/* * Universal Interface for Intel High Definition Audio Codec * * Copyright (c) 2004 Takashi Iwai * * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include "hda_codec.h" #include #include #include #include #include "hda_local.h" #include "hda_beep.h" #include "hda_jack.h" #include #define CREATE_TRACE_POINTS #include "hda_trace.h" /* * vendor / preset table */ struct hda_vendor_id { unsigned int id; const char *name; }; /* codec vendor labels */ static struct hda_vendor_id hda_vendor_ids[] = { { 0x1002, "ATI" }, { 0x1013, "Cirrus Logic" }, { 0x1057, "Motorola" }, { 0x1095, "Silicon Image" }, { 0x10de, "Nvidia" }, { 0x10ec, "Realtek" }, { 0x1102, "Creative" }, { 0x1106, "VIA" }, { 0x111d, "IDT" }, { 0x11c1, "LSI" }, { 0x11d4, "Analog Devices" }, { 0x13f6, "C-Media" }, { 0x14f1, "Conexant" }, { 0x17e8, "Chrontel" }, { 0x1854, "LG" }, { 0x1aec, "Wolfson Microelectronics" }, { 0x434d, "C-Media" }, { 0x8086, "Intel" }, { 0x8384, "SigmaTel" }, {} /* terminator */ }; static DEFINE_MUTEX(preset_mutex); static LIST_HEAD(hda_preset_tables); int snd_hda_add_codec_preset(struct hda_codec_preset_list *preset) { mutex_lock(&preset_mutex); list_add_tail(&preset->list, &hda_preset_tables); mutex_unlock(&preset_mutex); return 0; } EXPORT_SYMBOL_HDA(snd_hda_add_codec_preset); int snd_hda_delete_codec_preset(struct hda_codec_preset_list *preset) { mutex_lock(&preset_mutex); list_del(&preset->list); mutex_unlock(&preset_mutex); return 0; } EXPORT_SYMBOL_HDA(snd_hda_delete_codec_preset); #ifdef CONFIG_PM #define codec_in_pm(codec) ((codec)->in_pm) static void hda_suspend_work(struct work_struct *work); static void hda_resume_work(struct work_struct *work); static void hda_power_work(struct work_struct *work); static void hda_keep_power_on(struct hda_codec *codec); #define hda_codec_is_power_on(codec) ((codec)->power_on) static void hda_call_pm_notify(struct hda_codec *codec, bool power_up) { struct hda_bus *bus = codec->bus; if ((power_up && codec->pm_up_notified) || (!power_up && !codec->pm_up_notified)) return; if (bus->ops.pm_notify) bus->ops.pm_notify(bus, power_up); codec->pm_up_notified = power_up; } #else #define codec_in_pm(codec) 0 static inline void hda_keep_power_on(struct hda_codec *codec) {} #define hda_codec_is_power_on(codec) 1 #define hda_call_pm_notify(codec, state) {} #endif /** * snd_hda_get_jack_location - Give a location string of the jack * @cfg: pin default config value * * Parse the pin default config value and returns the string of the * jack location, e.g. "Rear", "Front", etc. */ const char *snd_hda_get_jack_location(u32 cfg) { static char *bases[7] = { "N/A", "Rear", "Front", "Left", "Right", "Top", "Bottom", }; static unsigned char specials_idx[] = { 0x07, 0x08, 0x17, 0x18, 0x19, 0x37, 0x38 }; static char *specials[] = { "Rear Panel", "Drive Bar", "Riser", "HDMI", "ATAPI", "Mobile-In", "Mobile-Out" }; int i; cfg = (cfg & AC_DEFCFG_LOCATION) >> AC_DEFCFG_LOCATION_SHIFT; if ((cfg & 0x0f) < 7) return bases[cfg & 0x0f]; for (i = 0; i < ARRAY_SIZE(specials_idx); i++) { if (cfg == specials_idx[i]) return specials[i]; } return "UNKNOWN"; } EXPORT_SYMBOL_HDA(snd_hda_get_jack_location); /** * snd_hda_get_jack_connectivity - Give a connectivity string of the jack * @cfg: pin default config value * * Parse the pin default config value and returns the string of the * jack connectivity, i.e. external or internal connection. */ const char *snd_hda_get_jack_connectivity(u32 cfg) { static char *jack_locations[4] = { "Ext", "Int", "Sep", "Oth" }; return jack_locations[(cfg >> (AC_DEFCFG_LOCATION_SHIFT + 4)) & 3]; } EXPORT_SYMBOL_HDA(snd_hda_get_jack_connectivity); /** * snd_hda_get_jack_type - Give a type string of the jack * @cfg: pin default config value * * Parse the pin default config value and returns the string of the * jack type, i.e. the purpose of the jack, such as Line-Out or CD. */ const char *snd_hda_get_jack_type(u32 cfg) { static char *jack_types[16] = { "Line Out", "Speaker", "HP Out", "CD", "SPDIF Out", "Digital Out", "Modem Line", "Modem Hand", "Line In", "Aux", "Mic", "Telephony", "SPDIF In", "Digital In", "Reserved", "Other" }; return jack_types[(cfg & AC_DEFCFG_DEVICE) >> AC_DEFCFG_DEVICE_SHIFT]; } EXPORT_SYMBOL_HDA(snd_hda_get_jack_type); /* * Compose a 32bit command word to be sent to the HD-audio controller */ static inline unsigned int make_codec_cmd(struct hda_codec *codec, hda_nid_t nid, int flags, unsigned int verb, unsigned int parm) { u32 val; if ((codec->addr & ~0xf) || (nid & ~0x7f) || (verb & ~0xfff) || (parm & ~0xffff)) { printk(KERN_ERR "hda-codec: out of range cmd %x:%x:%x:%x\n", codec->addr, nid, verb, parm); return ~0; } val = (u32)codec->addr << 28; val |= (u32)nid << 20; val |= verb << 8; val |= parm; return val; } /* * Send and receive a verb */ static int codec_exec_verb(struct hda_codec *codec, unsigned int cmd, int flags, unsigned int *res) { struct hda_bus *bus = codec->bus; int err; if (cmd == ~0) return -1; if (res) *res = -1; again: snd_hda_power_up(codec); mutex_lock(&bus->cmd_mutex); if (flags & HDA_RW_NO_RESPONSE_FALLBACK) bus->no_response_fallback = 1; for (;;) { trace_hda_send_cmd(codec, cmd); err = bus->ops.command(bus, cmd); if (err != -EAGAIN) break; /* process pending verbs */ bus->ops.get_response(bus, codec->addr); } if (!err && res) { *res = bus->ops.get_response(bus, codec->addr); trace_hda_get_response(codec, *res); } bus->no_response_fallback = 0; mutex_unlock(&bus->cmd_mutex); snd_hda_power_down(codec); if (!codec_in_pm(codec) && res && *res == -1 && bus->rirb_error) { if (bus->response_reset) { snd_printd("hda_codec: resetting BUS due to " "fatal communication error\n"); trace_hda_bus_reset(bus); bus->ops.bus_reset(bus); } goto again; } /* clear reset-flag when the communication gets recovered */ if (!err || codec_in_pm(codec)) bus->response_reset = 0; return err; } /** * snd_hda_codec_read - send a command and get the response * @codec: the HDA codec * @nid: NID to send the command * @flags: optional bit flags * @verb: the verb to send * @parm: the parameter for the verb * * Send a single command and read the corresponding response. * * Returns the obtained response value, or -1 for an error. */ unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int flags, unsigned int verb, unsigned int parm) { unsigned cmd = make_codec_cmd(codec, nid, flags, verb, parm); unsigned int res; if (codec_exec_verb(codec, cmd, flags, &res)) return -1; return res; } EXPORT_SYMBOL_HDA(snd_hda_codec_read); /** * snd_hda_codec_write - send a single command without waiting for response * @codec: the HDA codec * @nid: NID to send the command * @flags: optional bit flags * @verb: the verb to send * @parm: the parameter for the verb * * Send a single command without waiting for response. * * Returns 0 if successful, or a negative error code. */ int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int flags, unsigned int verb, unsigned int parm) { unsigned int cmd = make_codec_cmd(codec, nid, flags, verb, parm); unsigned int res; return codec_exec_verb(codec, cmd, flags, codec->bus->sync_write ? &res : NULL); } EXPORT_SYMBOL_HDA(snd_hda_codec_write); /** * snd_hda_sequence_write - sequence writes * @codec: the HDA codec * @seq: VERB array to send * * Send the commands sequentially from the given array. * The array must be terminated with NID=0. */ void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq) { for (; seq->nid; seq++) snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param); } EXPORT_SYMBOL_HDA(snd_hda_sequence_write); /** * snd_hda_get_sub_nodes - get the range of sub nodes * @codec: the HDA codec * @nid: NID to parse * @start_id: the pointer to store the start NID * * Parse the NID and store the start NID of its sub-nodes. * Returns the number of sub-nodes. */ int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id) { unsigned int parm; parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT); if (parm == -1) return 0; *start_id = (parm >> 16) & 0x7fff; return (int)(parm & 0x7fff); } EXPORT_SYMBOL_HDA(snd_hda_get_sub_nodes); /* connection list element */ struct hda_conn_list { struct list_head list; int len; hda_nid_t nid; hda_nid_t conns[0]; }; /* look up the cached results */ static struct hda_conn_list * lookup_conn_list(struct hda_codec *codec, hda_nid_t nid) { struct hda_conn_list *p; list_for_each_entry(p, &codec->conn_list, list) { if (p->nid == nid) return p; } return NULL; } static int add_conn_list(struct hda_codec *codec, hda_nid_t nid, int len, const hda_nid_t *list) { struct hda_conn_list *p; p = kmalloc(sizeof(*p) + len * sizeof(hda_nid_t), GFP_KERNEL); if (!p) return -ENOMEM; p->len = len; p->nid = nid; memcpy(p->conns, list, len * sizeof(hda_nid_t)); list_add(&p->list, &codec->conn_list); return 0; } static void remove_conn_list(struct hda_codec *codec) { while (!list_empty(&codec->conn_list)) { struct hda_conn_list *p; p = list_first_entry(&codec->conn_list, typeof(*p), list); list_del(&p->list); kfree(p); } } /* read the connection and add to the cache */ static int read_and_add_raw_conns(struct hda_codec *codec, hda_nid_t nid) { hda_nid_t list[32]; hda_nid_t *result = list; int len; len = snd_hda_get_raw_connections(codec, nid, list, ARRAY_SIZE(list)); if (len == -ENOSPC) { len = snd_hda_get_num_raw_conns(codec, nid); result = kmalloc(sizeof(hda_nid_t) * len, GFP_KERNEL); if (!result) return -ENOMEM; len = snd_hda_get_raw_connections(codec, nid, result, len); } if (len >= 0) len = snd_hda_override_conn_list(codec, nid, len, result); if (result != list) kfree(result); return len; } /** * snd_hda_get_conn_list - get connection list * @codec: the HDA codec * @nid: NID to parse * @len: number of connection list entries * @listp: the pointer to store NID list * * Parses the connection list of the given widget and stores the pointer * to the list of NIDs. * * Returns the number of connections, or a negative error code. * * Note that the returned pointer isn't protected against the list * modification. If snd_hda_override_conn_list() might be called * concurrently, protect with a mutex appropriately. */ int snd_hda_get_conn_list(struct hda_codec *codec, hda_nid_t nid, const hda_nid_t **listp) { bool added = false; for (;;) { int err; const struct hda_conn_list *p; /* if the connection-list is already cached, read it */ p = lookup_conn_list(codec, nid); if (p) { if (listp) *listp = p->conns; return p->len; } if (snd_BUG_ON(added)) return -EINVAL; err = read_and_add_raw_conns(codec, nid); if (err < 0) return err; added = true; } } EXPORT_SYMBOL_HDA(snd_hda_get_conn_list); /** * snd_hda_get_connections - copy connection list * @codec: the HDA codec * @nid: NID to parse * @conn_list: connection list array; when NULL, checks only the size * @max_conns: max. number of connections to store * * Parses the connection list of the given widget and stores the list * of NIDs. * * Returns the number of connections, or a negative error code. */ int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *conn_list, int max_conns) { const hda_nid_t *list; int len = snd_hda_get_conn_list(codec, nid, &list); if (len > 0 && conn_list) { if (len > max_conns) { snd_printk(KERN_ERR "hda_codec: " "Too many connections %d for NID 0x%x\n", len, nid); return -EINVAL; } memcpy(conn_list, list, len * sizeof(hda_nid_t)); } return len; } EXPORT_SYMBOL_HDA(snd_hda_get_connections); /* return CONNLIST_LEN parameter of the given widget */ static unsigned int get_num_conns(struct hda_codec *codec, hda_nid_t nid) { unsigned int wcaps = get_wcaps(codec, nid); unsigned int parm; if (!(wcaps & AC_WCAP_CONN_LIST) && get_wcaps_type(wcaps) != AC_WID_VOL_KNB) return 0; parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN); if (parm == -1) parm = 0; return parm; } int snd_hda_get_num_raw_conns(struct hda_codec *codec, hda_nid_t nid) { return snd_hda_get_raw_connections(codec, nid, NULL, 0); } /** * snd_hda_get_raw_connections - copy connection list without cache * @codec: the HDA codec * @nid: NID to parse * @conn_list: connection list array * @max_conns: max. number of connections to store * * Like snd_hda_get_connections(), copy the connection list but without * checking through the connection-list cache. * Currently called only from hda_proc.c, so not exported. */ int snd_hda_get_raw_connections(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *conn_list, int max_conns) { unsigned int parm; int i, conn_len, conns; unsigned int shift, num_elems, mask; hda_nid_t prev_nid; int null_count = 0; parm = get_num_conns(codec, nid); if (!parm) return 0; if (parm & AC_CLIST_LONG) { /* long form */ shift = 16; num_elems = 2; } else { /* short form */ shift = 8; num_elems = 4; } conn_len = parm & AC_CLIST_LENGTH; mask = (1 << (shift-1)) - 1; if (!conn_len) return 0; /* no connection */ if (conn_len == 1) { /* single connection */ parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0); if (parm == -1 && codec->bus->rirb_error) return -EIO; if (conn_list) conn_list[0] = parm & mask; return 1; } /* multi connection */ conns = 0; prev_nid = 0; for (i = 0; i < conn_len; i++) { int range_val; hda_nid_t val, n; if (i % num_elems == 0) { parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i); if (parm == -1 && codec->bus->rirb_error) return -EIO; } range_val = !!(parm & (1 << (shift-1))); /* ranges */ val = parm & mask; if (val == 0 && null_count++) { /* no second chance */ snd_printdd("hda_codec: " "invalid CONNECT_LIST verb %x[%i]:%x\n", nid, i, parm); return 0; } parm >>= shift; if (range_val) { /* ranges between the previous and this one */ if (!prev_nid || prev_nid >= val) { snd_printk(KERN_WARNING "hda_codec: " "invalid dep_range_val %x:%x\n", prev_nid, val); continue; } for (n = prev_nid + 1; n <= val; n++) { if (conn_list) { if (conns >= max_conns) return -ENOSPC; conn_list[conns] = n; } conns++; } } else { if (conn_list) { if (conns >= max_conns) return -ENOSPC; conn_list[conns] = val; } conns++; } prev_nid = val; } return conns; } /** * snd_hda_override_conn_list - add/modify the connection-list to cache * @codec: the HDA codec * @nid: NID to parse * @len: number of connection list entries * @list: the list of connection entries * * Add or modify the given connection-list to the cache. If the corresponding * cache already exists, invalidate it and append a new one. * * Returns zero or a negative error code. */ int snd_hda_override_conn_list(struct hda_codec *codec, hda_nid_t nid, int len, const hda_nid_t *list) { struct hda_conn_list *p; p = lookup_conn_list(codec, nid); if (p) { list_del(&p->list); kfree(p); } return add_conn_list(codec, nid, len, list); } EXPORT_SYMBOL_HDA(snd_hda_override_conn_list); /** * snd_hda_get_conn_index - get the connection index of the given NID * @codec: the HDA codec * @mux: NID containing the list * @nid: NID to select * @recursive: 1 when searching NID recursively, otherwise 0 * * Parses the connection list of the widget @mux and checks whether the * widget @nid is present. If it is, return the connection index. * Otherwise it returns -1. */ int snd_hda_get_conn_index(struct hda_codec *codec, hda_nid_t mux, hda_nid_t nid, int recursive) { const hda_nid_t *conn; int i, nums; nums = snd_hda_get_conn_list(codec, mux, &conn); for (i = 0; i < nums; i++) if (conn[i] == nid) return i; if (!recursive) return -1; if (recursive > 10) { snd_printd("hda_codec: too deep connection for 0x%x\n", nid); return -1; } recursive++; for (i = 0; i < nums; i++) { unsigned int type = get_wcaps_type(get_wcaps(codec, conn[i])); if (type == AC_WID_PIN || type == AC_WID_AUD_OUT) continue; if (snd_hda_get_conn_index(codec, conn[i], nid, recursive) >= 0) return i; } return -1; } EXPORT_SYMBOL_HDA(snd_hda_get_conn_index); /* return DEVLIST_LEN parameter of the given widget */ static unsigned int get_num_devices(struct hda_codec *codec, hda_nid_t nid) { unsigned int wcaps = get_wcaps(codec, nid); unsigned int parm; if (!codec->dp_mst || !(wcaps & AC_WCAP_DIGITAL) || get_wcaps_type(wcaps) != AC_WID_PIN) return 0; parm = snd_hda_param_read(codec, nid, AC_PAR_DEVLIST_LEN); if (parm == -1 && codec->bus->rirb_error) parm = 0; return parm & AC_DEV_LIST_LEN_MASK; } /** * snd_hda_get_devices - copy device list without cache * @codec: the HDA codec * @nid: NID of the pin to parse * @dev_list: device list array * @max_devices: max. number of devices to store * * Copy the device list. This info is dynamic and so not cached. * Currently called only from hda_proc.c, so not exported. */ int snd_hda_get_devices(struct hda_codec *codec, hda_nid_t nid, u8 *dev_list, int max_devices) { unsigned int parm; int i, dev_len, devices; parm = get_num_devices(codec, nid); if (!parm) /* not multi-stream capable */ return 0; dev_len = parm + 1; dev_len = dev_len < max_devices ? dev_len : max_devices; devices = 0; while (devices < dev_len) { parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DEVICE_LIST, devices); if (parm == -1 && codec->bus->rirb_error) break; for (i = 0; i < 8; i++) { dev_list[devices] = (u8)parm; parm >>= 4; devices++; if (devices >= dev_len) break; } } return devices; } /** * snd_hda_queue_unsol_event - add an unsolicited event to queue * @bus: the BUS * @res: unsolicited event (lower 32bit of RIRB entry) * @res_ex: codec addr and flags (upper 32bit or RIRB entry) * * Adds the given event to the queue. The events are processed in * the workqueue asynchronously. Call this function in the interrupt * hanlder when RIRB receives an unsolicited event. * * Returns 0 if successful, or a negative error code. */ int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex) { struct hda_bus_unsolicited *unsol; unsigned int wp; if (!bus || !bus->workq) return 0; trace_hda_unsol_event(bus, res, res_ex); unsol = bus->unsol; if (!unsol) return 0; wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE; unsol->wp = wp; wp <<= 1; unsol->queue[wp] = res; unsol->queue[wp + 1] = res_ex; queue_work(bus->workq, &unsol->work); return 0; } EXPORT_SYMBOL_HDA(snd_hda_queue_unsol_event); /* * process queued unsolicited events */ static void process_unsol_events(struct work_struct *work) { struct hda_bus_unsolicited *unsol = container_of(work, struct hda_bus_unsolicited, work); struct hda_bus *bus = unsol->bus; struct hda_codec *codec; unsigned int rp, caddr, res; while (unsol->rp != unsol->wp) { rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE; unsol->rp = rp; rp <<= 1; res = unsol->queue[rp]; caddr = unsol->queue[rp + 1]; if (!(caddr & (1 << 4))) /* no unsolicited event? */ continue; codec = bus->caddr_tbl[caddr & 0x0f]; if (codec && codec->patch_ops.unsol_event) codec->patch_ops.unsol_event(codec, res); } } /* * initialize unsolicited queue */ static int init_unsol_queue(struct hda_bus *bus) { struct hda_bus_unsolicited *unsol; if (bus->unsol) /* already initialized */ return 0; unsol = kzalloc(sizeof(*unsol), GFP_KERNEL); if (!unsol) { snd_printk(KERN_ERR "hda_codec: " "can't allocate unsolicited queue\n"); return -ENOMEM; } INIT_WORK(&unsol->work, process_unsol_events); unsol->bus = bus; bus->unsol = unsol; return 0; } /* * destructor */ static void snd_hda_codec_free(struct hda_codec *codec); static int snd_hda_bus_free(struct hda_bus *bus) { struct hda_codec *codec, *n; if (!bus) return 0; if (bus->workq) flush_workqueue(bus->workq); if (bus->unsol) kfree(bus->unsol); list_for_each_entry_safe(codec, n, &bus->codec_list, list) { snd_hda_codec_free(codec); } if (bus->ops.private_free) bus->ops.private_free(bus); if (bus->workq) destroy_workqueue(bus->workq); #ifdef CONFIG_PM if (bus->pm_wq) destroy_workqueue(bus->pm_wq); #endif kfree(bus); return 0; } static int snd_hda_bus_dev_free(struct snd_device *device) { struct hda_bus *bus = device->device_data; bus->shutdown = 1; return snd_hda_bus_free(bus); } #ifdef CONFIG_SND_HDA_HWDEP static int snd_hda_bus_dev_register(struct snd_device *device) { struct hda_bus *bus = device->device_data; struct hda_codec *codec; list_for_each_entry(codec, &bus->codec_list, list) { snd_hda_hwdep_add_sysfs(codec); snd_hda_hwdep_add_power_sysfs(codec); } return 0; } #else #define snd_hda_bus_dev_register NULL #endif /** * snd_hda_bus_new - create a HDA bus * @card: the card entry * @temp: the template for hda_bus information * @busp: the pointer to store the created bus instance * * Returns 0 if successful, or a negative error code. */ int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp, struct hda_bus **busp) { struct hda_bus *bus; int err; static struct snd_device_ops dev_ops = { .dev_register = snd_hda_bus_dev_register, .dev_free = snd_hda_bus_dev_free, }; #ifdef CONFIG_PM char wqname[16]; #endif if (snd_BUG_ON(!temp)) return -EINVAL; if (snd_BUG_ON(!temp->ops.command || !temp->ops.get_response)) return -EINVAL; if (busp) *busp = NULL; bus = kzalloc(sizeof(*bus), GFP_KERNEL); if (bus == NULL) { snd_printk(KERN_ERR "can't allocate struct hda_bus\n"); return -ENOMEM; } bus->card = card; bus->private_data = temp->private_data; bus->pci = temp->pci; bus->modelname = temp->modelname; bus->power_save = temp->power_save; bus->ops = temp->ops; mutex_init(&bus->cmd_mutex); mutex_init(&bus->prepare_mutex); INIT_LIST_HEAD(&bus->codec_list); snprintf(bus->workq_name, sizeof(bus->workq_name), "hd-audio%d", card->number); bus->workq = create_singlethread_workqueue(bus->workq_name); if (!bus->workq) { snd_printk(KERN_ERR "cannot create workqueue %s\n", bus->workq_name); kfree(bus); return -ENOMEM; } #ifdef CONFIG_PM sprintf(wqname, "hda-pm-wq-%d", card->number); bus->pm_wq = create_workqueue(wqname); if (!bus->pm_wq) { snd_printk(KERN_ERR "cannot create PM workqueue\n"); snd_hda_bus_free(bus); return -ENOMEM; } #endif err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops); if (err < 0) { snd_hda_bus_free(bus); return err; } if (busp) *busp = bus; return 0; } EXPORT_SYMBOL_HDA(snd_hda_bus_new); #ifdef CONFIG_SND_HDA_GENERIC #define is_generic_config(codec) \ (codec->modelname && !strcmp(codec->modelname, "generic")) #else #define is_generic_config(codec) 0 #endif #ifdef MODULE #define HDA_MODREQ_MAX_COUNT 2 /* two request_modules()'s */ #else #define HDA_MODREQ_MAX_COUNT 0 /* all presets are statically linked */ #endif /* * find a matching codec preset */ static const struct hda_codec_preset * find_codec_preset(struct hda_codec *codec) { struct hda_codec_preset_list *tbl; const struct hda_codec_preset *preset; unsigned int mod_requested = 0; again: mutex_lock(&preset_mutex); list_for_each_entry(tbl, &hda_preset_tables, list) { if (!try_module_get(tbl->owner)) { snd_printk(KERN_ERR "hda_codec: cannot module_get\n"); continue; } for (preset = tbl->preset; preset->id; preset++) { u32 mask = preset->mask; if (preset->afg && preset->afg != codec->afg) continue; if (preset->mfg && preset->mfg != codec->mfg) continue; if (!mask) mask = ~0; if (preset->id == (codec->vendor_id & mask) && (!preset->rev || preset->rev == codec->revision_id)) { mutex_unlock(&preset_mutex); codec->owner = tbl->owner; return preset; } } module_put(tbl->owner); } mutex_unlock(&preset_mutex); if (mod_requested < HDA_MODREQ_MAX_COUNT) { char name[32]; if (!mod_requested) snprintf(name, sizeof(name), "snd-hda-codec-id:%08x", codec->vendor_id); else snprintf(name, sizeof(name), "snd-hda-codec-id:%04x*", (codec->vendor_id >> 16) & 0xffff); request_module(name); mod_requested++; goto again; } return NULL; } /* * get_codec_name - store the codec name */ static int get_codec_name(struct hda_codec *codec) { const struct hda_vendor_id *c; const char *vendor = NULL; u16 vendor_id = codec->vendor_id >> 16; char tmp[16]; if (codec->vendor_name) goto get_chip_name; for (c = hda_vendor_ids; c->id; c++) { if (c->id == vendor_id) { vendor = c->name; break; } } if (!vendor) { sprintf(tmp, "Generic %04x", vendor_id); vendor = tmp; } codec->vendor_name = kstrdup(vendor, GFP_KERNEL); if (!codec->vendor_name) return -ENOMEM; get_chip_name: if (codec->chip_name) return 0; if (codec->preset && codec->preset->name) codec->chip_name = kstrdup(codec->preset->name, GFP_KERNEL); else { sprintf(tmp, "ID %x", codec->vendor_id & 0xffff); codec->chip_name = kstrdup(tmp, GFP_KERNEL); } if (!codec->chip_name) return -ENOMEM; return 0; } /* * look for an AFG and MFG nodes */ static void setup_fg_nodes(struct hda_codec *codec) { int i, total_nodes, function_id; hda_nid_t nid; total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid); for (i = 0; i < total_nodes; i++, nid++) { function_id = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE); switch (function_id & 0xff) { case AC_GRP_AUDIO_FUNCTION: codec->afg = nid; codec->afg_function_id = function_id & 0xff; codec->afg_unsol = (function_id >> 8) & 1; break; case AC_GRP_MODEM_FUNCTION: codec->mfg = nid; codec->mfg_function_id = function_id & 0xff; codec->mfg_unsol = (function_id >> 8) & 1; break; default: break; } } } /* * read widget caps for each widget and store in cache */ static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node) { int i; hda_nid_t nid; codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node, &codec->start_nid); codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL); if (!codec->wcaps) return -ENOMEM; nid = codec->start_nid; for (i = 0; i < codec->num_nodes; i++, nid++) codec->wcaps[i] = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP); return 0; } /* read all pin default configurations and save codec->init_pins */ static int read_pin_defaults(struct hda_codec *codec) { int i; hda_nid_t nid = codec->start_nid; for (i = 0; i < codec->num_nodes; i++, nid++) { struct hda_pincfg *pin; unsigned int wcaps = get_wcaps(codec, nid); unsigned int wid_type = get_wcaps_type(wcaps); if (wid_type != AC_WID_PIN) continue; pin = snd_array_new(&codec->init_pins); if (!pin) return -ENOMEM; pin->nid = nid; pin->cfg = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0); pin->ctrl = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0); } return 0; } /* look up the given pin config list and return the item matching with NID */ static struct hda_pincfg *look_up_pincfg(struct hda_codec *codec, struct snd_array *array, hda_nid_t nid) { int i; for (i = 0; i < array->used; i++) { struct hda_pincfg *pin = snd_array_elem(array, i); if (pin->nid == nid) return pin; } return NULL; } /* set the current pin config value for the given NID. * the value is cached, and read via snd_hda_codec_get_pincfg() */ int snd_hda_add_pincfg(struct hda_codec *codec, struct snd_array *list, hda_nid_t nid, unsigned int cfg) { struct hda_pincfg *pin; /* the check below may be invalid when pins are added by a fixup * dynamically (e.g. via snd_hda_codec_update_widgets()), so disabled * for now */ /* if (get_wcaps_type(get_wcaps(codec, nid)) != AC_WID_PIN) return -EINVAL; */ pin = look_up_pincfg(codec, list, nid); if (!pin) { pin = snd_array_new(list); if (!pin) return -ENOMEM; pin->nid = nid; } pin->cfg = cfg; return 0; } /** * snd_hda_codec_set_pincfg - Override a pin default configuration * @codec: the HDA codec * @nid: NID to set the pin config * @cfg: the pin default config value * * Override a pin default configuration value in the cache. * This value can be read by snd_hda_codec_get_pincfg() in a higher * priority than the real hardware value. */ int snd_hda_codec_set_pincfg(struct hda_codec *codec, hda_nid_t nid, unsigned int cfg) { return snd_hda_add_pincfg(codec, &codec->driver_pins, nid, cfg); } EXPORT_SYMBOL_HDA(snd_hda_codec_set_pincfg); /** * snd_hda_codec_get_pincfg - Obtain a pin-default configuration * @codec: the HDA codec * @nid: NID to get the pin config * * Get the current pin config value of the given pin NID. * If the pincfg value is cached or overridden via sysfs or driver, * returns the cached value. */ unsigned int snd_hda_codec_get_pincfg(struct hda_codec *codec, hda_nid_t nid) { struct hda_pincfg *pin; #ifdef CONFIG_SND_HDA_HWDEP { unsigned int cfg = 0; mutex_lock(&codec->user_mutex); pin = look_up_pincfg(codec, &codec->user_pins, nid); if (pin) cfg = pin->cfg; mutex_unlock(&codec->user_mutex); if (cfg) return cfg; } #endif pin = look_up_pincfg(codec, &codec->driver_pins, nid); if (pin) return pin->cfg; pin = look_up_pincfg(codec, &codec->init_pins, nid); if (pin) return pin->cfg; return 0; } EXPORT_SYMBOL_HDA(snd_hda_codec_get_pincfg); /* remember the current pinctl target value */ int snd_hda_codec_set_pin_target(struct hda_codec *codec, hda_nid_t nid, unsigned int val) { struct hda_pincfg *pin; pin = look_up_pincfg(codec, &codec->init_pins, nid); if (!pin) return -EINVAL; pin->target = val; return 0; } EXPORT_SYMBOL_HDA(snd_hda_codec_set_pin_target); /* return the current pinctl target value */ int snd_hda_codec_get_pin_target(struct hda_codec *codec, hda_nid_t nid) { struct hda_pincfg *pin; pin = look_up_pincfg(codec, &codec->init_pins, nid); if (!pin) return 0; return pin->target; } EXPORT_SYMBOL_HDA(snd_hda_codec_get_pin_target); /** * snd_hda_shutup_pins - Shut up all pins * @codec: the HDA codec * * Clear all pin controls to shup up before suspend for avoiding click noise. * The controls aren't cached so that they can be resumed properly. */ void snd_hda_shutup_pins(struct hda_codec *codec) { int i; /* don't shut up pins when unloading the driver; otherwise it breaks * the default pin setup at the next load of the driver */ if (codec->bus->shutdown) return; for (i = 0; i < codec->init_pins.used; i++) { struct hda_pincfg *pin = snd_array_elem(&codec->init_pins, i); /* use read here for syncing after issuing each verb */ snd_hda_codec_read(codec, pin->nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, 0); } codec->pins_shutup = 1; } EXPORT_SYMBOL_HDA(snd_hda_shutup_pins); #ifdef CONFIG_PM /* Restore the pin controls cleared previously via snd_hda_shutup_pins() */ static void restore_shutup_pins(struct hda_codec *codec) { int i; if (!codec->pins_shutup) return; if (codec->bus->shutdown) return; for (i = 0; i < codec->init_pins.used; i++) { struct hda_pincfg *pin = snd_array_elem(&codec->init_pins, i); snd_hda_codec_write(codec, pin->nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, pin->ctrl); } codec->pins_shutup = 0; } #endif static void hda_jackpoll_work(struct work_struct *work) { struct hda_codec *codec = container_of(work, struct hda_codec, jackpoll_work.work); snd_hda_jack_set_dirty_all(codec); snd_hda_jack_poll_all(codec); if (!codec->jackpoll_interval) return; queue_delayed_work(codec->bus->workq, &codec->jackpoll_work, codec->jackpoll_interval); } static void init_hda_cache(struct hda_cache_rec *cache, unsigned int record_size); static void free_hda_cache(struct hda_cache_rec *cache); /* release all pincfg lists */ static void free_init_pincfgs(struct hda_codec *codec) { snd_array_free(&codec->driver_pins); #ifdef CONFIG_SND_HDA_HWDEP snd_array_free(&codec->user_pins); #endif snd_array_free(&codec->init_pins); } /* * audio-converter setup caches */ struct hda_cvt_setup { hda_nid_t nid; u8 stream_tag; u8 channel_id; u16 format_id; unsigned char active; /* cvt is currently used */ unsigned char dirty; /* setups should be cleared */ }; /* get or create a cache entry for the given audio converter NID */ static struct hda_cvt_setup * get_hda_cvt_setup(struct hda_codec *codec, hda_nid_t nid) { struct hda_cvt_setup *p; int i; for (i = 0; i < codec->cvt_setups.used; i++) { p = snd_array_elem(&codec->cvt_setups, i); if (p->nid == nid) return p; } p = snd_array_new(&codec->cvt_setups); if (p) p->nid = nid; return p; } /* * Dynamic symbol binding for the codec parsers */ #ifdef MODULE #define load_parser_sym(sym) ((int (*)(struct hda_codec *))symbol_request(sym)) #define unload_parser_addr(addr) symbol_put_addr(addr) #else #define load_parser_sym(sym) (sym) #define unload_parser_addr(addr) do {} while (0) #endif #define load_parser(codec, sym) \ ((codec)->parser = load_parser_sym(sym)) static void unload_parser(struct hda_codec *codec) { if (codec->parser) { unload_parser_addr(codec->parser); codec->parser = NULL; } } /* * codec destructor */ static void snd_hda_codec_free(struct hda_codec *codec) { if (!codec) return; cancel_delayed_work_sync(&codec->jackpoll_work); snd_hda_jack_tbl_clear(codec); free_init_pincfgs(codec); #ifdef CONFIG_PM cancel_delayed_work(&codec->power_work); flush_workqueue(codec->bus->workq); #endif list_del(&codec->list); snd_array_free(&codec->mixers); snd_array_free(&codec->nids); snd_array_free(&codec->cvt_setups); snd_array_free(&codec->spdif_out); remove_conn_list(codec); codec->bus->caddr_tbl[codec->addr] = NULL; if (codec->patch_ops.free) codec->patch_ops.free(codec); hda_call_pm_notify(codec, false); /* cancel leftover refcounts */ unload_parser(codec); module_put(codec->owner); free_hda_cache(&codec->amp_cache); free_hda_cache(&codec->cmd_cache); kfree(codec->vendor_name); kfree(codec->chip_name); kfree(codec->modelname); kfree(codec->wcaps); codec->bus->num_codecs--; kfree(codec); } static bool snd_hda_codec_get_supported_ps(struct hda_codec *codec, hda_nid_t fg, unsigned int power_state); static unsigned int hda_set_power_state(struct hda_codec *codec, unsigned int power_state); /** * snd_hda_codec_new - create a HDA codec * @bus: the bus to assign * @codec_addr: the codec address * @codecp: the pointer to store the generated codec * * Returns 0 if successful, or a negative error code. */ int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr, struct hda_codec **codecp) { struct hda_codec *codec; char component[31]; hda_nid_t fg; int err; if (snd_BUG_ON(!bus)) return -EINVAL; if (snd_BUG_ON(codec_addr > HDA_MAX_CODEC_ADDRESS)) return -EINVAL; if (bus->caddr_tbl[codec_addr]) { snd_printk(KERN_ERR "hda_codec: " "address 0x%x is already occupied\n", codec_addr); return -EBUSY; } codec = kzalloc(sizeof(*codec), GFP_KERNEL); if (codec == NULL) { snd_printk(KERN_ERR "can't allocate struct hda_codec\n"); return -ENOMEM; } codec->bus = bus; codec->addr = codec_addr; mutex_init(&codec->spdif_mutex); mutex_init(&codec->control_mutex); mutex_init(&codec->hash_mutex); init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info)); init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head)); snd_array_init(&codec->mixers, sizeof(struct hda_nid_item), 32); snd_array_init(&codec->nids, sizeof(struct hda_nid_item), 32); snd_array_init(&codec->init_pins, sizeof(struct hda_pincfg), 16); snd_array_init(&codec->driver_pins, sizeof(struct hda_pincfg), 16); snd_array_init(&codec->cvt_setups, sizeof(struct hda_cvt_setup), 8); snd_array_init(&codec->spdif_out, sizeof(struct hda_spdif_out), 16); snd_array_init(&codec->jacktbl, sizeof(struct hda_jack_tbl), 16); snd_array_init(&codec->verbs, sizeof(struct hda_verb *), 8); INIT_LIST_HEAD(&codec->conn_list); INIT_DELAYED_WORK(&codec->jackpoll_work, hda_jackpoll_work); #ifdef CONFIG_PM spin_lock_init(&codec->power_lock); INIT_DELAYED_WORK(&codec->power_work, hda_power_work); INIT_WORK(&codec->suspend_work, hda_suspend_work); INIT_WORK(&codec->resume_work, hda_resume_work); /* snd_hda_codec_new() marks the codec as power-up, and leave it as is. * the caller has to power down appropriatley after initialization * phase. */ hda_keep_power_on(codec); #endif if (codec->bus->modelname) { codec->modelname = kstrdup(codec->bus->modelname, GFP_KERNEL); if (!codec->modelname) { snd_hda_codec_free(codec); return -ENODEV; } } list_add_tail(&codec->list, &bus->codec_list); bus->num_codecs++; #ifdef CONFIG_PM workqueue_set_max_active(bus->pm_wq, bus->num_codecs); #endif bus->caddr_tbl[codec_addr] = codec; codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID); if (codec->vendor_id == -1) /* read again, hopefully the access method was corrected * in the last read... */ codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID); codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID); codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID); setup_fg_nodes(codec); if (!codec->afg && !codec->mfg) { snd_printdd("hda_codec: no AFG or MFG node found\n"); err = -ENODEV; goto error; } fg = codec->afg ? codec->afg : codec->mfg; err = read_widget_caps(codec, fg); if (err < 0) { snd_printk(KERN_ERR "hda_codec: cannot malloc\n"); goto error; } err = read_pin_defaults(codec); if (err < 0) goto error; if (!codec->subsystem_id) { codec->subsystem_id = snd_hda_codec_read(codec, fg, 0, AC_VERB_GET_SUBSYSTEM_ID, 0); } #ifdef CONFIG_PM codec->d3_stop_clk = snd_hda_codec_get_supported_ps(codec, fg, AC_PWRST_CLKSTOP); #endif codec->epss = snd_hda_codec_get_supported_ps(codec, fg, AC_PWRST_EPSS); #ifdef CONFIG_PM if (!codec->d3_stop_clk || !codec->epss) bus->power_keep_link_on = 1; #endif /* power-up all before initialization */ hda_set_power_state(codec, AC_PWRST_D0); snd_hda_codec_proc_new(codec); snd_hda_create_hwdep(codec); sprintf(component, "HDA:%08x,%08x,%08x", codec->vendor_id, codec->subsystem_id, codec->revision_id); snd_component_add(codec->bus->card, component); if (codecp) *codecp = codec; return 0; error: snd_hda_codec_free(codec); return err; } EXPORT_SYMBOL_HDA(snd_hda_codec_new); int snd_hda_codec_update_widgets(struct hda_codec *codec) { hda_nid_t fg; int err; /* Assume the function group node does not change, * only the widget nodes may change. */ kfree(codec->wcaps); fg = codec->afg ? codec->afg : codec->mfg; err = read_widget_caps(codec, fg); if (err < 0) { snd_printk(KERN_ERR "hda_codec: cannot malloc\n"); return err; } snd_array_free(&codec->init_pins); err = read_pin_defaults(codec); return err; } EXPORT_SYMBOL_HDA(snd_hda_codec_update_widgets); #ifdef CONFIG_SND_HDA_CODEC_HDMI /* if all audio out widgets are digital, let's assume the codec as a HDMI/DP */ static bool is_likely_hdmi_codec(struct hda_codec *codec) { hda_nid_t nid = codec->start_nid; int i; for (i = 0; i < codec->num_nodes; i++, nid++) { unsigned int wcaps = get_wcaps(codec, nid); switch (get_wcaps_type(wcaps)) { case AC_WID_AUD_IN: return false; /* HDMI parser supports only HDMI out */ case AC_WID_AUD_OUT: if (!(wcaps & AC_WCAP_DIGITAL)) return false; break; } } return true; } #else /* no HDMI codec parser support */ #define is_likely_hdmi_codec(codec) false #endif /* CONFIG_SND_HDA_CODEC_HDMI */ /** * snd_hda_codec_configure - (Re-)configure the HD-audio codec * @codec: the HDA codec * * Start parsing of the given codec tree and (re-)initialize the whole * patch instance. * * Returns 0 if successful or a negative error code. */ int snd_hda_codec_configure(struct hda_codec *codec) { int (*patch)(struct hda_codec *) = NULL; int err; codec->preset = find_codec_preset(codec); if (!codec->vendor_name || !codec->chip_name) { err = get_codec_name(codec); if (err < 0) return err; } if (!is_generic_config(codec) && codec->preset) patch = codec->preset->patch; if (!patch) { unload_parser(codec); /* to be sure */ if (is_likely_hdmi_codec(codec)) patch = load_parser(codec, snd_hda_parse_hdmi_codec); #ifdef CONFIG_SND_HDA_GENERIC if (!patch) patch = load_parser(codec, snd_hda_parse_generic_codec); #endif if (!patch) { printk(KERN_ERR "hda-codec: No codec parser is available\n"); return -ENODEV; } } err = patch(codec); if (err < 0) { unload_parser(codec); return err; } if (codec->patch_ops.unsol_event) { err = init_unsol_queue(codec->bus); if (err < 0) return err; } /* audio codec should override the mixer name */ if (codec->afg || !*codec->bus->card->mixername) snprintf(codec->bus->card->mixername, sizeof(codec->bus->card->mixername), "%s %s", codec->vendor_name, codec->chip_name); return 0; } EXPORT_SYMBOL_HDA(snd_hda_codec_configure); /* update the stream-id if changed */ static void update_pcm_stream_id(struct hda_codec *codec, struct hda_cvt_setup *p, hda_nid_t nid, u32 stream_tag, int channel_id) { unsigned int oldval, newval; if (p->stream_tag != stream_tag || p->channel_id != channel_id) { oldval = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONV, 0); newval = (stream_tag << 4) | channel_id; if (oldval != newval) snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID, newval); p->stream_tag = stream_tag; p->channel_id = channel_id; } } /* update the format-id if changed */ static void update_pcm_format(struct hda_codec *codec, struct hda_cvt_setup *p, hda_nid_t nid, int format) { unsigned int oldval; if (p->format_id != format) { oldval = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_STREAM_FORMAT, 0); if (oldval != format) { msleep(1); snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format); } p->format_id = format; } } /** * snd_hda_codec_setup_stream - set up the codec for streaming * @codec: the CODEC to set up * @nid: the NID to set up * @stream_tag: stream tag to pass, it's between 0x1 and 0xf. * @channel_id: channel id to pass, zero based. * @format: stream format. */ void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag, int channel_id, int format) { struct hda_codec *c; struct hda_cvt_setup *p; int type; int i; if (!nid) return; snd_printdd("hda_codec_setup_stream: " "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n", nid, stream_tag, channel_id, format); p = get_hda_cvt_setup(codec, nid); if (!p) return; if (codec->pcm_format_first) update_pcm_format(codec, p, nid, format); update_pcm_stream_id(codec, p, nid, stream_tag, channel_id); if (!codec->pcm_format_first) update_pcm_format(codec, p, nid, format); p->active = 1; p->dirty = 0; /* make other inactive cvts with the same stream-tag dirty */ type = get_wcaps_type(get_wcaps(codec, nid)); list_for_each_entry(c, &codec->bus->codec_list, list) { for (i = 0; i < c->cvt_setups.used; i++) { p = snd_array_elem(&c->cvt_setups, i); if (!p->active && p->stream_tag == stream_tag && get_wcaps_type(get_wcaps(c, p->nid)) == type) p->dirty = 1; } } } EXPORT_SYMBOL_HDA(snd_hda_codec_setup_stream); static void really_cleanup_stream(struct hda_codec *codec, struct hda_cvt_setup *q); /** * __snd_hda_codec_cleanup_stream - clean up the codec for closing * @codec: the CODEC to clean up * @nid: the NID to clean up * @do_now: really clean up the stream instead of clearing the active flag */ void __snd_hda_codec_cleanup_stream(struct hda_codec *codec, hda_nid_t nid, int do_now) { struct hda_cvt_setup *p; if (!nid) return; if (codec->no_sticky_stream) do_now = 1; snd_printdd("hda_codec_cleanup_stream: NID=0x%x\n", nid); p = get_hda_cvt_setup(codec, nid); if (p) { /* here we just clear the active flag when do_now isn't set; * actual clean-ups will be done later in * purify_inactive_streams() called from snd_hda_codec_prpapre() */ if (do_now) really_cleanup_stream(codec, p); else p->active = 0; } } EXPORT_SYMBOL_HDA(__snd_hda_codec_cleanup_stream); static void really_cleanup_stream(struct hda_codec *codec, struct hda_cvt_setup *q) { hda_nid_t nid = q->nid; if (q->stream_tag || q->channel_id) snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID, 0); if (q->format_id) snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, 0 ); memset(q, 0, sizeof(*q)); q->nid = nid; } /* clean up the all conflicting obsolete streams */ static void purify_inactive_streams(struct hda_codec *codec) { struct hda_codec *c; int i; list_for_each_entry(c, &codec->bus->codec_list, list) { for (i = 0; i < c->cvt_setups.used; i++) { struct hda_cvt_setup *p; p = snd_array_elem(&c->cvt_setups, i); if (p->dirty) really_cleanup_stream(c, p); } } } #ifdef CONFIG_PM /* clean up all streams; called from suspend */ static void hda_cleanup_all_streams(struct hda_codec *codec) { int i; for (i = 0; i < codec->cvt_setups.used; i++) { struct hda_cvt_setup *p = snd_array_elem(&codec->cvt_setups, i); if (p->stream_tag) really_cleanup_stream(codec, p); } } #endif /* * amp access functions */ /* FIXME: more better hash key? */ #define HDA_HASH_KEY(nid, dir, idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24)) #define HDA_HASH_PINCAP_KEY(nid) (u32)((nid) + (0x02 << 24)) #define HDA_HASH_PARPCM_KEY(nid) (u32)((nid) + (0x03 << 24)) #define HDA_HASH_PARSTR_KEY(nid) (u32)((nid) + (0x04 << 24)) #define INFO_AMP_CAPS (1<<0) #define INFO_AMP_VOL(ch) (1 << (1 + (ch))) /* initialize the hash table */ static void init_hda_cache(struct hda_cache_rec *cache, unsigned int record_size) { memset(cache, 0, sizeof(*cache)); memset(cache->hash, 0xff, sizeof(cache->hash)); snd_array_init(&cache->buf, record_size, 64); } static void free_hda_cache(struct hda_cache_rec *cache) { snd_array_free(&cache->buf); } /* query the hash. allocate an entry if not found. */ static struct hda_cache_head *get_hash(struct hda_cache_rec *cache, u32 key) { u16 idx = key % (u16)ARRAY_SIZE(cache->hash); u16 cur = cache->hash[idx]; struct hda_cache_head *info; while (cur != 0xffff) { info = snd_array_elem(&cache->buf, cur); if (info->key == key) return info; cur = info->next; } return NULL; } /* query the hash. allocate an entry if not found. */ static struct hda_cache_head *get_alloc_hash(struct hda_cache_rec *cache, u32 key) { struct hda_cache_head *info = get_hash(cache, key); if (!info) { u16 idx, cur; /* add a new hash entry */ info = snd_array_new(&cache->buf); if (!info) return NULL; cur = snd_array_index(&cache->buf, info); info->key = key; info->val = 0; info->dirty = 0; idx = key % (u16)ARRAY_SIZE(cache->hash); info->next = cache->hash[idx]; cache->hash[idx] = cur; } return info; } /* query and allocate an amp hash entry */ static inline struct hda_amp_info * get_alloc_amp_hash(struct hda_codec *codec, u32 key) { return (struct hda_amp_info *)get_alloc_hash(&codec->amp_cache, key); } /* overwrite the value with the key in the caps hash */ static int write_caps_hash(struct hda_codec *codec, u32 key, unsigned int val) { struct hda_amp_info *info; mutex_lock(&codec->hash_mutex); info = get_alloc_amp_hash(codec, key); if (!info) { mutex_unlock(&codec->hash_mutex); return -EINVAL; } info->amp_caps = val; info->head.val |= INFO_AMP_CAPS; mutex_unlock(&codec->hash_mutex); return 0; } /* query the value from the caps hash; if not found, fetch the current * value from the given function and store in the hash */ static unsigned int query_caps_hash(struct hda_codec *codec, hda_nid_t nid, int dir, u32 key, unsigned int (*func)(struct hda_codec *, hda_nid_t, int)) { struct hda_amp_info *info; unsigned int val; mutex_lock(&codec->hash_mutex); info = get_alloc_amp_hash(codec, key); if (!info) { mutex_unlock(&codec->hash_mutex); return 0; } if (!(info->head.val & INFO_AMP_CAPS)) { mutex_unlock(&codec->hash_mutex); /* for reentrance */ val = func(codec, nid, dir); write_caps_hash(codec, key, val); } else { val = info->amp_caps; mutex_unlock(&codec->hash_mutex); } return val; } static unsigned int read_amp_cap(struct hda_codec *codec, hda_nid_t nid, int direction) { if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD)) nid = codec->afg; return snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ? AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP); } /** * query_amp_caps - query AMP capabilities * @codec: the HD-auio codec * @nid: the NID to query * @direction: either #HDA_INPUT or #HDA_OUTPUT * * Query AMP capabilities for the given widget and direction. * Returns the obtained capability bits. * * When cap bits have been already read, this doesn't read again but * returns the cached value. */ u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction) { return query_caps_hash(codec, nid, direction, HDA_HASH_KEY(nid, direction, 0), read_amp_cap); } EXPORT_SYMBOL_HDA(query_amp_caps); /** * snd_hda_override_amp_caps - Override the AMP capabilities * @codec: the CODEC to clean up * @nid: the NID to clean up * @direction: either #HDA_INPUT or #HDA_OUTPUT * @caps: the capability bits to set * * Override the cached AMP caps bits value by the given one. * This function is useful if the driver needs to adjust the AMP ranges, * e.g. limit to 0dB, etc. * * Returns zero if successful or a negative error code. */ int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir, unsigned int caps) { return write_caps_hash(codec, HDA_HASH_KEY(nid, dir, 0), caps); } EXPORT_SYMBOL_HDA(snd_hda_override_amp_caps); static unsigned int read_pin_cap(struct hda_codec *codec, hda_nid_t nid, int dir) { return snd_hda_param_read(codec, nid, AC_PAR_PIN_CAP); } /** * snd_hda_query_pin_caps - Query PIN capabilities * @codec: the HD-auio codec * @nid: the NID to query * * Query PIN capabilities for the given widget. * Returns the obtained capability bits. * * When cap bits have been already read, this doesn't read again but * returns the cached value. */ u32 snd_hda_query_pin_caps(struct hda_codec *codec, hda_nid_t nid) { return query_caps_hash(codec, nid, 0, HDA_HASH_PINCAP_KEY(nid), read_pin_cap); } EXPORT_SYMBOL_HDA(snd_hda_query_pin_caps); /** * snd_hda_override_pin_caps - Override the pin capabilities * @codec: the CODEC * @nid: the NID to override * @caps: the capability bits to set * * Override the cached PIN capabilitiy bits value by the given one. * * Returns zero if successful or a negative error code. */ int snd_hda_override_pin_caps(struct hda_codec *codec, hda_nid_t nid, unsigned int caps) { return write_caps_hash(codec, HDA_HASH_PINCAP_KEY(nid), caps); } EXPORT_SYMBOL_HDA(snd_hda_override_pin_caps); /* read or sync the hash value with the current value; * call within hash_mutex */ static struct hda_amp_info * update_amp_hash(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index, bool init_only) { struct hda_amp_info *info; unsigned int parm, val = 0; bool val_read = false; retry: info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index)); if (!info) return NULL; if (!(info->head.val & INFO_AMP_VOL(ch))) { if (!val_read) { mutex_unlock(&codec->hash_mutex); parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT; parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT; parm |= index; val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm); val &= 0xff; val_read = true; mutex_lock(&codec->hash_mutex); goto retry; } info->vol[ch] = val; info->head.val |= INFO_AMP_VOL(ch); } else if (init_only) return NULL; return info; } /* * write the current volume in info to the h/w */ static void put_vol_mute(struct hda_codec *codec, unsigned int amp_caps, hda_nid_t nid, int ch, int direction, int index, int val) { u32 parm; parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT; parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT; parm |= index << AC_AMP_SET_INDEX_SHIFT; if ((val & HDA_AMP_MUTE) && !(amp_caps & AC_AMPCAP_MUTE) && (amp_caps & AC_AMPCAP_MIN_MUTE)) ; /* set the zero value as a fake mute */ else parm |= val; snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm); } /** * snd_hda_codec_amp_read - Read AMP value * @codec: HD-audio codec * @nid: NID to read the AMP value * @ch: channel (left=0 or right=1) * @direction: #HDA_INPUT or #HDA_OUTPUT * @index: the index value (only for input direction) * * Read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit. */ int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index) { struct hda_amp_info *info; unsigned int val = 0; mutex_lock(&codec->hash_mutex); info = update_amp_hash(codec, nid, ch, direction, index, false); if (info) val = info->vol[ch]; mutex_unlock(&codec->hash_mutex); return val; } EXPORT_SYMBOL_HDA(snd_hda_codec_amp_read); static int codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val, bool init_only) { struct hda_amp_info *info; unsigned int caps; unsigned int cache_only; if (snd_BUG_ON(mask & ~0xff)) mask &= 0xff; val &= mask; mutex_lock(&codec->hash_mutex); info = update_amp_hash(codec, nid, ch, direction, idx, init_only); if (!info) { mutex_unlock(&codec->hash_mutex); return 0; } val |= info->vol[ch] & ~mask; if (info->vol[ch] == val) { mutex_unlock(&codec->hash_mutex); return 0; } info->vol[ch] = val; cache_only = info->head.dirty = codec->cached_write; caps = info->amp_caps; mutex_unlock(&codec->hash_mutex); if (!cache_only) put_vol_mute(codec, caps, nid, ch, direction, idx, val); return 1; } /** * snd_hda_codec_amp_update - update the AMP value * @codec: HD-audio codec * @nid: NID to read the AMP value * @ch: channel (left=0 or right=1) * @direction: #HDA_INPUT or #HDA_OUTPUT * @idx: the index value (only for input direction) * @mask: bit mask to set * @val: the bits value to set * * Update the AMP value with a bit mask. * Returns 0 if the value is unchanged, 1 if changed. */ int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val) { return codec_amp_update(codec, nid, ch, direction, idx, mask, val, false); } EXPORT_SYMBOL_HDA(snd_hda_codec_amp_update); /** * snd_hda_codec_amp_stereo - update the AMP stereo values * @codec: HD-audio codec * @nid: NID to read the AMP value * @direction: #HDA_INPUT or #HDA_OUTPUT * @idx: the index value (only for input direction) * @mask: bit mask to set * @val: the bits value to set * * Update the AMP values like snd_hda_codec_amp_update(), but for a * stereo widget with the same mask and value. */ int snd_hda_codec_amp_stereo(struct hda_codec *codec, hda_nid_t nid, int direction, int idx, int mask, int val) { int ch, ret = 0; if (snd_BUG_ON(mask & ~0xff)) mask &= 0xff; for (ch = 0; ch < 2; ch++) ret |= snd_hda_codec_amp_update(codec, nid, ch, direction, idx, mask, val); return ret; } EXPORT_SYMBOL_HDA(snd_hda_codec_amp_stereo); /* Works like snd_hda_codec_amp_update() but it writes the value only at * the first access. If the amp was already initialized / updated beforehand, * this does nothing. */ int snd_hda_codec_amp_init(struct hda_codec *codec, hda_nid_t nid, int ch, int dir, int idx, int mask, int val) { return codec_amp_update(codec, nid, ch, dir, idx, mask, val, true); } EXPORT_SYMBOL_HDA(snd_hda_codec_amp_init); int snd_hda_codec_amp_init_stereo(struct hda_codec *codec, hda_nid_t nid, int dir, int idx, int mask, int val) { int ch, ret = 0; if (snd_BUG_ON(mask & ~0xff)) mask &= 0xff; for (ch = 0; ch < 2; ch++) ret |= snd_hda_codec_amp_init(codec, nid, ch, dir, idx, mask, val); return ret; } EXPORT_SYMBOL_HDA(snd_hda_codec_amp_init_stereo); /** * snd_hda_codec_resume_amp - Resume all AMP commands from the cache * @codec: HD-audio codec * * Resume the all amp commands from the cache. */ void snd_hda_codec_resume_amp(struct hda_codec *codec) { int i; mutex_lock(&codec->hash_mutex); codec->cached_write = 0; for (i = 0; i < codec->amp_cache.buf.used; i++) { struct hda_amp_info *buffer; u32 key; hda_nid_t nid; unsigned int idx, dir, ch; struct hda_amp_info info; buffer = snd_array_elem(&codec->amp_cache.buf, i); if (!buffer->head.dirty) continue; buffer->head.dirty = 0; info = *buffer; key = info.head.key; if (!key) continue; nid = key & 0xff; idx = (key >> 16) & 0xff; dir = (key >> 24) & 0xff; for (ch = 0; ch < 2; ch++) { if (!(info.head.val & INFO_AMP_VOL(ch))) continue; mutex_unlock(&codec->hash_mutex); put_vol_mute(codec, info.amp_caps, nid, ch, dir, idx, info.vol[ch]); mutex_lock(&codec->hash_mutex); } } mutex_unlock(&codec->hash_mutex); } EXPORT_SYMBOL_HDA(snd_hda_codec_resume_amp); static u32 get_amp_max_value(struct hda_codec *codec, hda_nid_t nid, int dir, unsigned int ofs) { u32 caps = query_amp_caps(codec, nid, dir); /* get num steps */ caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; if (ofs < caps) caps -= ofs; return caps; } /** * snd_hda_mixer_amp_volume_info - Info callback for a standard AMP mixer * * The control element is supposed to have the private_value field * set up via HDA_COMPOSE_AMP_VAL*() or related macros. */ int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); u16 nid = get_amp_nid(kcontrol); u8 chs = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); unsigned int ofs = get_amp_offset(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = chs == 3 ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = get_amp_max_value(codec, nid, dir, ofs); if (!uinfo->value.integer.max) { printk(KERN_WARNING "hda_codec: " "num_steps = 0 for NID=0x%x (ctl = %s)\n", nid, kcontrol->id.name); return -EINVAL; } return 0; } EXPORT_SYMBOL_HDA(snd_hda_mixer_amp_volume_info); static inline unsigned int read_amp_value(struct hda_codec *codec, hda_nid_t nid, int ch, int dir, int idx, unsigned int ofs) { unsigned int val; val = snd_hda_codec_amp_read(codec, nid, ch, dir, idx); val &= HDA_AMP_VOLMASK; if (val >= ofs) val -= ofs; else val = 0; return val; } static inline int update_amp_value(struct hda_codec *codec, hda_nid_t nid, int ch, int dir, int idx, unsigned int ofs, unsigned int val) { unsigned int maxval; if (val > 0) val += ofs; /* ofs = 0: raw max value */ maxval = get_amp_max_value(codec, nid, dir, 0); if (val > maxval) val = maxval; return snd_hda_codec_amp_update(codec, nid, ch, dir, idx, HDA_AMP_VOLMASK, val); } /** * snd_hda_mixer_amp_volume_get - Get callback for a standard AMP mixer volume * * The control element is supposed to have the private_value field * set up via HDA_COMPOSE_AMP_VAL*() or related macros. */ int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); int chs = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); int idx = get_amp_index(kcontrol); unsigned int ofs = get_amp_offset(kcontrol); long *valp = ucontrol->value.integer.value; if (chs & 1) *valp++ = read_amp_value(codec, nid, 0, dir, idx, ofs); if (chs & 2) *valp = read_amp_value(codec, nid, 1, dir, idx, ofs); return 0; } EXPORT_SYMBOL_HDA(snd_hda_mixer_amp_volume_get); /** * snd_hda_mixer_amp_volume_put - Put callback for a standard AMP mixer volume * * The control element is supposed to have the private_value field * set up via HDA_COMPOSE_AMP_VAL*() or related macros. */ int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); int chs = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); int idx = get_amp_index(kcontrol); unsigned int ofs = get_amp_offset(kcontrol); long *valp = ucontrol->value.integer.value; int change = 0; snd_hda_power_up(codec); if (chs & 1) { change = update_amp_value(codec, nid, 0, dir, idx, ofs, *valp); valp++; } if (chs & 2) change |= update_amp_value(codec, nid, 1, dir, idx, ofs, *valp); snd_hda_power_down(codec); return change; } EXPORT_SYMBOL_HDA(snd_hda_mixer_amp_volume_put); /** * snd_hda_mixer_amp_volume_put - TLV callback for a standard AMP mixer volume * * The control element is supposed to have the private_value field * set up via HDA_COMPOSE_AMP_VAL*() or related macros. */ int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *_tlv) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); int dir = get_amp_direction(kcontrol); unsigned int ofs = get_amp_offset(kcontrol); bool min_mute = get_amp_min_mute(kcontrol); u32 caps, val1, val2; if (size < 4 * sizeof(unsigned int)) return -ENOMEM; caps = query_amp_caps(codec, nid, dir); val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT; val2 = (val2 + 1) * 25; val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT); val1 += ofs; val1 = ((int)val1) * ((int)val2); if (min_mute || (caps & AC_AMPCAP_MIN_MUTE)) val2 |= TLV_DB_SCALE_MUTE; if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv)) return -EFAULT; if (put_user(2 * sizeof(unsigned int), _tlv + 1)) return -EFAULT; if (put_user(val1, _tlv + 2)) return -EFAULT; if (put_user(val2, _tlv + 3)) return -EFAULT; return 0; } EXPORT_SYMBOL_HDA(snd_hda_mixer_amp_tlv); /** * snd_hda_set_vmaster_tlv - Set TLV for a virtual master control * @codec: HD-audio codec * @nid: NID of a reference widget * @dir: #HDA_INPUT or #HDA_OUTPUT * @tlv: TLV data to be stored, at least 4 elements * * Set (static) TLV data for a virtual master volume using the AMP caps * obtained from the reference NID. * The volume range is recalculated as if the max volume is 0dB. */ void snd_hda_set_vmaster_tlv(struct hda_codec *codec, hda_nid_t nid, int dir, unsigned int *tlv) { u32 caps; int nums, step; caps = query_amp_caps(codec, nid, dir); nums = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; step = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT; step = (step + 1) * 25; tlv[0] = SNDRV_CTL_TLVT_DB_SCALE; tlv[1] = 2 * sizeof(unsigned int); tlv[2] = -nums * step; tlv[3] = step; } EXPORT_SYMBOL_HDA(snd_hda_set_vmaster_tlv); /* find a mixer control element with the given name */ static struct snd_kcontrol * find_mixer_ctl(struct hda_codec *codec, const char *name, int dev, int idx) { struct snd_ctl_elem_id id; memset(&id, 0, sizeof(id)); id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; id.device = dev; id.index = idx; if (snd_BUG_ON(strlen(name) >= sizeof(id.name))) return NULL; strcpy(id.name, name); return snd_ctl_find_id(codec->bus->card, &id); } /** * snd_hda_find_mixer_ctl - Find a mixer control element with the given name * @codec: HD-audio codec * @name: ctl id name string * * Get the control element with the given id string and IFACE_MIXER. */ struct snd_kcontrol *snd_hda_find_mixer_ctl(struct hda_codec *codec, const char *name) { return find_mixer_ctl(codec, name, 0, 0); } EXPORT_SYMBOL_HDA(snd_hda_find_mixer_ctl); static int find_empty_mixer_ctl_idx(struct hda_codec *codec, const char *name, int start_idx) { int i, idx; /* 16 ctlrs should be large enough */ for (i = 0, idx = start_idx; i < 16; i++, idx++) { if (!find_mixer_ctl(codec, name, 0, idx)) return idx; } return -EBUSY; } /** * snd_hda_ctl_add - Add a control element and assign to the codec * @codec: HD-audio codec * @nid: corresponding NID (optional) * @kctl: the control element to assign * * Add the given control element to an array inside the codec instance. * All control elements belonging to a codec are supposed to be added * by this function so that a proper clean-up works at the free or * reconfiguration time. * * If non-zero @nid is passed, the NID is assigned to the control element. * The assignment is shown in the codec proc file. * * snd_hda_ctl_add() checks the control subdev id field whether * #HDA_SUBDEV_NID_FLAG bit is set. If set (and @nid is zero), the lower * bits value is taken as the NID to assign. The #HDA_NID_ITEM_AMP bit * specifies if kctl->private_value is a HDA amplifier value. */ int snd_hda_ctl_add(struct hda_codec *codec, hda_nid_t nid, struct snd_kcontrol *kctl) { int err; unsigned short flags = 0; struct hda_nid_item *item; if (kctl->id.subdevice & HDA_SUBDEV_AMP_FLAG) { flags |= HDA_NID_ITEM_AMP; if (nid == 0) nid = get_amp_nid_(kctl->private_value); } if ((kctl->id.subdevice & HDA_SUBDEV_NID_FLAG) != 0 && nid == 0) nid = kctl->id.subdevice & 0xffff; if (kctl->id.subdevice & (HDA_SUBDEV_NID_FLAG|HDA_SUBDEV_AMP_FLAG)) kctl->id.subdevice = 0; err = snd_ctl_add(codec->bus->card, kctl); if (err < 0) return err; item = snd_array_new(&codec->mixers); if (!item) return -ENOMEM; item->kctl = kctl; item->nid = nid; item->flags = flags; return 0; } EXPORT_SYMBOL_HDA(snd_hda_ctl_add); /** * snd_hda_add_nid - Assign a NID to a control element * @codec: HD-audio codec * @nid: corresponding NID (optional) * @kctl: the control element to assign * @index: index to kctl * * Add the given control element to an array inside the codec instance. * This function is used when #snd_hda_ctl_add cannot be used for 1:1 * NID:KCTL mapping - for example "Capture Source" selector. */ int snd_hda_add_nid(struct hda_codec *codec, struct snd_kcontrol *kctl, unsigned int index, hda_nid_t nid) { struct hda_nid_item *item; if (nid > 0) { item = snd_array_new(&codec->nids); if (!item) return -ENOMEM; item->kctl = kctl; item->index = index; item->nid = nid; return 0; } printk(KERN_ERR "hda-codec: no NID for mapping control %s:%d:%d\n", kctl->id.name, kctl->id.index, index); return -EINVAL; } EXPORT_SYMBOL_HDA(snd_hda_add_nid); /** * snd_hda_ctls_clear - Clear all controls assigned to the given codec * @codec: HD-audio codec */ void snd_hda_ctls_clear(struct hda_codec *codec) { int i; struct hda_nid_item *items = codec->mixers.list; for (i = 0; i < codec->mixers.used; i++) snd_ctl_remove(codec->bus->card, items[i].kctl); snd_array_free(&codec->mixers); snd_array_free(&codec->nids); } /* pseudo device locking * toggle card->shutdown to allow/disallow the device access (as a hack) */ int snd_hda_lock_devices(struct hda_bus *bus) { struct snd_card *card = bus->card; struct hda_codec *codec; spin_lock(&card->files_lock); if (card->shutdown) goto err_unlock; card->shutdown = 1; if (!list_empty(&card->ctl_files)) goto err_clear; list_for_each_entry(codec, &bus->codec_list, list) { int pcm; for (pcm = 0; pcm < codec->num_pcms; pcm++) { struct hda_pcm *cpcm = &codec->pcm_info[pcm]; if (!cpcm->pcm) continue; if (cpcm->pcm->streams[0].substream_opened || cpcm->pcm->streams[1].substream_opened) goto err_clear; } } spin_unlock(&card->files_lock); return 0; err_clear: card->shutdown = 0; err_unlock: spin_unlock(&card->files_lock); return -EINVAL; } EXPORT_SYMBOL_HDA(snd_hda_lock_devices); void snd_hda_unlock_devices(struct hda_bus *bus) { struct snd_card *card = bus->card; card = bus->card; spin_lock(&card->files_lock); card->shutdown = 0; spin_unlock(&card->files_lock); } EXPORT_SYMBOL_HDA(snd_hda_unlock_devices); /** * snd_hda_codec_reset - Clear all objects assigned to the codec * @codec: HD-audio codec * * This frees the all PCM and control elements assigned to the codec, and * clears the caches and restores the pin default configurations. * * When a device is being used, it returns -EBSY. If successfully freed, * returns zero. */ int snd_hda_codec_reset(struct hda_codec *codec) { struct hda_bus *bus = codec->bus; struct snd_card *card = bus->card; int i; if (snd_hda_lock_devices(bus) < 0) return -EBUSY; /* OK, let it free */ cancel_delayed_work_sync(&codec->jackpoll_work); #ifdef CONFIG_PM cancel_delayed_work_sync(&codec->power_work); flush_workqueue(bus->workq); #endif snd_hda_ctls_clear(codec); /* release PCMs */ for (i = 0; i < codec->num_pcms; i++) { if (codec->pcm_info[i].pcm) { snd_device_free(card, codec->pcm_info[i].pcm); clear_bit(codec->pcm_info[i].device, bus->pcm_dev_bits); } } if (codec->patch_ops.free) codec->patch_ops.free(codec); memset(&codec->patch_ops, 0, sizeof(codec->patch_ops)); snd_hda_jack_tbl_clear(codec); codec->proc_widget_hook = NULL; codec->spec = NULL; free_hda_cache(&codec->amp_cache); free_hda_cache(&codec->cmd_cache); init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info)); init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head)); /* free only driver_pins so that init_pins + user_pins are restored */ snd_array_free(&codec->driver_pins); snd_array_free(&codec->cvt_setups); snd_array_free(&codec->spdif_out); snd_array_free(&codec->verbs); codec->num_pcms = 0; codec->pcm_info = NULL; codec->preset = NULL; codec->slave_dig_outs = NULL; codec->spdif_status_reset = 0; unload_parser(codec); module_put(codec->owner); codec->owner = NULL; /* allow device access again */ snd_hda_unlock_devices(bus); return 0; } typedef int (*map_slave_func_t)(void *, struct snd_kcontrol *); /* apply the function to all matching slave ctls in the mixer list */ static int map_slaves(struct hda_codec *codec, const char * const *slaves, const char *suffix, map_slave_func_t func, void *data) { struct hda_nid_item *items; const char * const *s; int i, err; items = codec->mixers.list; for (i = 0; i < codec->mixers.used; i++) { struct snd_kcontrol *sctl = items[i].kctl; if (!sctl || sctl->id.iface != SNDRV_CTL_ELEM_IFACE_MIXER) continue; for (s = slaves; *s; s++) { char tmpname[sizeof(sctl->id.name)]; const char *name = *s; if (suffix) { snprintf(tmpname, sizeof(tmpname), "%s %s", name, suffix); name = tmpname; } if (!strcmp(sctl->id.name, name)) { err = func(data, sctl); if (err) return err; break; } } } return 0; } static int check_slave_present(void *data, struct snd_kcontrol *sctl) { return 1; } /* guess the value corresponding to 0dB */ static int get_kctl_0dB_offset(struct snd_kcontrol *kctl, int *step_to_check) { int _tlv[4]; const int *tlv = NULL; int val = -1; if (kctl->vd[0].access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) { /* FIXME: set_fs() hack for obtaining user-space TLV data */ mm_segment_t fs = get_fs(); set_fs(get_ds()); if (!kctl->tlv.c(kctl, 0, sizeof(_tlv), _tlv)) tlv = _tlv; set_fs(fs); } else if (kctl->vd[0].access & SNDRV_CTL_ELEM_ACCESS_TLV_READ) tlv = kctl->tlv.p; if (tlv && tlv[0] == SNDRV_CTL_TLVT_DB_SCALE) { int step = tlv[3]; step &= ~TLV_DB_SCALE_MUTE; if (!step) return -1; if (*step_to_check && *step_to_check != step) { snd_printk(KERN_ERR "hda_codec: Mismatching dB step for vmaster slave (%d!=%d)\n", *step_to_check, step); return -1; } *step_to_check = step; val = -tlv[2] / step; } return val; } /* call kctl->put with the given value(s) */ static int put_kctl_with_value(struct snd_kcontrol *kctl, int val) { struct snd_ctl_elem_value *ucontrol; ucontrol = kzalloc(sizeof(*ucontrol), GFP_KERNEL); if (!ucontrol) return -ENOMEM; ucontrol->value.integer.value[0] = val; ucontrol->value.integer.value[1] = val; kctl->put(kctl, ucontrol); kfree(ucontrol); return 0; } /* initialize the slave volume with 0dB */ static int init_slave_0dB(void *data, struct snd_kcontrol *slave) { int offset = get_kctl_0dB_offset(slave, data); if (offset > 0) put_kctl_with_value(slave, offset); return 0; } /* unmute the slave */ static int init_slave_unmute(void *data, struct snd_kcontrol *slave) { return put_kctl_with_value(slave, 1); } /** * snd_hda_add_vmaster - create a virtual master control and add slaves * @codec: HD-audio codec * @name: vmaster control name * @tlv: TLV data (optional) * @slaves: slave control names (optional) * @suffix: suffix string to each slave name (optional) * @init_slave_vol: initialize slaves to unmute/0dB * @ctl_ret: store the vmaster kcontrol in return * * Create a virtual master control with the given name. The TLV data * must be either NULL or a valid data. * * @slaves is a NULL-terminated array of strings, each of which is a * slave control name. All controls with these names are assigned to * the new virtual master control. * * This function returns zero if successful or a negative error code. */ int __snd_hda_add_vmaster(struct hda_codec *codec, char *name, unsigned int *tlv, const char * const *slaves, const char *suffix, bool init_slave_vol, struct snd_kcontrol **ctl_ret) { struct snd_kcontrol *kctl; int err; if (ctl_ret) *ctl_ret = NULL; err = map_slaves(codec, slaves, suffix, check_slave_present, NULL); if (err != 1) { snd_printdd("No slave found for %s\n", name); return 0; } kctl = snd_ctl_make_virtual_master(name, tlv); if (!kctl) return -ENOMEM; err = snd_hda_ctl_add(codec, 0, kctl); if (err < 0) return err; err = map_slaves(codec, slaves, suffix, (map_slave_func_t)snd_ctl_add_slave, kctl); if (err < 0) return err; /* init with master mute & zero volume */ put_kctl_with_value(kctl, 0); if (init_slave_vol) { int step = 0; map_slaves(codec, slaves, suffix, tlv ? init_slave_0dB : init_slave_unmute, &step); } if (ctl_ret) *ctl_ret = kctl; return 0; } EXPORT_SYMBOL_HDA(__snd_hda_add_vmaster); /* * mute-LED control using vmaster */ static int vmaster_mute_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[] = { "On", "Off", "Follow Master" }; unsigned int index; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = 3; index = uinfo->value.enumerated.item; if (index >= 3) index = 2; strcpy(uinfo->value.enumerated.name, texts[index]); return 0; } static int vmaster_mute_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_vmaster_mute_hook *hook = snd_kcontrol_chip(kcontrol); ucontrol->value.enumerated.item[0] = hook->mute_mode; return 0; } static int vmaster_mute_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_vmaster_mute_hook *hook = snd_kcontrol_chip(kcontrol); unsigned int old_mode = hook->mute_mode; hook->mute_mode = ucontrol->value.enumerated.item[0]; if (hook->mute_mode > HDA_VMUTE_FOLLOW_MASTER) hook->mute_mode = HDA_VMUTE_FOLLOW_MASTER; if (old_mode == hook->mute_mode) return 0; snd_hda_sync_vmaster_hook(hook); return 1; } static struct snd_kcontrol_new vmaster_mute_mode = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Mute-LED Mode", .info = vmaster_mute_mode_info, .get = vmaster_mute_mode_get, .put = vmaster_mute_mode_put, }; /* * Add a mute-LED hook with the given vmaster switch kctl * "Mute-LED Mode" control is automatically created and associated with * the given hook. */ int snd_hda_add_vmaster_hook(struct hda_codec *codec, struct hda_vmaster_mute_hook *hook, bool expose_enum_ctl) { struct snd_kcontrol *kctl; if (!hook->hook || !hook->sw_kctl) return 0; snd_ctl_add_vmaster_hook(hook->sw_kctl, hook->hook, codec); hook->codec = codec; hook->mute_mode = HDA_VMUTE_FOLLOW_MASTER; if (!expose_enum_ctl) return 0; kctl = snd_ctl_new1(&vmaster_mute_mode, hook); if (!kctl) return -ENOMEM; return snd_hda_ctl_add(codec, 0, kctl); } EXPORT_SYMBOL_HDA(snd_hda_add_vmaster_hook); /* * Call the hook with the current value for synchronization * Should be called in init callback */ void snd_hda_sync_vmaster_hook(struct hda_vmaster_mute_hook *hook) { if (!hook->hook || !hook->codec) return; /* don't call vmaster hook in the destructor since it might have * been already destroyed */ if (hook->codec->bus->shutdown) return; switch (hook->mute_mode) { case HDA_VMUTE_FOLLOW_MASTER: snd_ctl_sync_vmaster_hook(hook->sw_kctl); break; default: hook->hook(hook->codec, hook->mute_mode); break; } } EXPORT_SYMBOL_HDA(snd_hda_sync_vmaster_hook); /** * snd_hda_mixer_amp_switch_info - Info callback for a standard AMP mixer switch * * The control element is supposed to have the private_value field * set up via HDA_COMPOSE_AMP_VAL*() or related macros. */ int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int chs = get_amp_channels(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = chs == 3 ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } EXPORT_SYMBOL_HDA(snd_hda_mixer_amp_switch_info); /** * snd_hda_mixer_amp_switch_get - Get callback for a standard AMP mixer switch * * The control element is supposed to have the private_value field * set up via HDA_COMPOSE_AMP_VAL*() or related macros. */ int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); int chs = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); int idx = get_amp_index(kcontrol); long *valp = ucontrol->value.integer.value; if (chs & 1) *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & HDA_AMP_MUTE) ? 0 : 1; if (chs & 2) *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & HDA_AMP_MUTE) ? 0 : 1; return 0; } EXPORT_SYMBOL_HDA(snd_hda_mixer_amp_switch_get); /** * snd_hda_mixer_amp_switch_put - Put callback for a standard AMP mixer switch * * The control element is supposed to have the private_value field * set up via HDA_COMPOSE_AMP_VAL*() or related macros. */ int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); int chs = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); int idx = get_amp_index(kcontrol); long *valp = ucontrol->value.integer.value; int change = 0; snd_hda_power_up(codec); if (chs & 1) { change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx, HDA_AMP_MUTE, *valp ? 0 : HDA_AMP_MUTE); valp++; } if (chs & 2) change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx, HDA_AMP_MUTE, *valp ? 0 : HDA_AMP_MUTE); hda_call_check_power_status(codec, nid); snd_hda_power_down(codec); return change; } EXPORT_SYMBOL_HDA(snd_hda_mixer_amp_switch_put); /* * bound volume controls * * bind multiple volumes (# indices, from 0) */ #define AMP_VAL_IDX_SHIFT 19 #define AMP_VAL_IDX_MASK (0x0f<<19) /** * snd_hda_mixer_bind_switch_get - Get callback for a bound volume control * * The control element is supposed to have the private_value field * set up via HDA_BIND_MUTE*() macros. */ int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); unsigned long pval; int err; mutex_lock(&codec->control_mutex); pval = kcontrol->private_value; kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */ err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol); kcontrol->private_value = pval; mutex_unlock(&codec->control_mutex); return err; } EXPORT_SYMBOL_HDA(snd_hda_mixer_bind_switch_get); /** * snd_hda_mixer_bind_switch_put - Put callback for a bound volume control * * The control element is supposed to have the private_value field * set up via HDA_BIND_MUTE*() macros. */ int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); unsigned long pval; int i, indices, err = 0, change = 0; mutex_lock(&codec->control_mutex); pval = kcontrol->private_value; indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT; for (i = 0; i < indices; i++) { kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT); err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol); if (err < 0) break; change |= err; } kcontrol->private_value = pval; mutex_unlock(&codec->control_mutex); return err < 0 ? err : change; } EXPORT_SYMBOL_HDA(snd_hda_mixer_bind_switch_put); /** * snd_hda_mixer_bind_ctls_info - Info callback for a generic bound control * * The control element is supposed to have the private_value field * set up via HDA_BIND_VOL() or HDA_BIND_SW() macros. */ int snd_hda_mixer_bind_ctls_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct hda_bind_ctls *c; int err; mutex_lock(&codec->control_mutex); c = (struct hda_bind_ctls *)kcontrol->private_value; kcontrol->private_value = *c->values; err = c->ops->info(kcontrol, uinfo); kcontrol->private_value = (long)c; mutex_unlock(&codec->control_mutex); return err; } EXPORT_SYMBOL_HDA(snd_hda_mixer_bind_ctls_info); /** * snd_hda_mixer_bind_ctls_get - Get callback for a generic bound control * * The control element is supposed to have the private_value field * set up via HDA_BIND_VOL() or HDA_BIND_SW() macros. */ int snd_hda_mixer_bind_ctls_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct hda_bind_ctls *c; int err; mutex_lock(&codec->control_mutex); c = (struct hda_bind_ctls *)kcontrol->private_value; kcontrol->private_value = *c->values; err = c->ops->get(kcontrol, ucontrol); kcontrol->private_value = (long)c; mutex_unlock(&codec->control_mutex); return err; } EXPORT_SYMBOL_HDA(snd_hda_mixer_bind_ctls_get); /** * snd_hda_mixer_bind_ctls_put - Put callback for a generic bound control * * The control element is supposed to have the private_value field * set up via HDA_BIND_VOL() or HDA_BIND_SW() macros. */ int snd_hda_mixer_bind_ctls_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct hda_bind_ctls *c; unsigned long *vals; int err = 0, change = 0; mutex_lock(&codec->control_mutex); c = (struct hda_bind_ctls *)kcontrol->private_value; for (vals = c->values; *vals; vals++) { kcontrol->private_value = *vals; err = c->ops->put(kcontrol, ucontrol); if (err < 0) break; change |= err; } kcontrol->private_value = (long)c; mutex_unlock(&codec->control_mutex); return err < 0 ? err : change; } EXPORT_SYMBOL_HDA(snd_hda_mixer_bind_ctls_put); /** * snd_hda_mixer_bind_tlv - TLV callback for a generic bound control * * The control element is supposed to have the private_value field * set up via HDA_BIND_VOL() macro. */ int snd_hda_mixer_bind_tlv(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *tlv) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct hda_bind_ctls *c; int err; mutex_lock(&codec->control_mutex); c = (struct hda_bind_ctls *)kcontrol->private_value; kcontrol->private_value = *c->values; err = c->ops->tlv(kcontrol, op_flag, size, tlv); kcontrol->private_value = (long)c; mutex_unlock(&codec->control_mutex); return err; } EXPORT_SYMBOL_HDA(snd_hda_mixer_bind_tlv); struct hda_ctl_ops snd_hda_bind_vol = { .info = snd_hda_mixer_amp_volume_info, .get = snd_hda_mixer_amp_volume_get, .put = snd_hda_mixer_amp_volume_put, .tlv = snd_hda_mixer_amp_tlv }; EXPORT_SYMBOL_HDA(snd_hda_bind_vol); struct hda_ctl_ops snd_hda_bind_sw = { .info = snd_hda_mixer_amp_switch_info, .get = snd_hda_mixer_amp_switch_get, .put = snd_hda_mixer_amp_switch_put, .tlv = snd_hda_mixer_amp_tlv }; EXPORT_SYMBOL_HDA(snd_hda_bind_sw); /* * SPDIF out controls */ static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL | IEC958_AES0_NONAUDIO | IEC958_AES0_CON_EMPHASIS_5015 | IEC958_AES0_CON_NOT_COPYRIGHT; ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL; return 0; } static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL | IEC958_AES0_NONAUDIO | IEC958_AES0_PRO_EMPHASIS_5015; return 0; } static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); int idx = kcontrol->private_value; struct hda_spdif_out *spdif; mutex_lock(&codec->spdif_mutex); spdif = snd_array_elem(&codec->spdif_out, idx); ucontrol->value.iec958.status[0] = spdif->status & 0xff; ucontrol->value.iec958.status[1] = (spdif->status >> 8) & 0xff; ucontrol->value.iec958.status[2] = (spdif->status >> 16) & 0xff; ucontrol->value.iec958.status[3] = (spdif->status >> 24) & 0xff; mutex_unlock(&codec->spdif_mutex); return 0; } /* convert from SPDIF status bits to HDA SPDIF bits * bit 0 (DigEn) is always set zero (to be filled later) */ static unsigned short convert_from_spdif_status(unsigned int sbits) { unsigned short val = 0; if (sbits & IEC958_AES0_PROFESSIONAL) val |= AC_DIG1_PROFESSIONAL; if (sbits & IEC958_AES0_NONAUDIO) val |= AC_DIG1_NONAUDIO; if (sbits & IEC958_AES0_PROFESSIONAL) { if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015) val |= AC_DIG1_EMPHASIS; } else { if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015) val |= AC_DIG1_EMPHASIS; if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT)) val |= AC_DIG1_COPYRIGHT; if (sbits & (IEC958_AES1_CON_ORIGINAL << 8)) val |= AC_DIG1_LEVEL; val |= sbits & (IEC958_AES1_CON_CATEGORY << 8); } return val; } /* convert to SPDIF status bits from HDA SPDIF bits */ static unsigned int convert_to_spdif_status(unsigned short val) { unsigned int sbits = 0; if (val & AC_DIG1_NONAUDIO) sbits |= IEC958_AES0_NONAUDIO; if (val & AC_DIG1_PROFESSIONAL) sbits |= IEC958_AES0_PROFESSIONAL; if (sbits & IEC958_AES0_PROFESSIONAL) { if (val & AC_DIG1_EMPHASIS) sbits |= IEC958_AES0_PRO_EMPHASIS_5015; } else { if (val & AC_DIG1_EMPHASIS) sbits |= IEC958_AES0_CON_EMPHASIS_5015; if (!(val & AC_DIG1_COPYRIGHT)) sbits |= IEC958_AES0_CON_NOT_COPYRIGHT; if (val & AC_DIG1_LEVEL) sbits |= (IEC958_AES1_CON_ORIGINAL << 8); sbits |= val & (0x7f << 8); } return sbits; } /* set digital convert verbs both for the given NID and its slaves */ static void set_dig_out(struct hda_codec *codec, hda_nid_t nid, int verb, int val) { const hda_nid_t *d; snd_hda_codec_write_cache(codec, nid, 0, verb, val); d = codec->slave_dig_outs; if (!d) return; for (; *d; d++) snd_hda_codec_write_cache(codec, *d, 0, verb, val); } static inline void set_dig_out_convert(struct hda_codec *codec, hda_nid_t nid, int dig1, int dig2) { if (dig1 != -1) set_dig_out(codec, nid, AC_VERB_SET_DIGI_CONVERT_1, dig1); if (dig2 != -1) set_dig_out(codec, nid, AC_VERB_SET_DIGI_CONVERT_2, dig2); } static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); int idx = kcontrol->private_value; struct hda_spdif_out *spdif; hda_nid_t nid; unsigned short val; int change; mutex_lock(&codec->spdif_mutex); spdif = snd_array_elem(&codec->spdif_out, idx); nid = spdif->nid; spdif->status = ucontrol->value.iec958.status[0] | ((unsigned int)ucontrol->value.iec958.status[1] << 8) | ((unsigned int)ucontrol->value.iec958.status[2] << 16) | ((unsigned int)ucontrol->value.iec958.status[3] << 24); val = convert_from_spdif_status(spdif->status); val |= spdif->ctls & 1; change = spdif->ctls != val; spdif->ctls = val; if (change && nid != (u16)-1) set_dig_out_convert(codec, nid, val & 0xff, (val >> 8) & 0xff); mutex_unlock(&codec->spdif_mutex); return change; } #define snd_hda_spdif_out_switch_info snd_ctl_boolean_mono_info static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); int idx = kcontrol->private_value; struct hda_spdif_out *spdif; mutex_lock(&codec->spdif_mutex); spdif = snd_array_elem(&codec->spdif_out, idx); ucontrol->value.integer.value[0] = spdif->ctls & AC_DIG1_ENABLE; mutex_unlock(&codec->spdif_mutex); return 0; } static inline void set_spdif_ctls(struct hda_codec *codec, hda_nid_t nid, int dig1, int dig2) { set_dig_out_convert(codec, nid, dig1, dig2); /* unmute amp switch (if any) */ if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) && (dig1 & AC_DIG1_ENABLE)) snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0, HDA_AMP_MUTE, 0); } static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); int idx = kcontrol->private_value; struct hda_spdif_out *spdif; hda_nid_t nid; unsigned short val; int change; mutex_lock(&codec->spdif_mutex); spdif = snd_array_elem(&codec->spdif_out, idx); nid = spdif->nid; val = spdif->ctls & ~AC_DIG1_ENABLE; if (ucontrol->value.integer.value[0]) val |= AC_DIG1_ENABLE; change = spdif->ctls != val; spdif->ctls = val; if (change && nid != (u16)-1) set_spdif_ctls(codec, nid, val & 0xff, -1); mutex_unlock(&codec->spdif_mutex); return change; } static struct snd_kcontrol_new dig_mixes[] = { { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK), .info = snd_hda_spdif_mask_info, .get = snd_hda_spdif_cmask_get, }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK), .info = snd_hda_spdif_mask_info, .get = snd_hda_spdif_pmask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .info = snd_hda_spdif_mask_info, .get = snd_hda_spdif_default_get, .put = snd_hda_spdif_default_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH), .info = snd_hda_spdif_out_switch_info, .get = snd_hda_spdif_out_switch_get, .put = snd_hda_spdif_out_switch_put, }, { } /* end */ }; /** * snd_hda_create_dig_out_ctls - create Output SPDIF-related controls * @codec: the HDA codec * @associated_nid: NID that new ctls associated with * @cvt_nid: converter NID * @type: HDA_PCM_TYPE_* * Creates controls related with the digital output. * Called from each patch supporting the digital out. * * Returns 0 if successful, or a negative error code. */ int snd_hda_create_dig_out_ctls(struct hda_codec *codec, hda_nid_t associated_nid, hda_nid_t cvt_nid, int type) { int err; struct snd_kcontrol *kctl; struct snd_kcontrol_new *dig_mix; int idx = 0; const int spdif_index = 16; struct hda_spdif_out *spdif; struct hda_bus *bus = codec->bus; if (bus->primary_dig_out_type == HDA_PCM_TYPE_HDMI && type == HDA_PCM_TYPE_SPDIF) { idx = spdif_index; } else if (bus->primary_dig_out_type == HDA_PCM_TYPE_SPDIF && type == HDA_PCM_TYPE_HDMI) { /* suppose a single SPDIF device */ for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) { kctl = find_mixer_ctl(codec, dig_mix->name, 0, 0); if (!kctl) break; kctl->id.index = spdif_index; } bus->primary_dig_out_type = HDA_PCM_TYPE_HDMI; } if (!bus->primary_dig_out_type) bus->primary_dig_out_type = type; idx = find_empty_mixer_ctl_idx(codec, "IEC958 Playback Switch", idx); if (idx < 0) { printk(KERN_ERR "hda_codec: too many IEC958 outputs\n"); return -EBUSY; } spdif = snd_array_new(&codec->spdif_out); if (!spdif) return -ENOMEM; for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) { kctl = snd_ctl_new1(dig_mix, codec); if (!kctl) return -ENOMEM; kctl->id.index = idx; kctl->private_value = codec->spdif_out.used - 1; err = snd_hda_ctl_add(codec, associated_nid, kctl); if (err < 0) return err; } spdif->nid = cvt_nid; spdif->ctls = snd_hda_codec_read(codec, cvt_nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0); spdif->status = convert_to_spdif_status(spdif->ctls); return 0; } EXPORT_SYMBOL_HDA(snd_hda_create_dig_out_ctls); /* get the hda_spdif_out entry from the given NID * call within spdif_mutex lock */ struct hda_spdif_out *snd_hda_spdif_out_of_nid(struct hda_codec *codec, hda_nid_t nid) { int i; for (i = 0; i < codec->spdif_out.used; i++) { struct hda_spdif_out *spdif = snd_array_elem(&codec->spdif_out, i); if (spdif->nid == nid) return spdif; } return NULL; } EXPORT_SYMBOL_HDA(snd_hda_spdif_out_of_nid); void snd_hda_spdif_ctls_unassign(struct hda_codec *codec, int idx) { struct hda_spdif_out *spdif; mutex_lock(&codec->spdif_mutex); spdif = snd_array_elem(&codec->spdif_out, idx); spdif->nid = (u16)-1; mutex_unlock(&codec->spdif_mutex); } EXPORT_SYMBOL_HDA(snd_hda_spdif_ctls_unassign); void snd_hda_spdif_ctls_assign(struct hda_codec *codec, int idx, hda_nid_t nid) { struct hda_spdif_out *spdif; unsigned short val; mutex_lock(&codec->spdif_mutex); spdif = snd_array_elem(&codec->spdif_out, idx); if (spdif->nid != nid) { spdif->nid = nid; val = spdif->ctls; set_spdif_ctls(codec, nid, val & 0xff, (val >> 8) & 0xff); } mutex_unlock(&codec->spdif_mutex); } EXPORT_SYMBOL_HDA(snd_hda_spdif_ctls_assign); /* * SPDIF sharing with analog output */ static int spdif_share_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_multi_out *mout = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = mout->share_spdif; return 0; } static int spdif_share_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_multi_out *mout = snd_kcontrol_chip(kcontrol); mout->share_spdif = !!ucontrol->value.integer.value[0]; return 0; } static struct snd_kcontrol_new spdif_share_sw = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "IEC958 Default PCM Playback Switch", .info = snd_ctl_boolean_mono_info, .get = spdif_share_sw_get, .put = spdif_share_sw_put, }; /** * snd_hda_create_spdif_share_sw - create Default PCM switch * @codec: the HDA codec * @mout: multi-out instance */ int snd_hda_create_spdif_share_sw(struct hda_codec *codec, struct hda_multi_out *mout) { struct snd_kcontrol *kctl; if (!mout->dig_out_nid) return 0; kctl = snd_ctl_new1(&spdif_share_sw, mout); if (!kctl) return -ENOMEM; /* ATTENTION: here mout is passed as private_data, instead of codec */ return snd_hda_ctl_add(codec, mout->dig_out_nid, kctl); } EXPORT_SYMBOL_HDA(snd_hda_create_spdif_share_sw); /* * SPDIF input */ #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = codec->spdif_in_enable; return 0; } static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = kcontrol->private_value; unsigned int val = !!ucontrol->value.integer.value[0]; int change; mutex_lock(&codec->spdif_mutex); change = codec->spdif_in_enable != val; if (change) { codec->spdif_in_enable = val; snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val); } mutex_unlock(&codec->spdif_mutex); return change; } static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = kcontrol->private_value; unsigned short val; unsigned int sbits; val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0); sbits = convert_to_spdif_status(val); ucontrol->value.iec958.status[0] = sbits; ucontrol->value.iec958.status[1] = sbits >> 8; ucontrol->value.iec958.status[2] = sbits >> 16; ucontrol->value.iec958.status[3] = sbits >> 24; return 0; } static struct snd_kcontrol_new dig_in_ctls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, SWITCH), .info = snd_hda_spdif_in_switch_info, .get = snd_hda_spdif_in_switch_get, .put = snd_hda_spdif_in_switch_put, }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), .info = snd_hda_spdif_mask_info, .get = snd_hda_spdif_in_status_get, }, { } /* end */ }; /** * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls * @codec: the HDA codec * @nid: audio in widget NID * * Creates controls related with the SPDIF input. * Called from each patch supporting the SPDIF in. * * Returns 0 if successful, or a negative error code. */ int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid) { int err; struct snd_kcontrol *kctl; struct snd_kcontrol_new *dig_mix; int idx; idx = find_empty_mixer_ctl_idx(codec, "IEC958 Capture Switch", 0); if (idx < 0) { printk(KERN_ERR "hda_codec: too many IEC958 inputs\n"); return -EBUSY; } for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) { kctl = snd_ctl_new1(dig_mix, codec); if (!kctl) return -ENOMEM; kctl->private_value = nid; err = snd_hda_ctl_add(codec, nid, kctl); if (err < 0) return err; } codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0) & AC_DIG1_ENABLE; return 0; } EXPORT_SYMBOL_HDA(snd_hda_create_spdif_in_ctls); /* * command cache */ /* build a 31bit cache key with the widget id and the command parameter */ #define build_cmd_cache_key(nid, verb) ((verb << 8) | nid) #define get_cmd_cache_nid(key) ((key) & 0xff) #define get_cmd_cache_cmd(key) (((key) >> 8) & 0xffff) /** * snd_hda_codec_write_cache - send a single command with caching * @codec: the HDA codec * @nid: NID to send the command * @flags: optional bit flags * @verb: the verb to send * @parm: the parameter for the verb * * Send a single command without waiting for response. * * Returns 0 if successful, or a negative error code. */ int snd_hda_codec_write_cache(struct hda_codec *codec, hda_nid_t nid, int flags, unsigned int verb, unsigned int parm) { int err; struct hda_cache_head *c; u32 key; unsigned int cache_only; cache_only = codec->cached_write; if (!cache_only) { err = snd_hda_codec_write(codec, nid, flags, verb, parm); if (err < 0) return err; } /* parm may contain the verb stuff for get/set amp */ verb = verb | (parm >> 8); parm &= 0xff; key = build_cmd_cache_key(nid, verb); mutex_lock(&codec->bus->cmd_mutex); c = get_alloc_hash(&codec->cmd_cache, key); if (c) { c->val = parm; c->dirty = cache_only; } mutex_unlock(&codec->bus->cmd_mutex); return 0; } EXPORT_SYMBOL_HDA(snd_hda_codec_write_cache); /** * snd_hda_codec_update_cache - check cache and write the cmd only when needed * @codec: the HDA codec * @nid: NID to send the command * @flags: optional bit flags * @verb: the verb to send * @parm: the parameter for the verb * * This function works like snd_hda_codec_write_cache(), but it doesn't send * command if the parameter is already identical with the cached value. * If not, it sends the command and refreshes the cache. * * Returns 0 if successful, or a negative error code. */ int snd_hda_codec_update_cache(struct hda_codec *codec, hda_nid_t nid, int flags, unsigned int verb, unsigned int parm) { struct hda_cache_head *c; u32 key; /* parm may contain the verb stuff for get/set amp */ verb = verb | (parm >> 8); parm &= 0xff; key = build_cmd_cache_key(nid, verb); mutex_lock(&codec->bus->cmd_mutex); c = get_hash(&codec->cmd_cache, key); if (c && c->val == parm) { mutex_unlock(&codec->bus->cmd_mutex); return 0; } mutex_unlock(&codec->bus->cmd_mutex); return snd_hda_codec_write_cache(codec, nid, flags, verb, parm); } EXPORT_SYMBOL_HDA(snd_hda_codec_update_cache); /** * snd_hda_codec_resume_cache - Resume the all commands from the cache * @codec: HD-audio codec * * Execute all verbs recorded in the command caches to resume. */ void snd_hda_codec_resume_cache(struct hda_codec *codec) { int i; mutex_lock(&codec->hash_mutex); codec->cached_write = 0; for (i = 0; i < codec->cmd_cache.buf.used; i++) { struct hda_cache_head *buffer; u32 key; buffer = snd_array_elem(&codec->cmd_cache.buf, i); key = buffer->key; if (!key) continue; if (!buffer->dirty) continue; buffer->dirty = 0; mutex_unlock(&codec->hash_mutex); snd_hda_codec_write(codec, get_cmd_cache_nid(key), 0, get_cmd_cache_cmd(key), buffer->val); mutex_lock(&codec->hash_mutex); } mutex_unlock(&codec->hash_mutex); } EXPORT_SYMBOL_HDA(snd_hda_codec_resume_cache); /** * snd_hda_sequence_write_cache - sequence writes with caching * @codec: the HDA codec * @seq: VERB array to send * * Send the commands sequentially from the given array. * Thte commands are recorded on cache for power-save and resume. * The array must be terminated with NID=0. */ void snd_hda_sequence_write_cache(struct hda_codec *codec, const struct hda_verb *seq) { for (; seq->nid; seq++) snd_hda_codec_write_cache(codec, seq->nid, 0, seq->verb, seq->param); } EXPORT_SYMBOL_HDA(snd_hda_sequence_write_cache); /** * snd_hda_codec_flush_cache - Execute all pending (cached) amps / verbs * @codec: HD-audio codec */ void snd_hda_codec_flush_cache(struct hda_codec *codec) { snd_hda_codec_resume_amp(codec); snd_hda_codec_resume_cache(codec); } EXPORT_SYMBOL_HDA(snd_hda_codec_flush_cache); void snd_hda_codec_set_power_to_all(struct hda_codec *codec, hda_nid_t fg, unsigned int power_state) { hda_nid_t nid = codec->start_nid; int i; for (i = 0; i < codec->num_nodes; i++, nid++) { unsigned int wcaps = get_wcaps(codec, nid); unsigned int state = power_state; if (!(wcaps & AC_WCAP_POWER)) continue; if (codec->power_filter) { state = codec->power_filter(codec, nid, power_state); if (state != power_state && power_state == AC_PWRST_D3) continue; } snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_POWER_STATE, state); } } EXPORT_SYMBOL_HDA(snd_hda_codec_set_power_to_all); /* * supported power states check */ static bool snd_hda_codec_get_supported_ps(struct hda_codec *codec, hda_nid_t fg, unsigned int power_state) { int sup = snd_hda_param_read(codec, fg, AC_PAR_POWER_STATE); if (sup == -1) return false; if (sup & power_state) return true; else return false; } /* * wait until the state is reached, returns the current state */ static unsigned int hda_sync_power_state(struct hda_codec *codec, hda_nid_t fg, unsigned int power_state) { unsigned long end_time = jiffies + msecs_to_jiffies(500); unsigned int state, actual_state; for (;;) { state = snd_hda_codec_read(codec, fg, 0, AC_VERB_GET_POWER_STATE, 0); if (state & AC_PWRST_ERROR) break; actual_state = (state >> 4) & 0x0f; if (actual_state == power_state) break; if (time_after_eq(jiffies, end_time)) break; /* wait until the codec reachs to the target state */ msleep(1); } return state; } /* don't power down the widget if it controls eapd and EAPD_BTLENABLE is set */ unsigned int snd_hda_codec_eapd_power_filter(struct hda_codec *codec, hda_nid_t nid, unsigned int power_state) { if (power_state == AC_PWRST_D3 && get_wcaps_type(get_wcaps(codec, nid)) == AC_WID_PIN && (snd_hda_query_pin_caps(codec, nid) & AC_PINCAP_EAPD)) { int eapd = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_EAPD_BTLENABLE, 0); if (eapd & 0x02) return AC_PWRST_D0; } return power_state; } EXPORT_SYMBOL_HDA(snd_hda_codec_eapd_power_filter); /* * set power state of the codec, and return the power state */ static unsigned int hda_set_power_state(struct hda_codec *codec, unsigned int power_state) { hda_nid_t fg = codec->afg ? codec->afg : codec->mfg; int count; unsigned int state; int flags = 0; /* this delay seems necessary to avoid click noise at power-down */ if (power_state == AC_PWRST_D3) { /* transition time less than 10ms for power down */ msleep(codec->epss ? 10 : 100); flags = HDA_RW_NO_RESPONSE_FALLBACK; } /* repeat power states setting at most 10 times*/ for (count = 0; count < 10; count++) { if (codec->patch_ops.set_power_state) codec->patch_ops.set_power_state(codec, fg, power_state); else { snd_hda_codec_read(codec, fg, flags, AC_VERB_SET_POWER_STATE, power_state); snd_hda_codec_set_power_to_all(codec, fg, power_state); } state = hda_sync_power_state(codec, fg, power_state); if (!(state & AC_PWRST_ERROR)) break; } return state; } /* sync power states of all widgets; * this is called at the end of codec parsing */ static void sync_power_up_states(struct hda_codec *codec) { hda_nid_t nid = codec->start_nid; int i; /* don't care if no filter is used */ if (!codec->power_filter) return; for (i = 0; i < codec->num_nodes; i++, nid++) { unsigned int wcaps = get_wcaps(codec, nid); unsigned int target; if (!(wcaps & AC_WCAP_POWER)) continue; target = codec->power_filter(codec, nid, AC_PWRST_D0); if (target == AC_PWRST_D0) continue; if (!snd_hda_check_power_state(codec, nid, target)) snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_POWER_STATE, target); } } #ifdef CONFIG_SND_HDA_HWDEP /* execute additional init verbs */ static void hda_exec_init_verbs(struct hda_codec *codec) { if (codec->init_verbs.list) snd_hda_sequence_write(codec, codec->init_verbs.list); } #else static inline void hda_exec_init_verbs(struct hda_codec *codec) {} #endif #ifdef CONFIG_PM /* * call suspend and power-down; used both from PM and power-save * this function returns the power state in the end */ static unsigned int hda_call_codec_suspend(struct hda_codec *codec, bool in_wq) { unsigned int state; codec->in_pm = 1; if (codec->patch_ops.suspend) codec->patch_ops.suspend(codec); hda_cleanup_all_streams(codec); state = hda_set_power_state(codec, AC_PWRST_D3); /* Cancel delayed work if we aren't currently running from it. */ if (!in_wq) cancel_delayed_work_sync(&codec->power_work); spin_lock(&codec->power_lock); snd_hda_update_power_acct(codec); trace_hda_power_down(codec); codec->power_on = 0; codec->power_transition = 0; codec->power_jiffies = jiffies; spin_unlock(&codec->power_lock); codec->in_pm = 0; return state; } /* mark all entries of cmd and amp caches dirty */ static void hda_mark_cmd_cache_dirty(struct hda_codec *codec) { int i; for (i = 0; i < codec->cmd_cache.buf.used; i++) { struct hda_cache_head *cmd; cmd = snd_array_elem(&codec->cmd_cache.buf, i); cmd->dirty = 1; } for (i = 0; i < codec->amp_cache.buf.used; i++) { struct hda_amp_info *amp; amp = snd_array_elem(&codec->amp_cache.buf, i); amp->head.dirty = 1; } } /* * kick up codec; used both from PM and power-save */ static void hda_call_codec_resume(struct hda_codec *codec) { codec->in_pm = 1; hda_mark_cmd_cache_dirty(codec); /* set as if powered on for avoiding re-entering the resume * in the resume / power-save sequence */ hda_keep_power_on(codec); hda_set_power_state(codec, AC_PWRST_D0); restore_shutup_pins(codec); hda_exec_init_verbs(codec); snd_hda_jack_set_dirty_all(codec); if (codec->patch_ops.resume) codec->patch_ops.resume(codec); else { if (codec->patch_ops.init) codec->patch_ops.init(codec); snd_hda_codec_resume_amp(codec); snd_hda_codec_resume_cache(codec); } if (codec->jackpoll_interval) hda_jackpoll_work(&codec->jackpoll_work.work); else snd_hda_jack_report_sync(codec); codec->in_pm = 0; snd_hda_power_down(codec); /* flag down before returning */ } #endif /* CONFIG_PM */ /** * snd_hda_build_controls - build mixer controls * @bus: the BUS * * Creates mixer controls for each codec included in the bus. * * Returns 0 if successful, otherwise a negative error code. */ int snd_hda_build_controls(struct hda_bus *bus) { struct hda_codec *codec; list_for_each_entry(codec, &bus->codec_list, list) { int err = snd_hda_codec_build_controls(codec); if (err < 0) { printk(KERN_ERR "hda_codec: cannot build controls " "for #%d (error %d)\n", codec->addr, err); err = snd_hda_codec_reset(codec); if (err < 0) { printk(KERN_ERR "hda_codec: cannot revert codec\n"); return err; } } } return 0; } EXPORT_SYMBOL_HDA(snd_hda_build_controls); /* * add standard channel maps if not specified */ static int add_std_chmaps(struct hda_codec *codec) { int i, str, err; for (i = 0; i < codec->num_pcms; i++) { for (str = 0; str < 2; str++) { struct snd_pcm *pcm = codec->pcm_info[i].pcm; struct hda_pcm_stream *hinfo = &codec->pcm_info[i].stream[str]; struct snd_pcm_chmap *chmap; const struct snd_pcm_chmap_elem *elem; if (codec->pcm_info[i].own_chmap) continue; if (!pcm || !hinfo->substreams) continue; elem = hinfo->chmap ? hinfo->chmap : snd_pcm_std_chmaps; err = snd_pcm_add_chmap_ctls(pcm, str, elem, hinfo->channels_max, 0, &chmap); if (err < 0) return err; chmap->channel_mask = SND_PCM_CHMAP_MASK_2468; } } return 0; } /* default channel maps for 2.1 speakers; * since HD-audio supports only stereo, odd number channels are omitted */ const struct snd_pcm_chmap_elem snd_pcm_2_1_chmaps[] = { { .channels = 2, .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, { .channels = 4, .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, SNDRV_CHMAP_LFE, SNDRV_CHMAP_LFE } }, { } }; EXPORT_SYMBOL_GPL(snd_pcm_2_1_chmaps); int snd_hda_codec_build_controls(struct hda_codec *codec) { int err = 0; hda_exec_init_verbs(codec); /* continue to initialize... */ if (codec->patch_ops.init) err = codec->patch_ops.init(codec); if (!err && codec->patch_ops.build_controls) err = codec->patch_ops.build_controls(codec); if (err < 0) return err; /* we create chmaps here instead of build_pcms */ err = add_std_chmaps(codec); if (err < 0) return err; if (codec->jackpoll_interval) hda_jackpoll_work(&codec->jackpoll_work.work); else snd_hda_jack_report_sync(codec); /* call at the last init point */ sync_power_up_states(codec); return 0; } /* * stream formats */ struct hda_rate_tbl { unsigned int hz; unsigned int alsa_bits; unsigned int hda_fmt; }; /* rate = base * mult / div */ #define HDA_RATE(base, mult, div) \ (AC_FMT_BASE_##base##K | (((mult) - 1) << AC_FMT_MULT_SHIFT) | \ (((div) - 1) << AC_FMT_DIV_SHIFT)) static struct hda_rate_tbl rate_bits[] = { /* rate in Hz, ALSA rate bitmask, HDA format value */ /* autodetected value used in snd_hda_query_supported_pcm */ { 8000, SNDRV_PCM_RATE_8000, HDA_RATE(48, 1, 6) }, { 11025, SNDRV_PCM_RATE_11025, HDA_RATE(44, 1, 4) }, { 16000, SNDRV_PCM_RATE_16000, HDA_RATE(48, 1, 3) }, { 22050, SNDRV_PCM_RATE_22050, HDA_RATE(44, 1, 2) }, { 32000, SNDRV_PCM_RATE_32000, HDA_RATE(48, 2, 3) }, { 44100, SNDRV_PCM_RATE_44100, HDA_RATE(44, 1, 1) }, { 48000, SNDRV_PCM_RATE_48000, HDA_RATE(48, 1, 1) }, { 88200, SNDRV_PCM_RATE_88200, HDA_RATE(44, 2, 1) }, { 96000, SNDRV_PCM_RATE_96000, HDA_RATE(48, 2, 1) }, { 176400, SNDRV_PCM_RATE_176400, HDA_RATE(44, 4, 1) }, { 192000, SNDRV_PCM_RATE_192000, HDA_RATE(48, 4, 1) }, #define AC_PAR_PCM_RATE_BITS 11 /* up to bits 10, 384kHZ isn't supported properly */ /* not autodetected value */ { 9600, SNDRV_PCM_RATE_KNOT, HDA_RATE(48, 1, 5) }, { 0 } /* terminator */ }; /** * snd_hda_calc_stream_format - calculate format bitset * @rate: the sample rate * @channels: the number of channels * @format: the PCM format (SNDRV_PCM_FORMAT_XXX) * @maxbps: the max. bps * * Calculate the format bitset from the given rate, channels and th PCM format. * * Return zero if invalid. */ unsigned int snd_hda_calc_stream_format(unsigned int rate, unsigned int channels, unsigned int format, unsigned int maxbps, unsigned short spdif_ctls) { int i; unsigned int val = 0; for (i = 0; rate_bits[i].hz; i++) if (rate_bits[i].hz == rate) { val = rate_bits[i].hda_fmt; break; } if (!rate_bits[i].hz) { snd_printdd("invalid rate %d\n", rate); return 0; } if (channels == 0 || channels > 8) { snd_printdd("invalid channels %d\n", channels); return 0; } val |= channels - 1; switch (snd_pcm_format_width(format)) { case 8: val |= AC_FMT_BITS_8; break; case 16: val |= AC_FMT_BITS_16; break; case 20: case 24: case 32: if (maxbps >= 32 || format == SNDRV_PCM_FORMAT_FLOAT_LE) val |= AC_FMT_BITS_32; else if (maxbps >= 24) val |= AC_FMT_BITS_24; else val |= AC_FMT_BITS_20; break; default: snd_printdd("invalid format width %d\n", snd_pcm_format_width(format)); return 0; } if (spdif_ctls & AC_DIG1_NONAUDIO) val |= AC_FMT_TYPE_NON_PCM; return val; } EXPORT_SYMBOL_HDA(snd_hda_calc_stream_format); static unsigned int get_pcm_param(struct hda_codec *codec, hda_nid_t nid, int dir) { unsigned int val = 0; if (nid != codec->afg && (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) val = snd_hda_param_read(codec, nid, AC_PAR_PCM); if (!val || val == -1) val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM); if (!val || val == -1) return 0; return val; } static unsigned int query_pcm_param(struct hda_codec *codec, hda_nid_t nid) { return query_caps_hash(codec, nid, 0, HDA_HASH_PARPCM_KEY(nid), get_pcm_param); } static unsigned int get_stream_param(struct hda_codec *codec, hda_nid_t nid, int dir) { unsigned int streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM); if (!streams || streams == -1) streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM); if (!streams || streams == -1) return 0; return streams; } static unsigned int query_stream_param(struct hda_codec *codec, hda_nid_t nid) { return query_caps_hash(codec, nid, 0, HDA_HASH_PARSTR_KEY(nid), get_stream_param); } /** * snd_hda_query_supported_pcm - query the supported PCM rates and formats * @codec: the HDA codec * @nid: NID to query * @ratesp: the pointer to store the detected rate bitflags * @formatsp: the pointer to store the detected formats * @bpsp: the pointer to store the detected format widths * * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp * or @bsps argument is ignored. * * Returns 0 if successful, otherwise a negative error code. */ int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid, u32 *ratesp, u64 *formatsp, unsigned int *bpsp) { unsigned int i, val, wcaps; wcaps = get_wcaps(codec, nid); val = query_pcm_param(codec, nid); if (ratesp) { u32 rates = 0; for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) { if (val & (1 << i)) rates |= rate_bits[i].alsa_bits; } if (rates == 0) { snd_printk(KERN_ERR "hda_codec: rates == 0 " "(nid=0x%x, val=0x%x, ovrd=%i)\n", nid, val, (wcaps & AC_WCAP_FORMAT_OVRD) ? 1 : 0); return -EIO; } *ratesp = rates; } if (formatsp || bpsp) { u64 formats = 0; unsigned int streams, bps; streams = query_stream_param(codec, nid); if (!streams) return -EIO; bps = 0; if (streams & AC_SUPFMT_PCM) { if (val & AC_SUPPCM_BITS_8) { formats |= SNDRV_PCM_FMTBIT_U8; bps = 8; } if (val & AC_SUPPCM_BITS_16) { formats |= SNDRV_PCM_FMTBIT_S16_LE; bps = 16; } if (wcaps & AC_WCAP_DIGITAL) { if (val & AC_SUPPCM_BITS_32) formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE; if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24)) formats |= SNDRV_PCM_FMTBIT_S32_LE; if (val & AC_SUPPCM_BITS_24) bps = 24; else if (val & AC_SUPPCM_BITS_20) bps = 20; } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24| AC_SUPPCM_BITS_32)) { formats |= SNDRV_PCM_FMTBIT_S32_LE; if (val & AC_SUPPCM_BITS_32) bps = 32; else if (val & AC_SUPPCM_BITS_24) bps = 24; else if (val & AC_SUPPCM_BITS_20) bps = 20; } } #if 0 /* FIXME: CS4206 doesn't work, which is the only codec supporting float */ if (streams & AC_SUPFMT_FLOAT32) { formats |= SNDRV_PCM_FMTBIT_FLOAT_LE; if (!bps) bps = 32; } #endif if (streams == AC_SUPFMT_AC3) { /* should be exclusive */ /* temporary hack: we have still no proper support * for the direct AC3 stream... */ formats |= SNDRV_PCM_FMTBIT_U8; bps = 8; } if (formats == 0) { snd_printk(KERN_ERR "hda_codec: formats == 0 " "(nid=0x%x, val=0x%x, ovrd=%i, " "streams=0x%x)\n", nid, val, (wcaps & AC_WCAP_FORMAT_OVRD) ? 1 : 0, streams); return -EIO; } if (formatsp) *formatsp = formats; if (bpsp) *bpsp = bps; } return 0; } EXPORT_SYMBOL_HDA(snd_hda_query_supported_pcm); /** * snd_hda_is_supported_format - Check the validity of the format * @codec: HD-audio codec * @nid: NID to check * @format: the HD-audio format value to check * * Check whether the given node supports the format value. * * Returns 1 if supported, 0 if not. */ int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid, unsigned int format) { int i; unsigned int val = 0, rate, stream; val = query_pcm_param(codec, nid); if (!val) return 0; rate = format & 0xff00; for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) if (rate_bits[i].hda_fmt == rate) { if (val & (1 << i)) break; return 0; } if (i >= AC_PAR_PCM_RATE_BITS) return 0; stream = query_stream_param(codec, nid); if (!stream) return 0; if (stream & AC_SUPFMT_PCM) { switch (format & 0xf0) { case 0x00: if (!(val & AC_SUPPCM_BITS_8)) return 0; break; case 0x10: if (!(val & AC_SUPPCM_BITS_16)) return 0; break; case 0x20: if (!(val & AC_SUPPCM_BITS_20)) return 0; break; case 0x30: if (!(val & AC_SUPPCM_BITS_24)) return 0; break; case 0x40: if (!(val & AC_SUPPCM_BITS_32)) return 0; break; default: return 0; } } else { /* FIXME: check for float32 and AC3? */ } return 1; } EXPORT_SYMBOL_HDA(snd_hda_is_supported_format); /* * PCM stuff */ static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { return 0; } static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo, struct hda_codec *codec, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format); return 0; } static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { snd_hda_codec_cleanup_stream(codec, hinfo->nid); return 0; } static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info) { int err; /* query support PCM information from the given NID */ if (info->nid && (!info->rates || !info->formats)) { err = snd_hda_query_supported_pcm(codec, info->nid, info->rates ? NULL : &info->rates, info->formats ? NULL : &info->formats, info->maxbps ? NULL : &info->maxbps); if (err < 0) return err; } if (info->ops.open == NULL) info->ops.open = hda_pcm_default_open_close; if (info->ops.close == NULL) info->ops.close = hda_pcm_default_open_close; if (info->ops.prepare == NULL) { if (snd_BUG_ON(!info->nid)) return -EINVAL; info->ops.prepare = hda_pcm_default_prepare; } if (info->ops.cleanup == NULL) { if (snd_BUG_ON(!info->nid)) return -EINVAL; info->ops.cleanup = hda_pcm_default_cleanup; } return 0; } /* * codec prepare/cleanup entries */ int snd_hda_codec_prepare(struct hda_codec *codec, struct hda_pcm_stream *hinfo, unsigned int stream, unsigned int format, struct snd_pcm_substream *substream) { int ret; mutex_lock(&codec->bus->prepare_mutex); ret = hinfo->ops.prepare(hinfo, codec, stream, format, substream); if (ret >= 0) purify_inactive_streams(codec); mutex_unlock(&codec->bus->prepare_mutex); return ret; } EXPORT_SYMBOL_HDA(snd_hda_codec_prepare); void snd_hda_codec_cleanup(struct hda_codec *codec, struct hda_pcm_stream *hinfo, struct snd_pcm_substream *substream) { mutex_lock(&codec->bus->prepare_mutex); hinfo->ops.cleanup(hinfo, codec, substream); mutex_unlock(&codec->bus->prepare_mutex); } EXPORT_SYMBOL_HDA(snd_hda_codec_cleanup); /* global */ const char *snd_hda_pcm_type_name[HDA_PCM_NTYPES] = { "Audio", "SPDIF", "HDMI", "Modem" }; /* * get the empty PCM device number to assign */ static int get_empty_pcm_device(struct hda_bus *bus, unsigned int type) { /* audio device indices; not linear to keep compatibility */ /* assigned to static slots up to dev#10; if more needed, assign * the later slot dynamically (when CONFIG_SND_DYNAMIC_MINORS=y) */ static int audio_idx[HDA_PCM_NTYPES][5] = { [HDA_PCM_TYPE_AUDIO] = { 0, 2, 4, 5, -1 }, [HDA_PCM_TYPE_SPDIF] = { 1, -1 }, [HDA_PCM_TYPE_HDMI] = { 3, 7, 8, 9, -1 }, [HDA_PCM_TYPE_MODEM] = { 6, -1 }, }; int i; if (type >= HDA_PCM_NTYPES) { snd_printk(KERN_WARNING "Invalid PCM type %d\n", type); return -EINVAL; } for (i = 0; audio_idx[type][i] >= 0; i++) { #ifndef CONFIG_SND_DYNAMIC_MINORS if (audio_idx[type][i] >= 8) break; #endif if (!test_and_set_bit(audio_idx[type][i], bus->pcm_dev_bits)) return audio_idx[type][i]; } #ifdef CONFIG_SND_DYNAMIC_MINORS /* non-fixed slots starting from 10 */ for (i = 10; i < 32; i++) { if (!test_and_set_bit(i, bus->pcm_dev_bits)) return i; } #endif snd_printk(KERN_WARNING "Too many %s devices\n", snd_hda_pcm_type_name[type]); #ifndef CONFIG_SND_DYNAMIC_MINORS snd_printk(KERN_WARNING "Consider building the kernel with CONFIG_SND_DYNAMIC_MINORS=y\n"); #endif return -EAGAIN; } /* * attach a new PCM stream */ static int snd_hda_attach_pcm(struct hda_codec *codec, struct hda_pcm *pcm) { struct hda_bus *bus = codec->bus; struct hda_pcm_stream *info; int stream, err; if (snd_BUG_ON(!pcm->name)) return -EINVAL; for (stream = 0; stream < 2; stream++) { info = &pcm->stream[stream]; if (info->substreams) { err = set_pcm_default_values(codec, info); if (err < 0) return err; } } return bus->ops.attach_pcm(bus, codec, pcm); } /* assign all PCMs of the given codec */ int snd_hda_codec_build_pcms(struct hda_codec *codec) { unsigned int pcm; int err; if (!codec->num_pcms) { if (!codec->patch_ops.build_pcms) return 0; err = codec->patch_ops.build_pcms(codec); if (err < 0) { printk(KERN_ERR "hda_codec: cannot build PCMs" "for #%d (error %d)\n", codec->addr, err); err = snd_hda_codec_reset(codec); if (err < 0) { printk(KERN_ERR "hda_codec: cannot revert codec\n"); return err; } } } for (pcm = 0; pcm < codec->num_pcms; pcm++) { struct hda_pcm *cpcm = &codec->pcm_info[pcm]; int dev; if (!cpcm->stream[0].substreams && !cpcm->stream[1].substreams) continue; /* no substreams assigned */ if (!cpcm->pcm) { dev = get_empty_pcm_device(codec->bus, cpcm->pcm_type); if (dev < 0) continue; /* no fatal error */ cpcm->device = dev; err = snd_hda_attach_pcm(codec, cpcm); if (err < 0) { printk(KERN_ERR "hda_codec: cannot attach " "PCM stream %d for codec #%d\n", dev, codec->addr); continue; /* no fatal error */ } } } return 0; } /** * snd_hda_build_pcms - build PCM information * @bus: the BUS * * Create PCM information for each codec included in the bus. * * The build_pcms codec patch is requested to set up codec->num_pcms and * codec->pcm_info properly. The array is referred by the top-level driver * to create its PCM instances. * The allocated codec->pcm_info should be released in codec->patch_ops.free * callback. * * At least, substreams, channels_min and channels_max must be filled for * each stream. substreams = 0 indicates that the stream doesn't exist. * When rates and/or formats are zero, the supported values are queried * from the given nid. The nid is used also by the default ops.prepare * and ops.cleanup callbacks. * * The driver needs to call ops.open in its open callback. Similarly, * ops.close is supposed to be called in the close callback. * ops.prepare should be called in the prepare or hw_params callback * with the proper parameters for set up. * ops.cleanup should be called in hw_free for clean up of streams. * * This function returns 0 if successful, or a negative error code. */ int snd_hda_build_pcms(struct hda_bus *bus) { struct hda_codec *codec; list_for_each_entry(codec, &bus->codec_list, list) { int err = snd_hda_codec_build_pcms(codec); if (err < 0) return err; } return 0; } EXPORT_SYMBOL_HDA(snd_hda_build_pcms); /** * snd_hda_check_board_config - compare the current codec with the config table * @codec: the HDA codec * @num_configs: number of config enums * @models: array of model name strings * @tbl: configuration table, terminated by null entries * * Compares the modelname or PCI subsystem id of the current codec with the * given configuration table. If a matching entry is found, returns its * config value (supposed to be 0 or positive). * * If no entries are matching, the function returns a negative value. */ int snd_hda_check_board_config(struct hda_codec *codec, int num_configs, const char * const *models, const struct snd_pci_quirk *tbl) { if (codec->modelname && models) { int i; for (i = 0; i < num_configs; i++) { if (models[i] && !strcmp(codec->modelname, models[i])) { snd_printd(KERN_INFO "hda_codec: model '%s' is " "selected\n", models[i]); return i; } } } if (!codec->bus->pci || !tbl) return -1; tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl); if (!tbl) return -1; if (tbl->value >= 0 && tbl->value < num_configs) { #ifdef CONFIG_SND_DEBUG_VERBOSE char tmp[10]; const char *model = NULL; if (models) model = models[tbl->value]; if (!model) { sprintf(tmp, "#%d", tbl->value); model = tmp; } snd_printdd(KERN_INFO "hda_codec: model '%s' is selected " "for config %x:%x (%s)\n", model, tbl->subvendor, tbl->subdevice, (tbl->name ? tbl->name : "Unknown device")); #endif return tbl->value; } return -1; } EXPORT_SYMBOL_HDA(snd_hda_check_board_config); /** * snd_hda_check_board_codec_sid_config - compare the current codec subsystem ID with the config table This is important for Gateway notebooks with SB450 HDA Audio where the vendor ID of the PCI device is: ATI Technologies Inc SB450 HDA Audio [1002:437b] and the vendor/subvendor are found only at the codec. * @codec: the HDA codec * @num_configs: number of config enums * @models: array of model name strings * @tbl: configuration table, terminated by null entries * * Compares the modelname or PCI subsystem id of the current codec with the * given configuration table. If a matching entry is found, returns its * config value (supposed to be 0 or positive). * * If no entries are matching, the function returns a negative value. */ int snd_hda_check_board_codec_sid_config(struct hda_codec *codec, int num_configs, const char * const *models, const struct snd_pci_quirk *tbl) { const struct snd_pci_quirk *q; /* Search for codec ID */ for (q = tbl; q->subvendor; q++) { unsigned int mask = 0xffff0000 | q->subdevice_mask; unsigned int id = (q->subdevice | (q->subvendor << 16)) & mask; if ((codec->subsystem_id & mask) == id) break; } if (!q->subvendor) return -1; tbl = q; if (tbl->value >= 0 && tbl->value < num_configs) { #ifdef CONFIG_SND_DEBUG_VERBOSE char tmp[10]; const char *model = NULL; if (models) model = models[tbl->value]; if (!model) { sprintf(tmp, "#%d", tbl->value); model = tmp; } snd_printdd(KERN_INFO "hda_codec: model '%s' is selected " "for config %x:%x (%s)\n", model, tbl->subvendor, tbl->subdevice, (tbl->name ? tbl->name : "Unknown device")); #endif return tbl->value; } return -1; } EXPORT_SYMBOL_HDA(snd_hda_check_board_codec_sid_config); /** * snd_hda_add_new_ctls - create controls from the array * @codec: the HDA codec * @knew: the array of struct snd_kcontrol_new * * This helper function creates and add new controls in the given array. * The array must be terminated with an empty entry as terminator. * * Returns 0 if successful, or a negative error code. */ int snd_hda_add_new_ctls(struct hda_codec *codec, const struct snd_kcontrol_new *knew) { int err; for (; knew->name; knew++) { struct snd_kcontrol *kctl; int addr = 0, idx = 0; if (knew->iface == -1) /* skip this codec private value */ continue; for (;;) { kctl = snd_ctl_new1(knew, codec); if (!kctl) return -ENOMEM; if (addr > 0) kctl->id.device = addr; if (idx > 0) kctl->id.index = idx; err = snd_hda_ctl_add(codec, 0, kctl); if (!err) break; /* try first with another device index corresponding to * the codec addr; if it still fails (or it's the * primary codec), then try another control index */ if (!addr && codec->addr) addr = codec->addr; else if (!idx && !knew->index) { idx = find_empty_mixer_ctl_idx(codec, knew->name, 0); if (idx <= 0) return err; } else return err; } } return 0; } EXPORT_SYMBOL_HDA(snd_hda_add_new_ctls); #ifdef CONFIG_PM static void hda_power_work(struct work_struct *work) { struct hda_codec *codec = container_of(work, struct hda_codec, power_work.work); struct hda_bus *bus = codec->bus; unsigned int state; spin_lock(&codec->power_lock); if (codec->power_transition > 0) { /* during power-up sequence? */ spin_unlock(&codec->power_lock); return; } if (!codec->power_on || codec->power_count) { codec->power_transition = 0; spin_unlock(&codec->power_lock); return; } spin_unlock(&codec->power_lock); state = hda_call_codec_suspend(codec, true); if (!bus->power_keep_link_on && (state & AC_PWRST_CLK_STOP_OK)) hda_call_pm_notify(codec, false); } static void hda_keep_power_on(struct hda_codec *codec) { spin_lock(&codec->power_lock); codec->power_count++; codec->power_on = 1; codec->power_jiffies = jiffies; spin_unlock(&codec->power_lock); hda_call_pm_notify(codec, true); } /* update the power on/off account with the current jiffies */ void snd_hda_update_power_acct(struct hda_codec *codec) { unsigned long delta = jiffies - codec->power_jiffies; if (codec->power_on) codec->power_on_acct += delta; else codec->power_off_acct += delta; codec->power_jiffies += delta; } /* Transition to powered up, if wait_power_down then wait for a pending * transition to D3 to complete. A pending D3 transition is indicated * with power_transition == -1. */ /* call this with codec->power_lock held! */ static void __snd_hda_power_up(struct hda_codec *codec, bool wait_power_down) { /* Return if power_on or transitioning to power_on, unless currently * powering down. */ if ((codec->power_on || codec->power_transition > 0) && !(wait_power_down && codec->power_transition < 0)) return; spin_unlock(&codec->power_lock); cancel_delayed_work_sync(&codec->power_work); spin_lock(&codec->power_lock); /* If the power down delayed work was cancelled above before starting, * then there is no need to go through power up here. */ if (codec->power_on) { if (codec->power_transition < 0) codec->power_transition = 0; return; } trace_hda_power_up(codec); snd_hda_update_power_acct(codec); codec->power_on = 1; codec->power_jiffies = jiffies; codec->power_transition = 1; /* avoid reentrance */ spin_unlock(&codec->power_lock); hda_call_codec_resume(codec); spin_lock(&codec->power_lock); codec->power_transition = 0; } #define power_save(codec) \ ((codec)->bus->power_save ? *(codec)->bus->power_save : 0) /* Transition to powered down */ static void __snd_hda_power_down(struct hda_codec *codec) { if (!codec->power_on || codec->power_count || codec->power_transition) return; if (power_save(codec)) { codec->power_transition = -1; /* avoid reentrance */ queue_delayed_work(codec->bus->workq, &codec->power_work, msecs_to_jiffies(power_save(codec) * 1000)); } } /** * snd_hda_power_save - Power-up/down/sync the codec * @codec: HD-audio codec * @delta: the counter delta to change * * Change the power-up counter via @delta, and power up or down the hardware * appropriately. For the power-down, queue to the delayed action. * Passing zero to @delta means to synchronize the power state. */ void snd_hda_power_save(struct hda_codec *codec, int delta, bool d3wait) { spin_lock(&codec->power_lock); codec->power_count += delta; trace_hda_power_count(codec); if (delta > 0) __snd_hda_power_up(codec, d3wait); else __snd_hda_power_down(codec); spin_unlock(&codec->power_lock); } EXPORT_SYMBOL_HDA(snd_hda_power_save); /** * snd_hda_check_amp_list_power - Check the amp list and update the power * @codec: HD-audio codec * @check: the object containing an AMP list and the status * @nid: NID to check / update * * Check whether the given NID is in the amp list. If it's in the list, * check the current AMP status, and update the the power-status according * to the mute status. * * This function is supposed to be set or called from the check_power_status * patch ops. */ int snd_hda_check_amp_list_power(struct hda_codec *codec, struct hda_loopback_check *check, hda_nid_t nid) { const struct hda_amp_list *p; int ch, v; if (!check->amplist) return 0; for (p = check->amplist; p->nid; p++) { if (p->nid == nid) break; } if (!p->nid) return 0; /* nothing changed */ for (p = check->amplist; p->nid; p++) { for (ch = 0; ch < 2; ch++) { v = snd_hda_codec_amp_read(codec, p->nid, ch, p->dir, p->idx); if (!(v & HDA_AMP_MUTE) && v > 0) { if (!check->power_on) { check->power_on = 1; snd_hda_power_up(codec); } return 1; } } } if (check->power_on) { check->power_on = 0; snd_hda_power_down(codec); } return 0; } EXPORT_SYMBOL_HDA(snd_hda_check_amp_list_power); static void hda_suspend_work(struct work_struct *work) { struct hda_codec *codec = container_of(work, struct hda_codec, suspend_work); hda_call_codec_suspend(codec, false); } static void hda_resume_work(struct work_struct *work) { struct hda_codec *codec = container_of(work, struct hda_codec, resume_work); hda_call_codec_resume(codec); } #endif /* * Channel mode helper */ /** * snd_hda_ch_mode_info - Info callback helper for the channel mode enum */ int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo, const struct hda_channel_mode *chmode, int num_chmodes) { uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = num_chmodes; if (uinfo->value.enumerated.item >= num_chmodes) uinfo->value.enumerated.item = num_chmodes - 1; sprintf(uinfo->value.enumerated.name, "%dch", chmode[uinfo->value.enumerated.item].channels); return 0; } EXPORT_SYMBOL_HDA(snd_hda_ch_mode_info); /** * snd_hda_ch_mode_get - Get callback helper for the channel mode enum */ int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol, const struct hda_channel_mode *chmode, int num_chmodes, int max_channels) { int i; for (i = 0; i < num_chmodes; i++) { if (max_channels == chmode[i].channels) { ucontrol->value.enumerated.item[0] = i; break; } } return 0; } EXPORT_SYMBOL_HDA(snd_hda_ch_mode_get); /** * snd_hda_ch_mode_put - Put callback helper for the channel mode enum */ int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol, const struct hda_channel_mode *chmode, int num_chmodes, int *max_channelsp) { unsigned int mode; mode = ucontrol->value.enumerated.item[0]; if (mode >= num_chmodes) return -EINVAL; if (*max_channelsp == chmode[mode].channels) return 0; /* change the current channel setting */ *max_channelsp = chmode[mode].channels; if (chmode[mode].sequence) snd_hda_sequence_write_cache(codec, chmode[mode].sequence); return 1; } EXPORT_SYMBOL_HDA(snd_hda_ch_mode_put); /* * input MUX helper */ /** * snd_hda_input_mux_info_info - Info callback helper for the input-mux enum */ int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo) { unsigned int index; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = imux->num_items; if (!imux->num_items) return 0; index = uinfo->value.enumerated.item; if (index >= imux->num_items) index = imux->num_items - 1; strcpy(uinfo->value.enumerated.name, imux->items[index].label); return 0; } EXPORT_SYMBOL_HDA(snd_hda_input_mux_info); /** * snd_hda_input_mux_info_put - Put callback helper for the input-mux enum */ int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux, struct snd_ctl_elem_value *ucontrol, hda_nid_t nid, unsigned int *cur_val) { unsigned int idx; if (!imux->num_items) return 0; idx = ucontrol->value.enumerated.item[0]; if (idx >= imux->num_items) idx = imux->num_items - 1; if (*cur_val == idx) return 0; snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_CONNECT_SEL, imux->items[idx].index); *cur_val = idx; return 1; } EXPORT_SYMBOL_HDA(snd_hda_input_mux_put); /* * process kcontrol info callback of a simple string enum array * when @num_items is 0 or @texts is NULL, assume a boolean enum array */ int snd_hda_enum_helper_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo, int num_items, const char * const *texts) { static const char * const texts_default[] = { "Disabled", "Enabled" }; if (!texts || !num_items) { num_items = 2; texts = texts_default; } uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = num_items; if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } EXPORT_SYMBOL_HDA(snd_hda_enum_helper_info); /* * Multi-channel / digital-out PCM helper functions */ /* setup SPDIF output stream */ static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid, unsigned int stream_tag, unsigned int format) { struct hda_spdif_out *spdif; unsigned int curr_fmt; bool reset; spdif = snd_hda_spdif_out_of_nid(codec, nid); curr_fmt = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_STREAM_FORMAT, 0); reset = codec->spdif_status_reset && (spdif->ctls & AC_DIG1_ENABLE) && curr_fmt != format; /* turn off SPDIF if needed; otherwise the IEC958 bits won't be updated */ if (reset) set_dig_out_convert(codec, nid, spdif->ctls & ~AC_DIG1_ENABLE & 0xff, -1); snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format); if (codec->slave_dig_outs) { const hda_nid_t *d; for (d = codec->slave_dig_outs; *d; d++) snd_hda_codec_setup_stream(codec, *d, stream_tag, 0, format); } /* turn on again (if needed) */ if (reset) set_dig_out_convert(codec, nid, spdif->ctls & 0xff, -1); } static void cleanup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid) { snd_hda_codec_cleanup_stream(codec, nid); if (codec->slave_dig_outs) { const hda_nid_t *d; for (d = codec->slave_dig_outs; *d; d++) snd_hda_codec_cleanup_stream(codec, *d); } } /** * snd_hda_bus_reboot_notify - call the reboot notifier of each codec * @bus: HD-audio bus */ void snd_hda_bus_reboot_notify(struct hda_bus *bus) { struct hda_codec *codec; if (!bus) return; list_for_each_entry(codec, &bus->codec_list, list) { if (hda_codec_is_power_on(codec) && codec->patch_ops.reboot_notify) codec->patch_ops.reboot_notify(codec); } } EXPORT_SYMBOL_HDA(snd_hda_bus_reboot_notify); /** * snd_hda_multi_out_dig_open - open the digital out in the exclusive mode */ int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout) { mutex_lock(&codec->spdif_mutex); if (mout->dig_out_used == HDA_DIG_ANALOG_DUP) /* already opened as analog dup; reset it once */ cleanup_dig_out_stream(codec, mout->dig_out_nid); mout->dig_out_used = HDA_DIG_EXCLUSIVE; mutex_unlock(&codec->spdif_mutex); return 0; } EXPORT_SYMBOL_HDA(snd_hda_multi_out_dig_open); /** * snd_hda_multi_out_dig_prepare - prepare the digital out stream */ int snd_hda_multi_out_dig_prepare(struct hda_codec *codec, struct hda_multi_out *mout, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { mutex_lock(&codec->spdif_mutex); setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format); mutex_unlock(&codec->spdif_mutex); return 0; } EXPORT_SYMBOL_HDA(snd_hda_multi_out_dig_prepare); /** * snd_hda_multi_out_dig_cleanup - clean-up the digital out stream */ int snd_hda_multi_out_dig_cleanup(struct hda_codec *codec, struct hda_multi_out *mout) { mutex_lock(&codec->spdif_mutex); cleanup_dig_out_stream(codec, mout->dig_out_nid); mutex_unlock(&codec->spdif_mutex); return 0; } EXPORT_SYMBOL_HDA(snd_hda_multi_out_dig_cleanup); /** * snd_hda_multi_out_dig_close - release the digital out stream */ int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout) { mutex_lock(&codec->spdif_mutex); mout->dig_out_used = 0; mutex_unlock(&codec->spdif_mutex); return 0; } EXPORT_SYMBOL_HDA(snd_hda_multi_out_dig_close); /** * snd_hda_multi_out_analog_open - open analog outputs * * Open analog outputs and set up the hw-constraints. * If the digital outputs can be opened as slave, open the digital * outputs, too. */ int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout, struct snd_pcm_substream *substream, struct hda_pcm_stream *hinfo) { struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw.channels_max = mout->max_channels; if (mout->dig_out_nid) { if (!mout->analog_rates) { mout->analog_rates = hinfo->rates; mout->analog_formats = hinfo->formats; mout->analog_maxbps = hinfo->maxbps; } else { runtime->hw.rates = mout->analog_rates; runtime->hw.formats = mout->analog_formats; hinfo->maxbps = mout->analog_maxbps; } if (!mout->spdif_rates) { snd_hda_query_supported_pcm(codec, mout->dig_out_nid, &mout->spdif_rates, &mout->spdif_formats, &mout->spdif_maxbps); } mutex_lock(&codec->spdif_mutex); if (mout->share_spdif) { if ((runtime->hw.rates & mout->spdif_rates) && (runtime->hw.formats & mout->spdif_formats)) { runtime->hw.rates &= mout->spdif_rates; runtime->hw.formats &= mout->spdif_formats; if (mout->spdif_maxbps < hinfo->maxbps) hinfo->maxbps = mout->spdif_maxbps; } else { mout->share_spdif = 0; /* FIXME: need notify? */ } } mutex_unlock(&codec->spdif_mutex); } return snd_pcm_hw_constraint_step(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 2); } EXPORT_SYMBOL_HDA(snd_hda_multi_out_analog_open); /** * snd_hda_multi_out_analog_prepare - Preapre the analog outputs. * * Set up the i/o for analog out. * When the digital out is available, copy the front out to digital out, too. */ int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { const hda_nid_t *nids = mout->dac_nids; int chs = substream->runtime->channels; struct hda_spdif_out *spdif; int i; mutex_lock(&codec->spdif_mutex); spdif = snd_hda_spdif_out_of_nid(codec, mout->dig_out_nid); if (mout->dig_out_nid && mout->share_spdif && mout->dig_out_used != HDA_DIG_EXCLUSIVE) { if (chs == 2 && snd_hda_is_supported_format(codec, mout->dig_out_nid, format) && !(spdif->status & IEC958_AES0_NONAUDIO)) { mout->dig_out_used = HDA_DIG_ANALOG_DUP; setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format); } else { mout->dig_out_used = 0; cleanup_dig_out_stream(codec, mout->dig_out_nid); } } mutex_unlock(&codec->spdif_mutex); /* front */ snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format); if (!mout->no_share_stream && mout->hp_nid && mout->hp_nid != nids[HDA_FRONT]) /* headphone out will just decode front left/right (stereo) */ snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format); /* extra outputs copied from front */ for (i = 0; i < ARRAY_SIZE(mout->hp_out_nid); i++) if (!mout->no_share_stream && mout->hp_out_nid[i]) snd_hda_codec_setup_stream(codec, mout->hp_out_nid[i], stream_tag, 0, format); /* surrounds */ for (i = 1; i < mout->num_dacs; i++) { if (chs >= (i + 1) * 2) /* independent out */ snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2, format); else if (!mout->no_share_stream) /* copy front */ snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0, format); } /* extra surrounds */ for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++) { int ch = 0; if (!mout->extra_out_nid[i]) break; if (chs >= (i + 1) * 2) ch = i * 2; else if (!mout->no_share_stream) break; snd_hda_codec_setup_stream(codec, mout->extra_out_nid[i], stream_tag, ch, format); } return 0; } EXPORT_SYMBOL_HDA(snd_hda_multi_out_analog_prepare); /** * snd_hda_multi_out_analog_cleanup - clean up the setting for analog out */ int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout) { const hda_nid_t *nids = mout->dac_nids; int i; for (i = 0; i < mout->num_dacs; i++) snd_hda_codec_cleanup_stream(codec, nids[i]); if (mout->hp_nid) snd_hda_codec_cleanup_stream(codec, mout->hp_nid); for (i = 0; i < ARRAY_SIZE(mout->hp_out_nid); i++) if (mout->hp_out_nid[i]) snd_hda_codec_cleanup_stream(codec, mout->hp_out_nid[i]); for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++) if (mout->extra_out_nid[i]) snd_hda_codec_cleanup_stream(codec, mout->extra_out_nid[i]); mutex_lock(&codec->spdif_mutex); if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) { cleanup_dig_out_stream(codec, mout->dig_out_nid); mout->dig_out_used = 0; } mutex_unlock(&codec->spdif_mutex); return 0; } EXPORT_SYMBOL_HDA(snd_hda_multi_out_analog_cleanup); /** * snd_hda_get_default_vref - Get the default (mic) VREF pin bits * * Guess the suitable VREF pin bits to be set as the pin-control value. * Note: the function doesn't set the AC_PINCTL_IN_EN bit. */ unsigned int snd_hda_get_default_vref(struct hda_codec *codec, hda_nid_t pin) { unsigned int pincap; unsigned int oldval; oldval = snd_hda_codec_read(codec, pin, 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0); pincap = snd_hda_query_pin_caps(codec, pin); pincap = (pincap & AC_PINCAP_VREF) >> AC_PINCAP_VREF_SHIFT; /* Exception: if the default pin setup is vref50, we give it priority */ if ((pincap & AC_PINCAP_VREF_80) && oldval != PIN_VREF50) return AC_PINCTL_VREF_80; else if (pincap & AC_PINCAP_VREF_50) return AC_PINCTL_VREF_50; else if (pincap & AC_PINCAP_VREF_100) return AC_PINCTL_VREF_100; else if (pincap & AC_PINCAP_VREF_GRD) return AC_PINCTL_VREF_GRD; return AC_PINCTL_VREF_HIZ; } EXPORT_SYMBOL_HDA(snd_hda_get_default_vref); /* correct the pin ctl value for matching with the pin cap */ unsigned int snd_hda_correct_pin_ctl(struct hda_codec *codec, hda_nid_t pin, unsigned int val) { static unsigned int cap_lists[][2] = { { AC_PINCTL_VREF_100, AC_PINCAP_VREF_100 }, { AC_PINCTL_VREF_80, AC_PINCAP_VREF_80 }, { AC_PINCTL_VREF_50, AC_PINCAP_VREF_50 }, { AC_PINCTL_VREF_GRD, AC_PINCAP_VREF_GRD }, }; unsigned int cap; if (!val) return 0; cap = snd_hda_query_pin_caps(codec, pin); if (!cap) return val; /* don't know what to do... */ if (val & AC_PINCTL_OUT_EN) { if (!(cap & AC_PINCAP_OUT)) val &= ~(AC_PINCTL_OUT_EN | AC_PINCTL_HP_EN); else if ((val & AC_PINCTL_HP_EN) && !(cap & AC_PINCAP_HP_DRV)) val &= ~AC_PINCTL_HP_EN; } if (val & AC_PINCTL_IN_EN) { if (!(cap & AC_PINCAP_IN)) val &= ~(AC_PINCTL_IN_EN | AC_PINCTL_VREFEN); else { unsigned int vcap, vref; int i; vcap = (cap & AC_PINCAP_VREF) >> AC_PINCAP_VREF_SHIFT; vref = val & AC_PINCTL_VREFEN; for (i = 0; i < ARRAY_SIZE(cap_lists); i++) { if (vref == cap_lists[i][0] && !(vcap & cap_lists[i][1])) { if (i == ARRAY_SIZE(cap_lists) - 1) vref = AC_PINCTL_VREF_HIZ; else vref = cap_lists[i + 1][0]; } } val &= ~AC_PINCTL_VREFEN; val |= vref; } } return val; } EXPORT_SYMBOL_HDA(snd_hda_correct_pin_ctl); int _snd_hda_set_pin_ctl(struct hda_codec *codec, hda_nid_t pin, unsigned int val, bool cached) { val = snd_hda_correct_pin_ctl(codec, pin, val); snd_hda_codec_set_pin_target(codec, pin, val); if (cached) return snd_hda_codec_update_cache(codec, pin, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, val); else return snd_hda_codec_write(codec, pin, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, val); } EXPORT_SYMBOL_HDA(_snd_hda_set_pin_ctl); /** * snd_hda_add_imux_item - Add an item to input_mux * * When the same label is used already in the existing items, the number * suffix is appended to the label. This label index number is stored * to type_idx when non-NULL pointer is given. */ int snd_hda_add_imux_item(struct hda_input_mux *imux, const char *label, int index, int *type_idx) { int i, label_idx = 0; if (imux->num_items >= HDA_MAX_NUM_INPUTS) { snd_printd(KERN_ERR "hda_codec: Too many imux items!\n"); return -EINVAL; } for (i = 0; i < imux->num_items; i++) { if (!strncmp(label, imux->items[i].label, strlen(label))) label_idx++; } if (type_idx) *type_idx = label_idx; if (label_idx > 0) snprintf(imux->items[imux->num_items].label, sizeof(imux->items[imux->num_items].label), "%s %d", label, label_idx); else strlcpy(imux->items[imux->num_items].label, label, sizeof(imux->items[imux->num_items].label)); imux->items[imux->num_items].index = index; imux->num_items++; return 0; } EXPORT_SYMBOL_HDA(snd_hda_add_imux_item); #ifdef CONFIG_PM /* * power management */ /** * snd_hda_suspend - suspend the codecs * @bus: the HDA bus * * Returns 0 if successful. */ int snd_hda_suspend(struct hda_bus *bus) { struct hda_codec *codec; list_for_each_entry(codec, &bus->codec_list, list) { cancel_delayed_work_sync(&codec->jackpoll_work); if (hda_codec_is_power_on(codec)) { if (bus->num_codecs > 1) queue_work(bus->pm_wq, &codec->suspend_work); else hda_call_codec_suspend(codec, false); } } if (bus->num_codecs > 1) flush_workqueue(bus->pm_wq); return 0; } EXPORT_SYMBOL_HDA(snd_hda_suspend); /** * snd_hda_resume - resume the codecs * @bus: the HDA bus * * Returns 0 if successful. */ int snd_hda_resume(struct hda_bus *bus) { struct hda_codec *codec; list_for_each_entry(codec, &bus->codec_list, list) { if (bus->num_codecs > 1) queue_work(bus->pm_wq, &codec->resume_work); else hda_call_codec_resume(codec); } if (bus->num_codecs > 1) flush_workqueue(bus->pm_wq); return 0; } EXPORT_SYMBOL_HDA(snd_hda_resume); #endif /* CONFIG_PM */ /* * generic arrays */ /** * snd_array_new - get a new element from the given array * @array: the array object * * Get a new element from the given array. If it exceeds the * pre-allocated array size, re-allocate the array. * * Returns NULL if allocation failed. */ void *snd_array_new(struct snd_array *array) { if (snd_BUG_ON(!array->elem_size)) return NULL; if (array->used >= array->alloced) { int num = array->alloced + array->alloc_align; int size = (num + 1) * array->elem_size; void *nlist; if (snd_BUG_ON(num >= 4096)) return NULL; nlist = krealloc(array->list, size, GFP_KERNEL | __GFP_ZERO); if (!nlist) return NULL; array->list = nlist; array->alloced = num; } return snd_array_elem(array, array->used++); } EXPORT_SYMBOL_HDA(snd_array_new); /** * snd_array_free - free the given array elements * @array: the array object */ void snd_array_free(struct snd_array *array) { kfree(array->list); array->used = 0; array->alloced = 0; array->list = NULL; } EXPORT_SYMBOL_HDA(snd_array_free); /** * snd_print_pcm_bits - Print the supported PCM fmt bits to the string buffer * @pcm: PCM caps bits * @buf: the string buffer to write * @buflen: the max buffer length * * used by hda_proc.c and hda_eld.c */ void snd_print_pcm_bits(int pcm, char *buf, int buflen) { static unsigned int bits[] = { 8, 16, 20, 24, 32 }; int i, j; for (i = 0, j = 0; i < ARRAY_SIZE(bits); i++) if (pcm & (AC_SUPPCM_BITS_8 << i)) j += snprintf(buf + j, buflen - j, " %d", bits[i]); buf[j] = '\0'; /* necessary when j == 0 */ } EXPORT_SYMBOL_HDA(snd_print_pcm_bits); MODULE_DESCRIPTION("HDA codec core"); MODULE_LICENSE("GPL");