/* * Copyright (C) 2008 Felix Fietkau * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Based on minstrel.c: * Copyright (C) 2005-2007 Derek Smithies * Sponsored by Indranet Technologies Ltd * * Based on sample.c: * Copyright (c) 2005 John Bicket * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #include #include #include "rate.h" #include "rc80211_minstrel.h" #define SAMPLE_TBL(_mi, _idx, _col) \ _mi->sample_table[(_idx * SAMPLE_COLUMNS) + _col] /* convert mac80211 rate index to local array index */ static inline int rix_to_ndx(struct minstrel_sta_info *mi, int rix) { int i = rix; for (i = rix; i >= 0; i--) if (mi->r[i].rix == rix) break; return i; } static void minstrel_update_stats(struct minstrel_priv *mp, struct minstrel_sta_info *mi) { u32 max_tp = 0, index_max_tp = 0, index_max_tp2 = 0; u32 max_prob = 0, index_max_prob = 0; u32 usecs; int i; for (i = 0; i < mi->n_rates; i++) { struct minstrel_rate *mr = &mi->r[i]; usecs = mr->perfect_tx_time; if (!usecs) usecs = 1000000; if (unlikely(mr->attempts > 0)) { mr->sample_skipped = 0; mr->cur_prob = MINSTREL_FRAC(mr->success, mr->attempts); mr->succ_hist += mr->success; mr->att_hist += mr->attempts; mr->probability = minstrel_ewma(mr->probability, mr->cur_prob, EWMA_LEVEL); } else mr->sample_skipped++; mr->last_success = mr->success; mr->last_attempts = mr->attempts; mr->success = 0; mr->attempts = 0; /* Update throughput per rate, reset thr. below 10% success */ if (mr->probability < MINSTREL_FRAC(10, 100)) mr->cur_tp = 0; else mr->cur_tp = mr->probability * (1000000 / usecs); /* Sample less often below the 10% chance of success. * Sample less often above the 95% chance of success. */ if (mr->probability > MINSTREL_FRAC(95, 100) || mr->probability < MINSTREL_FRAC(10, 100)) { mr->adjusted_retry_count = mr->retry_count >> 1; if (mr->adjusted_retry_count > 2) mr->adjusted_retry_count = 2; mr->sample_limit = 4; } else { mr->sample_limit = -1; mr->adjusted_retry_count = mr->retry_count; } if (!mr->adjusted_retry_count) mr->adjusted_retry_count = 2; } for (i = 0; i < mi->n_rates; i++) { struct minstrel_rate *mr = &mi->r[i]; if (max_tp < mr->cur_tp) { index_max_tp = i; max_tp = mr->cur_tp; } if (max_prob < mr->probability) { index_max_prob = i; max_prob = mr->probability; } } max_tp = 0; for (i = 0; i < mi->n_rates; i++) { struct minstrel_rate *mr = &mi->r[i]; if (i == index_max_tp) continue; if (max_tp < mr->cur_tp) { index_max_tp2 = i; max_tp = mr->cur_tp; } } mi->max_tp_rate = index_max_tp; mi->max_tp_rate2 = index_max_tp2; mi->max_prob_rate = index_max_prob; /* Reset update timer */ mi->stats_update = jiffies; } static void minstrel_tx_status(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta, struct sk_buff *skb) { struct minstrel_priv *mp = priv; struct minstrel_sta_info *mi = priv_sta; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_rate *ar = info->status.rates; int i, ndx; int success; success = !!(info->flags & IEEE80211_TX_STAT_ACK); for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { if (ar[i].idx < 0) break; ndx = rix_to_ndx(mi, ar[i].idx); if (ndx < 0) continue; mi->r[ndx].attempts += ar[i].count; if ((i != IEEE80211_TX_MAX_RATES - 1) && (ar[i + 1].idx < 0)) mi->r[ndx].success += success; } if ((info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) && (i >= 0)) mi->sample_count++; if (mi->sample_deferred > 0) mi->sample_deferred--; if (time_after(jiffies, mi->stats_update + (mp->update_interval * HZ) / 1000)) minstrel_update_stats(mp, mi); } static inline unsigned int minstrel_get_retry_count(struct minstrel_rate *mr, struct ieee80211_tx_info *info) { unsigned int retry = mr->adjusted_retry_count; if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) retry = max(2U, min(mr->retry_count_rtscts, retry)); else if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) retry = max(2U, min(mr->retry_count_cts, retry)); return retry; } static int minstrel_get_next_sample(struct minstrel_sta_info *mi) { unsigned int sample_ndx; sample_ndx = SAMPLE_TBL(mi, mi->sample_row, mi->sample_column); mi->sample_row++; if ((int) mi->sample_row >= mi->n_rates) { mi->sample_row = 0; mi->sample_column++; if (mi->sample_column >= SAMPLE_COLUMNS) mi->sample_column = 0; } return sample_ndx; } static void minstrel_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta, struct ieee80211_tx_rate_control *txrc) { struct sk_buff *skb = txrc->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct minstrel_sta_info *mi = priv_sta; struct minstrel_priv *mp = priv; struct ieee80211_tx_rate *ar = info->control.rates; unsigned int ndx, sample_ndx = 0; bool mrr_capable; bool indirect_rate_sampling = false; bool rate_sampling = false; int i, delta; int mrr_ndx[3]; int sampling_ratio; /* management/no-ack frames do not use rate control */ if (rate_control_send_low(sta, priv_sta, txrc)) return; /* check multi-rate-retry capabilities & adjust lookaround_rate */ mrr_capable = mp->has_mrr && !txrc->rts && !txrc->bss_conf->use_cts_prot; if (mrr_capable) sampling_ratio = mp->lookaround_rate_mrr; else sampling_ratio = mp->lookaround_rate; /* init rateindex [ndx] with max throughput rate */ ndx = mi->max_tp_rate; /* increase sum packet counter */ mi->packet_count++; delta = (mi->packet_count * sampling_ratio / 100) - (mi->sample_count + mi->sample_deferred / 2); /* delta > 0: sampling required */ if ((delta > 0) && (mrr_capable || !mi->prev_sample)) { struct minstrel_rate *msr; if (mi->packet_count >= 10000) { mi->sample_deferred = 0; mi->sample_count = 0; mi->packet_count = 0; } else if (delta > mi->n_rates * 2) { /* With multi-rate retry, not every planned sample * attempt actually gets used, due to the way the retry * chain is set up - [max_tp,sample,prob,lowest] for * sample_rate < max_tp. * * If there's too much sampling backlog and the link * starts getting worse, minstrel would start bursting * out lots of sampling frames, which would result * in a large throughput loss. */ mi->sample_count += (delta - mi->n_rates * 2); } /* get next random rate sample */ sample_ndx = minstrel_get_next_sample(mi); msr = &mi->r[sample_ndx]; rate_sampling = true; /* Decide if direct ( 1st mrr stage) or indirect (2nd mrr stage) * rate sampling method should be used. * Respect such rates that are not sampled for 20 interations. */ if (mrr_capable && msr->perfect_tx_time > mi->r[ndx].perfect_tx_time && msr->sample_skipped < 20) indirect_rate_sampling = true; if (!indirect_rate_sampling) { if (msr->sample_limit != 0) { ndx = sample_ndx; mi->sample_count++; if (msr->sample_limit > 0) msr->sample_limit--; } else rate_sampling = false; } else { /* Only use IEEE80211_TX_CTL_RATE_CTRL_PROBE to mark * packets that have the sampling rate deferred to the * second MRR stage. Increase the sample counter only * if the deferred sample rate was actually used. * Use the sample_deferred counter to make sure that * the sampling is not done in large bursts */ info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; mi->sample_deferred++; } } mi->prev_sample = rate_sampling; /* If we're not using MRR and the sampling rate already * has a probability of >95%, we shouldn't be attempting * to use it, as this only wastes precious airtime */ if (!mrr_capable && rate_sampling && (mi->r[ndx].probability > MINSTREL_FRAC(95, 100))) ndx = mi->max_tp_rate; /* mrr setup for 1st stage */ ar[0].idx = mi->r[ndx].rix; ar[0].count = minstrel_get_retry_count(&mi->r[ndx], info); /* non mrr setup for 2nd stage */ if (!mrr_capable) { if (!rate_sampling) ar[0].count = mp->max_retry; ar[1].idx = mi->lowest_rix; ar[1].count = mp->max_retry; return; } /* mrr setup for 2nd stage */ if (rate_sampling) { if (indirect_rate_sampling) mrr_ndx[0] = sample_ndx; else mrr_ndx[0] = mi->max_tp_rate; } else { mrr_ndx[0] = mi->max_tp_rate2; } /* mrr setup for 3rd & 4th stage */ mrr_ndx[1] = mi->max_prob_rate; mrr_ndx[2] = 0; for (i = 1; i < 4; i++) { ar[i].idx = mi->r[mrr_ndx[i - 1]].rix; ar[i].count = mi->r[mrr_ndx[i - 1]].adjusted_retry_count; } } static void calc_rate_durations(enum ieee80211_band band, struct minstrel_rate *d, struct ieee80211_rate *rate) { int erp = !!(rate->flags & IEEE80211_RATE_ERP_G); d->perfect_tx_time = ieee80211_frame_duration(band, 1200, rate->bitrate, erp, 1); d->ack_time = ieee80211_frame_duration(band, 10, rate->bitrate, erp, 1); } static void init_sample_table(struct minstrel_sta_info *mi) { unsigned int i, col, new_idx; u8 rnd[8]; mi->sample_column = 0; mi->sample_row = 0; memset(mi->sample_table, 0xff, SAMPLE_COLUMNS * mi->n_rates); for (col = 0; col < SAMPLE_COLUMNS; col++) { for (i = 0; i < mi->n_rates; i++) { get_random_bytes(rnd, sizeof(rnd)); new_idx = (i + rnd[i & 7]) % mi->n_rates; while (SAMPLE_TBL(mi, new_idx, col) != 0xff) new_idx = (new_idx + 1) % mi->n_rates; SAMPLE_TBL(mi, new_idx, col) = i; } } } static void minstrel_rate_init(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta) { struct minstrel_sta_info *mi = priv_sta; struct minstrel_priv *mp = priv; struct ieee80211_rate *ctl_rate; unsigned int i, n = 0; unsigned int t_slot = 9; /* FIXME: get real slot time */ mi->lowest_rix = rate_lowest_index(sband, sta); ctl_rate = &sband->bitrates[mi->lowest_rix]; mi->sp_ack_dur = ieee80211_frame_duration(sband->band, 10, ctl_rate->bitrate, !!(ctl_rate->flags & IEEE80211_RATE_ERP_G), 1); for (i = 0; i < sband->n_bitrates; i++) { struct minstrel_rate *mr = &mi->r[n]; unsigned int tx_time = 0, tx_time_cts = 0, tx_time_rtscts = 0; unsigned int tx_time_single; unsigned int cw = mp->cw_min; if (!rate_supported(sta, sband->band, i)) continue; n++; memset(mr, 0, sizeof(*mr)); mr->rix = i; mr->bitrate = sband->bitrates[i].bitrate / 5; calc_rate_durations(sband->band, mr, &sband->bitrates[i]); /* calculate maximum number of retransmissions before * fallback (based on maximum segment size) */ mr->sample_limit = -1; mr->retry_count = 1; mr->retry_count_cts = 1; mr->retry_count_rtscts = 1; tx_time = mr->perfect_tx_time + mi->sp_ack_dur; do { /* add one retransmission */ tx_time_single = mr->ack_time + mr->perfect_tx_time; /* contention window */ tx_time_single += (t_slot * cw) >> 1; cw = min((cw << 1) | 1, mp->cw_max); tx_time += tx_time_single; tx_time_cts += tx_time_single + mi->sp_ack_dur; tx_time_rtscts += tx_time_single + 2 * mi->sp_ack_dur; if ((tx_time_cts < mp->segment_size) && (mr->retry_count_cts < mp->max_retry)) mr->retry_count_cts++; if ((tx_time_rtscts < mp->segment_size) && (mr->retry_count_rtscts < mp->max_retry)) mr->retry_count_rtscts++; } while ((tx_time < mp->segment_size) && (++mr->retry_count < mp->max_retry)); mr->adjusted_retry_count = mr->retry_count; } for (i = n; i < sband->n_bitrates; i++) { struct minstrel_rate *mr = &mi->r[i]; mr->rix = -1; } mi->n_rates = n; mi->stats_update = jiffies; init_sample_table(mi); } static void * minstrel_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) { struct ieee80211_supported_band *sband; struct minstrel_sta_info *mi; struct minstrel_priv *mp = priv; struct ieee80211_hw *hw = mp->hw; int max_rates = 0; int i; mi = kzalloc(sizeof(struct minstrel_sta_info), gfp); if (!mi) return NULL; for (i = 0; i < IEEE80211_NUM_BANDS; i++) { sband = hw->wiphy->bands[i]; if (sband && sband->n_bitrates > max_rates) max_rates = sband->n_bitrates; } mi->r = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp); if (!mi->r) goto error; mi->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp); if (!mi->sample_table) goto error1; mi->stats_update = jiffies; return mi; error1: kfree(mi->r); error: kfree(mi); return NULL; } static void minstrel_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta) { struct minstrel_sta_info *mi = priv_sta; kfree(mi->sample_table); kfree(mi->r); kfree(mi); } static void minstrel_init_cck_rates(struct minstrel_priv *mp) { static const int bitrates[4] = { 10, 20, 55, 110 }; struct ieee80211_supported_band *sband; int i, j; sband = mp->hw->wiphy->bands[IEEE80211_BAND_2GHZ]; if (!sband) return; for (i = 0, j = 0; i < sband->n_bitrates; i++) { struct ieee80211_rate *rate = &sband->bitrates[i]; if (rate->flags & IEEE80211_RATE_ERP_G) continue; for (j = 0; j < ARRAY_SIZE(bitrates); j++) { if (rate->bitrate != bitrates[j]) continue; mp->cck_rates[j] = i; break; } } } static void * minstrel_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir) { struct minstrel_priv *mp; mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC); if (!mp) return NULL; /* contention window settings * Just an approximation. Using the per-queue values would complicate * the calculations and is probably unnecessary */ mp->cw_min = 15; mp->cw_max = 1023; /* number of packets (in %) to use for sampling other rates * sample less often for non-mrr packets, because the overhead * is much higher than with mrr */ mp->lookaround_rate = 5; mp->lookaround_rate_mrr = 10; /* maximum time that the hw is allowed to stay in one MRR segment */ mp->segment_size = 6000; if (hw->max_rate_tries > 0) mp->max_retry = hw->max_rate_tries; else /* safe default, does not necessarily have to match hw properties */ mp->max_retry = 7; if (hw->max_rates >= 4) mp->has_mrr = true; mp->hw = hw; mp->update_interval = 100; #ifdef CONFIG_MAC80211_DEBUGFS mp->fixed_rate_idx = (u32) -1; mp->dbg_fixed_rate = debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir, &mp->fixed_rate_idx); #endif minstrel_init_cck_rates(mp); return mp; } static void minstrel_free(void *priv) { #ifdef CONFIG_MAC80211_DEBUGFS debugfs_remove(((struct minstrel_priv *)priv)->dbg_fixed_rate); #endif kfree(priv); } struct rate_control_ops mac80211_minstrel = { .name = "minstrel", .tx_status = minstrel_tx_status, .get_rate = minstrel_get_rate, .rate_init = minstrel_rate_init, .alloc = minstrel_alloc, .free = minstrel_free, .alloc_sta = minstrel_alloc_sta, .free_sta = minstrel_free_sta, #ifdef CONFIG_MAC80211_DEBUGFS .add_sta_debugfs = minstrel_add_sta_debugfs, .remove_sta_debugfs = minstrel_remove_sta_debugfs, #endif }; int __init rc80211_minstrel_init(void) { return ieee80211_rate_control_register(&mac80211_minstrel); } void rc80211_minstrel_exit(void) { ieee80211_rate_control_unregister(&mac80211_minstrel); }