/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/ratelimit.h> #include "rds.h" #include "iw.h" /* * This is stored as mr->r_trans_private. */ struct rds_iw_mr { struct rds_iw_device *device; struct rds_iw_mr_pool *pool; struct rdma_cm_id *cm_id; struct ib_mr *mr; struct ib_fast_reg_page_list *page_list; struct rds_iw_mapping mapping; unsigned char remap_count; }; /* * Our own little MR pool */ struct rds_iw_mr_pool { struct rds_iw_device *device; /* back ptr to the device that owns us */ struct mutex flush_lock; /* serialize fmr invalidate */ struct work_struct flush_worker; /* flush worker */ spinlock_t list_lock; /* protect variables below */ atomic_t item_count; /* total # of MRs */ atomic_t dirty_count; /* # dirty of MRs */ struct list_head dirty_list; /* dirty mappings */ struct list_head clean_list; /* unused & unamapped MRs */ atomic_t free_pinned; /* memory pinned by free MRs */ unsigned long max_message_size; /* in pages */ unsigned long max_items; unsigned long max_items_soft; unsigned long max_free_pinned; int max_pages; }; static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all); static void rds_iw_mr_pool_flush_worker(struct work_struct *work); static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr, struct scatterlist *sg, unsigned int nents); static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, struct list_head *unmap_list, struct list_head *kill_list, int *unpinned); static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id) { struct rds_iw_device *iwdev; struct rds_iw_cm_id *i_cm_id; *rds_iwdev = NULL; *cm_id = NULL; list_for_each_entry(iwdev, &rds_iw_devices, list) { spin_lock_irq(&iwdev->spinlock); list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) { struct sockaddr_in *src_addr, *dst_addr; src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr; dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr; rdsdebug("local ipaddr = %x port %d, " "remote ipaddr = %x port %d" "..looking for %x port %d, " "remote ipaddr = %x port %d\n", src_addr->sin_addr.s_addr, src_addr->sin_port, dst_addr->sin_addr.s_addr, dst_addr->sin_port, rs->rs_bound_addr, rs->rs_bound_port, rs->rs_conn_addr, rs->rs_conn_port); #ifdef WORKING_TUPLE_DETECTION if (src_addr->sin_addr.s_addr == rs->rs_bound_addr && src_addr->sin_port == rs->rs_bound_port && dst_addr->sin_addr.s_addr == rs->rs_conn_addr && dst_addr->sin_port == rs->rs_conn_port) { #else /* FIXME - needs to compare the local and remote * ipaddr/port tuple, but the ipaddr is the only * available information in the rds_sock (as the rest are * zero'ed. It doesn't appear to be properly populated * during connection setup... */ if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) { #endif spin_unlock_irq(&iwdev->spinlock); *rds_iwdev = iwdev; *cm_id = i_cm_id->cm_id; return 0; } } spin_unlock_irq(&iwdev->spinlock); } return 1; } static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) { struct rds_iw_cm_id *i_cm_id; i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL); if (!i_cm_id) return -ENOMEM; i_cm_id->cm_id = cm_id; spin_lock_irq(&rds_iwdev->spinlock); list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list); spin_unlock_irq(&rds_iwdev->spinlock); return 0; } static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) { struct rds_iw_cm_id *i_cm_id; spin_lock_irq(&rds_iwdev->spinlock); list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) { if (i_cm_id->cm_id == cm_id) { list_del(&i_cm_id->list); kfree(i_cm_id); break; } } spin_unlock_irq(&rds_iwdev->spinlock); } int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) { struct sockaddr_in *src_addr, *dst_addr; struct rds_iw_device *rds_iwdev_old; struct rds_sock rs; struct rdma_cm_id *pcm_id; int rc; src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr; dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr; rs.rs_bound_addr = src_addr->sin_addr.s_addr; rs.rs_bound_port = src_addr->sin_port; rs.rs_conn_addr = dst_addr->sin_addr.s_addr; rs.rs_conn_port = dst_addr->sin_port; rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id); if (rc) rds_iw_remove_cm_id(rds_iwdev, cm_id); return rds_iw_add_cm_id(rds_iwdev, cm_id); } void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) { struct rds_iw_connection *ic = conn->c_transport_data; /* conn was previously on the nodev_conns_list */ spin_lock_irq(&iw_nodev_conns_lock); BUG_ON(list_empty(&iw_nodev_conns)); BUG_ON(list_empty(&ic->iw_node)); list_del(&ic->iw_node); spin_lock(&rds_iwdev->spinlock); list_add_tail(&ic->iw_node, &rds_iwdev->conn_list); spin_unlock(&rds_iwdev->spinlock); spin_unlock_irq(&iw_nodev_conns_lock); ic->rds_iwdev = rds_iwdev; } void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) { struct rds_iw_connection *ic = conn->c_transport_data; /* place conn on nodev_conns_list */ spin_lock(&iw_nodev_conns_lock); spin_lock_irq(&rds_iwdev->spinlock); BUG_ON(list_empty(&ic->iw_node)); list_del(&ic->iw_node); spin_unlock_irq(&rds_iwdev->spinlock); list_add_tail(&ic->iw_node, &iw_nodev_conns); spin_unlock(&iw_nodev_conns_lock); rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id); ic->rds_iwdev = NULL; } void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock) { struct rds_iw_connection *ic, *_ic; LIST_HEAD(tmp_list); /* avoid calling conn_destroy with irqs off */ spin_lock_irq(list_lock); list_splice(list, &tmp_list); INIT_LIST_HEAD(list); spin_unlock_irq(list_lock); list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) rds_conn_destroy(ic->conn); } static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg, struct scatterlist *list, unsigned int sg_len) { sg->list = list; sg->len = sg_len; sg->dma_len = 0; sg->dma_npages = 0; sg->bytes = 0; } static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev, struct rds_iw_scatterlist *sg) { struct ib_device *dev = rds_iwdev->dev; u64 *dma_pages = NULL; int i, j, ret; WARN_ON(sg->dma_len); sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL); if (unlikely(!sg->dma_len)) { printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n"); return ERR_PTR(-EBUSY); } sg->bytes = 0; sg->dma_npages = 0; ret = -EINVAL; for (i = 0; i < sg->dma_len; ++i) { unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); u64 end_addr; sg->bytes += dma_len; end_addr = dma_addr + dma_len; if (dma_addr & PAGE_MASK) { if (i > 0) goto out_unmap; dma_addr &= ~PAGE_MASK; } if (end_addr & PAGE_MASK) { if (i < sg->dma_len - 1) goto out_unmap; end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK; } sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT; } /* Now gather the dma addrs into one list */ if (sg->dma_npages > fastreg_message_size) goto out_unmap; dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC); if (!dma_pages) { ret = -ENOMEM; goto out_unmap; } for (i = j = 0; i < sg->dma_len; ++i) { unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); u64 end_addr; end_addr = dma_addr + dma_len; dma_addr &= ~PAGE_MASK; for (; dma_addr < end_addr; dma_addr += PAGE_SIZE) dma_pages[j++] = dma_addr; BUG_ON(j > sg->dma_npages); } return dma_pages; out_unmap: ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL); sg->dma_len = 0; kfree(dma_pages); return ERR_PTR(ret); } struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev) { struct rds_iw_mr_pool *pool; pool = kzalloc(sizeof(*pool), GFP_KERNEL); if (!pool) { printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n"); return ERR_PTR(-ENOMEM); } pool->device = rds_iwdev; INIT_LIST_HEAD(&pool->dirty_list); INIT_LIST_HEAD(&pool->clean_list); mutex_init(&pool->flush_lock); spin_lock_init(&pool->list_lock); INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker); pool->max_message_size = fastreg_message_size; pool->max_items = fastreg_pool_size; pool->max_free_pinned = pool->max_items * pool->max_message_size / 4; pool->max_pages = fastreg_message_size; /* We never allow more than max_items MRs to be allocated. * When we exceed more than max_items_soft, we start freeing * items more aggressively. * Make sure that max_items > max_items_soft > max_items / 2 */ pool->max_items_soft = pool->max_items * 3 / 4; return pool; } void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo) { struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; iinfo->rdma_mr_max = pool->max_items; iinfo->rdma_mr_size = pool->max_pages; } void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool) { flush_workqueue(rds_wq); rds_iw_flush_mr_pool(pool, 1); BUG_ON(atomic_read(&pool->item_count)); BUG_ON(atomic_read(&pool->free_pinned)); kfree(pool); } static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool) { struct rds_iw_mr *ibmr = NULL; unsigned long flags; spin_lock_irqsave(&pool->list_lock, flags); if (!list_empty(&pool->clean_list)) { ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list); list_del_init(&ibmr->mapping.m_list); } spin_unlock_irqrestore(&pool->list_lock, flags); return ibmr; } static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev) { struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; struct rds_iw_mr *ibmr = NULL; int err = 0, iter = 0; while (1) { ibmr = rds_iw_reuse_fmr(pool); if (ibmr) return ibmr; /* No clean MRs - now we have the choice of either * allocating a fresh MR up to the limit imposed by the * driver, or flush any dirty unused MRs. * We try to avoid stalling in the send path if possible, * so we allocate as long as we're allowed to. * * We're fussy with enforcing the FMR limit, though. If the driver * tells us we can't use more than N fmrs, we shouldn't start * arguing with it */ if (atomic_inc_return(&pool->item_count) <= pool->max_items) break; atomic_dec(&pool->item_count); if (++iter > 2) { rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted); return ERR_PTR(-EAGAIN); } /* We do have some empty MRs. Flush them out. */ rds_iw_stats_inc(s_iw_rdma_mr_pool_wait); rds_iw_flush_mr_pool(pool, 0); } ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); if (!ibmr) { err = -ENOMEM; goto out_no_cigar; } spin_lock_init(&ibmr->mapping.m_lock); INIT_LIST_HEAD(&ibmr->mapping.m_list); ibmr->mapping.m_mr = ibmr; err = rds_iw_init_fastreg(pool, ibmr); if (err) goto out_no_cigar; rds_iw_stats_inc(s_iw_rdma_mr_alloc); return ibmr; out_no_cigar: if (ibmr) { rds_iw_destroy_fastreg(pool, ibmr); kfree(ibmr); } atomic_dec(&pool->item_count); return ERR_PTR(err); } void rds_iw_sync_mr(void *trans_private, int direction) { struct rds_iw_mr *ibmr = trans_private; struct rds_iw_device *rds_iwdev = ibmr->device; switch (direction) { case DMA_FROM_DEVICE: ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list, ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); break; case DMA_TO_DEVICE: ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list, ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); break; } } static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all) { unsigned int item_count; item_count = atomic_read(&pool->item_count); if (free_all) return item_count; return 0; } /* * Flush our pool of MRs. * At a minimum, all currently unused MRs are unmapped. * If the number of MRs allocated exceeds the limit, we also try * to free as many MRs as needed to get back to this limit. */ static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all) { struct rds_iw_mr *ibmr, *next; LIST_HEAD(unmap_list); LIST_HEAD(kill_list); unsigned long flags; unsigned int nfreed = 0, ncleaned = 0, unpinned = 0, free_goal; int ret = 0; rds_iw_stats_inc(s_iw_rdma_mr_pool_flush); mutex_lock(&pool->flush_lock); spin_lock_irqsave(&pool->list_lock, flags); /* Get the list of all mappings to be destroyed */ list_splice_init(&pool->dirty_list, &unmap_list); if (free_all) list_splice_init(&pool->clean_list, &kill_list); spin_unlock_irqrestore(&pool->list_lock, flags); free_goal = rds_iw_flush_goal(pool, free_all); /* Batched invalidate of dirty MRs. * For FMR based MRs, the mappings on the unmap list are * actually members of an ibmr (ibmr->mapping). They either * migrate to the kill_list, or have been cleaned and should be * moved to the clean_list. * For fastregs, they will be dynamically allocated, and * will be destroyed by the unmap function. */ if (!list_empty(&unmap_list)) { ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list, &unpinned); /* If we've been asked to destroy all MRs, move those * that were simply cleaned to the kill list */ if (free_all) list_splice_init(&unmap_list, &kill_list); } /* Destroy any MRs that are past their best before date */ list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) { rds_iw_stats_inc(s_iw_rdma_mr_free); list_del(&ibmr->mapping.m_list); rds_iw_destroy_fastreg(pool, ibmr); kfree(ibmr); nfreed++; } /* Anything that remains are laundered ibmrs, which we can add * back to the clean list. */ if (!list_empty(&unmap_list)) { spin_lock_irqsave(&pool->list_lock, flags); list_splice(&unmap_list, &pool->clean_list); spin_unlock_irqrestore(&pool->list_lock, flags); } atomic_sub(unpinned, &pool->free_pinned); atomic_sub(ncleaned, &pool->dirty_count); atomic_sub(nfreed, &pool->item_count); mutex_unlock(&pool->flush_lock); return ret; } static void rds_iw_mr_pool_flush_worker(struct work_struct *work) { struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker); rds_iw_flush_mr_pool(pool, 0); } void rds_iw_free_mr(void *trans_private, int invalidate) { struct rds_iw_mr *ibmr = trans_private; struct rds_iw_mr_pool *pool = ibmr->device->mr_pool; rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len); if (!pool) return; /* Return it to the pool's free list */ rds_iw_free_fastreg(pool, ibmr); /* If we've pinned too many pages, request a flush */ if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || atomic_read(&pool->dirty_count) >= pool->max_items / 10) queue_work(rds_wq, &pool->flush_worker); if (invalidate) { if (likely(!in_interrupt())) { rds_iw_flush_mr_pool(pool, 0); } else { /* We get here if the user created a MR marked * as use_once and invalidate at the same time. */ queue_work(rds_wq, &pool->flush_worker); } } } void rds_iw_flush_mrs(void) { struct rds_iw_device *rds_iwdev; list_for_each_entry(rds_iwdev, &rds_iw_devices, list) { struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; if (pool) rds_iw_flush_mr_pool(pool, 0); } } void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents, struct rds_sock *rs, u32 *key_ret) { struct rds_iw_device *rds_iwdev; struct rds_iw_mr *ibmr = NULL; struct rdma_cm_id *cm_id; int ret; ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id); if (ret || !cm_id) { ret = -ENODEV; goto out; } if (!rds_iwdev->mr_pool) { ret = -ENODEV; goto out; } ibmr = rds_iw_alloc_mr(rds_iwdev); if (IS_ERR(ibmr)) return ibmr; ibmr->cm_id = cm_id; ibmr->device = rds_iwdev; ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents); if (ret == 0) *key_ret = ibmr->mr->rkey; else printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret); out: if (ret) { if (ibmr) rds_iw_free_mr(ibmr, 0); ibmr = ERR_PTR(ret); } return ibmr; } /* * iWARP fastreg handling * * The life cycle of a fastreg registration is a bit different from * FMRs. * The idea behind fastreg is to have one MR, to which we bind different * mappings over time. To avoid stalling on the expensive map and invalidate * operations, these operations are pipelined on the same send queue on * which we want to send the message containing the r_key. * * This creates a bit of a problem for us, as we do not have the destination * IP in GET_MR, so the connection must be setup prior to the GET_MR call for * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request * before queuing the SEND. When completions for these arrive, they are * dispatched to the MR has a bit set showing that RDMa can be performed. * * There is another interesting aspect that's related to invalidation. * The application can request that a mapping is invalidated in FREE_MR. * The expectation there is that this invalidation step includes ALL * PREVIOUSLY FREED MRs. */ static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr) { struct rds_iw_device *rds_iwdev = pool->device; struct ib_fast_reg_page_list *page_list = NULL; struct ib_mr *mr; int err; mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size); if (IS_ERR(mr)) { err = PTR_ERR(mr); printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err); return err; } /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages * is not filled in. */ page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size); if (IS_ERR(page_list)) { err = PTR_ERR(page_list); printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err); ib_dereg_mr(mr); return err; } ibmr->page_list = page_list; ibmr->mr = mr; return 0; } static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping) { struct rds_iw_mr *ibmr = mapping->m_mr; struct ib_send_wr f_wr, *failed_wr; int ret; /* * Perform a WR for the fast_reg_mr. Each individual page * in the sg list is added to the fast reg page list and placed * inside the fast_reg_mr WR. The key used is a rolling 8bit * counter, which should guarantee uniqueness. */ ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++); mapping->m_rkey = ibmr->mr->rkey; memset(&f_wr, 0, sizeof(f_wr)); f_wr.wr_id = RDS_IW_FAST_REG_WR_ID; f_wr.opcode = IB_WR_FAST_REG_MR; f_wr.wr.fast_reg.length = mapping->m_sg.bytes; f_wr.wr.fast_reg.rkey = mapping->m_rkey; f_wr.wr.fast_reg.page_list = ibmr->page_list; f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len; f_wr.wr.fast_reg.page_shift = PAGE_SHIFT; f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; f_wr.wr.fast_reg.iova_start = 0; f_wr.send_flags = IB_SEND_SIGNALED; failed_wr = &f_wr; ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr); BUG_ON(failed_wr != &f_wr); if (ret) printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", __func__, __LINE__, ret); return ret; } static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr) { struct ib_send_wr s_wr, *failed_wr; int ret = 0; if (!ibmr->cm_id->qp || !ibmr->mr) goto out; memset(&s_wr, 0, sizeof(s_wr)); s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID; s_wr.opcode = IB_WR_LOCAL_INV; s_wr.ex.invalidate_rkey = ibmr->mr->rkey; s_wr.send_flags = IB_SEND_SIGNALED; failed_wr = &s_wr; ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr); if (ret) { printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", __func__, __LINE__, ret); goto out; } out: return ret; } static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr, struct scatterlist *sg, unsigned int sg_len) { struct rds_iw_device *rds_iwdev = pool->device; struct rds_iw_mapping *mapping = &ibmr->mapping; u64 *dma_pages; int i, ret = 0; rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len); dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg); if (IS_ERR(dma_pages)) { ret = PTR_ERR(dma_pages); dma_pages = NULL; goto out; } if (mapping->m_sg.dma_len > pool->max_message_size) { ret = -EMSGSIZE; goto out; } for (i = 0; i < mapping->m_sg.dma_npages; ++i) ibmr->page_list->page_list[i] = dma_pages[i]; ret = rds_iw_rdma_build_fastreg(mapping); if (ret) goto out; rds_iw_stats_inc(s_iw_rdma_mr_used); out: kfree(dma_pages); return ret; } /* * "Free" a fastreg MR. */ static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr) { unsigned long flags; int ret; if (!ibmr->mapping.m_sg.dma_len) return; ret = rds_iw_rdma_fastreg_inv(ibmr); if (ret) return; /* Try to post the LOCAL_INV WR to the queue. */ spin_lock_irqsave(&pool->list_lock, flags); list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list); atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned); atomic_inc(&pool->dirty_count); spin_unlock_irqrestore(&pool->list_lock, flags); } static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, struct list_head *unmap_list, struct list_head *kill_list, int *unpinned) { struct rds_iw_mapping *mapping, *next; unsigned int ncleaned = 0; LIST_HEAD(laundered); /* Batched invalidation of fastreg MRs. * Why do we do it this way, even though we could pipeline unmap * and remap? The reason is the application semantics - when the * application requests an invalidation of MRs, it expects all * previously released R_Keys to become invalid. * * If we implement MR reuse naively, we risk memory corruption * (this has actually been observed). So the default behavior * requires that a MR goes through an explicit unmap operation before * we can reuse it again. * * We could probably improve on this a little, by allowing immediate * reuse of a MR on the same socket (eg you could add small * cache of unused MRs to strct rds_socket - GET_MR could grab one * of these without requiring an explicit invalidate). */ while (!list_empty(unmap_list)) { unsigned long flags; spin_lock_irqsave(&pool->list_lock, flags); list_for_each_entry_safe(mapping, next, unmap_list, m_list) { *unpinned += mapping->m_sg.len; list_move(&mapping->m_list, &laundered); ncleaned++; } spin_unlock_irqrestore(&pool->list_lock, flags); } /* Move all laundered mappings back to the unmap list. * We do not kill any WRs right now - it doesn't seem the * fastreg API has a max_remap limit. */ list_splice_init(&laundered, unmap_list); return ncleaned; } static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr) { if (ibmr->page_list) ib_free_fast_reg_page_list(ibmr->page_list); if (ibmr->mr) ib_dereg_mr(ibmr->mr); }