/* * ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4358 / AK4381 * AD and DA converters * * Copyright (c) 2000-2004 Jaroslav Kysela <perex@perex.cz>, * Takashi Iwai <tiwai@suse.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <asm/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <sound/core.h> #include <sound/control.h> #include <sound/tlv.h> #include <sound/ak4xxx-adda.h> MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, Takashi Iwai <tiwai@suse.de>"); MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx AD/DA converters"); MODULE_LICENSE("GPL"); /* write the given register and save the data to the cache */ void snd_akm4xxx_write(struct snd_akm4xxx *ak, int chip, unsigned char reg, unsigned char val) { ak->ops.lock(ak, chip); ak->ops.write(ak, chip, reg, val); /* save the data */ snd_akm4xxx_set(ak, chip, reg, val); ak->ops.unlock(ak, chip); } EXPORT_SYMBOL(snd_akm4xxx_write); /* reset procedure for AK4524 and AK4528 */ static void ak4524_reset(struct snd_akm4xxx *ak, int state) { unsigned int chip; unsigned char reg, maxreg; if (ak->type == SND_AK4528) maxreg = 0x06; else maxreg = 0x08; for (chip = 0; chip < ak->num_dacs/2; chip++) { snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03); if (state) continue; /* DAC volumes */ for (reg = 0x04; reg < maxreg; reg++) snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg)); } } /* reset procedure for AK4355 and AK4358 */ static void ak435X_reset(struct snd_akm4xxx *ak, int state, unsigned char total_regs) { unsigned char reg; if (state) { snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */ return; } for (reg = 0x00; reg < total_regs; reg++) if (reg != 0x01) snd_akm4xxx_write(ak, 0, reg, snd_akm4xxx_get(ak, 0, reg)); snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */ } /* reset procedure for AK4381 */ static void ak4381_reset(struct snd_akm4xxx *ak, int state) { unsigned int chip; unsigned char reg; for (chip = 0; chip < ak->num_dacs/2; chip++) { snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f); if (state) continue; for (reg = 0x01; reg < 0x05; reg++) snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg)); } } /* * reset the AKM codecs * @state: 1 = reset codec, 0 = restore the registers * * assert the reset operation and restores the register values to the chips. */ void snd_akm4xxx_reset(struct snd_akm4xxx *ak, int state) { switch (ak->type) { case SND_AK4524: case SND_AK4528: ak4524_reset(ak, state); break; case SND_AK4529: /* FIXME: needed for ak4529? */ break; case SND_AK4355: ak435X_reset(ak, state, 0x0b); break; case SND_AK4358: ak435X_reset(ak, state, 0x10); break; case SND_AK4381: ak4381_reset(ak, state); break; default: break; } } EXPORT_SYMBOL(snd_akm4xxx_reset); /* * Volume conversion table for non-linear volumes * from -63.5dB (mute) to 0dB step 0.5dB * * Used for AK4524 input/ouput attenuation, AK4528, and * AK5365 input attenuation */ static const unsigned char vol_cvt_datt[128] = { 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x07, 0x07, 0x08, 0x08, 0x08, 0x09, 0x0a, 0x0a, 0x0b, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x0f, 0x10, 0x10, 0x11, 0x12, 0x12, 0x13, 0x13, 0x14, 0x15, 0x16, 0x17, 0x17, 0x18, 0x19, 0x1a, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x23, 0x24, 0x25, 0x26, 0x28, 0x29, 0x2a, 0x2b, 0x2d, 0x2e, 0x30, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x37, 0x38, 0x39, 0x3b, 0x3c, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x46, 0x47, 0x48, 0x4a, 0x4b, 0x4d, 0x4e, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x58, 0x59, 0x5b, 0x5c, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x64, 0x65, 0x66, 0x67, 0x69, 0x6a, 0x6c, 0x6d, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x75, 0x76, 0x77, 0x79, 0x7a, 0x7c, 0x7d, 0x7f, }; /* * dB tables */ static const DECLARE_TLV_DB_SCALE(db_scale_vol_datt, -6350, 50, 1); static const DECLARE_TLV_DB_SCALE(db_scale_8bit, -12750, 50, 1); static const DECLARE_TLV_DB_SCALE(db_scale_7bit, -6350, 50, 1); static const DECLARE_TLV_DB_LINEAR(db_scale_linear, TLV_DB_GAIN_MUTE, 0); /* * initialize all the ak4xxx chips */ void snd_akm4xxx_init(struct snd_akm4xxx *ak) { static const unsigned char inits_ak4524[] = { 0x00, 0x07, /* 0: all power up */ 0x01, 0x00, /* 1: ADC/DAC reset */ 0x02, 0x60, /* 2: 24bit I2S */ 0x03, 0x19, /* 3: deemphasis off */ 0x01, 0x03, /* 1: ADC/DAC enable */ 0x04, 0x00, /* 4: ADC left muted */ 0x05, 0x00, /* 5: ADC right muted */ 0x06, 0x00, /* 6: DAC left muted */ 0x07, 0x00, /* 7: DAC right muted */ 0xff, 0xff }; static const unsigned char inits_ak4528[] = { 0x00, 0x07, /* 0: all power up */ 0x01, 0x00, /* 1: ADC/DAC reset */ 0x02, 0x60, /* 2: 24bit I2S */ 0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */ 0x01, 0x03, /* 1: ADC/DAC enable */ 0x04, 0x00, /* 4: ADC left muted */ 0x05, 0x00, /* 5: ADC right muted */ 0xff, 0xff }; static const unsigned char inits_ak4529[] = { 0x09, 0x01, /* 9: ATS=0, RSTN=1 */ 0x0a, 0x3f, /* A: all power up, no zero/overflow detection */ 0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */ 0x01, 0x00, /* 1: ACKS=0, ADC, loop off */ 0x02, 0xff, /* 2: LOUT1 muted */ 0x03, 0xff, /* 3: ROUT1 muted */ 0x04, 0xff, /* 4: LOUT2 muted */ 0x05, 0xff, /* 5: ROUT2 muted */ 0x06, 0xff, /* 6: LOUT3 muted */ 0x07, 0xff, /* 7: ROUT3 muted */ 0x0b, 0xff, /* B: LOUT4 muted */ 0x0c, 0xff, /* C: ROUT4 muted */ 0x08, 0x55, /* 8: deemphasis all off */ 0xff, 0xff }; static const unsigned char inits_ak4355[] = { 0x01, 0x02, /* 1: reset and soft-mute */ 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, * disable DZF, sharp roll-off, RSTN#=0 */ 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */ // 0x02, 0x2e, /* quad speed */ 0x03, 0x01, /* 3: de-emphasis off */ 0x04, 0x00, /* 4: LOUT1 volume muted */ 0x05, 0x00, /* 5: ROUT1 volume muted */ 0x06, 0x00, /* 6: LOUT2 volume muted */ 0x07, 0x00, /* 7: ROUT2 volume muted */ 0x08, 0x00, /* 8: LOUT3 volume muted */ 0x09, 0x00, /* 9: ROUT3 volume muted */ 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */ 0x01, 0x01, /* 1: un-reset, unmute */ 0xff, 0xff }; static const unsigned char inits_ak4358[] = { 0x01, 0x02, /* 1: reset and soft-mute */ 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, * disable DZF, sharp roll-off, RSTN#=0 */ 0x02, 0x4e, /* 2: DA's power up, normal speed, RSTN#=0 */ /* 0x02, 0x6e,*/ /* quad speed */ 0x03, 0x01, /* 3: de-emphasis off */ 0x04, 0x00, /* 4: LOUT1 volume muted */ 0x05, 0x00, /* 5: ROUT1 volume muted */ 0x06, 0x00, /* 6: LOUT2 volume muted */ 0x07, 0x00, /* 7: ROUT2 volume muted */ 0x08, 0x00, /* 8: LOUT3 volume muted */ 0x09, 0x00, /* 9: ROUT3 volume muted */ 0x0b, 0x00, /* b: LOUT4 volume muted */ 0x0c, 0x00, /* c: ROUT4 volume muted */ 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */ 0x01, 0x01, /* 1: un-reset, unmute */ 0xff, 0xff }; static const unsigned char inits_ak4381[] = { 0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */ 0x01, 0x02, /* 1: de-emphasis off, normal speed, * sharp roll-off, DZF off */ // 0x01, 0x12, /* quad speed */ 0x02, 0x00, /* 2: DZF disabled */ 0x03, 0x00, /* 3: LATT 0 */ 0x04, 0x00, /* 4: RATT 0 */ 0x00, 0x0f, /* 0: power-up, un-reset */ 0xff, 0xff }; int chip, num_chips; const unsigned char *ptr, *inits; unsigned char reg, data; memset(ak->images, 0, sizeof(ak->images)); memset(ak->volumes, 0, sizeof(ak->volumes)); switch (ak->type) { case SND_AK4524: inits = inits_ak4524; num_chips = ak->num_dacs / 2; break; case SND_AK4528: inits = inits_ak4528; num_chips = ak->num_dacs / 2; break; case SND_AK4529: inits = inits_ak4529; num_chips = 1; break; case SND_AK4355: inits = inits_ak4355; num_chips = 1; break; case SND_AK4358: inits = inits_ak4358; num_chips = 1; break; case SND_AK4381: inits = inits_ak4381; num_chips = ak->num_dacs / 2; break; case SND_AK5365: /* FIXME: any init sequence? */ return; default: snd_BUG(); return; } for (chip = 0; chip < num_chips; chip++) { ptr = inits; while (*ptr != 0xff) { reg = *ptr++; data = *ptr++; snd_akm4xxx_write(ak, chip, reg, data); } } } EXPORT_SYMBOL(snd_akm4xxx_init); /* * Mixer callbacks */ #define AK_IPGA (1<<20) /* including IPGA */ #define AK_VOL_CVT (1<<21) /* need dB conversion */ #define AK_NEEDSMSB (1<<22) /* need MSB update bit */ #define AK_INVERT (1<<23) /* data is inverted */ #define AK_GET_CHIP(val) (((val) >> 8) & 0xff) #define AK_GET_ADDR(val) ((val) & 0xff) #define AK_GET_SHIFT(val) (((val) >> 16) & 0x0f) #define AK_GET_VOL_CVT(val) (((val) >> 21) & 1) #define AK_GET_IPGA(val) (((val) >> 20) & 1) #define AK_GET_NEEDSMSB(val) (((val) >> 22) & 1) #define AK_GET_INVERT(val) (((val) >> 23) & 1) #define AK_GET_MASK(val) (((val) >> 24) & 0xff) #define AK_COMPOSE(chip,addr,shift,mask) \ (((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24)) static int snd_akm4xxx_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { unsigned int mask = AK_GET_MASK(kcontrol->private_value); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_akm4xxx_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); ucontrol->value.integer.value[0] = snd_akm4xxx_get_vol(ak, chip, addr); return 0; } static int put_ak_reg(struct snd_kcontrol *kcontrol, int addr, unsigned char nval) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); unsigned int mask = AK_GET_MASK(kcontrol->private_value); int chip = AK_GET_CHIP(kcontrol->private_value); if (snd_akm4xxx_get_vol(ak, chip, addr) == nval) return 0; snd_akm4xxx_set_vol(ak, chip, addr, nval); if (AK_GET_VOL_CVT(kcontrol->private_value) && nval < 128) nval = vol_cvt_datt[nval]; if (AK_GET_IPGA(kcontrol->private_value) && nval >= 128) nval++; /* need to correct + 1 since both 127 and 128 are 0dB */ if (AK_GET_INVERT(kcontrol->private_value)) nval = mask - nval; if (AK_GET_NEEDSMSB(kcontrol->private_value)) nval |= 0x80; /* printk(KERN_DEBUG "DEBUG - AK writing reg: chip %x addr %x, nval %x\n", chip, addr, nval); */ snd_akm4xxx_write(ak, chip, addr, nval); return 1; } static int snd_akm4xxx_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { unsigned int mask = AK_GET_MASK(kcontrol->private_value); unsigned int val = ucontrol->value.integer.value[0]; if (val > mask) return -EINVAL; return put_ak_reg(kcontrol, AK_GET_ADDR(kcontrol->private_value), val); } static int snd_akm4xxx_stereo_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { unsigned int mask = AK_GET_MASK(kcontrol->private_value); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_akm4xxx_stereo_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); ucontrol->value.integer.value[0] = snd_akm4xxx_get_vol(ak, chip, addr); ucontrol->value.integer.value[1] = snd_akm4xxx_get_vol(ak, chip, addr+1); return 0; } static int snd_akm4xxx_stereo_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int addr = AK_GET_ADDR(kcontrol->private_value); unsigned int mask = AK_GET_MASK(kcontrol->private_value); unsigned int val[2]; int change; val[0] = ucontrol->value.integer.value[0]; val[1] = ucontrol->value.integer.value[1]; if (val[0] > mask || val[1] > mask) return -EINVAL; change = put_ak_reg(kcontrol, addr, val[0]); change |= put_ak_reg(kcontrol, addr + 1, val[1]); return change; } static int snd_akm4xxx_deemphasis_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static char *texts[4] = { "44.1kHz", "Off", "48kHz", "32kHz", }; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = 4; if (uinfo->value.enumerated.item >= 4) uinfo->value.enumerated.item = 3; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int snd_akm4xxx_deemphasis_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); ucontrol->value.enumerated.item[0] = (snd_akm4xxx_get(ak, chip, addr) >> shift) & 3; return 0; } static int snd_akm4xxx_deemphasis_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); unsigned char nval = ucontrol->value.enumerated.item[0] & 3; int change; nval = (nval << shift) | (snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift)); change = snd_akm4xxx_get(ak, chip, addr) != nval; if (change) snd_akm4xxx_write(ak, chip, addr, nval); return change; } #define ak4xxx_switch_info snd_ctl_boolean_mono_info static int ak4xxx_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); int invert = AK_GET_INVERT(kcontrol->private_value); /* we observe the (1<<shift) bit only */ unsigned char val = snd_akm4xxx_get(ak, chip, addr) & (1<<shift); if (invert) val = ! val; ucontrol->value.integer.value[0] = (val & (1<<shift)) != 0; return 0; } static int ak4xxx_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); int invert = AK_GET_INVERT(kcontrol->private_value); long flag = ucontrol->value.integer.value[0]; unsigned char val, oval; int change; if (invert) flag = ! flag; oval = snd_akm4xxx_get(ak, chip, addr); if (flag) val = oval | (1<<shift); else val = oval & ~(1<<shift); change = (oval != val); if (change) snd_akm4xxx_write(ak, chip, addr, val); return change; } #define AK5365_NUM_INPUTS 5 static int ak4xxx_capture_num_inputs(struct snd_akm4xxx *ak, int mixer_ch) { int num_names; const char **input_names; input_names = ak->adc_info[mixer_ch].input_names; num_names = 0; while (num_names < AK5365_NUM_INPUTS && input_names[num_names]) ++num_names; return num_names; } static int ak4xxx_capture_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int mixer_ch = AK_GET_SHIFT(kcontrol->private_value); const char **input_names; int num_names, idx; num_names = ak4xxx_capture_num_inputs(ak, mixer_ch); if (!num_names) return -EINVAL; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = num_names; idx = uinfo->value.enumerated.item; if (idx >= num_names) return -EINVAL; input_names = ak->adc_info[mixer_ch].input_names; strncpy(uinfo->value.enumerated.name, input_names[idx], sizeof(uinfo->value.enumerated.name)); return 0; } static int ak4xxx_capture_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int mask = AK_GET_MASK(kcontrol->private_value); unsigned char val; val = snd_akm4xxx_get(ak, chip, addr) & mask; ucontrol->value.enumerated.item[0] = val; return 0; } static int ak4xxx_capture_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int mixer_ch = AK_GET_SHIFT(kcontrol->private_value); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int mask = AK_GET_MASK(kcontrol->private_value); unsigned char oval, val; int num_names = ak4xxx_capture_num_inputs(ak, mixer_ch); if (ucontrol->value.enumerated.item[0] >= num_names) return -EINVAL; oval = snd_akm4xxx_get(ak, chip, addr); val = oval & ~mask; val |= ucontrol->value.enumerated.item[0] & mask; if (val != oval) { snd_akm4xxx_write(ak, chip, addr, val); return 1; } return 0; } /* * build AK4xxx controls */ static int build_dac_controls(struct snd_akm4xxx *ak) { int idx, err, mixer_ch, num_stereo; struct snd_kcontrol_new knew; mixer_ch = 0; for (idx = 0; idx < ak->num_dacs; ) { /* mute control for Revolution 7.1 - AK4381 */ if (ak->type == SND_AK4381 && ak->dac_info[mixer_ch].switch_name) { memset(&knew, 0, sizeof(knew)); knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.count = 1; knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE; knew.name = ak->dac_info[mixer_ch].switch_name; knew.info = ak4xxx_switch_info; knew.get = ak4xxx_switch_get; knew.put = ak4xxx_switch_put; knew.access = 0; /* register 1, bit 0 (SMUTE): 0 = normal operation, 1 = mute */ knew.private_value = AK_COMPOSE(idx/2, 1, 0, 0) | AK_INVERT; err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; } memset(&knew, 0, sizeof(knew)); if (! ak->dac_info || ! ak->dac_info[mixer_ch].name) { knew.name = "DAC Volume"; knew.index = mixer_ch + ak->idx_offset * 2; num_stereo = 1; } else { knew.name = ak->dac_info[mixer_ch].name; num_stereo = ak->dac_info[mixer_ch].num_channels; } knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.count = 1; knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ; if (num_stereo == 2) { knew.info = snd_akm4xxx_stereo_volume_info; knew.get = snd_akm4xxx_stereo_volume_get; knew.put = snd_akm4xxx_stereo_volume_put; } else { knew.info = snd_akm4xxx_volume_info; knew.get = snd_akm4xxx_volume_get; knew.put = snd_akm4xxx_volume_put; } switch (ak->type) { case SND_AK4524: /* register 6 & 7 */ knew.private_value = AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127) | AK_VOL_CVT; knew.tlv.p = db_scale_vol_datt; break; case SND_AK4528: /* register 4 & 5 */ knew.private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127) | AK_VOL_CVT; knew.tlv.p = db_scale_vol_datt; break; case SND_AK4529: { /* registers 2-7 and b,c */ int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb; knew.private_value = AK_COMPOSE(0, val, 0, 255) | AK_INVERT; knew.tlv.p = db_scale_8bit; break; } case SND_AK4355: /* register 4-9, chip #0 only */ knew.private_value = AK_COMPOSE(0, idx + 4, 0, 255); knew.tlv.p = db_scale_8bit; break; case SND_AK4358: { /* register 4-9 and 11-12, chip #0 only */ int addr = idx < 6 ? idx + 4 : idx + 5; knew.private_value = AK_COMPOSE(0, addr, 0, 127) | AK_NEEDSMSB; knew.tlv.p = db_scale_7bit; break; } case SND_AK4381: /* register 3 & 4 */ knew.private_value = AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255); knew.tlv.p = db_scale_linear; break; default: return -EINVAL; } err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; idx += num_stereo; mixer_ch++; } return 0; } static int build_adc_controls(struct snd_akm4xxx *ak) { int idx, err, mixer_ch, num_stereo; struct snd_kcontrol_new knew; mixer_ch = 0; for (idx = 0; idx < ak->num_adcs;) { memset(&knew, 0, sizeof(knew)); if (! ak->adc_info || ! ak->adc_info[mixer_ch].name) { knew.name = "ADC Volume"; knew.index = mixer_ch + ak->idx_offset * 2; num_stereo = 1; } else { knew.name = ak->adc_info[mixer_ch].name; num_stereo = ak->adc_info[mixer_ch].num_channels; } knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.count = 1; knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ; if (num_stereo == 2) { knew.info = snd_akm4xxx_stereo_volume_info; knew.get = snd_akm4xxx_stereo_volume_get; knew.put = snd_akm4xxx_stereo_volume_put; } else { knew.info = snd_akm4xxx_volume_info; knew.get = snd_akm4xxx_volume_get; knew.put = snd_akm4xxx_volume_put; } /* register 4 & 5 */ if (ak->type == SND_AK5365) knew.private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 151) | AK_VOL_CVT | AK_IPGA; else knew.private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 163) | AK_VOL_CVT | AK_IPGA; knew.tlv.p = db_scale_vol_datt; err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; if (ak->type == SND_AK5365 && (idx % 2) == 0) { if (! ak->adc_info || ! ak->adc_info[mixer_ch].switch_name) { knew.name = "Capture Switch"; knew.index = mixer_ch + ak->idx_offset * 2; } else knew.name = ak->adc_info[mixer_ch].switch_name; knew.info = ak4xxx_switch_info; knew.get = ak4xxx_switch_get; knew.put = ak4xxx_switch_put; knew.access = 0; /* register 2, bit 0 (SMUTE): 0 = normal operation, 1 = mute */ knew.private_value = AK_COMPOSE(idx/2, 2, 0, 0) | AK_INVERT; err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; memset(&knew, 0, sizeof(knew)); knew.name = ak->adc_info[mixer_ch].selector_name; if (!knew.name) { knew.name = "Capture Channel"; knew.index = mixer_ch + ak->idx_offset * 2; } knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.info = ak4xxx_capture_source_info; knew.get = ak4xxx_capture_source_get; knew.put = ak4xxx_capture_source_put; knew.access = 0; /* input selector control: reg. 1, bits 0-2. * mis-use 'shift' to pass mixer_ch */ knew.private_value = AK_COMPOSE(idx/2, 1, mixer_ch, 0x07); err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; } idx += num_stereo; mixer_ch++; } return 0; } static int build_deemphasis(struct snd_akm4xxx *ak, int num_emphs) { int idx, err; struct snd_kcontrol_new knew; for (idx = 0; idx < num_emphs; idx++) { memset(&knew, 0, sizeof(knew)); knew.name = "Deemphasis"; knew.index = idx + ak->idx_offset; knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER; knew.count = 1; knew.info = snd_akm4xxx_deemphasis_info; knew.get = snd_akm4xxx_deemphasis_get; knew.put = snd_akm4xxx_deemphasis_put; switch (ak->type) { case SND_AK4524: case SND_AK4528: /* register 3 */ knew.private_value = AK_COMPOSE(idx, 3, 0, 0); break; case SND_AK4529: { int shift = idx == 3 ? 6 : (2 - idx) * 2; /* register 8 with shift */ knew.private_value = AK_COMPOSE(0, 8, shift, 0); break; } case SND_AK4355: case SND_AK4358: knew.private_value = AK_COMPOSE(idx, 3, 0, 0); break; case SND_AK4381: knew.private_value = AK_COMPOSE(idx, 1, 1, 0); break; default: return -EINVAL; } err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak)); if (err < 0) return err; } return 0; } int snd_akm4xxx_build_controls(struct snd_akm4xxx *ak) { int err, num_emphs; err = build_dac_controls(ak); if (err < 0) return err; err = build_adc_controls(ak); if (err < 0) return err; if (ak->type == SND_AK4355 || ak->type == SND_AK4358) num_emphs = 1; else num_emphs = ak->num_dacs / 2; err = build_deemphasis(ak, num_emphs); if (err < 0) return err; return 0; } EXPORT_SYMBOL(snd_akm4xxx_build_controls); static int __init alsa_akm4xxx_module_init(void) { return 0; } static void __exit alsa_akm4xxx_module_exit(void) { } module_init(alsa_akm4xxx_module_init) module_exit(alsa_akm4xxx_module_exit)