/* * net/sched/sch_cbq.c Class-Based Queueing discipline. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * */ #include <linux/config.h> #include <linux/module.h> #include <asm/uaccess.h> #include <asm/system.h> #include <linux/bitops.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/in.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/if_ether.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/notifier.h> #include <net/ip.h> #include <net/route.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/pkt_sched.h> /* Class-Based Queueing (CBQ) algorithm. ======================================= Sources: [1] Sally Floyd and Van Jacobson, "Link-sharing and Resource Management Models for Packet Networks", IEEE/ACM Transactions on Networking, Vol.3, No.4, 1995 [2] Sally Floyd, "Notes on CBQ and Guaranteed Service", 1995 [3] Sally Floyd, "Notes on Class-Based Queueing: Setting Parameters", 1996 [4] Sally Floyd and Michael Speer, "Experimental Results for Class-Based Queueing", 1998, not published. ----------------------------------------------------------------------- Algorithm skeleton was taken from NS simulator cbq.cc. If someone wants to check this code against the LBL version, he should take into account that ONLY the skeleton was borrowed, the implementation is different. Particularly: --- The WRR algorithm is different. Our version looks more reasonable (I hope) and works when quanta are allowed to be less than MTU, which is always the case when real time classes have small rates. Note, that the statement of [3] is incomplete, delay may actually be estimated even if class per-round allotment is less than MTU. Namely, if per-round allotment is W*r_i, and r_1+...+r_k = r < 1 delay_i <= ([MTU/(W*r_i)]*W*r + W*r + k*MTU)/B In the worst case we have IntServ estimate with D = W*r+k*MTU and C = MTU*r. The proof (if correct at all) is trivial. --- It seems that cbq-2.0 is not very accurate. At least, I cannot interpret some places, which look like wrong translations from NS. Anyone is advised to find these differences and explain to me, why I am wrong 8). --- Linux has no EOI event, so that we cannot estimate true class idle time. Workaround is to consider the next dequeue event as sign that previous packet is finished. This is wrong because of internal device queueing, but on a permanently loaded link it is true. Moreover, combined with clock integrator, this scheme looks very close to an ideal solution. */ struct cbq_sched_data; struct cbq_class { struct cbq_class *next; /* hash table link */ struct cbq_class *next_alive; /* next class with backlog in this priority band */ /* Parameters */ u32 classid; unsigned char priority; /* class priority */ unsigned char priority2; /* priority to be used after overlimit */ unsigned char ewma_log; /* time constant for idle time calculation */ unsigned char ovl_strategy; #ifdef CONFIG_NET_CLS_POLICE unsigned char police; #endif u32 defmap; /* Link-sharing scheduler parameters */ long maxidle; /* Class parameters: see below. */ long offtime; long minidle; u32 avpkt; struct qdisc_rate_table *R_tab; /* Overlimit strategy parameters */ void (*overlimit)(struct cbq_class *cl); long penalty; /* General scheduler (WRR) parameters */ long allot; long quantum; /* Allotment per WRR round */ long weight; /* Relative allotment: see below */ struct Qdisc *qdisc; /* Ptr to CBQ discipline */ struct cbq_class *split; /* Ptr to split node */ struct cbq_class *share; /* Ptr to LS parent in the class tree */ struct cbq_class *tparent; /* Ptr to tree parent in the class tree */ struct cbq_class *borrow; /* NULL if class is bandwidth limited; parent otherwise */ struct cbq_class *sibling; /* Sibling chain */ struct cbq_class *children; /* Pointer to children chain */ struct Qdisc *q; /* Elementary queueing discipline */ /* Variables */ unsigned char cpriority; /* Effective priority */ unsigned char delayed; unsigned char level; /* level of the class in hierarchy: 0 for leaf classes, and maximal level of children + 1 for nodes. */ psched_time_t last; /* Last end of service */ psched_time_t undertime; long avgidle; long deficit; /* Saved deficit for WRR */ unsigned long penalized; struct gnet_stats_basic bstats; struct gnet_stats_queue qstats; struct gnet_stats_rate_est rate_est; spinlock_t *stats_lock; struct tc_cbq_xstats xstats; struct tcf_proto *filter_list; int refcnt; int filters; struct cbq_class *defaults[TC_PRIO_MAX+1]; }; struct cbq_sched_data { struct cbq_class *classes[16]; /* Hash table of all classes */ int nclasses[TC_CBQ_MAXPRIO+1]; unsigned quanta[TC_CBQ_MAXPRIO+1]; struct cbq_class link; unsigned activemask; struct cbq_class *active[TC_CBQ_MAXPRIO+1]; /* List of all classes with backlog */ #ifdef CONFIG_NET_CLS_POLICE struct cbq_class *rx_class; #endif struct cbq_class *tx_class; struct cbq_class *tx_borrowed; int tx_len; psched_time_t now; /* Cached timestamp */ psched_time_t now_rt; /* Cached real time */ unsigned pmask; struct timer_list delay_timer; struct timer_list wd_timer; /* Watchdog timer, started when CBQ has backlog, but cannot transmit just now */ long wd_expires; int toplevel; u32 hgenerator; }; #define L2T(cl,len) ((cl)->R_tab->data[(len)>>(cl)->R_tab->rate.cell_log]) static __inline__ unsigned cbq_hash(u32 h) { h ^= h>>8; h ^= h>>4; return h&0xF; } static __inline__ struct cbq_class * cbq_class_lookup(struct cbq_sched_data *q, u32 classid) { struct cbq_class *cl; for (cl = q->classes[cbq_hash(classid)]; cl; cl = cl->next) if (cl->classid == classid) return cl; return NULL; } #ifdef CONFIG_NET_CLS_POLICE static struct cbq_class * cbq_reclassify(struct sk_buff *skb, struct cbq_class *this) { struct cbq_class *cl, *new; for (cl = this->tparent; cl; cl = cl->tparent) if ((new = cl->defaults[TC_PRIO_BESTEFFORT]) != NULL && new != this) return new; return NULL; } #endif /* Classify packet. The procedure is pretty complicated, but it allows us to combine link sharing and priority scheduling transparently. Namely, you can put link sharing rules (f.e. route based) at root of CBQ, so that it resolves to split nodes. Then packets are classified by logical priority, or a more specific classifier may be attached to the split node. */ static struct cbq_class * cbq_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *head = &q->link; struct cbq_class **defmap; struct cbq_class *cl = NULL; u32 prio = skb->priority; struct tcf_result res; /* * Step 1. If skb->priority points to one of our classes, use it. */ if (TC_H_MAJ(prio^sch->handle) == 0 && (cl = cbq_class_lookup(q, prio)) != NULL) return cl; *qerr = NET_XMIT_DROP; for (;;) { int result = 0; defmap = head->defaults; /* * Step 2+n. Apply classifier. */ if (!head->filter_list || (result = tc_classify(skb, head->filter_list, &res)) < 0) goto fallback; if ((cl = (void*)res.class) == NULL) { if (TC_H_MAJ(res.classid)) cl = cbq_class_lookup(q, res.classid); else if ((cl = defmap[res.classid&TC_PRIO_MAX]) == NULL) cl = defmap[TC_PRIO_BESTEFFORT]; if (cl == NULL || cl->level >= head->level) goto fallback; } #ifdef CONFIG_NET_CLS_ACT switch (result) { case TC_ACT_QUEUED: case TC_ACT_STOLEN: *qerr = NET_XMIT_SUCCESS; case TC_ACT_SHOT: return NULL; } #elif defined(CONFIG_NET_CLS_POLICE) switch (result) { case TC_POLICE_RECLASSIFY: return cbq_reclassify(skb, cl); case TC_POLICE_SHOT: return NULL; default: break; } #endif if (cl->level == 0) return cl; /* * Step 3+n. If classifier selected a link sharing class, * apply agency specific classifier. * Repeat this procdure until we hit a leaf node. */ head = cl; } fallback: cl = head; /* * Step 4. No success... */ if (TC_H_MAJ(prio) == 0 && !(cl = head->defaults[prio&TC_PRIO_MAX]) && !(cl = head->defaults[TC_PRIO_BESTEFFORT])) return head; return cl; } /* A packet has just been enqueued on the empty class. cbq_activate_class adds it to the tail of active class list of its priority band. */ static __inline__ void cbq_activate_class(struct cbq_class *cl) { struct cbq_sched_data *q = qdisc_priv(cl->qdisc); int prio = cl->cpriority; struct cbq_class *cl_tail; cl_tail = q->active[prio]; q->active[prio] = cl; if (cl_tail != NULL) { cl->next_alive = cl_tail->next_alive; cl_tail->next_alive = cl; } else { cl->next_alive = cl; q->activemask |= (1<<prio); } } /* Unlink class from active chain. Note that this same procedure is done directly in cbq_dequeue* during round-robin procedure. */ static void cbq_deactivate_class(struct cbq_class *this) { struct cbq_sched_data *q = qdisc_priv(this->qdisc); int prio = this->cpriority; struct cbq_class *cl; struct cbq_class *cl_prev = q->active[prio]; do { cl = cl_prev->next_alive; if (cl == this) { cl_prev->next_alive = cl->next_alive; cl->next_alive = NULL; if (cl == q->active[prio]) { q->active[prio] = cl_prev; if (cl == q->active[prio]) { q->active[prio] = NULL; q->activemask &= ~(1<<prio); return; } } cl = cl_prev->next_alive; return; } } while ((cl_prev = cl) != q->active[prio]); } static void cbq_mark_toplevel(struct cbq_sched_data *q, struct cbq_class *cl) { int toplevel = q->toplevel; if (toplevel > cl->level && !(cl->q->flags&TCQ_F_THROTTLED)) { psched_time_t now; psched_tdiff_t incr; PSCHED_GET_TIME(now); incr = PSCHED_TDIFF(now, q->now_rt); PSCHED_TADD2(q->now, incr, now); do { if (PSCHED_TLESS(cl->undertime, now)) { q->toplevel = cl->level; return; } } while ((cl=cl->borrow) != NULL && toplevel > cl->level); } } static int cbq_enqueue(struct sk_buff *skb, struct Qdisc *sch) { struct cbq_sched_data *q = qdisc_priv(sch); int len = skb->len; int ret; struct cbq_class *cl = cbq_classify(skb, sch, &ret); #ifdef CONFIG_NET_CLS_POLICE q->rx_class = cl; #endif if (cl == NULL) { if (ret == NET_XMIT_DROP) sch->qstats.drops++; kfree_skb(skb); return ret; } #ifdef CONFIG_NET_CLS_POLICE cl->q->__parent = sch; #endif if ((ret = cl->q->enqueue(skb, cl->q)) == NET_XMIT_SUCCESS) { sch->q.qlen++; sch->bstats.packets++; sch->bstats.bytes+=len; cbq_mark_toplevel(q, cl); if (!cl->next_alive) cbq_activate_class(cl); return ret; } sch->qstats.drops++; cbq_mark_toplevel(q, cl); cl->qstats.drops++; return ret; } static int cbq_requeue(struct sk_buff *skb, struct Qdisc *sch) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl; int ret; if ((cl = q->tx_class) == NULL) { kfree_skb(skb); sch->qstats.drops++; return NET_XMIT_CN; } q->tx_class = NULL; cbq_mark_toplevel(q, cl); #ifdef CONFIG_NET_CLS_POLICE q->rx_class = cl; cl->q->__parent = sch; #endif if ((ret = cl->q->ops->requeue(skb, cl->q)) == 0) { sch->q.qlen++; sch->qstats.requeues++; if (!cl->next_alive) cbq_activate_class(cl); return 0; } sch->qstats.drops++; cl->qstats.drops++; return ret; } /* Overlimit actions */ /* TC_CBQ_OVL_CLASSIC: (default) penalize leaf class by adding offtime */ static void cbq_ovl_classic(struct cbq_class *cl) { struct cbq_sched_data *q = qdisc_priv(cl->qdisc); psched_tdiff_t delay = PSCHED_TDIFF(cl->undertime, q->now); if (!cl->delayed) { delay += cl->offtime; /* Class goes to sleep, so that it will have no chance to work avgidle. Let's forgive it 8) BTW cbq-2.0 has a crap in this place, apparently they forgot to shift it by cl->ewma_log. */ if (cl->avgidle < 0) delay -= (-cl->avgidle) - ((-cl->avgidle) >> cl->ewma_log); if (cl->avgidle < cl->minidle) cl->avgidle = cl->minidle; if (delay <= 0) delay = 1; PSCHED_TADD2(q->now, delay, cl->undertime); cl->xstats.overactions++; cl->delayed = 1; } if (q->wd_expires == 0 || q->wd_expires > delay) q->wd_expires = delay; /* Dirty work! We must schedule wakeups based on real available rate, rather than leaf rate, which may be tiny (even zero). */ if (q->toplevel == TC_CBQ_MAXLEVEL) { struct cbq_class *b; psched_tdiff_t base_delay = q->wd_expires; for (b = cl->borrow; b; b = b->borrow) { delay = PSCHED_TDIFF(b->undertime, q->now); if (delay < base_delay) { if (delay <= 0) delay = 1; base_delay = delay; } } q->wd_expires = base_delay; } } /* TC_CBQ_OVL_RCLASSIC: penalize by offtime classes in hierarchy, when they go overlimit */ static void cbq_ovl_rclassic(struct cbq_class *cl) { struct cbq_sched_data *q = qdisc_priv(cl->qdisc); struct cbq_class *this = cl; do { if (cl->level > q->toplevel) { cl = NULL; break; } } while ((cl = cl->borrow) != NULL); if (cl == NULL) cl = this; cbq_ovl_classic(cl); } /* TC_CBQ_OVL_DELAY: delay until it will go to underlimit */ static void cbq_ovl_delay(struct cbq_class *cl) { struct cbq_sched_data *q = qdisc_priv(cl->qdisc); psched_tdiff_t delay = PSCHED_TDIFF(cl->undertime, q->now); if (!cl->delayed) { unsigned long sched = jiffies; delay += cl->offtime; if (cl->avgidle < 0) delay -= (-cl->avgidle) - ((-cl->avgidle) >> cl->ewma_log); if (cl->avgidle < cl->minidle) cl->avgidle = cl->minidle; PSCHED_TADD2(q->now, delay, cl->undertime); if (delay > 0) { sched += PSCHED_US2JIFFIE(delay) + cl->penalty; cl->penalized = sched; cl->cpriority = TC_CBQ_MAXPRIO; q->pmask |= (1<<TC_CBQ_MAXPRIO); if (del_timer(&q->delay_timer) && (long)(q->delay_timer.expires - sched) > 0) q->delay_timer.expires = sched; add_timer(&q->delay_timer); cl->delayed = 1; cl->xstats.overactions++; return; } delay = 1; } if (q->wd_expires == 0 || q->wd_expires > delay) q->wd_expires = delay; } /* TC_CBQ_OVL_LOWPRIO: penalize class by lowering its priority band */ static void cbq_ovl_lowprio(struct cbq_class *cl) { struct cbq_sched_data *q = qdisc_priv(cl->qdisc); cl->penalized = jiffies + cl->penalty; if (cl->cpriority != cl->priority2) { cl->cpriority = cl->priority2; q->pmask |= (1<<cl->cpriority); cl->xstats.overactions++; } cbq_ovl_classic(cl); } /* TC_CBQ_OVL_DROP: penalize class by dropping */ static void cbq_ovl_drop(struct cbq_class *cl) { if (cl->q->ops->drop) if (cl->q->ops->drop(cl->q)) cl->qdisc->q.qlen--; cl->xstats.overactions++; cbq_ovl_classic(cl); } static void cbq_watchdog(unsigned long arg) { struct Qdisc *sch = (struct Qdisc*)arg; sch->flags &= ~TCQ_F_THROTTLED; netif_schedule(sch->dev); } static unsigned long cbq_undelay_prio(struct cbq_sched_data *q, int prio) { struct cbq_class *cl; struct cbq_class *cl_prev = q->active[prio]; unsigned long now = jiffies; unsigned long sched = now; if (cl_prev == NULL) return now; do { cl = cl_prev->next_alive; if ((long)(now - cl->penalized) > 0) { cl_prev->next_alive = cl->next_alive; cl->next_alive = NULL; cl->cpriority = cl->priority; cl->delayed = 0; cbq_activate_class(cl); if (cl == q->active[prio]) { q->active[prio] = cl_prev; if (cl == q->active[prio]) { q->active[prio] = NULL; return 0; } } cl = cl_prev->next_alive; } else if ((long)(sched - cl->penalized) > 0) sched = cl->penalized; } while ((cl_prev = cl) != q->active[prio]); return (long)(sched - now); } static void cbq_undelay(unsigned long arg) { struct Qdisc *sch = (struct Qdisc*)arg; struct cbq_sched_data *q = qdisc_priv(sch); long delay = 0; unsigned pmask; pmask = q->pmask; q->pmask = 0; while (pmask) { int prio = ffz(~pmask); long tmp; pmask &= ~(1<<prio); tmp = cbq_undelay_prio(q, prio); if (tmp > 0) { q->pmask |= 1<<prio; if (tmp < delay || delay == 0) delay = tmp; } } if (delay) { q->delay_timer.expires = jiffies + delay; add_timer(&q->delay_timer); } sch->flags &= ~TCQ_F_THROTTLED; netif_schedule(sch->dev); } #ifdef CONFIG_NET_CLS_POLICE static int cbq_reshape_fail(struct sk_buff *skb, struct Qdisc *child) { int len = skb->len; struct Qdisc *sch = child->__parent; struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl = q->rx_class; q->rx_class = NULL; if (cl && (cl = cbq_reclassify(skb, cl)) != NULL) { cbq_mark_toplevel(q, cl); q->rx_class = cl; cl->q->__parent = sch; if (cl->q->enqueue(skb, cl->q) == 0) { sch->q.qlen++; sch->bstats.packets++; sch->bstats.bytes+=len; if (!cl->next_alive) cbq_activate_class(cl); return 0; } sch->qstats.drops++; return 0; } sch->qstats.drops++; return -1; } #endif /* It is mission critical procedure. We "regenerate" toplevel cutoff, if transmitting class has backlog and it is not regulated. It is not part of original CBQ description, but looks more reasonable. Probably, it is wrong. This question needs further investigation. */ static __inline__ void cbq_update_toplevel(struct cbq_sched_data *q, struct cbq_class *cl, struct cbq_class *borrowed) { if (cl && q->toplevel >= borrowed->level) { if (cl->q->q.qlen > 1) { do { if (PSCHED_IS_PASTPERFECT(borrowed->undertime)) { q->toplevel = borrowed->level; return; } } while ((borrowed=borrowed->borrow) != NULL); } #if 0 /* It is not necessary now. Uncommenting it will save CPU cycles, but decrease fairness. */ q->toplevel = TC_CBQ_MAXLEVEL; #endif } } static void cbq_update(struct cbq_sched_data *q) { struct cbq_class *this = q->tx_class; struct cbq_class *cl = this; int len = q->tx_len; q->tx_class = NULL; for ( ; cl; cl = cl->share) { long avgidle = cl->avgidle; long idle; cl->bstats.packets++; cl->bstats.bytes += len; /* (now - last) is total time between packet right edges. (last_pktlen/rate) is "virtual" busy time, so that idle = (now - last) - last_pktlen/rate */ idle = PSCHED_TDIFF(q->now, cl->last); if ((unsigned long)idle > 128*1024*1024) { avgidle = cl->maxidle; } else { idle -= L2T(cl, len); /* true_avgidle := (1-W)*true_avgidle + W*idle, where W=2^{-ewma_log}. But cl->avgidle is scaled: cl->avgidle == true_avgidle/W, hence: */ avgidle += idle - (avgidle>>cl->ewma_log); } if (avgidle <= 0) { /* Overlimit or at-limit */ if (avgidle < cl->minidle) avgidle = cl->minidle; cl->avgidle = avgidle; /* Calculate expected time, when this class will be allowed to send. It will occur, when: (1-W)*true_avgidle + W*delay = 0, i.e. idle = (1/W - 1)*(-true_avgidle) or idle = (1 - W)*(-cl->avgidle); */ idle = (-avgidle) - ((-avgidle) >> cl->ewma_log); /* That is not all. To maintain the rate allocated to the class, we add to undertime virtual clock, necessary to complete transmitted packet. (len/phys_bandwidth has been already passed to the moment of cbq_update) */ idle -= L2T(&q->link, len); idle += L2T(cl, len); PSCHED_AUDIT_TDIFF(idle); PSCHED_TADD2(q->now, idle, cl->undertime); } else { /* Underlimit */ PSCHED_SET_PASTPERFECT(cl->undertime); if (avgidle > cl->maxidle) cl->avgidle = cl->maxidle; else cl->avgidle = avgidle; } cl->last = q->now; } cbq_update_toplevel(q, this, q->tx_borrowed); } static __inline__ struct cbq_class * cbq_under_limit(struct cbq_class *cl) { struct cbq_sched_data *q = qdisc_priv(cl->qdisc); struct cbq_class *this_cl = cl; if (cl->tparent == NULL) return cl; if (PSCHED_IS_PASTPERFECT(cl->undertime) || !PSCHED_TLESS(q->now, cl->undertime)) { cl->delayed = 0; return cl; } do { /* It is very suspicious place. Now overlimit action is generated for not bounded classes only if link is completely congested. Though it is in agree with ancestor-only paradigm, it looks very stupid. Particularly, it means that this chunk of code will either never be called or result in strong amplification of burstiness. Dangerous, silly, and, however, no another solution exists. */ if ((cl = cl->borrow) == NULL) { this_cl->qstats.overlimits++; this_cl->overlimit(this_cl); return NULL; } if (cl->level > q->toplevel) return NULL; } while (!PSCHED_IS_PASTPERFECT(cl->undertime) && PSCHED_TLESS(q->now, cl->undertime)); cl->delayed = 0; return cl; } static __inline__ struct sk_buff * cbq_dequeue_prio(struct Qdisc *sch, int prio) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl_tail, *cl_prev, *cl; struct sk_buff *skb; int deficit; cl_tail = cl_prev = q->active[prio]; cl = cl_prev->next_alive; do { deficit = 0; /* Start round */ do { struct cbq_class *borrow = cl; if (cl->q->q.qlen && (borrow = cbq_under_limit(cl)) == NULL) goto skip_class; if (cl->deficit <= 0) { /* Class exhausted its allotment per this round. Switch to the next one. */ deficit = 1; cl->deficit += cl->quantum; goto next_class; } skb = cl->q->dequeue(cl->q); /* Class did not give us any skb :-( It could occur even if cl->q->q.qlen != 0 f.e. if cl->q == "tbf" */ if (skb == NULL) goto skip_class; cl->deficit -= skb->len; q->tx_class = cl; q->tx_borrowed = borrow; if (borrow != cl) { #ifndef CBQ_XSTATS_BORROWS_BYTES borrow->xstats.borrows++; cl->xstats.borrows++; #else borrow->xstats.borrows += skb->len; cl->xstats.borrows += skb->len; #endif } q->tx_len = skb->len; if (cl->deficit <= 0) { q->active[prio] = cl; cl = cl->next_alive; cl->deficit += cl->quantum; } return skb; skip_class: if (cl->q->q.qlen == 0 || prio != cl->cpriority) { /* Class is empty or penalized. Unlink it from active chain. */ cl_prev->next_alive = cl->next_alive; cl->next_alive = NULL; /* Did cl_tail point to it? */ if (cl == cl_tail) { /* Repair it! */ cl_tail = cl_prev; /* Was it the last class in this band? */ if (cl == cl_tail) { /* Kill the band! */ q->active[prio] = NULL; q->activemask &= ~(1<<prio); if (cl->q->q.qlen) cbq_activate_class(cl); return NULL; } q->active[prio] = cl_tail; } if (cl->q->q.qlen) cbq_activate_class(cl); cl = cl_prev; } next_class: cl_prev = cl; cl = cl->next_alive; } while (cl_prev != cl_tail); } while (deficit); q->active[prio] = cl_prev; return NULL; } static __inline__ struct sk_buff * cbq_dequeue_1(struct Qdisc *sch) { struct cbq_sched_data *q = qdisc_priv(sch); struct sk_buff *skb; unsigned activemask; activemask = q->activemask&0xFF; while (activemask) { int prio = ffz(~activemask); activemask &= ~(1<<prio); skb = cbq_dequeue_prio(sch, prio); if (skb) return skb; } return NULL; } static struct sk_buff * cbq_dequeue(struct Qdisc *sch) { struct sk_buff *skb; struct cbq_sched_data *q = qdisc_priv(sch); psched_time_t now; psched_tdiff_t incr; PSCHED_GET_TIME(now); incr = PSCHED_TDIFF(now, q->now_rt); if (q->tx_class) { psched_tdiff_t incr2; /* Time integrator. We calculate EOS time by adding expected packet transmission time. If real time is greater, we warp artificial clock, so that: cbq_time = max(real_time, work); */ incr2 = L2T(&q->link, q->tx_len); PSCHED_TADD(q->now, incr2); cbq_update(q); if ((incr -= incr2) < 0) incr = 0; } PSCHED_TADD(q->now, incr); q->now_rt = now; for (;;) { q->wd_expires = 0; skb = cbq_dequeue_1(sch); if (skb) { sch->q.qlen--; sch->flags &= ~TCQ_F_THROTTLED; return skb; } /* All the classes are overlimit. It is possible, if: 1. Scheduler is empty. 2. Toplevel cutoff inhibited borrowing. 3. Root class is overlimit. Reset 2d and 3d conditions and retry. Note, that NS and cbq-2.0 are buggy, peeking an arbitrary class is appropriate for ancestor-only sharing, but not for toplevel algorithm. Our version is better, but slower, because it requires two passes, but it is unavoidable with top-level sharing. */ if (q->toplevel == TC_CBQ_MAXLEVEL && PSCHED_IS_PASTPERFECT(q->link.undertime)) break; q->toplevel = TC_CBQ_MAXLEVEL; PSCHED_SET_PASTPERFECT(q->link.undertime); } /* No packets in scheduler or nobody wants to give them to us :-( Sigh... start watchdog timer in the last case. */ if (sch->q.qlen) { sch->qstats.overlimits++; if (q->wd_expires) { long delay = PSCHED_US2JIFFIE(q->wd_expires); if (delay <= 0) delay = 1; mod_timer(&q->wd_timer, jiffies + delay); sch->flags |= TCQ_F_THROTTLED; } } return NULL; } /* CBQ class maintanance routines */ static void cbq_adjust_levels(struct cbq_class *this) { if (this == NULL) return; do { int level = 0; struct cbq_class *cl; if ((cl = this->children) != NULL) { do { if (cl->level > level) level = cl->level; } while ((cl = cl->sibling) != this->children); } this->level = level+1; } while ((this = this->tparent) != NULL); } static void cbq_normalize_quanta(struct cbq_sched_data *q, int prio) { struct cbq_class *cl; unsigned h; if (q->quanta[prio] == 0) return; for (h=0; h<16; h++) { for (cl = q->classes[h]; cl; cl = cl->next) { /* BUGGGG... Beware! This expression suffer of arithmetic overflows! */ if (cl->priority == prio) { cl->quantum = (cl->weight*cl->allot*q->nclasses[prio])/ q->quanta[prio]; } if (cl->quantum <= 0 || cl->quantum>32*cl->qdisc->dev->mtu) { printk(KERN_WARNING "CBQ: class %08x has bad quantum==%ld, repaired.\n", cl->classid, cl->quantum); cl->quantum = cl->qdisc->dev->mtu/2 + 1; } } } } static void cbq_sync_defmap(struct cbq_class *cl) { struct cbq_sched_data *q = qdisc_priv(cl->qdisc); struct cbq_class *split = cl->split; unsigned h; int i; if (split == NULL) return; for (i=0; i<=TC_PRIO_MAX; i++) { if (split->defaults[i] == cl && !(cl->defmap&(1<<i))) split->defaults[i] = NULL; } for (i=0; i<=TC_PRIO_MAX; i++) { int level = split->level; if (split->defaults[i]) continue; for (h=0; h<16; h++) { struct cbq_class *c; for (c = q->classes[h]; c; c = c->next) { if (c->split == split && c->level < level && c->defmap&(1<<i)) { split->defaults[i] = c; level = c->level; } } } } } static void cbq_change_defmap(struct cbq_class *cl, u32 splitid, u32 def, u32 mask) { struct cbq_class *split = NULL; if (splitid == 0) { if ((split = cl->split) == NULL) return; splitid = split->classid; } if (split == NULL || split->classid != splitid) { for (split = cl->tparent; split; split = split->tparent) if (split->classid == splitid) break; } if (split == NULL) return; if (cl->split != split) { cl->defmap = 0; cbq_sync_defmap(cl); cl->split = split; cl->defmap = def&mask; } else cl->defmap = (cl->defmap&~mask)|(def&mask); cbq_sync_defmap(cl); } static void cbq_unlink_class(struct cbq_class *this) { struct cbq_class *cl, **clp; struct cbq_sched_data *q = qdisc_priv(this->qdisc); for (clp = &q->classes[cbq_hash(this->classid)]; (cl = *clp) != NULL; clp = &cl->next) { if (cl == this) { *clp = cl->next; cl->next = NULL; break; } } if (this->tparent) { clp=&this->sibling; cl = *clp; do { if (cl == this) { *clp = cl->sibling; break; } clp = &cl->sibling; } while ((cl = *clp) != this->sibling); if (this->tparent->children == this) { this->tparent->children = this->sibling; if (this->sibling == this) this->tparent->children = NULL; } } else { BUG_TRAP(this->sibling == this); } } static void cbq_link_class(struct cbq_class *this) { struct cbq_sched_data *q = qdisc_priv(this->qdisc); unsigned h = cbq_hash(this->classid); struct cbq_class *parent = this->tparent; this->sibling = this; this->next = q->classes[h]; q->classes[h] = this; if (parent == NULL) return; if (parent->children == NULL) { parent->children = this; } else { this->sibling = parent->children->sibling; parent->children->sibling = this; } } static unsigned int cbq_drop(struct Qdisc* sch) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl, *cl_head; int prio; unsigned int len; for (prio = TC_CBQ_MAXPRIO; prio >= 0; prio--) { if ((cl_head = q->active[prio]) == NULL) continue; cl = cl_head; do { if (cl->q->ops->drop && (len = cl->q->ops->drop(cl->q))) { sch->q.qlen--; return len; } } while ((cl = cl->next_alive) != cl_head); } return 0; } static void cbq_reset(struct Qdisc* sch) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl; int prio; unsigned h; q->activemask = 0; q->pmask = 0; q->tx_class = NULL; q->tx_borrowed = NULL; del_timer(&q->wd_timer); del_timer(&q->delay_timer); q->toplevel = TC_CBQ_MAXLEVEL; PSCHED_GET_TIME(q->now); q->now_rt = q->now; for (prio = 0; prio <= TC_CBQ_MAXPRIO; prio++) q->active[prio] = NULL; for (h = 0; h < 16; h++) { for (cl = q->classes[h]; cl; cl = cl->next) { qdisc_reset(cl->q); cl->next_alive = NULL; PSCHED_SET_PASTPERFECT(cl->undertime); cl->avgidle = cl->maxidle; cl->deficit = cl->quantum; cl->cpriority = cl->priority; } } sch->q.qlen = 0; } static int cbq_set_lss(struct cbq_class *cl, struct tc_cbq_lssopt *lss) { if (lss->change&TCF_CBQ_LSS_FLAGS) { cl->share = (lss->flags&TCF_CBQ_LSS_ISOLATED) ? NULL : cl->tparent; cl->borrow = (lss->flags&TCF_CBQ_LSS_BOUNDED) ? NULL : cl->tparent; } if (lss->change&TCF_CBQ_LSS_EWMA) cl->ewma_log = lss->ewma_log; if (lss->change&TCF_CBQ_LSS_AVPKT) cl->avpkt = lss->avpkt; if (lss->change&TCF_CBQ_LSS_MINIDLE) cl->minidle = -(long)lss->minidle; if (lss->change&TCF_CBQ_LSS_MAXIDLE) { cl->maxidle = lss->maxidle; cl->avgidle = lss->maxidle; } if (lss->change&TCF_CBQ_LSS_OFFTIME) cl->offtime = lss->offtime; return 0; } static void cbq_rmprio(struct cbq_sched_data *q, struct cbq_class *cl) { q->nclasses[cl->priority]--; q->quanta[cl->priority] -= cl->weight; cbq_normalize_quanta(q, cl->priority); } static void cbq_addprio(struct cbq_sched_data *q, struct cbq_class *cl) { q->nclasses[cl->priority]++; q->quanta[cl->priority] += cl->weight; cbq_normalize_quanta(q, cl->priority); } static int cbq_set_wrr(struct cbq_class *cl, struct tc_cbq_wrropt *wrr) { struct cbq_sched_data *q = qdisc_priv(cl->qdisc); if (wrr->allot) cl->allot = wrr->allot; if (wrr->weight) cl->weight = wrr->weight; if (wrr->priority) { cl->priority = wrr->priority-1; cl->cpriority = cl->priority; if (cl->priority >= cl->priority2) cl->priority2 = TC_CBQ_MAXPRIO-1; } cbq_addprio(q, cl); return 0; } static int cbq_set_overlimit(struct cbq_class *cl, struct tc_cbq_ovl *ovl) { switch (ovl->strategy) { case TC_CBQ_OVL_CLASSIC: cl->overlimit = cbq_ovl_classic; break; case TC_CBQ_OVL_DELAY: cl->overlimit = cbq_ovl_delay; break; case TC_CBQ_OVL_LOWPRIO: if (ovl->priority2-1 >= TC_CBQ_MAXPRIO || ovl->priority2-1 <= cl->priority) return -EINVAL; cl->priority2 = ovl->priority2-1; cl->overlimit = cbq_ovl_lowprio; break; case TC_CBQ_OVL_DROP: cl->overlimit = cbq_ovl_drop; break; case TC_CBQ_OVL_RCLASSIC: cl->overlimit = cbq_ovl_rclassic; break; default: return -EINVAL; } cl->penalty = (ovl->penalty*HZ)/1000; return 0; } #ifdef CONFIG_NET_CLS_POLICE static int cbq_set_police(struct cbq_class *cl, struct tc_cbq_police *p) { cl->police = p->police; if (cl->q->handle) { if (p->police == TC_POLICE_RECLASSIFY) cl->q->reshape_fail = cbq_reshape_fail; else cl->q->reshape_fail = NULL; } return 0; } #endif static int cbq_set_fopt(struct cbq_class *cl, struct tc_cbq_fopt *fopt) { cbq_change_defmap(cl, fopt->split, fopt->defmap, fopt->defchange); return 0; } static int cbq_init(struct Qdisc *sch, struct rtattr *opt) { struct cbq_sched_data *q = qdisc_priv(sch); struct rtattr *tb[TCA_CBQ_MAX]; struct tc_ratespec *r; if (rtattr_parse_nested(tb, TCA_CBQ_MAX, opt) < 0 || tb[TCA_CBQ_RTAB-1] == NULL || tb[TCA_CBQ_RATE-1] == NULL || RTA_PAYLOAD(tb[TCA_CBQ_RATE-1]) < sizeof(struct tc_ratespec)) return -EINVAL; if (tb[TCA_CBQ_LSSOPT-1] && RTA_PAYLOAD(tb[TCA_CBQ_LSSOPT-1]) < sizeof(struct tc_cbq_lssopt)) return -EINVAL; r = RTA_DATA(tb[TCA_CBQ_RATE-1]); if ((q->link.R_tab = qdisc_get_rtab(r, tb[TCA_CBQ_RTAB-1])) == NULL) return -EINVAL; q->link.refcnt = 1; q->link.sibling = &q->link; q->link.classid = sch->handle; q->link.qdisc = sch; if (!(q->link.q = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops))) q->link.q = &noop_qdisc; q->link.priority = TC_CBQ_MAXPRIO-1; q->link.priority2 = TC_CBQ_MAXPRIO-1; q->link.cpriority = TC_CBQ_MAXPRIO-1; q->link.ovl_strategy = TC_CBQ_OVL_CLASSIC; q->link.overlimit = cbq_ovl_classic; q->link.allot = psched_mtu(sch->dev); q->link.quantum = q->link.allot; q->link.weight = q->link.R_tab->rate.rate; q->link.ewma_log = TC_CBQ_DEF_EWMA; q->link.avpkt = q->link.allot/2; q->link.minidle = -0x7FFFFFFF; q->link.stats_lock = &sch->dev->queue_lock; init_timer(&q->wd_timer); q->wd_timer.data = (unsigned long)sch; q->wd_timer.function = cbq_watchdog; init_timer(&q->delay_timer); q->delay_timer.data = (unsigned long)sch; q->delay_timer.function = cbq_undelay; q->toplevel = TC_CBQ_MAXLEVEL; PSCHED_GET_TIME(q->now); q->now_rt = q->now; cbq_link_class(&q->link); if (tb[TCA_CBQ_LSSOPT-1]) cbq_set_lss(&q->link, RTA_DATA(tb[TCA_CBQ_LSSOPT-1])); cbq_addprio(q, &q->link); return 0; } static __inline__ int cbq_dump_rate(struct sk_buff *skb, struct cbq_class *cl) { unsigned char *b = skb->tail; RTA_PUT(skb, TCA_CBQ_RATE, sizeof(cl->R_tab->rate), &cl->R_tab->rate); return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } static __inline__ int cbq_dump_lss(struct sk_buff *skb, struct cbq_class *cl) { unsigned char *b = skb->tail; struct tc_cbq_lssopt opt; opt.flags = 0; if (cl->borrow == NULL) opt.flags |= TCF_CBQ_LSS_BOUNDED; if (cl->share == NULL) opt.flags |= TCF_CBQ_LSS_ISOLATED; opt.ewma_log = cl->ewma_log; opt.level = cl->level; opt.avpkt = cl->avpkt; opt.maxidle = cl->maxidle; opt.minidle = (u32)(-cl->minidle); opt.offtime = cl->offtime; opt.change = ~0; RTA_PUT(skb, TCA_CBQ_LSSOPT, sizeof(opt), &opt); return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } static __inline__ int cbq_dump_wrr(struct sk_buff *skb, struct cbq_class *cl) { unsigned char *b = skb->tail; struct tc_cbq_wrropt opt; opt.flags = 0; opt.allot = cl->allot; opt.priority = cl->priority+1; opt.cpriority = cl->cpriority+1; opt.weight = cl->weight; RTA_PUT(skb, TCA_CBQ_WRROPT, sizeof(opt), &opt); return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } static __inline__ int cbq_dump_ovl(struct sk_buff *skb, struct cbq_class *cl) { unsigned char *b = skb->tail; struct tc_cbq_ovl opt; opt.strategy = cl->ovl_strategy; opt.priority2 = cl->priority2+1; opt.penalty = (cl->penalty*1000)/HZ; RTA_PUT(skb, TCA_CBQ_OVL_STRATEGY, sizeof(opt), &opt); return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } static __inline__ int cbq_dump_fopt(struct sk_buff *skb, struct cbq_class *cl) { unsigned char *b = skb->tail; struct tc_cbq_fopt opt; if (cl->split || cl->defmap) { opt.split = cl->split ? cl->split->classid : 0; opt.defmap = cl->defmap; opt.defchange = ~0; RTA_PUT(skb, TCA_CBQ_FOPT, sizeof(opt), &opt); } return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } #ifdef CONFIG_NET_CLS_POLICE static __inline__ int cbq_dump_police(struct sk_buff *skb, struct cbq_class *cl) { unsigned char *b = skb->tail; struct tc_cbq_police opt; if (cl->police) { opt.police = cl->police; RTA_PUT(skb, TCA_CBQ_POLICE, sizeof(opt), &opt); } return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } #endif static int cbq_dump_attr(struct sk_buff *skb, struct cbq_class *cl) { if (cbq_dump_lss(skb, cl) < 0 || cbq_dump_rate(skb, cl) < 0 || cbq_dump_wrr(skb, cl) < 0 || cbq_dump_ovl(skb, cl) < 0 || #ifdef CONFIG_NET_CLS_POLICE cbq_dump_police(skb, cl) < 0 || #endif cbq_dump_fopt(skb, cl) < 0) return -1; return 0; } static int cbq_dump(struct Qdisc *sch, struct sk_buff *skb) { struct cbq_sched_data *q = qdisc_priv(sch); unsigned char *b = skb->tail; struct rtattr *rta; rta = (struct rtattr*)b; RTA_PUT(skb, TCA_OPTIONS, 0, NULL); if (cbq_dump_attr(skb, &q->link) < 0) goto rtattr_failure; rta->rta_len = skb->tail - b; return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } static int cbq_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct cbq_sched_data *q = qdisc_priv(sch); q->link.xstats.avgidle = q->link.avgidle; return gnet_stats_copy_app(d, &q->link.xstats, sizeof(q->link.xstats)); } static int cbq_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb, struct tcmsg *tcm) { struct cbq_class *cl = (struct cbq_class*)arg; unsigned char *b = skb->tail; struct rtattr *rta; if (cl->tparent) tcm->tcm_parent = cl->tparent->classid; else tcm->tcm_parent = TC_H_ROOT; tcm->tcm_handle = cl->classid; tcm->tcm_info = cl->q->handle; rta = (struct rtattr*)b; RTA_PUT(skb, TCA_OPTIONS, 0, NULL); if (cbq_dump_attr(skb, cl) < 0) goto rtattr_failure; rta->rta_len = skb->tail - b; return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } static int cbq_dump_class_stats(struct Qdisc *sch, unsigned long arg, struct gnet_dump *d) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl = (struct cbq_class*)arg; cl->qstats.qlen = cl->q->q.qlen; cl->xstats.avgidle = cl->avgidle; cl->xstats.undertime = 0; if (!PSCHED_IS_PASTPERFECT(cl->undertime)) cl->xstats.undertime = PSCHED_TDIFF(cl->undertime, q->now); if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || #ifdef CONFIG_NET_ESTIMATOR gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || #endif gnet_stats_copy_queue(d, &cl->qstats) < 0) return -1; return gnet_stats_copy_app(d, &cl->xstats, sizeof(cl->xstats)); } static int cbq_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, struct Qdisc **old) { struct cbq_class *cl = (struct cbq_class*)arg; if (cl) { if (new == NULL) { if ((new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops)) == NULL) return -ENOBUFS; } else { #ifdef CONFIG_NET_CLS_POLICE if (cl->police == TC_POLICE_RECLASSIFY) new->reshape_fail = cbq_reshape_fail; #endif } sch_tree_lock(sch); *old = cl->q; cl->q = new; sch->q.qlen -= (*old)->q.qlen; qdisc_reset(*old); sch_tree_unlock(sch); return 0; } return -ENOENT; } static struct Qdisc * cbq_leaf(struct Qdisc *sch, unsigned long arg) { struct cbq_class *cl = (struct cbq_class*)arg; return cl ? cl->q : NULL; } static unsigned long cbq_get(struct Qdisc *sch, u32 classid) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl = cbq_class_lookup(q, classid); if (cl) { cl->refcnt++; return (unsigned long)cl; } return 0; } static void cbq_destroy_filters(struct cbq_class *cl) { struct tcf_proto *tp; while ((tp = cl->filter_list) != NULL) { cl->filter_list = tp->next; tcf_destroy(tp); } } static void cbq_destroy_class(struct Qdisc *sch, struct cbq_class *cl) { struct cbq_sched_data *q = qdisc_priv(sch); BUG_TRAP(!cl->filters); cbq_destroy_filters(cl); qdisc_destroy(cl->q); qdisc_put_rtab(cl->R_tab); #ifdef CONFIG_NET_ESTIMATOR gen_kill_estimator(&cl->bstats, &cl->rate_est); #endif if (cl != &q->link) kfree(cl); } static void cbq_destroy(struct Qdisc* sch) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl; unsigned h; #ifdef CONFIG_NET_CLS_POLICE q->rx_class = NULL; #endif /* * Filters must be destroyed first because we don't destroy the * classes from root to leafs which means that filters can still * be bound to classes which have been destroyed already. --TGR '04 */ for (h = 0; h < 16; h++) for (cl = q->classes[h]; cl; cl = cl->next) cbq_destroy_filters(cl); for (h = 0; h < 16; h++) { struct cbq_class *next; for (cl = q->classes[h]; cl; cl = next) { next = cl->next; cbq_destroy_class(sch, cl); } } } static void cbq_put(struct Qdisc *sch, unsigned long arg) { struct cbq_class *cl = (struct cbq_class*)arg; if (--cl->refcnt == 0) { #ifdef CONFIG_NET_CLS_POLICE struct cbq_sched_data *q = qdisc_priv(sch); spin_lock_bh(&sch->dev->queue_lock); if (q->rx_class == cl) q->rx_class = NULL; spin_unlock_bh(&sch->dev->queue_lock); #endif cbq_destroy_class(sch, cl); } } static int cbq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, struct rtattr **tca, unsigned long *arg) { int err; struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl = (struct cbq_class*)*arg; struct rtattr *opt = tca[TCA_OPTIONS-1]; struct rtattr *tb[TCA_CBQ_MAX]; struct cbq_class *parent; struct qdisc_rate_table *rtab = NULL; if (opt==NULL || rtattr_parse_nested(tb, TCA_CBQ_MAX, opt)) return -EINVAL; if (tb[TCA_CBQ_OVL_STRATEGY-1] && RTA_PAYLOAD(tb[TCA_CBQ_OVL_STRATEGY-1]) < sizeof(struct tc_cbq_ovl)) return -EINVAL; if (tb[TCA_CBQ_FOPT-1] && RTA_PAYLOAD(tb[TCA_CBQ_FOPT-1]) < sizeof(struct tc_cbq_fopt)) return -EINVAL; if (tb[TCA_CBQ_RATE-1] && RTA_PAYLOAD(tb[TCA_CBQ_RATE-1]) < sizeof(struct tc_ratespec)) return -EINVAL; if (tb[TCA_CBQ_LSSOPT-1] && RTA_PAYLOAD(tb[TCA_CBQ_LSSOPT-1]) < sizeof(struct tc_cbq_lssopt)) return -EINVAL; if (tb[TCA_CBQ_WRROPT-1] && RTA_PAYLOAD(tb[TCA_CBQ_WRROPT-1]) < sizeof(struct tc_cbq_wrropt)) return -EINVAL; #ifdef CONFIG_NET_CLS_POLICE if (tb[TCA_CBQ_POLICE-1] && RTA_PAYLOAD(tb[TCA_CBQ_POLICE-1]) < sizeof(struct tc_cbq_police)) return -EINVAL; #endif if (cl) { /* Check parent */ if (parentid) { if (cl->tparent && cl->tparent->classid != parentid) return -EINVAL; if (!cl->tparent && parentid != TC_H_ROOT) return -EINVAL; } if (tb[TCA_CBQ_RATE-1]) { rtab = qdisc_get_rtab(RTA_DATA(tb[TCA_CBQ_RATE-1]), tb[TCA_CBQ_RTAB-1]); if (rtab == NULL) return -EINVAL; } /* Change class parameters */ sch_tree_lock(sch); if (cl->next_alive != NULL) cbq_deactivate_class(cl); if (rtab) { rtab = xchg(&cl->R_tab, rtab); qdisc_put_rtab(rtab); } if (tb[TCA_CBQ_LSSOPT-1]) cbq_set_lss(cl, RTA_DATA(tb[TCA_CBQ_LSSOPT-1])); if (tb[TCA_CBQ_WRROPT-1]) { cbq_rmprio(q, cl); cbq_set_wrr(cl, RTA_DATA(tb[TCA_CBQ_WRROPT-1])); } if (tb[TCA_CBQ_OVL_STRATEGY-1]) cbq_set_overlimit(cl, RTA_DATA(tb[TCA_CBQ_OVL_STRATEGY-1])); #ifdef CONFIG_NET_CLS_POLICE if (tb[TCA_CBQ_POLICE-1]) cbq_set_police(cl, RTA_DATA(tb[TCA_CBQ_POLICE-1])); #endif if (tb[TCA_CBQ_FOPT-1]) cbq_set_fopt(cl, RTA_DATA(tb[TCA_CBQ_FOPT-1])); if (cl->q->q.qlen) cbq_activate_class(cl); sch_tree_unlock(sch); #ifdef CONFIG_NET_ESTIMATOR if (tca[TCA_RATE-1]) gen_replace_estimator(&cl->bstats, &cl->rate_est, cl->stats_lock, tca[TCA_RATE-1]); #endif return 0; } if (parentid == TC_H_ROOT) return -EINVAL; if (tb[TCA_CBQ_WRROPT-1] == NULL || tb[TCA_CBQ_RATE-1] == NULL || tb[TCA_CBQ_LSSOPT-1] == NULL) return -EINVAL; rtab = qdisc_get_rtab(RTA_DATA(tb[TCA_CBQ_RATE-1]), tb[TCA_CBQ_RTAB-1]); if (rtab == NULL) return -EINVAL; if (classid) { err = -EINVAL; if (TC_H_MAJ(classid^sch->handle) || cbq_class_lookup(q, classid)) goto failure; } else { int i; classid = TC_H_MAKE(sch->handle,0x8000); for (i=0; i<0x8000; i++) { if (++q->hgenerator >= 0x8000) q->hgenerator = 1; if (cbq_class_lookup(q, classid|q->hgenerator) == NULL) break; } err = -ENOSR; if (i >= 0x8000) goto failure; classid = classid|q->hgenerator; } parent = &q->link; if (parentid) { parent = cbq_class_lookup(q, parentid); err = -EINVAL; if (parent == NULL) goto failure; } err = -ENOBUFS; cl = kmalloc(sizeof(*cl), GFP_KERNEL); if (cl == NULL) goto failure; memset(cl, 0, sizeof(*cl)); cl->R_tab = rtab; rtab = NULL; cl->refcnt = 1; if (!(cl->q = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops))) cl->q = &noop_qdisc; cl->classid = classid; cl->tparent = parent; cl->qdisc = sch; cl->allot = parent->allot; cl->quantum = cl->allot; cl->weight = cl->R_tab->rate.rate; cl->stats_lock = &sch->dev->queue_lock; sch_tree_lock(sch); cbq_link_class(cl); cl->borrow = cl->tparent; if (cl->tparent != &q->link) cl->share = cl->tparent; cbq_adjust_levels(parent); cl->minidle = -0x7FFFFFFF; cbq_set_lss(cl, RTA_DATA(tb[TCA_CBQ_LSSOPT-1])); cbq_set_wrr(cl, RTA_DATA(tb[TCA_CBQ_WRROPT-1])); if (cl->ewma_log==0) cl->ewma_log = q->link.ewma_log; if (cl->maxidle==0) cl->maxidle = q->link.maxidle; if (cl->avpkt==0) cl->avpkt = q->link.avpkt; cl->overlimit = cbq_ovl_classic; if (tb[TCA_CBQ_OVL_STRATEGY-1]) cbq_set_overlimit(cl, RTA_DATA(tb[TCA_CBQ_OVL_STRATEGY-1])); #ifdef CONFIG_NET_CLS_POLICE if (tb[TCA_CBQ_POLICE-1]) cbq_set_police(cl, RTA_DATA(tb[TCA_CBQ_POLICE-1])); #endif if (tb[TCA_CBQ_FOPT-1]) cbq_set_fopt(cl, RTA_DATA(tb[TCA_CBQ_FOPT-1])); sch_tree_unlock(sch); #ifdef CONFIG_NET_ESTIMATOR if (tca[TCA_RATE-1]) gen_new_estimator(&cl->bstats, &cl->rate_est, cl->stats_lock, tca[TCA_RATE-1]); #endif *arg = (unsigned long)cl; return 0; failure: qdisc_put_rtab(rtab); return err; } static int cbq_delete(struct Qdisc *sch, unsigned long arg) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl = (struct cbq_class*)arg; if (cl->filters || cl->children || cl == &q->link) return -EBUSY; sch_tree_lock(sch); if (cl->next_alive) cbq_deactivate_class(cl); if (q->tx_borrowed == cl) q->tx_borrowed = q->tx_class; if (q->tx_class == cl) { q->tx_class = NULL; q->tx_borrowed = NULL; } #ifdef CONFIG_NET_CLS_POLICE if (q->rx_class == cl) q->rx_class = NULL; #endif cbq_unlink_class(cl); cbq_adjust_levels(cl->tparent); cl->defmap = 0; cbq_sync_defmap(cl); cbq_rmprio(q, cl); sch_tree_unlock(sch); if (--cl->refcnt == 0) cbq_destroy_class(sch, cl); return 0; } static struct tcf_proto **cbq_find_tcf(struct Qdisc *sch, unsigned long arg) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *cl = (struct cbq_class *)arg; if (cl == NULL) cl = &q->link; return &cl->filter_list; } static unsigned long cbq_bind_filter(struct Qdisc *sch, unsigned long parent, u32 classid) { struct cbq_sched_data *q = qdisc_priv(sch); struct cbq_class *p = (struct cbq_class*)parent; struct cbq_class *cl = cbq_class_lookup(q, classid); if (cl) { if (p && p->level <= cl->level) return 0; cl->filters++; return (unsigned long)cl; } return 0; } static void cbq_unbind_filter(struct Qdisc *sch, unsigned long arg) { struct cbq_class *cl = (struct cbq_class*)arg; cl->filters--; } static void cbq_walk(struct Qdisc *sch, struct qdisc_walker *arg) { struct cbq_sched_data *q = qdisc_priv(sch); unsigned h; if (arg->stop) return; for (h = 0; h < 16; h++) { struct cbq_class *cl; for (cl = q->classes[h]; cl; cl = cl->next) { if (arg->count < arg->skip) { arg->count++; continue; } if (arg->fn(sch, (unsigned long)cl, arg) < 0) { arg->stop = 1; return; } arg->count++; } } } static struct Qdisc_class_ops cbq_class_ops = { .graft = cbq_graft, .leaf = cbq_leaf, .get = cbq_get, .put = cbq_put, .change = cbq_change_class, .delete = cbq_delete, .walk = cbq_walk, .tcf_chain = cbq_find_tcf, .bind_tcf = cbq_bind_filter, .unbind_tcf = cbq_unbind_filter, .dump = cbq_dump_class, .dump_stats = cbq_dump_class_stats, }; static struct Qdisc_ops cbq_qdisc_ops = { .next = NULL, .cl_ops = &cbq_class_ops, .id = "cbq", .priv_size = sizeof(struct cbq_sched_data), .enqueue = cbq_enqueue, .dequeue = cbq_dequeue, .requeue = cbq_requeue, .drop = cbq_drop, .init = cbq_init, .reset = cbq_reset, .destroy = cbq_destroy, .change = NULL, .dump = cbq_dump, .dump_stats = cbq_dump_stats, .owner = THIS_MODULE, }; static int __init cbq_module_init(void) { return register_qdisc(&cbq_qdisc_ops); } static void __exit cbq_module_exit(void) { unregister_qdisc(&cbq_qdisc_ops); } module_init(cbq_module_init) module_exit(cbq_module_exit) MODULE_LICENSE("GPL");