/* * Driver for SiS7019 Audio Accelerator * * Copyright (C) 2004-2007, David Dillow * Written by David Dillow <dave@thedillows.org> * Inspired by the Trident 4D-WaveDX/NX driver. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/init.h> #include <linux/pci.h> #include <linux/time.h> #include <linux/slab.h> #include <linux/moduleparam.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <sound/core.h> #include <sound/ac97_codec.h> #include <sound/initval.h> #include "sis7019.h" MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); MODULE_DESCRIPTION("SiS7019"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ static int enable = 1; module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); module_param(enable, bool, 0444); MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = { { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, { 0, } }; MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); /* There are three timing modes for the voices. * * For both playback and capture, when the buffer is one or two periods long, * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt * to let us know when the periods have ended. * * When performing playback with more than two periods per buffer, we set * the "Stop Sample Offset" and tell the hardware to interrupt us when we * reach it. We then update the offset and continue on until we are * interrupted for the next period. * * Capture channels do not have a SSO, so we allocate a playback channel to * use as a timer for the capture periods. We use the SSO on the playback * channel to clock out virtual periods, and adjust the virtual period length * to maintain synchronization. This algorithm came from the Trident driver. * * FIXME: It'd be nice to make use of some of the synth features in the * hardware, but a woeful lack of documentation is a significant roadblock. */ struct voice { u16 flags; #define VOICE_IN_USE 1 #define VOICE_CAPTURE 2 #define VOICE_SSO_TIMING 4 #define VOICE_SYNC_TIMING 8 u16 sync_cso; u16 period_size; u16 buffer_size; u16 sync_period_size; u16 sync_buffer_size; u32 sso; u32 vperiod; struct snd_pcm_substream *substream; struct voice *timing; void __iomem *ctrl_base; void __iomem *wave_base; void __iomem *sync_base; int num; }; /* We need four pages to store our wave parameters during a suspend. If * we're not doing power management, we still need to allocate a page * for the silence buffer. */ #ifdef CONFIG_PM #define SIS_SUSPEND_PAGES 4 #else #define SIS_SUSPEND_PAGES 1 #endif struct sis7019 { unsigned long ioport; void __iomem *ioaddr; int irq; int codecs_present; struct pci_dev *pci; struct snd_pcm *pcm; struct snd_card *card; struct snd_ac97 *ac97[3]; /* Protect against more than one thread hitting the AC97 * registers (in a more polite manner than pounding the hardware * semaphore) */ struct mutex ac97_mutex; /* voice_lock protects allocation/freeing of the voice descriptions */ spinlock_t voice_lock; struct voice voices[64]; struct voice capture_voice; /* Allocate pages to store the internal wave state during * suspends. When we're operating, this can be used as a silence * buffer for a timing channel. */ void *suspend_state[SIS_SUSPEND_PAGES]; int silence_users; dma_addr_t silence_dma_addr; }; #define SIS_PRIMARY_CODEC_PRESENT 0x0001 #define SIS_SECONDARY_CODEC_PRESENT 0x0002 #define SIS_TERTIARY_CODEC_PRESENT 0x0004 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a * documented range of 8-0xfff8 samples. Given that they are 0-based, * that places our period/buffer range at 9-0xfff9 samples. That makes the * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and * max samples / min samples gives us the max periods in a buffer. * * We'll add a constraint upon open that limits the period and buffer sample * size to values that are legal for the hardware. */ static struct snd_pcm_hardware sis_playback_hw_info = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_RESUME), .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (0xfff9 * 4), .period_bytes_min = 9, .period_bytes_max = (0xfff9 * 4), .periods_min = 1, .periods_max = (0xfff9 / 9), }; static struct snd_pcm_hardware sis_capture_hw_info = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_RESUME), .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), .rates = SNDRV_PCM_RATE_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (0xfff9 * 4), .period_bytes_min = 9, .period_bytes_max = (0xfff9 * 4), .periods_min = 1, .periods_max = (0xfff9 / 9), }; static void sis_update_sso(struct voice *voice, u16 period) { void __iomem *base = voice->ctrl_base; voice->sso += period; if (voice->sso >= voice->buffer_size) voice->sso -= voice->buffer_size; /* Enforce the documented hardware minimum offset */ if (voice->sso < 8) voice->sso = 8; /* The SSO is in the upper 16 bits of the register. */ writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); } static void sis_update_voice(struct voice *voice) { if (voice->flags & VOICE_SSO_TIMING) { sis_update_sso(voice, voice->period_size); } else if (voice->flags & VOICE_SYNC_TIMING) { int sync; /* If we've not hit the end of the virtual period, update * our records and keep going. */ if (voice->vperiod > voice->period_size) { voice->vperiod -= voice->period_size; if (voice->vperiod < voice->period_size) sis_update_sso(voice, voice->vperiod); else sis_update_sso(voice, voice->period_size); return; } /* Calculate our relative offset between the target and * the actual CSO value. Since we're operating in a loop, * if the value is more than half way around, we can * consider ourselves wrapped. */ sync = voice->sync_cso; sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); if (sync > (voice->sync_buffer_size / 2)) sync -= voice->sync_buffer_size; /* If sync is positive, then we interrupted too early, and * we'll need to come back in a few samples and try again. * There's a minimum wait, as it takes some time for the DMA * engine to startup, etc... */ if (sync > 0) { if (sync < 16) sync = 16; sis_update_sso(voice, sync); return; } /* Ok, we interrupted right on time, or (hopefully) just * a bit late. We'll adjst our next waiting period based * on how close we got. * * We need to stay just behind the actual channel to ensure * it really is past a period when we get our interrupt -- * otherwise we'll fall into the early code above and have * a minimum wait time, which makes us quite late here, * eating into the user's time to refresh the buffer, esp. * if using small periods. * * If we're less than 9 samples behind, we're on target. */ if (sync > -9) voice->vperiod = voice->sync_period_size + 1; else voice->vperiod = voice->sync_period_size - 4; if (voice->vperiod < voice->buffer_size) { sis_update_sso(voice, voice->vperiod); voice->vperiod = 0; } else sis_update_sso(voice, voice->period_size); sync = voice->sync_cso + voice->sync_period_size; if (sync >= voice->sync_buffer_size) sync -= voice->sync_buffer_size; voice->sync_cso = sync; } snd_pcm_period_elapsed(voice->substream); } static void sis_voice_irq(u32 status, struct voice *voice) { int bit; while (status) { bit = __ffs(status); status >>= bit + 1; voice += bit; sis_update_voice(voice); voice++; } } static irqreturn_t sis_interrupt(int irq, void *dev) { struct sis7019 *sis = dev; unsigned long io = sis->ioport; struct voice *voice; u32 intr, status; /* We only use the DMA interrupts, and we don't enable any other * source of interrupts. But, it is possible to see an interupt * status that didn't actually interrupt us, so eliminate anything * we're not expecting to avoid falsely claiming an IRQ, and an * ensuing endless loop. */ intr = inl(io + SIS_GISR); intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; if (!intr) return IRQ_NONE; do { status = inl(io + SIS_PISR_A); if (status) { sis_voice_irq(status, sis->voices); outl(status, io + SIS_PISR_A); } status = inl(io + SIS_PISR_B); if (status) { sis_voice_irq(status, &sis->voices[32]); outl(status, io + SIS_PISR_B); } status = inl(io + SIS_RISR); if (status) { voice = &sis->capture_voice; if (!voice->timing) snd_pcm_period_elapsed(voice->substream); outl(status, io + SIS_RISR); } outl(intr, io + SIS_GISR); intr = inl(io + SIS_GISR); intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; } while (intr); return IRQ_HANDLED; } static u32 sis_rate_to_delta(unsigned int rate) { u32 delta; /* This was copied from the trident driver, but it seems its gotten * around a bit... nevertheless, it works well. * * We special case 44100 and 8000 since rounding with the equation * does not give us an accurate enough value. For 11025 and 22050 * the equation gives us the best answer. All other frequencies will * also use the equation. JDW */ if (rate == 44100) delta = 0xeb3; else if (rate == 8000) delta = 0x2ab; else if (rate == 48000) delta = 0x1000; else delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; return delta; } static void __sis_map_silence(struct sis7019 *sis) { /* Helper function: must hold sis->voice_lock on entry */ if (!sis->silence_users) sis->silence_dma_addr = pci_map_single(sis->pci, sis->suspend_state[0], 4096, PCI_DMA_TODEVICE); sis->silence_users++; } static void __sis_unmap_silence(struct sis7019 *sis) { /* Helper function: must hold sis->voice_lock on entry */ sis->silence_users--; if (!sis->silence_users) pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096, PCI_DMA_TODEVICE); } static void sis_free_voice(struct sis7019 *sis, struct voice *voice) { unsigned long flags; spin_lock_irqsave(&sis->voice_lock, flags); if (voice->timing) { __sis_unmap_silence(sis); voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); voice->timing = NULL; } voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); spin_unlock_irqrestore(&sis->voice_lock, flags); } static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) { /* Must hold the voice_lock on entry */ struct voice *voice; int i; for (i = 0; i < 64; i++) { voice = &sis->voices[i]; if (voice->flags & VOICE_IN_USE) continue; voice->flags |= VOICE_IN_USE; goto found_one; } voice = NULL; found_one: return voice; } static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) { struct voice *voice; unsigned long flags; spin_lock_irqsave(&sis->voice_lock, flags); voice = __sis_alloc_playback_voice(sis); spin_unlock_irqrestore(&sis->voice_lock, flags); return voice; } static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct sis7019 *sis = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct voice *voice = runtime->private_data; unsigned int period_size, buffer_size; unsigned long flags; int needed; /* If there are one or two periods per buffer, we don't need a * timing voice, as we can use the capture channel's interrupts * to clock out the periods. */ period_size = params_period_size(hw_params); buffer_size = params_buffer_size(hw_params); needed = (period_size != buffer_size && period_size != (buffer_size / 2)); if (needed && !voice->timing) { spin_lock_irqsave(&sis->voice_lock, flags); voice->timing = __sis_alloc_playback_voice(sis); if (voice->timing) __sis_map_silence(sis); spin_unlock_irqrestore(&sis->voice_lock, flags); if (!voice->timing) return -ENOMEM; voice->timing->substream = substream; } else if (!needed && voice->timing) { sis_free_voice(sis, voice); voice->timing = NULL; } return 0; } static int sis_playback_open(struct snd_pcm_substream *substream) { struct sis7019 *sis = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct voice *voice; voice = sis_alloc_playback_voice(sis); if (!voice) return -EAGAIN; voice->substream = substream; runtime->private_data = voice; runtime->hw = sis_playback_hw_info; snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 9, 0xfff9); snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 9, 0xfff9); snd_pcm_set_sync(substream); return 0; } static int sis_substream_close(struct snd_pcm_substream *substream) { struct sis7019 *sis = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct voice *voice = runtime->private_data; sis_free_voice(sis, voice); return 0; } static int sis_playback_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int sis_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct voice *voice = runtime->private_data; void __iomem *ctrl_base = voice->ctrl_base; void __iomem *wave_base = voice->wave_base; u32 format, dma_addr, control, sso_eso, delta, reg; u16 leo; /* We rely on the PCM core to ensure that the parameters for this * substream do not change on us while we're programming the HW. */ format = 0; if (snd_pcm_format_width(runtime->format) == 8) format |= SIS_PLAY_DMA_FORMAT_8BIT; if (!snd_pcm_format_signed(runtime->format)) format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; if (runtime->channels == 1) format |= SIS_PLAY_DMA_FORMAT_MONO; /* The baseline setup is for a single period per buffer, and * we add bells and whistles as needed from there. */ dma_addr = runtime->dma_addr; leo = runtime->buffer_size - 1; control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; sso_eso = leo; if (runtime->period_size == (runtime->buffer_size / 2)) { control |= SIS_PLAY_DMA_INTR_AT_MLP; } else if (runtime->period_size != runtime->buffer_size) { voice->flags |= VOICE_SSO_TIMING; voice->sso = runtime->period_size - 1; voice->period_size = runtime->period_size; voice->buffer_size = runtime->buffer_size; control &= ~SIS_PLAY_DMA_INTR_AT_LEO; control |= SIS_PLAY_DMA_INTR_AT_SSO; sso_eso |= (runtime->period_size - 1) << 16; } delta = sis_rate_to_delta(runtime->rate); /* Ok, we're ready to go, set up the channel. */ writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) writel(0, wave_base + reg); writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, wave_base + SIS_WAVE_CHANNEL_CONTROL); /* Force PCI writes to post. */ readl(ctrl_base); return 0; } static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct sis7019 *sis = snd_pcm_substream_chip(substream); unsigned long io = sis->ioport; struct snd_pcm_substream *s; struct voice *voice; void *chip; int starting; u32 record = 0; u32 play[2] = { 0, 0 }; /* No locks needed, as the PCM core will hold the locks on the * substreams, and the HW will only start/stop the indicated voices * without changing the state of the others. */ switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: starting = 1; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: starting = 0; break; default: return -EINVAL; } snd_pcm_group_for_each_entry(s, substream) { /* Make sure it is for us... */ chip = snd_pcm_substream_chip(s); if (chip != sis) continue; voice = s->runtime->private_data; if (voice->flags & VOICE_CAPTURE) { record |= 1 << voice->num; voice = voice->timing; } /* voice could be NULL if this a recording stream, and it * doesn't have an external timing channel. */ if (voice) play[voice->num / 32] |= 1 << (voice->num & 0x1f); snd_pcm_trigger_done(s, substream); } if (starting) { if (record) outl(record, io + SIS_RECORD_START_REG); if (play[0]) outl(play[0], io + SIS_PLAY_START_A_REG); if (play[1]) outl(play[1], io + SIS_PLAY_START_B_REG); } else { if (record) outl(record, io + SIS_RECORD_STOP_REG); if (play[0]) outl(play[0], io + SIS_PLAY_STOP_A_REG); if (play[1]) outl(play[1], io + SIS_PLAY_STOP_B_REG); } return 0; } static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct voice *voice = runtime->private_data; u32 cso; cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); cso &= 0xffff; return cso; } static int sis_capture_open(struct snd_pcm_substream *substream) { struct sis7019 *sis = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct voice *voice = &sis->capture_voice; unsigned long flags; /* FIXME: The driver only supports recording from one channel * at the moment, but it could support more. */ spin_lock_irqsave(&sis->voice_lock, flags); if (voice->flags & VOICE_IN_USE) voice = NULL; else voice->flags |= VOICE_IN_USE; spin_unlock_irqrestore(&sis->voice_lock, flags); if (!voice) return -EAGAIN; voice->substream = substream; runtime->private_data = voice; runtime->hw = sis_capture_hw_info; runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; snd_pcm_limit_hw_rates(runtime); snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 9, 0xfff9); snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 9, 0xfff9); snd_pcm_set_sync(substream); return 0; } static int sis_capture_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct sis7019 *sis = snd_pcm_substream_chip(substream); int rc; rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, params_rate(hw_params)); if (rc) goto out; rc = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); if (rc < 0) goto out; rc = sis_alloc_timing_voice(substream, hw_params); out: return rc; } static void sis_prepare_timing_voice(struct voice *voice, struct snd_pcm_substream *substream) { struct sis7019 *sis = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct voice *timing = voice->timing; void __iomem *play_base = timing->ctrl_base; void __iomem *wave_base = timing->wave_base; u16 buffer_size, period_size; u32 format, control, sso_eso, delta; u32 vperiod, sso, reg; /* Set our initial buffer and period as large as we can given a * single page of silence. */ buffer_size = 4096 / runtime->channels; buffer_size /= snd_pcm_format_size(runtime->format, 1); period_size = buffer_size; /* Initially, we want to interrupt just a bit behind the end of * the period we're clocking out. 10 samples seems to give a good * delay. * * We want to spread our interrupts throughout the virtual period, * so that we don't end up with two interrupts back to back at the * end -- this helps minimize the effects of any jitter. Adjust our * clocking period size so that the last period is at least a fourth * of a full period. * * This is all moot if we don't need to use virtual periods. */ vperiod = runtime->period_size + 10; if (vperiod > period_size) { u16 tail = vperiod % period_size; u16 quarter_period = period_size / 4; if (tail && tail < quarter_period) { u16 loops = vperiod / period_size; tail = quarter_period - tail; tail += loops - 1; tail /= loops; period_size -= tail; } sso = period_size - 1; } else { /* The initial period will fit inside the buffer, so we * don't need to use virtual periods -- disable them. */ period_size = runtime->period_size; sso = vperiod - 1; vperiod = 0; } /* The interrupt handler implements the timing syncronization, so * setup its state. */ timing->flags |= VOICE_SYNC_TIMING; timing->sync_base = voice->ctrl_base; timing->sync_cso = runtime->period_size - 1; timing->sync_period_size = runtime->period_size; timing->sync_buffer_size = runtime->buffer_size; timing->period_size = period_size; timing->buffer_size = buffer_size; timing->sso = sso; timing->vperiod = vperiod; /* Using unsigned samples with the all-zero silence buffer * forces the output to the lower rail, killing playback. * So ignore unsigned vs signed -- it doesn't change the timing. */ format = 0; if (snd_pcm_format_width(runtime->format) == 8) format = SIS_CAPTURE_DMA_FORMAT_8BIT; if (runtime->channels == 1) format |= SIS_CAPTURE_DMA_FORMAT_MONO; control = timing->buffer_size - 1; control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; sso_eso = timing->buffer_size - 1; sso_eso |= timing->sso << 16; delta = sis_rate_to_delta(runtime->rate); /* We've done the math, now configure the channel. */ writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); writel(control, play_base + SIS_PLAY_DMA_CONTROL); writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) writel(0, wave_base + reg); writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, wave_base + SIS_WAVE_CHANNEL_CONTROL); } static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct voice *voice = runtime->private_data; void __iomem *rec_base = voice->ctrl_base; u32 format, dma_addr, control; u16 leo; /* We rely on the PCM core to ensure that the parameters for this * substream do not change on us while we're programming the HW. */ format = 0; if (snd_pcm_format_width(runtime->format) == 8) format = SIS_CAPTURE_DMA_FORMAT_8BIT; if (!snd_pcm_format_signed(runtime->format)) format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; if (runtime->channels == 1) format |= SIS_CAPTURE_DMA_FORMAT_MONO; dma_addr = runtime->dma_addr; leo = runtime->buffer_size - 1; control = leo | SIS_CAPTURE_DMA_LOOP; /* If we've got more than two periods per buffer, then we have * use a timing voice to clock out the periods. Otherwise, we can * use the capture channel's interrupts. */ if (voice->timing) { sis_prepare_timing_voice(voice, substream); } else { control |= SIS_CAPTURE_DMA_INTR_AT_LEO; if (runtime->period_size != runtime->buffer_size) control |= SIS_CAPTURE_DMA_INTR_AT_MLP; } writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); /* Force the writes to post. */ readl(rec_base); return 0; } static struct snd_pcm_ops sis_playback_ops = { .open = sis_playback_open, .close = sis_substream_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = sis_playback_hw_params, .hw_free = sis_hw_free, .prepare = sis_pcm_playback_prepare, .trigger = sis_pcm_trigger, .pointer = sis_pcm_pointer, }; static struct snd_pcm_ops sis_capture_ops = { .open = sis_capture_open, .close = sis_substream_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = sis_capture_hw_params, .hw_free = sis_hw_free, .prepare = sis_pcm_capture_prepare, .trigger = sis_pcm_trigger, .pointer = sis_pcm_pointer, }; static int __devinit sis_pcm_create(struct sis7019 *sis) { struct snd_pcm *pcm; int rc; /* We have 64 voices, and the driver currently records from * only one channel, though that could change in the future. */ rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); if (rc) return rc; pcm->private_data = sis; strcpy(pcm->name, "SiS7019"); sis->pcm = pcm; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); /* Try to preallocate some memory, but it's not the end of the * world if this fails. */ snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(sis->pci), 64*1024, 128*1024); return 0; } static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) { unsigned long io = sis->ioport; unsigned short val = 0xffff; u16 status; u16 rdy; int count; static const u16 codec_ready[3] = { SIS_AC97_STATUS_CODEC_READY, SIS_AC97_STATUS_CODEC2_READY, SIS_AC97_STATUS_CODEC3_READY, }; rdy = codec_ready[codec]; /* Get the AC97 semaphore -- software first, so we don't spin * pounding out IO reads on the hardware semaphore... */ mutex_lock(&sis->ac97_mutex); count = 0xffff; while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) udelay(1); if (!count) goto timeout; /* ... and wait for any outstanding commands to complete ... */ count = 0xffff; do { status = inw(io + SIS_AC97_STATUS); if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) break; udelay(1); } while (--count); if (!count) goto timeout_sema; /* ... before sending our command and waiting for it to finish ... */ outl(cmd, io + SIS_AC97_CMD); udelay(10); count = 0xffff; while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) udelay(1); /* ... and reading the results (if any). */ val = inl(io + SIS_AC97_CMD) >> 16; timeout_sema: outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); timeout: mutex_unlock(&sis->ac97_mutex); if (!count) { printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n", codec, cmd); } return val; } static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { static const u32 cmd[3] = { SIS_AC97_CMD_CODEC_WRITE, SIS_AC97_CMD_CODEC2_WRITE, SIS_AC97_CMD_CODEC3_WRITE, }; sis_ac97_rw(ac97->private_data, ac97->num, (val << 16) | (reg << 8) | cmd[ac97->num]); } static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { static const u32 cmd[3] = { SIS_AC97_CMD_CODEC_READ, SIS_AC97_CMD_CODEC2_READ, SIS_AC97_CMD_CODEC3_READ, }; return sis_ac97_rw(ac97->private_data, ac97->num, (reg << 8) | cmd[ac97->num]); } static int __devinit sis_mixer_create(struct sis7019 *sis) { struct snd_ac97_bus *bus; struct snd_ac97_template ac97; static struct snd_ac97_bus_ops ops = { .write = sis_ac97_write, .read = sis_ac97_read, }; int rc; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = sis; rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); ac97.num = 1; if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); ac97.num = 2; if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); /* If we return an error here, then snd_card_free() should * free up any ac97 codecs that got created, as well as the bus. */ return rc; } static void sis_free_suspend(struct sis7019 *sis) { int i; for (i = 0; i < SIS_SUSPEND_PAGES; i++) kfree(sis->suspend_state[i]); } static int sis_chip_free(struct sis7019 *sis) { /* Reset the chip, and disable all interrputs. */ outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); udelay(10); outl(0, sis->ioport + SIS_GCR); outl(0, sis->ioport + SIS_GIER); /* Now, free everything we allocated. */ if (sis->irq >= 0) free_irq(sis->irq, sis); if (sis->ioaddr) iounmap(sis->ioaddr); pci_release_regions(sis->pci); pci_disable_device(sis->pci); sis_free_suspend(sis); return 0; } static int sis_dev_free(struct snd_device *dev) { struct sis7019 *sis = dev->device_data; return sis_chip_free(sis); } static int sis_chip_init(struct sis7019 *sis) { unsigned long io = sis->ioport; void __iomem *ioaddr = sis->ioaddr; u16 status; int count; int i; /* Reset the audio controller */ outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); udelay(10); outl(0, io + SIS_GCR); /* Get the AC-link semaphore, and reset the codecs */ count = 0xffff; while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) udelay(1); if (!count) return -EIO; outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); udelay(10); count = 0xffff; while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) udelay(1); /* Now that we've finished the reset, find out what's attached. */ status = inl(io + SIS_AC97_STATUS); if (status & SIS_AC97_STATUS_CODEC_READY) sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; if (status & SIS_AC97_STATUS_CODEC2_READY) sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; if (status & SIS_AC97_STATUS_CODEC3_READY) sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; /* All done, let go of the semaphore, and check for errors */ outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); if (!sis->codecs_present || !count) return -EIO; /* Let the hardware know that the audio driver is alive, * and enable PCM slots on the AC-link for L/R playback (3 & 4) and * record channels. We're going to want to use Variable Rate Audio * for recording, to avoid needlessly resampling from 48kHZ. */ outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | SIS_AC97_CONF_PCM_CAP_LR_ENABLE | SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); /* All AC97 PCM slots should be sourced from sub-mixer 0. */ outl(0, io + SIS_AC97_PSR); /* There is only one valid DMA setup for a PCI environment. */ outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); /* Reset the syncronization groups for all of the channels * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc. * we'll need to change how we handle these. Until then, we just * assign sub-mixer 0 to all playback channels, and avoid any * attenuation on the audio. */ outl(0, io + SIS_PLAY_SYNC_GROUP_A); outl(0, io + SIS_PLAY_SYNC_GROUP_B); outl(0, io + SIS_PLAY_SYNC_GROUP_C); outl(0, io + SIS_PLAY_SYNC_GROUP_D); outl(0, io + SIS_MIXER_SYNC_GROUP); for (i = 0; i < 64; i++) { writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); } /* Don't attenuate any audio set for the wave amplifier. * * FIXME: Maximum attenuation is set for the music amp, which will * need to change if we start using the synth engine. */ outl(0xffff0000, io + SIS_WEVCR); /* Ensure that the wave engine is in normal operating mode. */ outl(0, io + SIS_WECCR); /* Go ahead and enable the DMA interrupts. They won't go live * until we start a channel. */ outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); return 0; } #ifdef CONFIG_PM static int sis_suspend(struct pci_dev *pci, pm_message_t state) { struct snd_card *card = pci_get_drvdata(pci); struct sis7019 *sis = card->private_data; void __iomem *ioaddr = sis->ioaddr; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); snd_pcm_suspend_all(sis->pcm); if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) snd_ac97_suspend(sis->ac97[0]); if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) snd_ac97_suspend(sis->ac97[1]); if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) snd_ac97_suspend(sis->ac97[2]); /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. */ if (sis->irq >= 0) { free_irq(sis->irq, sis); sis->irq = -1; } /* Save the internal state away */ for (i = 0; i < 4; i++) { memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); ioaddr += 4096; } pci_disable_device(pci); pci_save_state(pci); pci_set_power_state(pci, pci_choose_state(pci, state)); return 0; } static int sis_resume(struct pci_dev *pci) { struct snd_card *card = pci_get_drvdata(pci); struct sis7019 *sis = card->private_data; void __iomem *ioaddr = sis->ioaddr; int i; pci_set_power_state(pci, PCI_D0); pci_restore_state(pci); if (pci_enable_device(pci) < 0) { printk(KERN_ERR "sis7019: unable to re-enable device\n"); goto error; } if (sis_chip_init(sis)) { printk(KERN_ERR "sis7019: unable to re-init controller\n"); goto error; } if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, card->shortname, sis)) { printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq); goto error; } /* Restore saved state, then clear out the page we use for the * silence buffer. */ for (i = 0; i < 4; i++) { memcpy_toio(ioaddr, sis->suspend_state[i], 4096); ioaddr += 4096; } memset(sis->suspend_state[0], 0, 4096); sis->irq = pci->irq; pci_set_master(pci); if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) snd_ac97_resume(sis->ac97[0]); if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) snd_ac97_resume(sis->ac97[1]); if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) snd_ac97_resume(sis->ac97[2]); snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; error: snd_card_disconnect(card); return -EIO; } #endif /* CONFIG_PM */ static int sis_alloc_suspend(struct sis7019 *sis) { int i; /* We need 16K to store the internal wave engine state during a * suspend, but we don't need it to be contiguous, so play nice * with the memory system. We'll also use this area for a silence * buffer. */ for (i = 0; i < SIS_SUSPEND_PAGES; i++) { sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); if (!sis->suspend_state[i]) return -ENOMEM; } memset(sis->suspend_state[0], 0, 4096); return 0; } static int __devinit sis_chip_create(struct snd_card *card, struct pci_dev *pci) { struct sis7019 *sis = card->private_data; struct voice *voice; static struct snd_device_ops ops = { .dev_free = sis_dev_free, }; int rc; int i; rc = pci_enable_device(pci); if (rc) goto error_out; if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) { printk(KERN_ERR "sis7019: architecture does not support " "30-bit PCI busmaster DMA"); goto error_out_enabled; } memset(sis, 0, sizeof(*sis)); mutex_init(&sis->ac97_mutex); spin_lock_init(&sis->voice_lock); sis->card = card; sis->pci = pci; sis->irq = -1; sis->ioport = pci_resource_start(pci, 0); rc = pci_request_regions(pci, "SiS7019"); if (rc) { printk(KERN_ERR "sis7019: unable request regions\n"); goto error_out_enabled; } rc = -EIO; sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); if (!sis->ioaddr) { printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n"); goto error_out_cleanup; } rc = sis_alloc_suspend(sis); if (rc < 0) { printk(KERN_ERR "sis7019: unable to allocate state storage\n"); goto error_out_cleanup; } rc = sis_chip_init(sis); if (rc) goto error_out_cleanup; if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, card->shortname, sis)) { printk(KERN_ERR "unable to allocate irq %d\n", sis->irq); goto error_out_cleanup; } sis->irq = pci->irq; pci_set_master(pci); for (i = 0; i < 64; i++) { voice = &sis->voices[i]; voice->num = i; voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); } voice = &sis->capture_voice; voice->flags = VOICE_CAPTURE; voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); if (rc) goto error_out_cleanup; snd_card_set_dev(card, &pci->dev); return 0; error_out_cleanup: sis_chip_free(sis); error_out_enabled: pci_disable_device(pci); error_out: return rc; } static int __devinit snd_sis7019_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { struct snd_card *card; struct sis7019 *sis; int rc; rc = -ENOENT; if (!enable) goto error_out; rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card); if (rc < 0) goto error_out; strcpy(card->driver, "SiS7019"); strcpy(card->shortname, "SiS7019"); rc = sis_chip_create(card, pci); if (rc) goto card_error_out; sis = card->private_data; rc = sis_mixer_create(sis); if (rc) goto card_error_out; rc = sis_pcm_create(sis); if (rc) goto card_error_out; snprintf(card->longname, sizeof(card->longname), "%s Audio Accelerator with %s at 0x%lx, irq %d", card->shortname, snd_ac97_get_short_name(sis->ac97[0]), sis->ioport, sis->irq); rc = snd_card_register(card); if (rc) goto card_error_out; pci_set_drvdata(pci, card); return 0; card_error_out: snd_card_free(card); error_out: return rc; } static void __devexit snd_sis7019_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } static struct pci_driver sis7019_driver = { .name = "SiS7019", .id_table = snd_sis7019_ids, .probe = snd_sis7019_probe, .remove = __devexit_p(snd_sis7019_remove), #ifdef CONFIG_PM .suspend = sis_suspend, .resume = sis_resume, #endif }; static int __init sis7019_init(void) { return pci_register_driver(&sis7019_driver); } static void __exit sis7019_exit(void) { pci_unregister_driver(&sis7019_driver); } module_init(sis7019_init); module_exit(sis7019_exit);