip->mixer_data)) return -ENODEV; ucontrol->value.integer.value[0] = mix->drc_range; return 0; } static int tumbler_put_drc_value(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; int change; if (! (mix = chip->mixer_data)) return -ENODEV; change = mix->drc_range != ucontrol->value.integer.value[0]; if (change) { mix->drc_range = ucontrol->value.integer.value[0]; if (chip->model == PMAC_TUMBLER) tumbler_set_drc(mix); else snapper_set_drc(mix); } return change; } static int tumbler_get_drc_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; if (! (mix = chip->mixer_data)) return -ENODEV; ucontrol->value.integer.value[0] = mix->drc_enable; return 0; } static int tumbler_put_drc_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; int change; if (! (mix = chip->mixer_data)) return -ENODEV; change = mix->drc_enable != ucontrol->value.integer.value[0]; if (change) { mix->drc_enable = !!ucontrol->value.integer.value[0]; if (chip->model == PMAC_TUMBLER) tumbler_set_drc(mix); else snapper_set_drc(mix); } return change; } /* * mono volumes */ struct tumbler_mono_vol { int index; int reg; int bytes; unsigned int max; unsigned int *table; }; static int tumbler_set_mono_volume(struct pmac_tumbler *mix, struct tumbler_mono_vol *info) { unsigned char block[4]; unsigned int vol; int i; if (! mix->i2c.client) return -ENODEV; vol = mix->mono_vol[info->index]; if (vol >= info->max) vol = info->max - 1; vol = info->table[vol]; for (i = 0; i < info->bytes; i++) block[i] = (vol >> ((info->bytes - i - 1) * 8)) & 0xff; if (i2c_smbus_write_block_data(mix->i2c.client, info->reg, info->bytes, block) < 0) { snd_printk("failed to set mono volume %d\n", info->index); return -EINVAL; } return 0; } static int tumbler_info_mono(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = info->max - 1; return 0; } static int tumbler_get_mono(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value; struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; if (! (mix = chip->mixer_data)) return -ENODEV; ucontrol->value.integer.value[0] = mix->mono_vol[info->index]; return 0; } static int tumbler_put_mono(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value; struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; int change; if (! (mix = chip->mixer_data)) return -ENODEV; change = mix->mono_vol[info->index] != ucontrol->value.integer.value[0]; if (change) { mix->mono_vol[info->index] = ucontrol->value.integer.value[0]; tumbler_set_mono_volume(mix, info); } return change; } /* TAS3001c mono volumes */ static struct tumbler_mono_vol tumbler_pcm_vol_info = { .index = VOL_IDX_PCM_MONO, .reg = TAS_REG_PCM, .bytes = 3, .max = ARRAY_SIZE(mixer_volume_table), .table = mixer_volume_table, }; static struct tumbler_mono_vol tumbler_bass_vol_info = { .index = VOL_IDX_BASS, .reg = TAS_REG_BASS, .bytes = 1, .max = ARRAY_SIZE(bass_volume_table), .table = bass_volume_table, }; static struct tumbler_mono_vol tumbler_treble_vol_info = { .index = VOL_IDX_TREBLE, .reg = TAS_REG_TREBLE, .bytes = 1, .max = ARRAY_SIZE(treble_volume_table), .table = treble_volume_table, }; /* TAS3004 mono volumes */ static struct tumbler_mono_vol snapper_bass_vol_info = { .index = VOL_IDX_BASS, .reg = TAS_REG_BASS, .bytes = 1, .max = ARRAY_SIZE(snapper_bass_volume_table), .table = snapper_bass_volume_table, }; static struct tumbler_mono_vol snapper_treble_vol_info = { .index = VOL_IDX_TREBLE, .reg = TAS_REG_TREBLE, .bytes = 1, .max = ARRAY_SIZE(snapper_treble_volume_table), .table = snapper_treble_volume_table, }; #define DEFINE_MONO(xname,type) { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\ .name = xname, \ .info = tumbler_info_mono, \ .get = tumbler_get_mono, \ .put = tumbler_put_mono, \ .private_value = (unsigned long)(&tumbler_##type##_vol_info), \ } #define DEFINE_SNAPPER_MONO(xname,type) { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\ .name = xname, \ .info = tumbler_info_mono, \ .get = tumbler_get_mono, \ .put = tumbler_put_mono, \ .private_value = (unsigned long)(&snapper_##type##_vol_info), \ } /* * snapper mixer volumes */ static int snapper_set_mix_vol1(struct pmac_tumbler *mix, int idx, int ch, int reg) { int i, j, vol; unsigned char block[9]; vol = mix->mix_vol[idx][ch]; if (vol >= ARRAY_SIZE(mixer_volume_table)) { vol = ARRAY_SIZE(mixer_volume_table) - 1; mix->mix_vol[idx][ch] = vol; } for (i = 0; i < 3; i++) { vol = mix->mix_vol[i][ch]; vol = mixer_volume_table[vol]; for (j = 0; j < 3; j++) block[i * 3 + j] = (vol >> ((2 - j) * 8)) & 0xff; } if (i2c_smbus_write_block_data(mix->i2c.client, reg, 9, block) < 0) { snd_printk("failed to set mono volume %d\n", reg); return -EINVAL; } return 0; } static int snapper_set_mix_vol(struct pmac_tumbler *mix, int idx) { if (! mix->i2c.client) return -ENODEV; if (snapper_set_mix_vol1(mix, idx, 0, TAS_REG_LMIX) < 0 || snapper_set_mix_vol1(mix, idx, 1, TAS_REG_RMIX) < 0) return -EINVAL; return 0; } static int snapper_info_mix(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = ARRAY_SIZE(mixer_volume_table) - 1; return 0; } static int snapper_get_mix(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = (int)kcontrol->private_value; struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; if (! (mix = chip->mixer_data)) return -ENODEV; ucontrol->value.integer.value[0] = mix->mix_vol[idx][0]; ucontrol->value.integer.value[1] = mix->mix_vol[idx][1]; return 0; } static int snapper_put_mix(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int idx = (int)kcontrol->private_value; struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; int change; if (! (mix = chip->mixer_data)) return -ENODEV; change = mix->mix_vol[idx][0] != ucontrol->value.integer.value[0] || mix->mix_vol[idx][1] != ucontrol->value.integer.value[1]; if (change) { mix->mix_vol[idx][0] = ucontrol->value.integer.value[0]; mix->mix_vol[idx][1] = ucontrol->value.integer.value[1]; snapper_set_mix_vol(mix, idx); } return change; } /* * mute switches. FIXME: Turn that into software mute when both outputs are muted * to avoid codec reset on ibook M7 */ enum { TUMBLER_MUTE_HP, TUMBLER_MUTE_AMP, TUMBLER_MUTE_LINE }; static int tumbler_get_mute_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; struct pmac_gpio *gp; if (! (mix = chip->mixer_data)) return -ENODEV; switch(kcontrol->private_value) { case TUMBLER_MUTE_HP: gp = &mix->hp_mute; break; case TUMBLER_MUTE_AMP: gp = &mix->amp_mute; break; case TUMBLER_MUTE_LINE: gp = &mix->line_mute; break; default: gp = NULL; } if (gp == NULL) return -EINVAL; ucontrol->value.integer.value[0] = !check_audio_gpio(gp); return 0; } static int tumbler_put_mute_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix; struct pmac_gpio *gp; int val; #ifdef PMAC_SUPPORT_AUTOMUTE if (chip->update_automute && chip->auto_mute) return 0; /* don't touch in the auto-mute mode */ #endif if (! (mix = chip->mixer_data)) return -ENODEV; switch(kcontrol->private_value) { case TUMBLER_MUTE_HP: gp = &mix->hp_mute; break; case TUMBLER_MUTE_AMP: gp = &mix->amp_mute; break; case TUMBLER_MUTE_LINE: gp = &mix->line_mute; break; default: gp = NULL; } if (gp == NULL) return -EINVAL; val = ! check_audio_gpio(gp); if (val != ucontrol->value.integer.value[0]) { write_audio_gpio(gp, ! ucontrol->value.integer.value[0]); return 1; } return 0; } static int snapper_set_capture_source(struct pmac_tumbler *mix) { if (! mix->i2c.client) return -ENODEV; if (mix->capture_source) mix->acs = mix->acs |= 2; else mix->acs &= ~2; return i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs); } static int snapper_info_capture_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static char *texts[2] = { "Line", "Mic" }; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = 2; if (uinfo->value.enumerated.item > 1) uinfo->value.enumerated.item = 1; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int snapper_get_capture_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; snd_assert(mix, return -ENODEV); ucontrol->value.integer.value[0] = mix->capture_source; return 0; } static int snapper_put_capture_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); struct pmac_tumbler *mix = chip->mixer_data; int change; snd_assert(mix, return -ENODEV); change = ucontrol->value.integer.value[0] != mix->capture_source; if (change) { mix->capture_source = !!ucontrol->value.integer.value[0]; snapper_set_capture_source(mix); } return change; } #define DEFINE_SNAPPER_MIX(xname,idx,ofs) { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\ .name = xname, \ .info = snapper_info_mix, \ .get = snapper_get_mix, \ .put = snapper_put_mix, \ .index = idx,\ .private_value = ofs, \ } /* */ static struct snd_kcontrol_new tumbler_mixers[] __initdata = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Volume", .info = tumbler_info_master_volume, .get = tumbler_get_master_volume, .put = tumbler_put_master_volume }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Switch", .info = snd_pmac_boolean_stereo_info, .get = tumbler_get_master_switch, .put = tumbler_put_master_switch }, DEFINE_MONO("Tone Control - Bass", bass), DEFINE_MONO("Tone Control - Treble", treble), DEFINE_MONO("PCM Playback Volume", pcm), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "DRC Range", .info = tumbler_info_drc_value, .get = tumbler_get_drc_value, .put = tumbler_put_drc_value }, }; static struct snd_kcontrol_new snapper_mixers[] __initdata = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Volume", .info = tumbler_info_master_volume, .get = tumbler_get_master_volume, .put = tumbler_put_master_volume }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Switch", .info = snd_pmac_boolean_stereo_info, .get = tumbler_get_master_switch, .put = tumbler_put_master_switch }, DEFINE_SNAPPER_MIX("PCM Playback Volume", 0, VOL_IDX_PCM), DEFINE_SNAPPER_MIX("PCM Playback Volume", 1, VOL_IDX_PCM2), DEFINE_SNAPPER_MIX("Monitor Mix Volume", 0, VOL_IDX_ADC), DEFINE_SNAPPER_MONO("Tone Control - Bass", bass), DEFINE_SNAPPER_MONO("Tone Control - Treble", treble), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "DRC Range", .info = tumbler_info_drc_value, .get = tumbler_get_drc_value, .put = tumbler_put_drc_value }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input Source", /* FIXME: "Capture Source" doesn't work properly */ .info = snapper_info_capture_source, .get = snapper_get_capture_source, .put = snapper_put_capture_source }, }; static struct snd_kcontrol_new tumbler_hp_sw __initdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Headphone Playback Switch", .info = snd_pmac_boolean_mono_info, .get = tumbler_get_mute_switch, .put = tumbler_put_mute_switch, .private_value = TUMBLER_MUTE_HP, }; static struct snd_kcontrol_new tumbler_speaker_sw __initdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "PC Speaker Playback Switch", .info = snd_pmac_boolean_mono_info, .get = tumbler_get_mute_switch, .put = tumbler_put_mute_switch, .private_value = TUMBLER_MUTE_AMP, }; static struct snd_kcontrol_new tumbler_lineout_sw __initdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Line Out Playback Switch", .info = snd_pmac_boolean_mono_info, .get = tumbler_get_mute_switch, .put = tumbler_put_mute_switch, .private_value = TUMBLER_MUTE_LINE, }; static struct snd_kcontrol_new tumbler_drc_sw __initdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "DRC Switch", .info = snd_pmac_boolean_mono_info, .get = tumbler_get_drc_switch, .put = tumbler_put_drc_switch }; #ifdef PMAC_SUPPORT_AUTOMUTE /* * auto-mute stuffs */ static int tumbler_detect_headphone(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; int detect = 0; if (mix->hp_detect.addr) detect |= read_audio_gpio(&mix->hp_detect); return detect; } static int tumbler_detect_lineout(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; int detect = 0; if (mix->line_detect.addr) detect |= read_audio_gpio(&mix->line_detect); return detect; } static void check_mute(struct snd_pmac *chip, struct pmac_gpio *gp, int val, int do_notify, struct snd_kcontrol *sw) { if (check_audio_gpio(gp) != val) { write_audio_gpio(gp, val); if (do_notify) snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &sw->id); } } static struct work_struct device_change; static void device_change_handler(void *self) { struct snd_pmac *chip = self; struct pmac_tumbler *mix; int headphone, lineout; if (!chip) return; mix = chip->mixer_data; snd_assert(mix, return); headphone = tumbler_detect_headphone(chip); lineout = tumbler_detect_lineout(chip); DBG("headphone: %d, lineout: %d\n", headphone, lineout); if (headphone || lineout) { /* unmute headphone/lineout & mute speaker */ if (headphone) check_mute(chip, &mix->hp_mute, 0, mix->auto_mute_notify, chip->master_sw_ctl); if (lineout && mix->line_mute.addr != 0) check_mute(chip, &mix->line_mute, 0, mix->auto_mute_notify, chip->lineout_sw_ctl); if (mix->anded_reset) msleep(10); check_mute(chip, &mix->amp_mute, 1, mix->auto_mute_notify, chip->speaker_sw_ctl); } else { /* unmute speaker, mute others */ check_mute(chip, &mix->amp_mute, 0, mix->auto_mute_notify, chip->speaker_sw_ctl); if (mix->anded_reset) msleep(10); check_mute(chip, &mix->hp_mute, 1, mix->auto_mute_notify, chip->master_sw_ctl); if (mix->line_mute.addr != 0) check_mute(chip, &mix->line_mute, 1, mix->auto_mute_notify, chip->lineout_sw_ctl); } if (mix->auto_mute_notify) snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->hp_detect_ctl->id); #ifdef CONFIG_SND_POWERMAC_AUTO_DRC mix->drc_enable = ! (headphone || lineout); if (mix->auto_mute_notify) snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->drc_sw_ctl->id); if (chip->model == PMAC_TUMBLER) tumbler_set_drc(mix); else snapper_set_drc(mix); #endif /* reset the master volume so the correct amplification is applied */ tumbler_set_master_volume(mix); } static void tumbler_update_automute(struct snd_pmac *chip, int do_notify) { if (chip->auto_mute) { struct pmac_tumbler *mix; mix = chip->mixer_data; snd_assert(mix, return); mix->auto_mute_notify = do_notify; schedule_work(&device_change); } } #endif /* PMAC_SUPPORT_AUTOMUTE */ /* interrupt - headphone plug changed */ static irqreturn_t headphone_intr(int irq, void *devid, struct pt_regs *regs) { struct snd_pmac *chip = devid; if (chip->update_automute && chip->initialized) { chip->update_automute(chip, 1); return IRQ_HANDLED; } return IRQ_NONE; } /* look for audio-gpio device */ static struct device_node *find_audio_device(const char *name) { struct device_node *np; if (! (np = find_devices("gpio"))) return NULL; for (np = np->child; np; np = np->sibling) { char *property = get_property(np, "audio-gpio", NULL); if (property && strcmp(property, name) == 0) return np; } return NULL; } /* look for audio-gpio device */ static struct device_node *find_compatible_audio_device(const char *name) { struct device_node *np; if (! (np = find_devices("gpio"))) return NULL; for (np = np->child; np; np = np->sibling) { if (device_is_compatible(np, name)) return np; } return NULL; } /* find an audio device and get its address */ static long tumbler_find_device(const char *device, const char *platform, struct pmac_gpio *gp, int is_compatible) { struct device_node *node; u32 *base, addr; if (is_compatible) node = find_compatible_audio_device(device); else node = find_audio_device(device); if (! node) { DBG("(W) cannot find audio device %s !\n", device); snd_printdd("cannot find device %s\n", device); return -ENODEV; } base = (u32 *)get_property(node, "AAPL,address", NULL); if (! base) { base = (u32 *)get_property(node, "reg", NULL); if (!base) { DBG("(E) cannot find address for device %s !\n", device); snd_printd("cannot find address for device %s\n", device); return -ENODEV; } addr = *base; if (addr < 0x50) addr += 0x50; } else addr = *base; gp->addr = addr & 0x0000ffff; /* Try to find the active state, default to 0 ! */ base = (u32 *)get_property(node, "audio-gpio-active-state", NULL); if (base) { gp->active_state = *base; gp->active_val = (*base) ? 0x5 : 0x4; gp->inactive_val = (*base) ? 0x4 : 0x5; } else { u32 *prop = NULL; gp->active_state = 0; gp->active_val = 0x4; gp->inactive_val = 0x5; /* Here are some crude hacks to extract the GPIO polarity and * open collector informations out of the do-platform script * as we don't yet have an interpreter for these things */ if (platform) prop = (u32 *)get_property(node, platform, NULL); if (prop) { if (prop[3] == 0x9 && prop[4] == 0x9) { gp->active_val = 0xd; gp->inactive_val = 0xc; } if (prop[3] == 0x1 && prop[4] == 0x1) { gp->active_val = 0x5; gp->inactive_val = 0x4; } } } DBG("(I) GPIO device %s found, offset: %x, active state: %d !\n", device, gp->addr, gp->active_state); return (node->n_intrs > 0) ? node->intrs[0].line : 0; } /* reset audio */ static void tumbler_reset_audio(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; if (mix->anded_reset) { DBG("(I) codec anded reset !\n"); write_audio_gpio(&mix->hp_mute, 0); write_audio_gpio(&mix->amp_mute, 0); msleep(200); write_audio_gpio(&mix->hp_mute, 1); write_audio_gpio(&mix->amp_mute, 1); msleep(100); write_audio_gpio(&mix->hp_mute, 0); write_audio_gpio(&mix->amp_mute, 0); msleep(100); } else { DBG("(I) codec normal reset !\n"); write_audio_gpio(&mix->audio_reset, 0); msleep(200); write_audio_gpio(&mix->audio_reset, 1); msleep(100); write_audio_gpio(&mix->audio_reset, 0); msleep(100); } } #ifdef CONFIG_PM /* suspend mixer */ static void tumbler_suspend(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; if (mix->headphone_irq >= 0) disable_irq(mix->headphone_irq); if (mix->lineout_irq >= 0) disable_irq(mix->lineout_irq); mix->save_master_switch[0] = mix->master_switch[0]; mix->save_master_switch[1] = mix->master_switch[1]; mix->save_master_vol[0] = mix->master_vol[0]; mix->save_master_vol[1] = mix->master_vol[1]; mix->master_switch[0] = mix->master_switch[1] = 0; tumbler_set_master_volume(mix); if (!mix->anded_reset) { write_audio_gpio(&mix->amp_mute, 1); write_audio_gpio(&mix->hp_mute, 1); } if (chip->model == PMAC_SNAPPER) { mix->acs |= 1; i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs); } if (mix->anded_reset) { write_audio_gpio(&mix->amp_mute, 1); write_audio_gpio(&mix->hp_mute, 1); } else write_audio_gpio(&mix->audio_reset, 1); } /* resume mixer */ static void tumbler_resume(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; snd_assert(mix, return); mix->acs &= ~1; mix->master_switch[0] = mix->save_master_switch[0]; mix->master_switch[1] = mix->save_master_switch[1]; mix->master_vol[0] = mix->save_master_vol[0]; mix->master_vol[1] = mix->save_master_vol[1]; tumbler_reset_audio(chip); if (mix->i2c.client && mix->i2c.init_client) { if (mix->i2c.init_client(&mix->i2c) < 0) printk(KERN_ERR "tumbler_init_client error\n"); } else printk(KERN_ERR "tumbler: i2c is not initialized\n"); if (chip->model == PMAC_TUMBLER) { tumbler_set_mono_volume(mix, &tumbler_pcm_vol_info); tumbler_set_mono_volume(mix, &tumbler_bass_vol_info); tumbler_set_mono_volume(mix, &tumbler_treble_vol_info); tumbler_set_drc(mix); } else { snapper_set_mix_vol(mix, VOL_IDX_PCM); snapper_set_mix_vol(mix, VOL_IDX_PCM2); snapper_set_mix_vol(mix, VOL_IDX_ADC); tumbler_set_mono_volume(mix, &snapper_bass_vol_info); tumbler_set_mono_volume(mix, &snapper_treble_vol_info); snapper_set_drc(mix); snapper_set_capture_source(mix); } tumbler_set_master_volume(mix); if (chip->update_automute) chip->update_automute(chip, 0); if (mix->headphone_irq >= 0) { unsigned char val; enable_irq(mix->headphone_irq); /* activate headphone status interrupts */ val = do_gpio_read(&mix->hp_detect); do_gpio_write(&mix->hp_detect, val | 0x80); } if (mix->lineout_irq >= 0) enable_irq(mix->lineout_irq); } #endif /* initialize tumbler */ static int __init tumbler_init(struct snd_pmac *chip) { int irq; struct pmac_tumbler *mix = chip->mixer_data; snd_assert(mix, return -EINVAL); if (tumbler_find_device("audio-hw-reset", "platform-do-hw-reset", &mix->audio_reset, 0) < 0) tumbler_find_device("hw-reset", "platform-do-hw-reset", &mix->audio_reset, 1); if (tumbler_find_device("amp-mute", "platform-do-amp-mute", &mix->amp_mute, 0) < 0) tumbler_find_device("amp-mute", "platform-do-amp-mute", &mix->amp_mute, 1); if (tumbler_find_device("headphone-mute", "platform-do-headphone-mute", &mix->hp_mute, 0) < 0) tumbler_find_device("headphone-mute", "platform-do-headphone-mute", &mix->hp_mute, 1); if (tumbler_find_device("line-output-mute", "platform-do-lineout-mute", &mix->line_mute, 0) < 0) tumbler_find_device("line-output-mute", "platform-do-lineout-mute", &mix->line_mute, 1); irq = tumbler_find_device("headphone-detect", NULL, &mix->hp_detect, 0); if (irq < 0) irq = tumbler_find_device("headphone-detect", NULL, &mix->hp_detect, 1); if (irq < 0) irq = tumbler_find_device("keywest-gpio15", NULL, &mix->hp_detect, 1); mix->headphone_irq = irq; irq = tumbler_find_device("line-output-detect", NULL, &mix->line_detect, 0); if (irq < 0) irq = tumbler_find_device("line-output-detect", NULL, &mix->line_detect, 1); mix->lineout_irq = irq; tumbler_reset_audio(chip); return 0; } static void tumbler_cleanup(struct snd_pmac *chip) { struct pmac_tumbler *mix = chip->mixer_data; if (! mix) return; if (mix->headphone_irq >= 0) free_irq(mix->headphone_irq, chip); if (mix->lineout_irq >= 0) free_irq(mix->lineout_irq, chip); tumbler_gpio_free(&mix->audio_reset); tumbler_gpio_free(&mix->amp_mute); tumbler_gpio_free(&mix->hp_mute); tumbler_gpio_free(&mix->hp_detect); snd_pmac_keywest_cleanup(&mix->i2c); kfree(mix); chip->mixer_data = NULL; } /* exported */ int __init snd_pmac_tumbler_init(struct snd_pmac *chip) { int i, err; struct pmac_tumbler *mix; u32 *paddr; struct device_node *tas_node, *np; char *chipname; #ifdef CONFIG_KMOD if (current->fs->root) request_module("i2c-keywest"); #endif /* CONFIG_KMOD */ mix = kmalloc(sizeof(*mix), GFP_KERNEL); if (! mix) return -ENOMEM; memset(mix, 0, sizeof(*mix)); mix->headphone_irq = -1; chip->mixer_data = mix; chip->mixer_free = tumbler_cleanup; mix->anded_reset = 0; mix->reset_on_sleep = 1; for (np = chip->node->child; np; np = np->sibling) { if (!strcmp(np->name, "sound")) { if (get_property(np, "has-anded-reset", NULL)) mix->anded_reset = 1; if (get_property(np, "layout-id", NULL)) mix->reset_on_sleep = 0; break; } } if ((err = tumbler_init(chip)) < 0) return err; /* set up TAS */ tas_node = find_devices("deq"); if (tas_node == NULL) tas_node = find_devices("codec"); if (tas_node == NULL) return -ENODEV; paddr = (u32 *)get_property(tas_node, "i2c-address", NULL); if (paddr == NULL) paddr = (u32 *)get_property(tas_node, "reg", NULL); if (paddr) mix->i2c.addr = (*paddr) >> 1; else mix->i2c.addr = TAS_I2C_ADDR; DBG("(I) TAS i2c address is: %x\n", mix->i2c.addr); if (chip->model == PMAC_TUMBLER) { mix->i2c.init_client = tumbler_init_client; mix->i2c.name = "TAS3001c"; chipname = "Tumbler"; } else { mix->i2c.init_client = snapper_init_client; mix->i2c.name = "TAS3004"; chipname = "Snapper"; } if ((err = snd_pmac_keywest_init(&mix->i2c)) < 0) return err; /* * build mixers */ sprintf(chip->card->mixername, "PowerMac %s", chipname); if (chip->model == PMAC_TUMBLER) { for (i = 0; i < ARRAY_SIZE(tumbler_mixers); i++) { if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&tumbler_mixers[i], chip))) < 0) return err; } } else { for (i = 0; i < ARRAY_SIZE(snapper_mixers); i++) { if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snapper_mixers[i], chip))) < 0) return err; } } chip->master_sw_ctl = snd_ctl_new1(&tumbler_hp_sw, chip); if ((err = snd_ctl_add(chip->card, chip->master_sw_ctl)) < 0) return err; chip->speaker_sw_ctl = snd_ctl_new1(&tumbler_speaker_sw, chip); if ((err = snd_ctl_add(chip->card, chip->speaker_sw_ctl)) < 0) return err; if (mix->line_mute.addr != 0) { chip->lineout_sw_ctl = snd_ctl_new1(&tumbler_lineout_sw, chip); if ((err = snd_ctl_add(chip->card, chip->lineout_sw_ctl)) < 0) return err; } chip->drc_sw_ctl = snd_ctl_new1(&tumbler_drc_sw, chip); if ((err = snd_ctl_add(chip->card, chip->drc_sw_ctl)) < 0) return err; /* set initial DRC range to 60% */ if (chip->model == PMAC_TUMBLER) mix->drc_range = (TAS3001_DRC_MAX * 6) / 10; else mix->drc_range = (TAS3004_DRC_MAX * 6) / 10; mix->drc_enable = 1; /* will be changed later if AUTO_DRC is set */ if (chip->model == PMAC_TUMBLER) tumbler_set_drc(mix); else snapper_set_drc(mix); #ifdef CONFIG_PM chip->suspend = tumbler_suspend; chip->resume = tumbler_resume; #endif INIT_WORK(&device_change, device_change_handler, (void *)chip); #ifdef PMAC_SUPPORT_AUTOMUTE if ((mix->headphone_irq >=0 || mix->lineout_irq >= 0) && (err = snd_pmac_add_automute(chip)) < 0) return err; chip->detect_headphone = tumbler_detect_headphone; chip->update_automute = tumbler_update_automute; tumbler_update_automute(chip, 0); /* update the status only */ /* activate headphone status interrupts */ if (mix->headphone_irq >= 0) { unsigned char val; if ((err = request_irq(mix->headphone_irq, headphone_intr, 0, "Sound Headphone Detection", chip)) < 0) return 0; /* activate headphone status interrupts */ val = do_gpio_read(&mix->hp_detect); do_gpio_write(&mix->hp_detect, val | 0x80); } if (mix->lineout_irq >= 0) { unsigned char val; if ((err = request_irq(mix->lineout_irq, headphone_intr, 0, "Sound Lineout Detection", chip)) < 0) return 0; /* activate headphone status interrupts */ val = do_gpio_read(&mix->line_detect); do_gpio_write(&mix->line_detect, val | 0x80); } #endif return 0; }