/* * card-als4000.c - driver for Avance Logic ALS4000 based soundcards. * Copyright (C) 2000 by Bart Hartgers <bart@etpmod.phys.tue.nl>, * Jaroslav Kysela <perex@suse.cz> * Copyright (C) 2002 by Andreas Mohr <hw7oshyuv3001@sneakemail.com> * * Framework borrowed from Massimo Piccioni's card-als100.c. * * NOTES * * Since Avance does not provide any meaningful documentation, and I * bought an ALS4000 based soundcard, I was forced to base this driver * on reverse engineering. * * Note: this is no longer true. Pretty verbose chip docu (ALS4000a.PDF) * can be found on the ALSA web site. * * The ALS4000 seems to be the PCI-cousin of the ALS100. It contains an * ALS100-like SB DSP/mixer, an OPL3 synth, a MPU401 and a gameport * interface. These subsystems can be mapped into ISA io-port space, * using the PCI-interface. In addition, the PCI-bit provides DMA and IRQ * services to the subsystems. * * While ALS4000 is very similar to a SoundBlaster, the differences in * DMA and capturing require more changes to the SoundBlaster than * desirable, so I made this separate driver. * * The ALS4000 can do real full duplex playback/capture. * * FMDAC: * - 0x4f -> port 0x14 * - port 0x15 |= 1 * * Enable/disable 3D sound: * - 0x50 -> port 0x14 * - change bit 6 (0x40) of port 0x15 * * Set QSound: * - 0xdb -> port 0x14 * - set port 0x15: * 0x3e (mode 3), 0x3c (mode 2), 0x3a (mode 1), 0x38 (mode 0) * * Set KSound: * - value -> some port 0x0c0d * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <sound/driver.h> #include <asm/io.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/gameport.h> #include <linux/moduleparam.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/rawmidi.h> #include <sound/mpu401.h> #include <sound/opl3.h> #include <sound/sb.h> #include <sound/initval.h> MODULE_AUTHOR("Bart Hartgers <bart@etpmod.phys.tue.nl>"); MODULE_DESCRIPTION("Avance Logic ALS4000"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{Avance Logic,ALS4000}}"); #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE)) #define SUPPORT_JOYSTICK 1 #endif static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ #ifdef SUPPORT_JOYSTICK static int joystick_port[SNDRV_CARDS]; #endif module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for ALS4000 soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for ALS4000 soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable ALS4000 soundcard."); #ifdef SUPPORT_JOYSTICK module_param_array(joystick_port, int, NULL, 0444); MODULE_PARM_DESC(joystick_port, "Joystick port address for ALS4000 soundcard. (0 = disabled)"); #endif typedef struct { struct pci_dev *pci; unsigned long gcr; #ifdef SUPPORT_JOYSTICK struct gameport *gameport; #endif } snd_card_als4000_t; static struct pci_device_id snd_als4000_ids[] = { { 0x4005, 0x4000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* ALS4000 */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_als4000_ids); static inline void snd_als4000_gcr_write_addr(unsigned long port, u32 reg, u32 val) { outb(reg, port+0x0c); outl(val, port+0x08); } static inline void snd_als4000_gcr_write(sb_t *sb, u32 reg, u32 val) { snd_als4000_gcr_write_addr(sb->alt_port, reg, val); } static inline u32 snd_als4000_gcr_read_addr(unsigned long port, u32 reg) { outb(reg, port+0x0c); return inl(port+0x08); } static inline u32 snd_als4000_gcr_read(sb_t *sb, u32 reg) { return snd_als4000_gcr_read_addr(sb->alt_port, reg); } static void snd_als4000_set_rate(sb_t *chip, unsigned int rate) { if (!(chip->mode & SB_RATE_LOCK)) { snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE_OUT); snd_sbdsp_command(chip, rate>>8); snd_sbdsp_command(chip, rate); } } static void snd_als4000_set_capture_dma(sb_t *chip, dma_addr_t addr, unsigned size) { snd_als4000_gcr_write(chip, 0xa2, addr); snd_als4000_gcr_write(chip, 0xa3, (size-1)); } static void snd_als4000_set_playback_dma(sb_t *chip, dma_addr_t addr, unsigned size) { snd_als4000_gcr_write(chip, 0x91, addr); snd_als4000_gcr_write(chip, 0x92, (size-1)|0x180000); } #define ALS4000_FORMAT_SIGNED (1<<0) #define ALS4000_FORMAT_16BIT (1<<1) #define ALS4000_FORMAT_STEREO (1<<2) static int snd_als4000_get_format(snd_pcm_runtime_t *runtime) { int result; result = 0; if (snd_pcm_format_signed(runtime->format)) result |= ALS4000_FORMAT_SIGNED; if (snd_pcm_format_physical_width(runtime->format) == 16) result |= ALS4000_FORMAT_16BIT; if (runtime->channels > 1) result |= ALS4000_FORMAT_STEREO; return result; } /* structure for setting up playback */ static struct { unsigned char dsp_cmd, dma_on, dma_off, format; } playback_cmd_vals[]={ /* ALS4000_FORMAT_U8_MONO */ { SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_UNS_MONO }, /* ALS4000_FORMAT_S8_MONO */ { SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_SIGN_MONO }, /* ALS4000_FORMAT_U16L_MONO */ { SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_UNS_MONO }, /* ALS4000_FORMAT_S16L_MONO */ { SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_SIGN_MONO }, /* ALS4000_FORMAT_U8_STEREO */ { SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_UNS_STEREO }, /* ALS4000_FORMAT_S8_STEREO */ { SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_SIGN_STEREO }, /* ALS4000_FORMAT_U16L_STEREO */ { SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_UNS_STEREO }, /* ALS4000_FORMAT_S16L_STEREO */ { SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_SIGN_STEREO }, }; #define playback_cmd(chip) (playback_cmd_vals[(chip)->playback_format]) /* structure for setting up capture */ enum { CMD_WIDTH8=0x04, CMD_SIGNED=0x10, CMD_MONO=0x80, CMD_STEREO=0xA0 }; static unsigned char capture_cmd_vals[]= { CMD_WIDTH8|CMD_MONO, /* ALS4000_FORMAT_U8_MONO */ CMD_WIDTH8|CMD_SIGNED|CMD_MONO, /* ALS4000_FORMAT_S8_MONO */ CMD_MONO, /* ALS4000_FORMAT_U16L_MONO */ CMD_SIGNED|CMD_MONO, /* ALS4000_FORMAT_S16L_MONO */ CMD_WIDTH8|CMD_STEREO, /* ALS4000_FORMAT_U8_STEREO */ CMD_WIDTH8|CMD_SIGNED|CMD_STEREO, /* ALS4000_FORMAT_S8_STEREO */ CMD_STEREO, /* ALS4000_FORMAT_U16L_STEREO */ CMD_SIGNED|CMD_STEREO, /* ALS4000_FORMAT_S16L_STEREO */ }; #define capture_cmd(chip) (capture_cmd_vals[(chip)->capture_format]) static int snd_als4000_hw_params(snd_pcm_substream_t * substream, snd_pcm_hw_params_t * hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int snd_als4000_hw_free(snd_pcm_substream_t * substream) { snd_pcm_lib_free_pages(substream); return 0; } static int snd_als4000_capture_prepare(snd_pcm_substream_t * substream) { unsigned long flags; sb_t *chip = snd_pcm_substream_chip(substream); snd_pcm_runtime_t *runtime = substream->runtime; unsigned long size; unsigned count; chip->capture_format = snd_als4000_get_format(runtime); size = snd_pcm_lib_buffer_bytes(substream); count = snd_pcm_lib_period_bytes(substream); if (chip->capture_format & ALS4000_FORMAT_16BIT) count >>=1; count--; spin_lock_irqsave(&chip->reg_lock, flags); snd_als4000_set_rate(chip, runtime->rate); snd_als4000_set_capture_dma(chip, runtime->dma_addr, size); spin_unlock_irqrestore(&chip->reg_lock, flags); spin_lock_irqsave(&chip->mixer_lock, flags ); snd_sbmixer_write(chip, 0xdc, count); snd_sbmixer_write(chip, 0xdd, count>>8); spin_unlock_irqrestore(&chip->mixer_lock, flags ); return 0; } static int snd_als4000_playback_prepare(snd_pcm_substream_t *substream) { unsigned long flags; sb_t *chip = snd_pcm_substream_chip(substream); snd_pcm_runtime_t *runtime = substream->runtime; unsigned long size; unsigned count; chip->playback_format = snd_als4000_get_format(runtime); size = snd_pcm_lib_buffer_bytes(substream); count = snd_pcm_lib_period_bytes(substream); if (chip->playback_format & ALS4000_FORMAT_16BIT) count >>=1; count--; /* FIXME: from second playback on, there's a lot more clicks and pops * involved here than on first playback. Fiddling with * tons of different settings didn't help (DMA, speaker on/off, * reordering, ...). Something seems to get enabled on playback * that I haven't found out how to disable again, which then causes * the switching pops to reach the speakers the next time here. */ spin_lock_irqsave(&chip->reg_lock, flags); snd_als4000_set_rate(chip, runtime->rate); snd_als4000_set_playback_dma(chip, runtime->dma_addr, size); /* SPEAKER_ON not needed, since dma_on seems to also enable speaker */ /* snd_sbdsp_command(chip, SB_DSP_SPEAKER_ON); */ snd_sbdsp_command(chip, playback_cmd(chip).dsp_cmd); snd_sbdsp_command(chip, playback_cmd(chip).format); snd_sbdsp_command(chip, count); snd_sbdsp_command(chip, count>>8); snd_sbdsp_command(chip, playback_cmd(chip).dma_off); spin_unlock_irqrestore(&chip->reg_lock, flags); return 0; } static int snd_als4000_capture_trigger(snd_pcm_substream_t * substream, int cmd) { sb_t *chip = snd_pcm_substream_chip(substream); int result = 0; spin_lock(&chip->mixer_lock); if (cmd == SNDRV_PCM_TRIGGER_START) { chip->mode |= SB_RATE_LOCK_CAPTURE; snd_sbmixer_write(chip, 0xde, capture_cmd(chip)); } else if (cmd == SNDRV_PCM_TRIGGER_STOP) { chip->mode &= ~SB_RATE_LOCK_CAPTURE; snd_sbmixer_write(chip, 0xde, 0); } else { result = -EINVAL; } spin_unlock(&chip->mixer_lock); return result; } static int snd_als4000_playback_trigger(snd_pcm_substream_t * substream, int cmd) { sb_t *chip = snd_pcm_substream_chip(substream); int result = 0; spin_lock(&chip->reg_lock); if (cmd == SNDRV_PCM_TRIGGER_START) { chip->mode |= SB_RATE_LOCK_PLAYBACK; snd_sbdsp_command(chip, playback_cmd(chip).dma_on); } else if (cmd == SNDRV_PCM_TRIGGER_STOP) { snd_sbdsp_command(chip, playback_cmd(chip).dma_off); chip->mode &= ~SB_RATE_LOCK_PLAYBACK; } else { result = -EINVAL; } spin_unlock(&chip->reg_lock); return result; } static snd_pcm_uframes_t snd_als4000_capture_pointer(snd_pcm_substream_t * substream) { sb_t *chip = snd_pcm_substream_chip(substream); unsigned int result; spin_lock(&chip->reg_lock); result = snd_als4000_gcr_read(chip, 0xa4) & 0xffff; spin_unlock(&chip->reg_lock); return bytes_to_frames( substream->runtime, result ); } static snd_pcm_uframes_t snd_als4000_playback_pointer(snd_pcm_substream_t * substream) { sb_t *chip = snd_pcm_substream_chip(substream); unsigned result; spin_lock(&chip->reg_lock); result = snd_als4000_gcr_read(chip, 0xa0) & 0xffff; spin_unlock(&chip->reg_lock); return bytes_to_frames( substream->runtime, result ); } static irqreturn_t snd_als4000_interrupt(int irq, void *dev_id, struct pt_regs *regs) { sb_t *chip = dev_id; unsigned gcr_status; unsigned sb_status; /* find out which bit of the ALS4000 produced the interrupt */ gcr_status = inb(chip->alt_port + 0xe); if ((gcr_status & 0x80) && (chip->playback_substream)) /* playback */ snd_pcm_period_elapsed(chip->playback_substream); if ((gcr_status & 0x40) && (chip->capture_substream)) /* capturing */ snd_pcm_period_elapsed(chip->capture_substream); if ((gcr_status & 0x10) && (chip->rmidi)) /* MPU401 interrupt */ snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data, regs); /* release the gcr */ outb(gcr_status, chip->alt_port + 0xe); spin_lock(&chip->mixer_lock); sb_status = snd_sbmixer_read(chip, SB_DSP4_IRQSTATUS); spin_unlock(&chip->mixer_lock); if (sb_status & SB_IRQTYPE_8BIT) snd_sb_ack_8bit(chip); if (sb_status & SB_IRQTYPE_16BIT) snd_sb_ack_16bit(chip); if (sb_status & SB_IRQTYPE_MPUIN) inb(chip->mpu_port); if (sb_status & 0x20) inb(SBP(chip, RESET)); return IRQ_HANDLED; } /*****************************************************************/ static snd_pcm_hardware_t snd_als4000_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE, /* formats */ .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = 65536, .period_bytes_min = 64, .period_bytes_max = 65536, .periods_min = 1, .periods_max = 1024, .fifo_size = 0 }; static snd_pcm_hardware_t snd_als4000_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE, /* formats */ .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = 65536, .period_bytes_min = 64, .period_bytes_max = 65536, .periods_min = 1, .periods_max = 1024, .fifo_size = 0 }; /*****************************************************************/ static int snd_als4000_playback_open(snd_pcm_substream_t * substream) { sb_t *chip = snd_pcm_substream_chip(substream); snd_pcm_runtime_t *runtime = substream->runtime; chip->playback_substream = substream; runtime->hw = snd_als4000_playback; return 0; } static int snd_als4000_playback_close(snd_pcm_substream_t * substream) { sb_t *chip = snd_pcm_substream_chip(substream); chip->playback_substream = NULL; snd_pcm_lib_free_pages(substream); return 0; } static int snd_als4000_capture_open(snd_pcm_substream_t * substream) { sb_t *chip = snd_pcm_substream_chip(substream); snd_pcm_runtime_t *runtime = substream->runtime; chip->capture_substream = substream; runtime->hw = snd_als4000_capture; return 0; } static int snd_als4000_capture_close(snd_pcm_substream_t * substream) { sb_t *chip = snd_pcm_substream_chip(substream); chip->capture_substream = NULL; snd_pcm_lib_free_pages(substream); return 0; } /******************************************************************/ static snd_pcm_ops_t snd_als4000_playback_ops = { .open = snd_als4000_playback_open, .close = snd_als4000_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_als4000_hw_params, .hw_free = snd_als4000_hw_free, .prepare = snd_als4000_playback_prepare, .trigger = snd_als4000_playback_trigger, .pointer = snd_als4000_playback_pointer }; static snd_pcm_ops_t snd_als4000_capture_ops = { .open = snd_als4000_capture_open, .close = snd_als4000_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_als4000_hw_params, .hw_free = snd_als4000_hw_free, .prepare = snd_als4000_capture_prepare, .trigger = snd_als4000_capture_trigger, .pointer = snd_als4000_capture_pointer }; static void snd_als4000_pcm_free(snd_pcm_t *pcm) { sb_t *chip = pcm->private_data; chip->pcm = NULL; snd_pcm_lib_preallocate_free_for_all(pcm); } static int __devinit snd_als4000_pcm(sb_t *chip, int device) { snd_pcm_t *pcm; int err; if ((err = snd_pcm_new(chip->card, "ALS4000 DSP", device, 1, 1, &pcm)) < 0) return err; pcm->private_free = snd_als4000_pcm_free; pcm->private_data = chip; pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_als4000_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_als4000_capture_ops); snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 64*1024, 64*1024); chip->pcm = pcm; return 0; } /******************************************************************/ static void snd_als4000_set_addr(unsigned long gcr, unsigned int sb, unsigned int mpu, unsigned int opl, unsigned int game) { u32 confA = 0; u32 confB = 0; if (mpu > 0) confB |= (mpu | 1) << 16; if (sb > 0) confB |= (sb | 1); if (game > 0) confA |= (game | 1) << 16; if (opl > 0) confA |= (opl | 1); snd_als4000_gcr_write_addr(gcr, 0xa8, confA); snd_als4000_gcr_write_addr(gcr, 0xa9, confB); } static void __devinit snd_als4000_configure(sb_t *chip) { unsigned tmp; int i; /* do some more configuration */ spin_lock_irq(&chip->mixer_lock); tmp = snd_sbmixer_read(chip, 0xc0); snd_sbmixer_write(chip, 0xc0, tmp|0x80); /* always select DMA channel 0, since we do not actually use DMA */ snd_sbmixer_write(chip, SB_DSP4_DMASETUP, SB_DMASETUP_DMA0); snd_sbmixer_write(chip, 0xc0, tmp&0x7f); spin_unlock_irq(&chip->mixer_lock); spin_lock_irq(&chip->reg_lock); /* magic number. Enables interrupts(?) */ snd_als4000_gcr_write(chip, 0x8c, 0x28000); for(i = 0x91; i <= 0x96; ++i) snd_als4000_gcr_write(chip, i, 0); snd_als4000_gcr_write(chip, 0x99, snd_als4000_gcr_read(chip, 0x99)); spin_unlock_irq(&chip->reg_lock); } #ifdef SUPPORT_JOYSTICK static int __devinit snd_als4000_create_gameport(snd_card_als4000_t *acard, int dev) { struct gameport *gp; struct resource *r; int io_port; if (joystick_port[dev] == 0) return -ENODEV; if (joystick_port[dev] == 1) { /* auto-detect */ for (io_port = 0x200; io_port <= 0x218; io_port += 8) { r = request_region(io_port, 8, "ALS4000 gameport"); if (r) break; } } else { io_port = joystick_port[dev]; r = request_region(io_port, 8, "ALS4000 gameport"); } if (!r) { printk(KERN_WARNING "als4000: cannot reserve joystick ports\n"); return -EBUSY; } acard->gameport = gp = gameport_allocate_port(); if (!gp) { printk(KERN_ERR "als4000: cannot allocate memory for gameport\n"); release_and_free_resource(r); return -ENOMEM; } gameport_set_name(gp, "ALS4000 Gameport"); gameport_set_phys(gp, "pci%s/gameport0", pci_name(acard->pci)); gameport_set_dev_parent(gp, &acard->pci->dev); gp->io = io_port; gameport_set_port_data(gp, r); /* Enable legacy joystick port */ snd_als4000_set_addr(acard->gcr, 0, 0, 0, 1); gameport_register_port(acard->gameport); return 0; } static void snd_als4000_free_gameport(snd_card_als4000_t *acard) { if (acard->gameport) { struct resource *r = gameport_get_port_data(acard->gameport); gameport_unregister_port(acard->gameport); acard->gameport = NULL; snd_als4000_set_addr(acard->gcr, 0, 0, 0, 0); /* disable joystick */ release_and_free_resource(r); } } #else static inline int snd_als4000_create_gameport(snd_card_als4000_t *acard, int dev) { return -ENOSYS; } static inline void snd_als4000_free_gameport(snd_card_als4000_t *acard) { } #endif static void snd_card_als4000_free( snd_card_t *card ) { snd_card_als4000_t * acard = (snd_card_als4000_t *)card->private_data; /* make sure that interrupts are disabled */ snd_als4000_gcr_write_addr( acard->gcr, 0x8c, 0); /* free resources */ snd_als4000_free_gameport(acard); pci_release_regions(acard->pci); pci_disable_device(acard->pci); } static int __devinit snd_card_als4000_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; snd_card_t *card; snd_card_als4000_t *acard; unsigned long gcr; sb_t *chip; opl3_t *opl3; unsigned short word; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } /* enable PCI device */ if ((err = pci_enable_device(pci)) < 0) { return err; } /* check, if we can restrict PCI DMA transfers to 24 bits */ if (pci_set_dma_mask(pci, 0x00ffffff) < 0 || pci_set_consistent_dma_mask(pci, 0x00ffffff) < 0) { snd_printk(KERN_ERR "architecture does not support 24bit PCI busmaster DMA\n"); pci_disable_device(pci); return -ENXIO; } if ((err = pci_request_regions(pci, "ALS4000")) < 0) { pci_disable_device(pci); return err; } gcr = pci_resource_start(pci, 0); pci_read_config_word(pci, PCI_COMMAND, &word); pci_write_config_word(pci, PCI_COMMAND, word | PCI_COMMAND_IO); pci_set_master(pci); card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof( snd_card_als4000_t ) ); if (card == NULL) { pci_release_regions(pci); pci_disable_device(pci); return -ENOMEM; } acard = (snd_card_als4000_t *)card->private_data; acard->pci = pci; acard->gcr = gcr; card->private_free = snd_card_als4000_free; /* disable all legacy ISA stuff */ snd_als4000_set_addr(acard->gcr, 0, 0, 0, 0); if ((err = snd_sbdsp_create(card, gcr + 0x10, pci->irq, snd_als4000_interrupt, -1, -1, SB_HW_ALS4000, &chip)) < 0) { snd_card_free(card); return err; } chip->pci = pci; chip->alt_port = gcr; snd_card_set_dev(card, &pci->dev); snd_als4000_configure(chip); strcpy(card->driver, "ALS4000"); strcpy(card->shortname, "Avance Logic ALS4000"); sprintf(card->longname, "%s at 0x%lx, irq %i", card->shortname, chip->alt_port, chip->irq); if ((err = snd_mpu401_uart_new( card, 0, MPU401_HW_ALS4000, gcr+0x30, 1, pci->irq, 0, &chip->rmidi)) < 0) { snd_card_free(card); printk(KERN_ERR "als4000: no MPU-401device at 0x%lx ?\n", gcr+0x30); return err; } if ((err = snd_als4000_pcm(chip, 0)) < 0) { snd_card_free(card); return err; } if ((err = snd_sbmixer_new(chip)) < 0) { snd_card_free(card); return err; } if (snd_opl3_create(card, gcr+0x10, gcr+0x12, OPL3_HW_AUTO, 1, &opl3) < 0) { printk(KERN_ERR "als4000: no OPL device at 0x%lx-0x%lx ?\n", gcr+0x10, gcr+0x12 ); } else { if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { snd_card_free(card); return err; } } snd_als4000_create_gameport(acard, dev); if ((err = snd_card_register(card)) < 0) { snd_card_free(card); return err; } pci_set_drvdata(pci, card); dev++; return 0; } static void __devexit snd_card_als4000_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } static struct pci_driver driver = { .name = "ALS4000", .owner = THIS_MODULE, .id_table = snd_als4000_ids, .probe = snd_card_als4000_probe, .remove = __devexit_p(snd_card_als4000_remove), }; static int __init alsa_card_als4000_init(void) { return pci_register_driver(&driver); } static void __exit alsa_card_als4000_exit(void) { pci_unregister_driver(&driver); } module_init(alsa_card_als4000_init) module_exit(alsa_card_als4000_exit)