/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /** * DOC: Wireless regulatory infrastructure * * The usual implementation is for a driver to read a device EEPROM to * determine which regulatory domain it should be operating under, then * looking up the allowable channels in a driver-local table and finally * registering those channels in the wiphy structure. * * Another set of compliance enforcement is for drivers to use their * own compliance limits which can be stored on the EEPROM. The host * driver or firmware may ensure these are used. * * In addition to all this we provide an extra layer of regulatory * conformance. For drivers which do not have any regulatory * information CRDA provides the complete regulatory solution. * For others it provides a community effort on further restrictions * to enhance compliance. * * Note: When number of rules --> infinity we will not be able to * index on alpha2 any more, instead we'll probably have to * rely on some SHA1 checksum of the regdomain for example. * */ #include <linux/kernel.h> #include <linux/list.h> #include <linux/random.h> #include <linux/nl80211.h> #include <linux/platform_device.h> #include <net/wireless.h> #include <net/cfg80211.h> #include "core.h" #include "reg.h" /** * struct regulatory_request - receipt of last regulatory request * * @wiphy: this is set if this request's initiator is * %REGDOM_SET_BY_COUNTRY_IE or %REGDOM_SET_BY_DRIVER. This * can be used by the wireless core to deal with conflicts * and potentially inform users of which devices specifically * cased the conflicts. * @initiator: indicates who sent this request, could be any of * of those set in reg_set_by, %REGDOM_SET_BY_* * @alpha2: the ISO / IEC 3166 alpha2 country code of the requested * regulatory domain. We have a few special codes: * 00 - World regulatory domain * 99 - built by driver but a specific alpha2 cannot be determined * 98 - result of an intersection between two regulatory domains * @intersect: indicates whether the wireless core should intersect * the requested regulatory domain with the presently set regulatory * domain. * @country_ie_checksum: checksum of the last processed and accepted * country IE * @country_ie_env: lets us know if the AP is telling us we are outdoor, * indoor, or if it doesn't matter */ struct regulatory_request { struct wiphy *wiphy; enum reg_set_by initiator; char alpha2[2]; bool intersect; u32 country_ie_checksum; enum environment_cap country_ie_env; }; /* Receipt of information from last regulatory request */ static struct regulatory_request *last_request; /* To trigger userspace events */ static struct platform_device *reg_pdev; /* Keep the ordering from large to small */ static u32 supported_bandwidths[] = { MHZ_TO_KHZ(40), MHZ_TO_KHZ(20), }; /* Central wireless core regulatory domains, we only need two, * the current one and a world regulatory domain in case we have no * information to give us an alpha2 */ static const struct ieee80211_regdomain *cfg80211_regdomain; /* We use this as a place for the rd structure built from the * last parsed country IE to rest until CRDA gets back to us with * what it thinks should apply for the same country */ static const struct ieee80211_regdomain *country_ie_regdomain; /* We keep a static world regulatory domain in case of the absence of CRDA */ static const struct ieee80211_regdomain world_regdom = { .n_reg_rules = 1, .alpha2 = "00", .reg_rules = { REG_RULE(2412-10, 2462+10, 40, 6, 20, NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS), } }; static const struct ieee80211_regdomain *cfg80211_world_regdom = &world_regdom; #ifdef CONFIG_WIRELESS_OLD_REGULATORY static char *ieee80211_regdom = "US"; module_param(ieee80211_regdom, charp, 0444); MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); /* We assume 40 MHz bandwidth for the old regulatory work. * We make emphasis we are using the exact same frequencies * as before */ static const struct ieee80211_regdomain us_regdom = { .n_reg_rules = 6, .alpha2 = "US", .reg_rules = { /* IEEE 802.11b/g, channels 1..11 */ REG_RULE(2412-10, 2462+10, 40, 6, 27, 0), /* IEEE 802.11a, channel 36 */ REG_RULE(5180-10, 5180+10, 40, 6, 23, 0), /* IEEE 802.11a, channel 40 */ REG_RULE(5200-10, 5200+10, 40, 6, 23, 0), /* IEEE 802.11a, channel 44 */ REG_RULE(5220-10, 5220+10, 40, 6, 23, 0), /* IEEE 802.11a, channels 48..64 */ REG_RULE(5240-10, 5320+10, 40, 6, 23, 0), /* IEEE 802.11a, channels 149..165, outdoor */ REG_RULE(5745-10, 5825+10, 40, 6, 30, 0), } }; static const struct ieee80211_regdomain jp_regdom = { .n_reg_rules = 3, .alpha2 = "JP", .reg_rules = { /* IEEE 802.11b/g, channels 1..14 */ REG_RULE(2412-10, 2484+10, 40, 6, 20, 0), /* IEEE 802.11a, channels 34..48 */ REG_RULE(5170-10, 5240+10, 40, 6, 20, NL80211_RRF_PASSIVE_SCAN), /* IEEE 802.11a, channels 52..64 */ REG_RULE(5260-10, 5320+10, 40, 6, 20, NL80211_RRF_NO_IBSS | NL80211_RRF_DFS), } }; static const struct ieee80211_regdomain eu_regdom = { .n_reg_rules = 6, /* This alpha2 is bogus, we leave it here just for stupid * backward compatibility */ .alpha2 = "EU", .reg_rules = { /* IEEE 802.11b/g, channels 1..13 */ REG_RULE(2412-10, 2472+10, 40, 6, 20, 0), /* IEEE 802.11a, channel 36 */ REG_RULE(5180-10, 5180+10, 40, 6, 23, NL80211_RRF_PASSIVE_SCAN), /* IEEE 802.11a, channel 40 */ REG_RULE(5200-10, 5200+10, 40, 6, 23, NL80211_RRF_PASSIVE_SCAN), /* IEEE 802.11a, channel 44 */ REG_RULE(5220-10, 5220+10, 40, 6, 23, NL80211_RRF_PASSIVE_SCAN), /* IEEE 802.11a, channels 48..64 */ REG_RULE(5240-10, 5320+10, 40, 6, 20, NL80211_RRF_NO_IBSS | NL80211_RRF_DFS), /* IEEE 802.11a, channels 100..140 */ REG_RULE(5500-10, 5700+10, 40, 6, 30, NL80211_RRF_NO_IBSS | NL80211_RRF_DFS), } }; static const struct ieee80211_regdomain *static_regdom(char *alpha2) { if (alpha2[0] == 'U' && alpha2[1] == 'S') return &us_regdom; if (alpha2[0] == 'J' && alpha2[1] == 'P') return &jp_regdom; if (alpha2[0] == 'E' && alpha2[1] == 'U') return &eu_regdom; /* Default, as per the old rules */ return &us_regdom; } static bool is_old_static_regdom(const struct ieee80211_regdomain *rd) { if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom) return true; return false; } #else static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd) { return false; } #endif static void reset_regdomains(void) { /* avoid freeing static information or freeing something twice */ if (cfg80211_regdomain == cfg80211_world_regdom) cfg80211_regdomain = NULL; if (cfg80211_world_regdom == &world_regdom) cfg80211_world_regdom = NULL; if (cfg80211_regdomain == &world_regdom) cfg80211_regdomain = NULL; if (is_old_static_regdom(cfg80211_regdomain)) cfg80211_regdomain = NULL; kfree(cfg80211_regdomain); kfree(cfg80211_world_regdom); cfg80211_world_regdom = &world_regdom; cfg80211_regdomain = NULL; } /* Dynamic world regulatory domain requested by the wireless * core upon initialization */ static void update_world_regdomain(const struct ieee80211_regdomain *rd) { BUG_ON(!last_request); reset_regdomains(); cfg80211_world_regdom = rd; cfg80211_regdomain = rd; } bool is_world_regdom(const char *alpha2) { if (!alpha2) return false; if (alpha2[0] == '0' && alpha2[1] == '0') return true; return false; } static bool is_alpha2_set(const char *alpha2) { if (!alpha2) return false; if (alpha2[0] != 0 && alpha2[1] != 0) return true; return false; } static bool is_alpha_upper(char letter) { /* ASCII A - Z */ if (letter >= 65 && letter <= 90) return true; return false; } static bool is_unknown_alpha2(const char *alpha2) { if (!alpha2) return false; /* Special case where regulatory domain was built by driver * but a specific alpha2 cannot be determined */ if (alpha2[0] == '9' && alpha2[1] == '9') return true; return false; } static bool is_intersected_alpha2(const char *alpha2) { if (!alpha2) return false; /* Special case where regulatory domain is the * result of an intersection between two regulatory domain * structures */ if (alpha2[0] == '9' && alpha2[1] == '8') return true; return false; } static bool is_an_alpha2(const char *alpha2) { if (!alpha2) return false; if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1])) return true; return false; } static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) { if (!alpha2_x || !alpha2_y) return false; if (alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]) return true; return false; } static bool regdom_changed(const char *alpha2) { if (!cfg80211_regdomain) return true; if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) return false; return true; } /** * country_ie_integrity_changes - tells us if the country IE has changed * @checksum: checksum of country IE of fields we are interested in * * If the country IE has not changed you can ignore it safely. This is * useful to determine if two devices are seeing two different country IEs * even on the same alpha2. Note that this will return false if no IE has * been set on the wireless core yet. */ static bool country_ie_integrity_changes(u32 checksum) { /* If no IE has been set then the checksum doesn't change */ if (unlikely(!last_request->country_ie_checksum)) return false; if (unlikely(last_request->country_ie_checksum != checksum)) return true; return false; } /* This lets us keep regulatory code which is updated on a regulatory * basis in userspace. */ static int call_crda(const char *alpha2) { char country_env[9 + 2] = "COUNTRY="; char *envp[] = { country_env, NULL }; if (!is_world_regdom((char *) alpha2)) printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n", alpha2[0], alpha2[1]); else printk(KERN_INFO "cfg80211: Calling CRDA to update world " "regulatory domain\n"); country_env[8] = alpha2[0]; country_env[9] = alpha2[1]; return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, envp); } /* Used by nl80211 before kmalloc'ing our regulatory domain */ bool reg_is_valid_request(const char *alpha2) { if (!last_request) return false; return alpha2_equal(last_request->alpha2, alpha2); } /* Sanity check on a regulatory rule */ static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) { const struct ieee80211_freq_range *freq_range = &rule->freq_range; u32 freq_diff; if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) return false; if (freq_range->start_freq_khz > freq_range->end_freq_khz) return false; freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff) return false; return true; } static bool is_valid_rd(const struct ieee80211_regdomain *rd) { const struct ieee80211_reg_rule *reg_rule = NULL; unsigned int i; if (!rd->n_reg_rules) return false; if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) return false; for (i = 0; i < rd->n_reg_rules; i++) { reg_rule = &rd->reg_rules[i]; if (!is_valid_reg_rule(reg_rule)) return false; } return true; } /* Returns value in KHz */ static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range, u32 freq) { unsigned int i; for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) { u32 start_freq_khz = freq - supported_bandwidths[i]/2; u32 end_freq_khz = freq + supported_bandwidths[i]/2; if (start_freq_khz >= freq_range->start_freq_khz && end_freq_khz <= freq_range->end_freq_khz) return supported_bandwidths[i]; } return 0; } /* Converts a country IE to a regulatory domain. A regulatory domain * structure has a lot of information which the IE doesn't yet have, * so for the other values we use upper max values as we will intersect * with our userspace regulatory agent to get lower bounds. */ static struct ieee80211_regdomain *country_ie_2_rd( u8 *country_ie, u8 country_ie_len, u32 *checksum) { struct ieee80211_regdomain *rd = NULL; unsigned int i = 0; char alpha2[2]; u32 flags = 0; u32 num_rules = 0, size_of_regd = 0; u8 *triplets_start = NULL; u8 len_at_triplet = 0; /* the last channel we have registered in a subband (triplet) */ int last_sub_max_channel = 0; *checksum = 0xDEADBEEF; /* Country IE requirements */ BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN || country_ie_len & 0x01); alpha2[0] = country_ie[0]; alpha2[1] = country_ie[1]; /* * Third octet can be: * 'I' - Indoor * 'O' - Outdoor * * anything else we assume is no restrictions */ if (country_ie[2] == 'I') flags = NL80211_RRF_NO_OUTDOOR; else if (country_ie[2] == 'O') flags = NL80211_RRF_NO_INDOOR; country_ie += 3; country_ie_len -= 3; triplets_start = country_ie; len_at_triplet = country_ie_len; *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8); /* We need to build a reg rule for each triplet, but first we must * calculate the number of reg rules we will need. We will need one * for each channel subband */ while (country_ie_len >= 3) { struct ieee80211_country_ie_triplet *triplet = (struct ieee80211_country_ie_triplet *) country_ie; int cur_sub_max_channel = 0, cur_channel = 0; if (triplet->ext.reg_extension_id >= IEEE80211_COUNTRY_EXTENSION_ID) { country_ie += 3; country_ie_len -= 3; continue; } cur_channel = triplet->chans.first_channel; cur_sub_max_channel = ieee80211_channel_to_frequency( cur_channel + triplet->chans.num_channels); /* Basic sanity check */ if (cur_sub_max_channel < cur_channel) return NULL; /* Do not allow overlapping channels. Also channels * passed in each subband must be monotonically * increasing */ if (last_sub_max_channel) { if (cur_channel <= last_sub_max_channel) return NULL; if (cur_sub_max_channel <= last_sub_max_channel) return NULL; } /* When dot11RegulatoryClassesRequired is supported * we can throw ext triplets as part of this soup, * for now we don't care when those change as we * don't support them */ *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) | ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) | ((triplet->chans.max_power ^ cur_sub_max_channel) << 24); last_sub_max_channel = cur_sub_max_channel; country_ie += 3; country_ie_len -= 3; num_rules++; /* Note: this is not a IEEE requirement but * simply a memory requirement */ if (num_rules > NL80211_MAX_SUPP_REG_RULES) return NULL; } country_ie = triplets_start; country_ie_len = len_at_triplet; size_of_regd = sizeof(struct ieee80211_regdomain) + (num_rules * sizeof(struct ieee80211_reg_rule)); rd = kzalloc(size_of_regd, GFP_KERNEL); if (!rd) return NULL; rd->n_reg_rules = num_rules; rd->alpha2[0] = alpha2[0]; rd->alpha2[1] = alpha2[1]; /* This time around we fill in the rd */ while (country_ie_len >= 3) { struct ieee80211_country_ie_triplet *triplet = (struct ieee80211_country_ie_triplet *) country_ie; struct ieee80211_reg_rule *reg_rule = NULL; struct ieee80211_freq_range *freq_range = NULL; struct ieee80211_power_rule *power_rule = NULL; /* Must parse if dot11RegulatoryClassesRequired is true, * we don't support this yet */ if (triplet->ext.reg_extension_id >= IEEE80211_COUNTRY_EXTENSION_ID) { country_ie += 3; country_ie_len -= 3; continue; } reg_rule = &rd->reg_rules[i]; freq_range = ®_rule->freq_range; power_rule = ®_rule->power_rule; reg_rule->flags = flags; /* The +10 is since the regulatory domain expects * the actual band edge, not the center of freq for * its start and end freqs, assuming 20 MHz bandwidth on * the channels passed */ freq_range->start_freq_khz = MHZ_TO_KHZ(ieee80211_channel_to_frequency( triplet->chans.first_channel) - 10); freq_range->end_freq_khz = MHZ_TO_KHZ(ieee80211_channel_to_frequency( triplet->chans.first_channel + triplet->chans.num_channels) + 10); /* Large arbitrary values, we intersect later */ /* Increment this if we ever support >= 40 MHz channels * in IEEE 802.11 */ freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40); power_rule->max_antenna_gain = DBI_TO_MBI(100); power_rule->max_eirp = DBM_TO_MBM(100); country_ie += 3; country_ie_len -= 3; i++; BUG_ON(i > NL80211_MAX_SUPP_REG_RULES); } return rd; } /* Helper for regdom_intersect(), this does the real * mathematical intersection fun */ static int reg_rules_intersect( const struct ieee80211_reg_rule *rule1, const struct ieee80211_reg_rule *rule2, struct ieee80211_reg_rule *intersected_rule) { const struct ieee80211_freq_range *freq_range1, *freq_range2; struct ieee80211_freq_range *freq_range; const struct ieee80211_power_rule *power_rule1, *power_rule2; struct ieee80211_power_rule *power_rule; u32 freq_diff; freq_range1 = &rule1->freq_range; freq_range2 = &rule2->freq_range; freq_range = &intersected_rule->freq_range; power_rule1 = &rule1->power_rule; power_rule2 = &rule2->power_rule; power_rule = &intersected_rule->power_rule; freq_range->start_freq_khz = max(freq_range1->start_freq_khz, freq_range2->start_freq_khz); freq_range->end_freq_khz = min(freq_range1->end_freq_khz, freq_range2->end_freq_khz); freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, freq_range2->max_bandwidth_khz); freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; if (freq_range->max_bandwidth_khz > freq_diff) freq_range->max_bandwidth_khz = freq_diff; power_rule->max_eirp = min(power_rule1->max_eirp, power_rule2->max_eirp); power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, power_rule2->max_antenna_gain); intersected_rule->flags = (rule1->flags | rule2->flags); if (!is_valid_reg_rule(intersected_rule)) return -EINVAL; return 0; } /** * regdom_intersect - do the intersection between two regulatory domains * @rd1: first regulatory domain * @rd2: second regulatory domain * * Use this function to get the intersection between two regulatory domains. * Once completed we will mark the alpha2 for the rd as intersected, "98", * as no one single alpha2 can represent this regulatory domain. * * Returns a pointer to the regulatory domain structure which will hold the * resulting intersection of rules between rd1 and rd2. We will * kzalloc() this structure for you. */ static struct ieee80211_regdomain *regdom_intersect( const struct ieee80211_regdomain *rd1, const struct ieee80211_regdomain *rd2) { int r, size_of_regd; unsigned int x, y; unsigned int num_rules = 0, rule_idx = 0; const struct ieee80211_reg_rule *rule1, *rule2; struct ieee80211_reg_rule *intersected_rule; struct ieee80211_regdomain *rd; /* This is just a dummy holder to help us count */ struct ieee80211_reg_rule irule; /* Uses the stack temporarily for counter arithmetic */ intersected_rule = &irule; memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); if (!rd1 || !rd2) return NULL; /* First we get a count of the rules we'll need, then we actually * build them. This is to so we can malloc() and free() a * regdomain once. The reason we use reg_rules_intersect() here * is it will return -EINVAL if the rule computed makes no sense. * All rules that do check out OK are valid. */ for (x = 0; x < rd1->n_reg_rules; x++) { rule1 = &rd1->reg_rules[x]; for (y = 0; y < rd2->n_reg_rules; y++) { rule2 = &rd2->reg_rules[y]; if (!reg_rules_intersect(rule1, rule2, intersected_rule)) num_rules++; memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); } } if (!num_rules) return NULL; size_of_regd = sizeof(struct ieee80211_regdomain) + ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); rd = kzalloc(size_of_regd, GFP_KERNEL); if (!rd) return NULL; for (x = 0; x < rd1->n_reg_rules; x++) { rule1 = &rd1->reg_rules[x]; for (y = 0; y < rd2->n_reg_rules; y++) { rule2 = &rd2->reg_rules[y]; /* This time around instead of using the stack lets * write to the target rule directly saving ourselves * a memcpy() */ intersected_rule = &rd->reg_rules[rule_idx]; r = reg_rules_intersect(rule1, rule2, intersected_rule); /* No need to memset here the intersected rule here as * we're not using the stack anymore */ if (r) continue; rule_idx++; } } if (rule_idx != num_rules) { kfree(rd); return NULL; } rd->n_reg_rules = num_rules; rd->alpha2[0] = '9'; rd->alpha2[1] = '8'; return rd; } /* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may * want to just have the channel structure use these */ static u32 map_regdom_flags(u32 rd_flags) { u32 channel_flags = 0; if (rd_flags & NL80211_RRF_PASSIVE_SCAN) channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; if (rd_flags & NL80211_RRF_NO_IBSS) channel_flags |= IEEE80211_CHAN_NO_IBSS; if (rd_flags & NL80211_RRF_DFS) channel_flags |= IEEE80211_CHAN_RADAR; return channel_flags; } /** * freq_reg_info - get regulatory information for the given frequency * @center_freq: Frequency in KHz for which we want regulatory information for * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one * you can set this to 0. If this frequency is allowed we then set * this value to the maximum allowed bandwidth. * @reg_rule: the regulatory rule which we have for this frequency * * Use this function to get the regulatory rule for a specific frequency. */ static int freq_reg_info(u32 center_freq, u32 *bandwidth, const struct ieee80211_reg_rule **reg_rule) { int i; u32 max_bandwidth = 0; if (!cfg80211_regdomain) return -EINVAL; for (i = 0; i < cfg80211_regdomain->n_reg_rules; i++) { const struct ieee80211_reg_rule *rr; const struct ieee80211_freq_range *fr = NULL; const struct ieee80211_power_rule *pr = NULL; rr = &cfg80211_regdomain->reg_rules[i]; fr = &rr->freq_range; pr = &rr->power_rule; max_bandwidth = freq_max_bandwidth(fr, center_freq); if (max_bandwidth && *bandwidth <= max_bandwidth) { *reg_rule = rr; *bandwidth = max_bandwidth; break; } } return !max_bandwidth; } static void handle_channel(struct ieee80211_channel *chan) { int r; u32 flags = chan->orig_flags; u32 max_bandwidth = 0; const struct ieee80211_reg_rule *reg_rule = NULL; const struct ieee80211_power_rule *power_rule = NULL; r = freq_reg_info(MHZ_TO_KHZ(chan->center_freq), &max_bandwidth, ®_rule); if (r) { flags |= IEEE80211_CHAN_DISABLED; chan->flags = flags; return; } power_rule = ®_rule->power_rule; chan->flags = flags | map_regdom_flags(reg_rule->flags); chan->max_antenna_gain = min(chan->orig_mag, (int) MBI_TO_DBI(power_rule->max_antenna_gain)); chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth); if (chan->orig_mpwr) chan->max_power = min(chan->orig_mpwr, (int) MBM_TO_DBM(power_rule->max_eirp)); else chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); } static void handle_band(struct ieee80211_supported_band *sband) { int i; for (i = 0; i < sband->n_channels; i++) handle_channel(&sband->channels[i]); } static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby) { if (!last_request) return true; if (setby == REGDOM_SET_BY_CORE && wiphy->fw_handles_regulatory) return true; return false; } static void update_all_wiphy_regulatory(enum reg_set_by setby) { struct cfg80211_registered_device *drv; list_for_each_entry(drv, &cfg80211_drv_list, list) if (!ignore_reg_update(&drv->wiphy, setby)) wiphy_update_regulatory(&drv->wiphy, setby); } void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby) { enum ieee80211_band band; for (band = 0; band < IEEE80211_NUM_BANDS; band++) { if (wiphy->bands[band]) handle_band(wiphy->bands[band]); if (wiphy->reg_notifier) wiphy->reg_notifier(wiphy, setby); } } /* Return value which can be used by ignore_request() to indicate * it has been determined we should intersect two regulatory domains */ #define REG_INTERSECT 1 /* This has the logic which determines when a new request * should be ignored. */ static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by, const char *alpha2) { /* All initial requests are respected */ if (!last_request) return 0; switch (set_by) { case REGDOM_SET_BY_INIT: return -EINVAL; case REGDOM_SET_BY_CORE: /* * Always respect new wireless core hints, should only happen * when updating the world regulatory domain at init. */ return 0; case REGDOM_SET_BY_COUNTRY_IE: if (unlikely(!is_an_alpha2(alpha2))) return -EINVAL; if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) { if (last_request->wiphy != wiphy) { /* * Two cards with two APs claiming different * different Country IE alpha2s. We could * intersect them, but that seems unlikely * to be correct. Reject second one for now. */ if (!alpha2_equal(alpha2, cfg80211_regdomain->alpha2)) return -EOPNOTSUPP; return -EALREADY; } /* Two consecutive Country IE hints on the same wiphy. * This should be picked up early by the driver/stack */ if (WARN_ON(!alpha2_equal(cfg80211_regdomain->alpha2, alpha2))) return 0; return -EALREADY; } return REG_INTERSECT; case REGDOM_SET_BY_DRIVER: if (last_request->initiator == REGDOM_SET_BY_DRIVER) return -EALREADY; return 0; case REGDOM_SET_BY_USER: if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) return REG_INTERSECT; /* If the user knows better the user should set the regdom * to their country before the IE is picked up */ if (last_request->initiator == REGDOM_SET_BY_USER && last_request->intersect) return -EOPNOTSUPP; return 0; } return -EINVAL; } /* Caller must hold &cfg80211_drv_mutex */ int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by, const char *alpha2, u32 country_ie_checksum, enum environment_cap env) { struct regulatory_request *request; bool intersect = false; int r = 0; r = ignore_request(wiphy, set_by, alpha2); if (r == REG_INTERSECT) intersect = true; else if (r) return r; request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); if (!request) return -ENOMEM; request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = set_by; request->wiphy = wiphy; request->intersect = intersect; request->country_ie_checksum = country_ie_checksum; request->country_ie_env = env; kfree(last_request); last_request = request; /* * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled * AND if CRDA is NOT present nothing will happen, if someone * wants to bother with 11d with OLD_REG you can add a timer. * If after x amount of time nothing happens you can call: * * return set_regdom(country_ie_regdomain); * * to intersect with the static rd */ return call_crda(alpha2); } void regulatory_hint(struct wiphy *wiphy, const char *alpha2) { BUG_ON(!alpha2); mutex_lock(&cfg80211_drv_mutex); __regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER, alpha2, 0, ENVIRON_ANY); mutex_unlock(&cfg80211_drv_mutex); } EXPORT_SYMBOL(regulatory_hint); static bool reg_same_country_ie_hint(struct wiphy *wiphy, u32 country_ie_checksum) { if (!last_request->wiphy) return false; if (likely(last_request->wiphy != wiphy)) return !country_ie_integrity_changes(country_ie_checksum); /* We should not have let these through at this point, they * should have been picked up earlier by the first alpha2 check * on the device */ if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum))) return true; return false; } void regulatory_hint_11d(struct wiphy *wiphy, u8 *country_ie, u8 country_ie_len) { struct ieee80211_regdomain *rd = NULL; char alpha2[2]; u32 checksum = 0; enum environment_cap env = ENVIRON_ANY; if (!last_request) return; mutex_lock(&cfg80211_drv_mutex); /* IE len must be evenly divisible by 2 */ if (country_ie_len & 0x01) goto out; if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) goto out; /* Pending country IE processing, this can happen after we * call CRDA and wait for a response if a beacon was received before * we were able to process the last regulatory_hint_11d() call */ if (country_ie_regdomain) goto out; alpha2[0] = country_ie[0]; alpha2[1] = country_ie[1]; if (country_ie[2] == 'I') env = ENVIRON_INDOOR; else if (country_ie[2] == 'O') env = ENVIRON_OUTDOOR; /* We will run this for *every* beacon processed for the BSSID, so * we optimize an early check to exit out early if we don't have to * do anything */ if (likely(last_request->wiphy)) { struct cfg80211_registered_device *drv_last_ie; drv_last_ie = wiphy_to_dev(last_request->wiphy); /* Lets keep this simple -- we trust the first AP * after we intersect with CRDA */ if (likely(last_request->wiphy == wiphy)) { /* Ignore IEs coming in on this wiphy with * the same alpha2 and environment cap */ if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2, alpha2) && env == drv_last_ie->env)) { goto out; } /* the wiphy moved on to another BSSID or the AP * was reconfigured. XXX: We need to deal with the * case where the user suspends and goes to goes * to another country, and then gets IEs from an * AP with different settings */ goto out; } else { /* Ignore IEs coming in on two separate wiphys with * the same alpha2 and environment cap */ if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2, alpha2) && env == drv_last_ie->env)) { goto out; } /* We could potentially intersect though */ goto out; } } rd = country_ie_2_rd(country_ie, country_ie_len, &checksum); if (!rd) goto out; /* This will not happen right now but we leave it here for the * the future when we want to add suspend/resume support and having * the user move to another country after doing so, or having the user * move to another AP. Right now we just trust the first AP. This is why * this is marked as likley(). If we hit this before we add this support * we want to be informed of it as it would indicate a mistake in the * current design */ if (likely(WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))) goto out; /* We keep this around for when CRDA comes back with a response so * we can intersect with that */ country_ie_regdomain = rd; __regulatory_hint(wiphy, REGDOM_SET_BY_COUNTRY_IE, country_ie_regdomain->alpha2, checksum, env); out: mutex_unlock(&cfg80211_drv_mutex); } EXPORT_SYMBOL(regulatory_hint_11d); static void print_rd_rules(const struct ieee80211_regdomain *rd) { unsigned int i; const struct ieee80211_reg_rule *reg_rule = NULL; const struct ieee80211_freq_range *freq_range = NULL; const struct ieee80211_power_rule *power_rule = NULL; printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), " "(max_antenna_gain, max_eirp)\n"); for (i = 0; i < rd->n_reg_rules; i++) { reg_rule = &rd->reg_rules[i]; freq_range = ®_rule->freq_range; power_rule = ®_rule->power_rule; /* There may not be documentation for max antenna gain * in certain regions */ if (power_rule->max_antenna_gain) printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), " "(%d mBi, %d mBm)\n", freq_range->start_freq_khz, freq_range->end_freq_khz, freq_range->max_bandwidth_khz, power_rule->max_antenna_gain, power_rule->max_eirp); else printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), " "(N/A, %d mBm)\n", freq_range->start_freq_khz, freq_range->end_freq_khz, freq_range->max_bandwidth_khz, power_rule->max_eirp); } } static void print_regdomain(const struct ieee80211_regdomain *rd) { if (is_intersected_alpha2(rd->alpha2)) { struct wiphy *wiphy = NULL; struct cfg80211_registered_device *drv; if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) { if (last_request->wiphy) { wiphy = last_request->wiphy; drv = wiphy_to_dev(wiphy); printk(KERN_INFO "cfg80211: Current regulatory " "domain updated by AP to: %c%c\n", drv->country_ie_alpha2[0], drv->country_ie_alpha2[1]); } else printk(KERN_INFO "cfg80211: Current regulatory " "domain intersected: \n"); } else printk(KERN_INFO "cfg80211: Current regulatory " "intersected: \n"); } else if (is_world_regdom(rd->alpha2)) printk(KERN_INFO "cfg80211: World regulatory " "domain updated:\n"); else { if (is_unknown_alpha2(rd->alpha2)) printk(KERN_INFO "cfg80211: Regulatory domain " "changed to driver built-in settings " "(unknown country)\n"); else printk(KERN_INFO "cfg80211: Regulatory domain " "changed to country: %c%c\n", rd->alpha2[0], rd->alpha2[1]); } print_rd_rules(rd); } static void print_regdomain_info(const struct ieee80211_regdomain *rd) { printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); print_rd_rules(rd); } #ifdef CONFIG_CFG80211_REG_DEBUG static void reg_country_ie_process_debug( const struct ieee80211_regdomain *rd, const struct ieee80211_regdomain *country_ie_regdomain, const struct ieee80211_regdomain *intersected_rd) { printk(KERN_DEBUG "cfg80211: Received country IE:\n"); print_regdomain_info(country_ie_regdomain); printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n"); print_regdomain_info(rd); if (intersected_rd) { printk(KERN_DEBUG "cfg80211: We intersect both of these " "and get:\n"); print_regdomain_info(rd); return; } printk(KERN_DEBUG "cfg80211: Intersection between both failed\n"); } #else static inline void reg_country_ie_process_debug( const struct ieee80211_regdomain *rd, const struct ieee80211_regdomain *country_ie_regdomain, const struct ieee80211_regdomain *intersected_rd) { } #endif /* Takes ownership of rd only if it doesn't fail */ static int __set_regdom(const struct ieee80211_regdomain *rd) { const struct ieee80211_regdomain *intersected_rd = NULL; struct cfg80211_registered_device *drv = NULL; struct wiphy *wiphy = NULL; /* Some basic sanity checks first */ if (is_world_regdom(rd->alpha2)) { if (WARN_ON(!reg_is_valid_request(rd->alpha2))) return -EINVAL; update_world_regdomain(rd); return 0; } if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && !is_unknown_alpha2(rd->alpha2)) return -EINVAL; if (!last_request) return -EINVAL; /* Lets only bother proceeding on the same alpha2 if the current * rd is non static (it means CRDA was present and was used last) * and the pending request came in from a country IE */ if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) { /* If someone else asked us to change the rd lets only bother * checking if the alpha2 changes if CRDA was already called */ if (!is_old_static_regdom(cfg80211_regdomain) && !regdom_changed(rd->alpha2)) return -EINVAL; } wiphy = last_request->wiphy; /* Now lets set the regulatory domain, update all driver channels * and finally inform them of what we have done, in case they want * to review or adjust their own settings based on their own * internal EEPROM data */ if (WARN_ON(!reg_is_valid_request(rd->alpha2))) return -EINVAL; if (!is_valid_rd(rd)) { printk(KERN_ERR "cfg80211: Invalid " "regulatory domain detected:\n"); print_regdomain_info(rd); return -EINVAL; } if (!last_request->intersect) { reset_regdomains(); cfg80211_regdomain = rd; return 0; } /* Intersection requires a bit more work */ if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) { intersected_rd = regdom_intersect(rd, cfg80211_regdomain); if (!intersected_rd) return -EINVAL; /* We can trash what CRDA provided now */ kfree(rd); rd = NULL; reset_regdomains(); cfg80211_regdomain = intersected_rd; return 0; } /* * Country IE requests are handled a bit differently, we intersect * the country IE rd with what CRDA believes that country should have */ BUG_ON(!country_ie_regdomain); if (rd != country_ie_regdomain) { /* Intersect what CRDA returned and our what we * had built from the Country IE received */ intersected_rd = regdom_intersect(rd, country_ie_regdomain); reg_country_ie_process_debug(rd, country_ie_regdomain, intersected_rd); kfree(country_ie_regdomain); country_ie_regdomain = NULL; } else { /* This would happen when CRDA was not present and * OLD_REGULATORY was enabled. We intersect our Country * IE rd and what was set on cfg80211 originally */ intersected_rd = regdom_intersect(rd, cfg80211_regdomain); } if (!intersected_rd) return -EINVAL; drv = wiphy_to_dev(wiphy); drv->country_ie_alpha2[0] = rd->alpha2[0]; drv->country_ie_alpha2[1] = rd->alpha2[1]; drv->env = last_request->country_ie_env; BUG_ON(intersected_rd == rd); kfree(rd); rd = NULL; reset_regdomains(); cfg80211_regdomain = intersected_rd; return 0; } /* Use this call to set the current regulatory domain. Conflicts with * multiple drivers can be ironed out later. Caller must've already * kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */ int set_regdom(const struct ieee80211_regdomain *rd) { int r; /* Note that this doesn't update the wiphys, this is done below */ r = __set_regdom(rd); if (r) { kfree(rd); return r; } /* This would make this whole thing pointless */ if (!last_request->intersect) BUG_ON(rd != cfg80211_regdomain); /* update all wiphys now with the new established regulatory domain */ update_all_wiphy_regulatory(last_request->initiator); print_regdomain(cfg80211_regdomain); return r; } /* Caller must hold cfg80211_drv_mutex */ void reg_device_remove(struct wiphy *wiphy) { if (!last_request || !last_request->wiphy) return; if (last_request->wiphy != wiphy) return; last_request->wiphy = NULL; last_request->country_ie_env = ENVIRON_ANY; } int regulatory_init(void) { int err; reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); if (IS_ERR(reg_pdev)) return PTR_ERR(reg_pdev); #ifdef CONFIG_WIRELESS_OLD_REGULATORY cfg80211_regdomain = static_regdom(ieee80211_regdom); printk(KERN_INFO "cfg80211: Using static regulatory domain info\n"); print_regdomain_info(cfg80211_regdomain); /* The old code still requests for a new regdomain and if * you have CRDA you get it updated, otherwise you get * stuck with the static values. We ignore "EU" code as * that is not a valid ISO / IEC 3166 alpha2 */ if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U') err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, ieee80211_regdom, 0, ENVIRON_ANY); #else cfg80211_regdomain = cfg80211_world_regdom; err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, "00", 0, ENVIRON_ANY); if (err) printk(KERN_ERR "cfg80211: calling CRDA failed - " "unable to update world regulatory domain, " "using static definition\n"); #endif return 0; } void regulatory_exit(void) { mutex_lock(&cfg80211_drv_mutex); reset_regdomains(); kfree(country_ie_regdomain); country_ie_regdomain = NULL; kfree(last_request); platform_device_unregister(reg_pdev); mutex_unlock(&cfg80211_drv_mutex); }