/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211_common.h" #include "ieee80211_i.h" #include "ieee80211_rate.h" #include "wep.h" #include "wme.h" #include "aes_ccm.h" #include "ieee80211_led.h" #include "ieee80211_cfg.h" #include "debugfs.h" #include "debugfs_netdev.h" /* privid for wiphys to determine whether they belong to us or not */ void *mac80211_wiphy_privid = &mac80211_wiphy_privid; /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ const unsigned char rfc1042_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ const unsigned char bridge_tunnel_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; /* No encapsulation header if EtherType < 0x600 (=length) */ static const unsigned char eapol_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e }; /* * For seeing transmitted packets on monitor interfaces * we have a radiotap header too. */ struct ieee80211_tx_status_rtap_hdr { struct ieee80211_radiotap_header hdr; __le16 tx_flags; u8 data_retries; } __attribute__ ((packed)); static int rate_list_match(const int *rate_list, int rate) { int i; if (!rate_list) return 0; for (i = 0; rate_list[i] >= 0; i++) if (rate_list[i] == rate) return 1; return 0; } void ieee80211_prepare_rates(struct ieee80211_local *local, struct ieee80211_hw_mode *mode) { int i; for (i = 0; i < mode->num_rates; i++) { struct ieee80211_rate *rate = &mode->rates[i]; rate->flags &= ~(IEEE80211_RATE_SUPPORTED | IEEE80211_RATE_BASIC); if (local->supp_rates[mode->mode]) { if (!rate_list_match(local->supp_rates[mode->mode], rate->rate)) continue; } rate->flags |= IEEE80211_RATE_SUPPORTED; /* Use configured basic rate set if it is available. If not, * use defaults that are sane for most cases. */ if (local->basic_rates[mode->mode]) { if (rate_list_match(local->basic_rates[mode->mode], rate->rate)) rate->flags |= IEEE80211_RATE_BASIC; } else switch (mode->mode) { case MODE_IEEE80211A: if (rate->rate == 60 || rate->rate == 120 || rate->rate == 240) rate->flags |= IEEE80211_RATE_BASIC; break; case MODE_IEEE80211B: if (rate->rate == 10 || rate->rate == 20) rate->flags |= IEEE80211_RATE_BASIC; break; case MODE_ATHEROS_TURBO: if (rate->rate == 120 || rate->rate == 240 || rate->rate == 480) rate->flags |= IEEE80211_RATE_BASIC; break; case MODE_IEEE80211G: if (rate->rate == 10 || rate->rate == 20 || rate->rate == 55 || rate->rate == 110) rate->flags |= IEEE80211_RATE_BASIC; break; } /* Set ERP and MANDATORY flags based on phymode */ switch (mode->mode) { case MODE_IEEE80211A: if (rate->rate == 60 || rate->rate == 120 || rate->rate == 240) rate->flags |= IEEE80211_RATE_MANDATORY; break; case MODE_IEEE80211B: if (rate->rate == 10) rate->flags |= IEEE80211_RATE_MANDATORY; break; case MODE_ATHEROS_TURBO: break; case MODE_IEEE80211G: if (rate->rate == 10 || rate->rate == 20 || rate->rate == 55 || rate->rate == 110 || rate->rate == 60 || rate->rate == 120 || rate->rate == 240) rate->flags |= IEEE80211_RATE_MANDATORY; break; } if (ieee80211_is_erp_rate(mode->mode, rate->rate)) rate->flags |= IEEE80211_RATE_ERP; } } void ieee80211_key_threshold_notify(struct net_device *dev, struct ieee80211_key *key, struct sta_info *sta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sk_buff *skb; struct ieee80211_msg_key_notification *msg; /* if no one will get it anyway, don't even allocate it. * unlikely because this is only relevant for APs * where the device must be open... */ if (unlikely(!local->apdev)) return; skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) + sizeof(struct ieee80211_msg_key_notification)); if (!skb) return; skb_reserve(skb, sizeof(struct ieee80211_frame_info)); msg = (struct ieee80211_msg_key_notification *) skb_put(skb, sizeof(struct ieee80211_msg_key_notification)); msg->tx_rx_count = key->tx_rx_count; memcpy(msg->ifname, dev->name, IFNAMSIZ); if (sta) memcpy(msg->addr, sta->addr, ETH_ALEN); else memset(msg->addr, 0xff, ETH_ALEN); key->tx_rx_count = 0; ieee80211_rx_mgmt(local, skb, NULL, ieee80211_msg_key_threshold_notification); } u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len) { u16 fc; if (len < 24) return NULL; fc = le16_to_cpu(hdr->frame_control); switch (fc & IEEE80211_FCTL_FTYPE) { case IEEE80211_FTYPE_DATA: switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { case IEEE80211_FCTL_TODS: return hdr->addr1; case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): return NULL; case IEEE80211_FCTL_FROMDS: return hdr->addr2; case 0: return hdr->addr3; } break; case IEEE80211_FTYPE_MGMT: return hdr->addr3; case IEEE80211_FTYPE_CTL: if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL) return hdr->addr1; else return NULL; } return NULL; } int ieee80211_get_hdrlen(u16 fc) { int hdrlen = 24; switch (fc & IEEE80211_FCTL_FTYPE) { case IEEE80211_FTYPE_DATA: if ((fc & IEEE80211_FCTL_FROMDS) && (fc & IEEE80211_FCTL_TODS)) hdrlen = 30; /* Addr4 */ /* * The QoS Control field is two bytes and its presence is * indicated by the IEEE80211_STYPE_QOS_DATA bit. Add 2 to * hdrlen if that bit is set. * This works by masking out the bit and shifting it to * bit position 1 so the result has the value 0 or 2. */ hdrlen += (fc & IEEE80211_STYPE_QOS_DATA) >> (ilog2(IEEE80211_STYPE_QOS_DATA)-1); break; case IEEE80211_FTYPE_CTL: /* * ACK and CTS are 10 bytes, all others 16. To see how * to get this condition consider * subtype mask: 0b0000000011110000 (0x00F0) * ACK subtype: 0b0000000011010000 (0x00D0) * CTS subtype: 0b0000000011000000 (0x00C0) * bits that matter: ^^^ (0x00E0) * value of those: 0b0000000011000000 (0x00C0) */ if ((fc & 0xE0) == 0xC0) hdrlen = 10; else hdrlen = 16; break; } return hdrlen; } EXPORT_SYMBOL(ieee80211_get_hdrlen); int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) { const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *) skb->data; int hdrlen; if (unlikely(skb->len < 10)) return 0; hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)); if (unlikely(hdrlen > skb->len)) return 0; return hdrlen; } EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); int ieee80211_is_eapol(const struct sk_buff *skb) { const struct ieee80211_hdr *hdr; u16 fc; int hdrlen; if (unlikely(skb->len < 10)) return 0; hdr = (const struct ieee80211_hdr *) skb->data; fc = le16_to_cpu(hdr->frame_control); if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) return 0; hdrlen = ieee80211_get_hdrlen(fc); if (unlikely(skb->len >= hdrlen + sizeof(eapol_header) && memcmp(skb->data + hdrlen, eapol_header, sizeof(eapol_header)) == 0)) return 1; return 0; } void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); if (tx->u.tx.extra_frag) { struct ieee80211_hdr *fhdr; int i; for (i = 0; i < tx->u.tx.num_extra_frag; i++) { fhdr = (struct ieee80211_hdr *) tx->u.tx.extra_frag[i]->data; fhdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); } } } static int ieee80211_frame_duration(struct ieee80211_local *local, size_t len, int rate, int erp, int short_preamble) { int dur; /* calculate duration (in microseconds, rounded up to next higher * integer if it includes a fractional microsecond) to send frame of * len bytes (does not include FCS) at the given rate. Duration will * also include SIFS. * * rate is in 100 kbps, so divident is multiplied by 10 in the * DIV_ROUND_UP() operations. */ if (local->hw.conf.phymode == MODE_IEEE80211A || erp || local->hw.conf.phymode == MODE_ATHEROS_TURBO) { /* * OFDM: * * N_DBPS = DATARATE x 4 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) * (16 = SIGNAL time, 6 = tail bits) * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext * * T_SYM = 4 usec * 802.11a - 17.5.2: aSIFSTime = 16 usec * 802.11g - 19.8.4: aSIFSTime = 10 usec + * signal ext = 6 usec */ /* FIX: Atheros Turbo may have different (shorter) duration? */ dur = 16; /* SIFS + signal ext */ dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */ dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */ dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 4 * rate); /* T_SYM x N_SYM */ } else { /* * 802.11b or 802.11g with 802.11b compatibility: * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. * * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 * aSIFSTime = 10 usec * aPreambleLength = 144 usec or 72 usec with short preamble * aPLCPHeaderLength = 48 usec or 24 usec with short preamble */ dur = 10; /* aSIFSTime = 10 usec */ dur += short_preamble ? (72 + 24) : (144 + 48); dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); } return dur; } /* Exported duration function for driver use */ __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, size_t frame_len, int rate) { struct ieee80211_local *local = hw_to_local(hw); u16 dur; int erp; erp = ieee80211_is_erp_rate(hw->conf.phymode, rate); dur = ieee80211_frame_duration(local, frame_len, rate, erp, local->short_preamble); return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_generic_frame_duration); __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, size_t frame_len, const struct ieee80211_tx_control *frame_txctl) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; int short_preamble = local->short_preamble; int erp; u16 dur; rate = frame_txctl->rts_rate; erp = !!(rate->flags & IEEE80211_RATE_ERP); /* CTS duration */ dur = ieee80211_frame_duration(local, 10, rate->rate, erp, short_preamble); /* Data frame duration */ dur += ieee80211_frame_duration(local, frame_len, rate->rate, erp, short_preamble); /* ACK duration */ dur += ieee80211_frame_duration(local, 10, rate->rate, erp, short_preamble); return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_rts_duration); __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, size_t frame_len, const struct ieee80211_tx_control *frame_txctl) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; int short_preamble = local->short_preamble; int erp; u16 dur; rate = frame_txctl->rts_rate; erp = !!(rate->flags & IEEE80211_RATE_ERP); /* Data frame duration */ dur = ieee80211_frame_duration(local, frame_len, rate->rate, erp, short_preamble); if (!(frame_txctl->flags & IEEE80211_TXCTL_NO_ACK)) { /* ACK duration */ dur += ieee80211_frame_duration(local, 10, rate->rate, erp, short_preamble); } return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_ctstoself_duration); static int __ieee80211_if_config(struct net_device *dev, struct sk_buff *beacon, struct ieee80211_tx_control *control) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_if_conf conf; static u8 scan_bssid[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (!local->ops->config_interface || !netif_running(dev)) return 0; memset(&conf, 0, sizeof(conf)); conf.type = sdata->type; if (sdata->type == IEEE80211_IF_TYPE_STA || sdata->type == IEEE80211_IF_TYPE_IBSS) { if (local->sta_scanning && local->scan_dev == dev) conf.bssid = scan_bssid; else conf.bssid = sdata->u.sta.bssid; conf.ssid = sdata->u.sta.ssid; conf.ssid_len = sdata->u.sta.ssid_len; conf.generic_elem = sdata->u.sta.extra_ie; conf.generic_elem_len = sdata->u.sta.extra_ie_len; } else if (sdata->type == IEEE80211_IF_TYPE_AP) { conf.ssid = sdata->u.ap.ssid; conf.ssid_len = sdata->u.ap.ssid_len; conf.generic_elem = sdata->u.ap.generic_elem; conf.generic_elem_len = sdata->u.ap.generic_elem_len; conf.beacon = beacon; conf.beacon_control = control; } return local->ops->config_interface(local_to_hw(local), dev->ifindex, &conf); } int ieee80211_if_config(struct net_device *dev) { return __ieee80211_if_config(dev, NULL, NULL); } int ieee80211_if_config_beacon(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_tx_control control; struct sk_buff *skb; if (!(local->hw.flags & IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE)) return 0; skb = ieee80211_beacon_get(local_to_hw(local), dev->ifindex, &control); if (!skb) return -ENOMEM; return __ieee80211_if_config(dev, skb, &control); } int ieee80211_hw_config(struct ieee80211_local *local) { struct ieee80211_hw_mode *mode; struct ieee80211_channel *chan; int ret = 0; if (local->sta_scanning) { chan = local->scan_channel; mode = local->scan_hw_mode; } else { chan = local->oper_channel; mode = local->oper_hw_mode; } local->hw.conf.channel = chan->chan; local->hw.conf.channel_val = chan->val; local->hw.conf.power_level = chan->power_level; local->hw.conf.freq = chan->freq; local->hw.conf.phymode = mode->mode; local->hw.conf.antenna_max = chan->antenna_max; local->hw.conf.chan = chan; local->hw.conf.mode = mode; #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "HW CONFIG: channel=%d freq=%d " "phymode=%d\n", local->hw.conf.channel, local->hw.conf.freq, local->hw.conf.phymode); #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ if (local->ops->config) ret = local->ops->config(local_to_hw(local), &local->hw.conf); return ret; } static int ieee80211_change_mtu(struct net_device *dev, int new_mtu) { /* FIX: what would be proper limits for MTU? * This interface uses 802.3 frames. */ if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN - 24 - 6) { printk(KERN_WARNING "%s: invalid MTU %d\n", dev->name, new_mtu); return -EINVAL; } #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu); #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ dev->mtu = new_mtu; return 0; } static int ieee80211_change_mtu_apdev(struct net_device *dev, int new_mtu) { /* FIX: what would be proper limits for MTU? * This interface uses 802.11 frames. */ if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN) { printk(KERN_WARNING "%s: invalid MTU %d\n", dev->name, new_mtu); return -EINVAL; } #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu); #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ dev->mtu = new_mtu; return 0; } enum netif_tx_lock_class { TX_LOCK_NORMAL, TX_LOCK_MASTER, }; static inline void netif_tx_lock_nested(struct net_device *dev, int subclass) { spin_lock_nested(&dev->_xmit_lock, subclass); dev->xmit_lock_owner = smp_processor_id(); } static void ieee80211_set_multicast_list(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); unsigned short flags; netif_tx_lock_nested(local->mdev, TX_LOCK_MASTER); if (((dev->flags & IFF_ALLMULTI) != 0) ^ (sdata->allmulti != 0)) { if (sdata->allmulti) { sdata->allmulti = 0; local->iff_allmultis--; } else { sdata->allmulti = 1; local->iff_allmultis++; } } if (((dev->flags & IFF_PROMISC) != 0) ^ (sdata->promisc != 0)) { if (sdata->promisc) { sdata->promisc = 0; local->iff_promiscs--; } else { sdata->promisc = 1; local->iff_promiscs++; } } if (dev->mc_count != sdata->mc_count) { local->mc_count = local->mc_count - sdata->mc_count + dev->mc_count; sdata->mc_count = dev->mc_count; } if (local->ops->set_multicast_list) { flags = local->mdev->flags; if (local->iff_allmultis) flags |= IFF_ALLMULTI; if (local->iff_promiscs) flags |= IFF_PROMISC; read_lock(&local->sub_if_lock); local->ops->set_multicast_list(local_to_hw(local), flags, local->mc_count); read_unlock(&local->sub_if_lock); } netif_tx_unlock(local->mdev); } struct dev_mc_list *ieee80211_get_mc_list_item(struct ieee80211_hw *hw, struct dev_mc_list *prev, void **ptr) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata = *ptr; struct dev_mc_list *mc; if (!prev) { WARN_ON(sdata); sdata = NULL; } if (!prev || !prev->next) { if (sdata) sdata = list_entry(sdata->list.next, struct ieee80211_sub_if_data, list); else sdata = list_entry(local->sub_if_list.next, struct ieee80211_sub_if_data, list); if (&sdata->list != &local->sub_if_list) mc = sdata->dev->mc_list; else mc = NULL; } else mc = prev->next; *ptr = sdata; return mc; } EXPORT_SYMBOL(ieee80211_get_mc_list_item); static struct net_device_stats *ieee80211_get_stats(struct net_device *dev) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); return &(sdata->stats); } static void ieee80211_if_shutdown(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); ASSERT_RTNL(); switch (sdata->type) { case IEEE80211_IF_TYPE_STA: case IEEE80211_IF_TYPE_IBSS: sdata->u.sta.state = IEEE80211_DISABLED; del_timer_sync(&sdata->u.sta.timer); skb_queue_purge(&sdata->u.sta.skb_queue); if (!local->ops->hw_scan && local->scan_dev == sdata->dev) { local->sta_scanning = 0; cancel_delayed_work(&local->scan_work); } flush_workqueue(local->hw.workqueue); break; } } static inline int identical_mac_addr_allowed(int type1, int type2) { return (type1 == IEEE80211_IF_TYPE_MNTR || type2 == IEEE80211_IF_TYPE_MNTR || (type1 == IEEE80211_IF_TYPE_AP && type2 == IEEE80211_IF_TYPE_WDS) || (type1 == IEEE80211_IF_TYPE_WDS && (type2 == IEEE80211_IF_TYPE_WDS || type2 == IEEE80211_IF_TYPE_AP)) || (type1 == IEEE80211_IF_TYPE_AP && type2 == IEEE80211_IF_TYPE_VLAN) || (type1 == IEEE80211_IF_TYPE_VLAN && (type2 == IEEE80211_IF_TYPE_AP || type2 == IEEE80211_IF_TYPE_VLAN))); } static int ieee80211_master_open(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata; int res = -EOPNOTSUPP; read_lock(&local->sub_if_lock); list_for_each_entry(sdata, &local->sub_if_list, list) { if (sdata->dev != dev && netif_running(sdata->dev)) { res = 0; break; } } read_unlock(&local->sub_if_lock); return res; } static int ieee80211_master_stop(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata; read_lock(&local->sub_if_lock); list_for_each_entry(sdata, &local->sub_if_list, list) if (sdata->dev != dev && netif_running(sdata->dev)) dev_close(sdata->dev); read_unlock(&local->sub_if_lock); return 0; } static int ieee80211_mgmt_open(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); if (!netif_running(local->mdev)) return -EOPNOTSUPP; return 0; } static int ieee80211_mgmt_stop(struct net_device *dev) { return 0; } /* Check if running monitor interfaces should go to a "soft monitor" mode * and switch them if necessary. */ static inline void ieee80211_start_soft_monitor(struct ieee80211_local *local) { struct ieee80211_if_init_conf conf; if (local->open_count && local->open_count == local->monitors && !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER) && local->ops->remove_interface) { conf.if_id = -1; conf.type = IEEE80211_IF_TYPE_MNTR; conf.mac_addr = NULL; local->ops->remove_interface(local_to_hw(local), &conf); } } /* Check if running monitor interfaces should go to a "hard monitor" mode * and switch them if necessary. */ static void ieee80211_start_hard_monitor(struct ieee80211_local *local) { struct ieee80211_if_init_conf conf; if (local->open_count && local->open_count == local->monitors && !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) { conf.if_id = -1; conf.type = IEEE80211_IF_TYPE_MNTR; conf.mac_addr = NULL; local->ops->add_interface(local_to_hw(local), &conf); } } static int ieee80211_open(struct net_device *dev) { struct ieee80211_sub_if_data *sdata, *nsdata; struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_if_init_conf conf; int res; sdata = IEEE80211_DEV_TO_SUB_IF(dev); read_lock(&local->sub_if_lock); list_for_each_entry(nsdata, &local->sub_if_list, list) { struct net_device *ndev = nsdata->dev; if (ndev != dev && ndev != local->mdev && netif_running(ndev) && compare_ether_addr(dev->dev_addr, ndev->dev_addr) == 0 && !identical_mac_addr_allowed(sdata->type, nsdata->type)) { read_unlock(&local->sub_if_lock); return -ENOTUNIQ; } } read_unlock(&local->sub_if_lock); if (sdata->type == IEEE80211_IF_TYPE_WDS && is_zero_ether_addr(sdata->u.wds.remote_addr)) return -ENOLINK; if (sdata->type == IEEE80211_IF_TYPE_MNTR && local->open_count && !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) { /* run the interface in a "soft monitor" mode */ local->monitors++; local->open_count++; local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP; return 0; } ieee80211_start_soft_monitor(local); conf.if_id = dev->ifindex; conf.type = sdata->type; conf.mac_addr = dev->dev_addr; res = local->ops->add_interface(local_to_hw(local), &conf); if (res) { if (sdata->type == IEEE80211_IF_TYPE_MNTR) ieee80211_start_hard_monitor(local); return res; } if (local->open_count == 0) { res = 0; tasklet_enable(&local->tx_pending_tasklet); tasklet_enable(&local->tasklet); if (local->ops->open) res = local->ops->open(local_to_hw(local)); if (res == 0) { res = dev_open(local->mdev); if (res) { if (local->ops->stop) local->ops->stop(local_to_hw(local)); } else { res = ieee80211_hw_config(local); if (res && local->ops->stop) local->ops->stop(local_to_hw(local)); else if (!res && local->apdev) dev_open(local->apdev); } } if (res) { if (local->ops->remove_interface) local->ops->remove_interface(local_to_hw(local), &conf); return res; } } local->open_count++; if (sdata->type == IEEE80211_IF_TYPE_MNTR) { local->monitors++; local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP; } else ieee80211_if_config(dev); if (sdata->type == IEEE80211_IF_TYPE_STA && !local->user_space_mlme) netif_carrier_off(dev); else netif_carrier_on(dev); netif_start_queue(dev); return 0; } static int ieee80211_stop(struct net_device *dev) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (sdata->type == IEEE80211_IF_TYPE_MNTR && local->open_count > 1 && !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) { /* remove "soft monitor" interface */ local->open_count--; local->monitors--; if (!local->monitors) local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP; return 0; } netif_stop_queue(dev); ieee80211_if_shutdown(dev); if (sdata->type == IEEE80211_IF_TYPE_MNTR) { local->monitors--; if (!local->monitors) local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP; } local->open_count--; if (local->open_count == 0) { if (netif_running(local->mdev)) dev_close(local->mdev); if (local->apdev) dev_close(local->apdev); if (local->ops->stop) local->ops->stop(local_to_hw(local)); tasklet_disable(&local->tx_pending_tasklet); tasklet_disable(&local->tasklet); } if (local->ops->remove_interface) { struct ieee80211_if_init_conf conf; conf.if_id = dev->ifindex; conf.type = sdata->type; conf.mac_addr = dev->dev_addr; local->ops->remove_interface(local_to_hw(local), &conf); } ieee80211_start_hard_monitor(local); return 0; } static int header_parse_80211(struct sk_buff *skb, unsigned char *haddr) { memcpy(haddr, skb_mac_header(skb) + 10, ETH_ALEN); /* addr2 */ return ETH_ALEN; } struct ieee80211_rate * ieee80211_get_rate(struct ieee80211_local *local, int phymode, int hw_rate) { struct ieee80211_hw_mode *mode; int r; list_for_each_entry(mode, &local->modes_list, list) { if (mode->mode != phymode) continue; for (r = 0; r < mode->num_rates; r++) { struct ieee80211_rate *rate = &mode->rates[r]; if (rate->val == hw_rate || (rate->flags & IEEE80211_RATE_PREAMBLE2 && rate->val2 == hw_rate)) return rate; } } return NULL; } static void ieee80211_fill_frame_info(struct ieee80211_local *local, struct ieee80211_frame_info *fi, struct ieee80211_rx_status *status) { if (status) { struct timespec ts; struct ieee80211_rate *rate; jiffies_to_timespec(jiffies, &ts); fi->hosttime = cpu_to_be64((u64) ts.tv_sec * 1000000 + ts.tv_nsec / 1000); fi->mactime = cpu_to_be64(status->mactime); switch (status->phymode) { case MODE_IEEE80211A: fi->phytype = htonl(ieee80211_phytype_ofdm_dot11_a); break; case MODE_IEEE80211B: fi->phytype = htonl(ieee80211_phytype_dsss_dot11_b); break; case MODE_IEEE80211G: fi->phytype = htonl(ieee80211_phytype_pbcc_dot11_g); break; case MODE_ATHEROS_TURBO: fi->phytype = htonl(ieee80211_phytype_dsss_dot11_turbo); break; default: fi->phytype = htonl(0xAAAAAAAA); break; } fi->channel = htonl(status->channel); rate = ieee80211_get_rate(local, status->phymode, status->rate); if (rate) { fi->datarate = htonl(rate->rate); if (rate->flags & IEEE80211_RATE_PREAMBLE2) { if (status->rate == rate->val) fi->preamble = htonl(2); /* long */ else if (status->rate == rate->val2) fi->preamble = htonl(1); /* short */ } else fi->preamble = htonl(0); } else { fi->datarate = htonl(0); fi->preamble = htonl(0); } fi->antenna = htonl(status->antenna); fi->priority = htonl(0xffffffff); /* no clue */ fi->ssi_type = htonl(ieee80211_ssi_raw); fi->ssi_signal = htonl(status->ssi); fi->ssi_noise = 0x00000000; fi->encoding = 0; } else { /* clear everything because we really don't know. * the msg_type field isn't present on monitor frames * so we don't know whether it will be present or not, * but it's ok to not clear it since it'll be assigned * anyway */ memset(fi, 0, sizeof(*fi) - sizeof(fi->msg_type)); fi->ssi_type = htonl(ieee80211_ssi_none); } fi->version = htonl(IEEE80211_FI_VERSION); fi->length = cpu_to_be32(sizeof(*fi) - sizeof(fi->msg_type)); } /* this routine is actually not just for this, but also * for pushing fake 'management' frames into userspace. * it shall be replaced by a netlink-based system. */ void ieee80211_rx_mgmt(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_rx_status *status, u32 msg_type) { struct ieee80211_frame_info *fi; const size_t hlen = sizeof(struct ieee80211_frame_info); struct ieee80211_sub_if_data *sdata; skb->dev = local->apdev; sdata = IEEE80211_DEV_TO_SUB_IF(local->apdev); if (skb_headroom(skb) < hlen) { I802_DEBUG_INC(local->rx_expand_skb_head); if (pskb_expand_head(skb, hlen, 0, GFP_ATOMIC)) { dev_kfree_skb(skb); return; } } fi = (struct ieee80211_frame_info *) skb_push(skb, hlen); ieee80211_fill_frame_info(local, fi, status); fi->msg_type = htonl(msg_type); sdata->stats.rx_packets++; sdata->stats.rx_bytes += skb->len; skb_set_mac_header(skb, 0); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } int ieee80211_radar_status(struct ieee80211_hw *hw, int channel, int radar, int radar_type) { struct sk_buff *skb; struct ieee80211_radar_info *msg; struct ieee80211_local *local = hw_to_local(hw); if (!local->apdev) return 0; skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) + sizeof(struct ieee80211_radar_info)); if (!skb) return -ENOMEM; skb_reserve(skb, sizeof(struct ieee80211_frame_info)); msg = (struct ieee80211_radar_info *) skb_put(skb, sizeof(struct ieee80211_radar_info)); msg->channel = channel; msg->radar = radar; msg->radar_type = radar_type; ieee80211_rx_mgmt(local, skb, NULL, ieee80211_msg_radar); return 0; } EXPORT_SYMBOL(ieee80211_radar_status); static void ieee80211_stat_refresh(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *) data; struct sta_info *sta; struct ieee80211_sub_if_data *sdata; if (!local->stat_time) return; /* go through all stations */ spin_lock_bh(&local->sta_lock); list_for_each_entry(sta, &local->sta_list, list) { sta->channel_use = (sta->channel_use_raw / local->stat_time) / CHAN_UTIL_PER_10MS; sta->channel_use_raw = 0; } spin_unlock_bh(&local->sta_lock); /* go through all subinterfaces */ read_lock(&local->sub_if_lock); list_for_each_entry(sdata, &local->sub_if_list, list) { sdata->channel_use = (sdata->channel_use_raw / local->stat_time) / CHAN_UTIL_PER_10MS; sdata->channel_use_raw = 0; } read_unlock(&local->sub_if_lock); /* hardware interface */ local->channel_use = (local->channel_use_raw / local->stat_time) / CHAN_UTIL_PER_10MS; local->channel_use_raw = 0; local->stat_timer.expires = jiffies + HZ * local->stat_time / 100; add_timer(&local->stat_timer); } void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_status *status) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_status *saved; int tmp; skb->dev = local->mdev; saved = kmalloc(sizeof(struct ieee80211_tx_status), GFP_ATOMIC); if (unlikely(!saved)) { if (net_ratelimit()) printk(KERN_WARNING "%s: Not enough memory, " "dropping tx status", skb->dev->name); /* should be dev_kfree_skb_irq, but due to this function being * named _irqsafe instead of just _irq we can't be sure that * people won't call it from non-irq contexts */ dev_kfree_skb_any(skb); return; } memcpy(saved, status, sizeof(struct ieee80211_tx_status)); /* copy pointer to saved status into skb->cb for use by tasklet */ memcpy(skb->cb, &saved, sizeof(saved)); skb->pkt_type = IEEE80211_TX_STATUS_MSG; skb_queue_tail(status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS ? &local->skb_queue : &local->skb_queue_unreliable, skb); tmp = skb_queue_len(&local->skb_queue) + skb_queue_len(&local->skb_queue_unreliable); while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT && (skb = skb_dequeue(&local->skb_queue_unreliable))) { memcpy(&saved, skb->cb, sizeof(saved)); kfree(saved); dev_kfree_skb_irq(skb); tmp--; I802_DEBUG_INC(local->tx_status_drop); } tasklet_schedule(&local->tasklet); } EXPORT_SYMBOL(ieee80211_tx_status_irqsafe); static void ieee80211_tasklet_handler(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *) data; struct sk_buff *skb; struct ieee80211_rx_status rx_status; struct ieee80211_tx_status *tx_status; while ((skb = skb_dequeue(&local->skb_queue)) || (skb = skb_dequeue(&local->skb_queue_unreliable))) { switch (skb->pkt_type) { case IEEE80211_RX_MSG: /* status is in skb->cb */ memcpy(&rx_status, skb->cb, sizeof(rx_status)); /* Clear skb->type in order to not confuse kernel * netstack. */ skb->pkt_type = 0; __ieee80211_rx(local_to_hw(local), skb, &rx_status); break; case IEEE80211_TX_STATUS_MSG: /* get pointer to saved status out of skb->cb */ memcpy(&tx_status, skb->cb, sizeof(tx_status)); skb->pkt_type = 0; ieee80211_tx_status(local_to_hw(local), skb, tx_status); kfree(tx_status); break; default: /* should never get here! */ printk(KERN_ERR "%s: Unknown message type (%d)\n", local->mdev->name, skb->pkt_type); dev_kfree_skb(skb); break; } } } /* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to * make a prepared TX frame (one that has been given to hw) to look like brand * new IEEE 802.11 frame that is ready to go through TX processing again. * Also, tx_packet_data in cb is restored from tx_control. */ static void ieee80211_remove_tx_extra(struct ieee80211_local *local, struct ieee80211_key *key, struct sk_buff *skb, struct ieee80211_tx_control *control) { int hdrlen, iv_len, mic_len; struct ieee80211_tx_packet_data *pkt_data; pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; pkt_data->ifindex = control->ifindex; pkt_data->mgmt_iface = (control->type == IEEE80211_IF_TYPE_MGMT); pkt_data->req_tx_status = !!(control->flags & IEEE80211_TXCTL_REQ_TX_STATUS); pkt_data->do_not_encrypt = !!(control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT); pkt_data->requeue = !!(control->flags & IEEE80211_TXCTL_REQUEUE); pkt_data->queue = control->queue; hdrlen = ieee80211_get_hdrlen_from_skb(skb); if (!key) goto no_key; switch (key->alg) { case ALG_WEP: iv_len = WEP_IV_LEN; mic_len = WEP_ICV_LEN; break; case ALG_TKIP: iv_len = TKIP_IV_LEN; mic_len = TKIP_ICV_LEN; break; case ALG_CCMP: iv_len = CCMP_HDR_LEN; mic_len = CCMP_MIC_LEN; break; default: goto no_key; } if (skb->len >= mic_len && key->force_sw_encrypt) skb_trim(skb, skb->len - mic_len); if (skb->len >= iv_len && skb->len > hdrlen) { memmove(skb->data + iv_len, skb->data, hdrlen); skb_pull(skb, iv_len); } no_key: { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u16 fc = le16_to_cpu(hdr->frame_control); if ((fc & 0x8C) == 0x88) /* QoS Control Field */ { fc &= ~IEEE80211_STYPE_QOS_DATA; hdr->frame_control = cpu_to_le16(fc); memmove(skb->data + 2, skb->data, hdrlen - 2); skb_pull(skb, 2); } } } void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_status *status) { struct sk_buff *skb2; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_local *local = hw_to_local(hw); u16 frag, type; u32 msg_type; struct ieee80211_tx_status_rtap_hdr *rthdr; struct ieee80211_sub_if_data *sdata; int monitors; if (!status) { printk(KERN_ERR "%s: ieee80211_tx_status called with NULL status\n", local->mdev->name); dev_kfree_skb(skb); return; } if (status->excessive_retries) { struct sta_info *sta; sta = sta_info_get(local, hdr->addr1); if (sta) { if (sta->flags & WLAN_STA_PS) { /* The STA is in power save mode, so assume * that this TX packet failed because of that. */ status->excessive_retries = 0; status->flags |= IEEE80211_TX_STATUS_TX_FILTERED; } sta_info_put(sta); } } if (status->flags & IEEE80211_TX_STATUS_TX_FILTERED) { struct sta_info *sta; sta = sta_info_get(local, hdr->addr1); if (sta) { sta->tx_filtered_count++; /* Clear the TX filter mask for this STA when sending * the next packet. If the STA went to power save mode, * this will happen when it is waking up for the next * time. */ sta->clear_dst_mask = 1; /* TODO: Is the WLAN_STA_PS flag always set here or is * the race between RX and TX status causing some * packets to be filtered out before 80211.o gets an * update for PS status? This seems to be the case, so * no changes are likely to be needed. */ if (sta->flags & WLAN_STA_PS && skb_queue_len(&sta->tx_filtered) < STA_MAX_TX_BUFFER) { ieee80211_remove_tx_extra(local, sta->key, skb, &status->control); skb_queue_tail(&sta->tx_filtered, skb); } else if (!(sta->flags & WLAN_STA_PS) && !(status->control.flags & IEEE80211_TXCTL_REQUEUE)) { /* Software retry the packet once */ status->control.flags |= IEEE80211_TXCTL_REQUEUE; ieee80211_remove_tx_extra(local, sta->key, skb, &status->control); dev_queue_xmit(skb); } else { if (net_ratelimit()) { printk(KERN_DEBUG "%s: dropped TX " "filtered frame queue_len=%d " "PS=%d @%lu\n", local->mdev->name, skb_queue_len( &sta->tx_filtered), !!(sta->flags & WLAN_STA_PS), jiffies); } dev_kfree_skb(skb); } sta_info_put(sta); return; } } else { /* FIXME: STUPID to call this with both local and local->mdev */ rate_control_tx_status(local, local->mdev, skb, status); } ieee80211_led_tx(local, 0); /* SNMP counters * Fragments are passed to low-level drivers as separate skbs, so these * are actually fragments, not frames. Update frame counters only for * the first fragment of the frame. */ frag = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE; if (status->flags & IEEE80211_TX_STATUS_ACK) { if (frag == 0) { local->dot11TransmittedFrameCount++; if (is_multicast_ether_addr(hdr->addr1)) local->dot11MulticastTransmittedFrameCount++; if (status->retry_count > 0) local->dot11RetryCount++; if (status->retry_count > 1) local->dot11MultipleRetryCount++; } /* This counter shall be incremented for an acknowledged MPDU * with an individual address in the address 1 field or an MPDU * with a multicast address in the address 1 field of type Data * or Management. */ if (!is_multicast_ether_addr(hdr->addr1) || type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT) local->dot11TransmittedFragmentCount++; } else { if (frag == 0) local->dot11FailedCount++; } msg_type = (status->flags & IEEE80211_TX_STATUS_ACK) ? ieee80211_msg_tx_callback_ack : ieee80211_msg_tx_callback_fail; /* this was a transmitted frame, but now we want to reuse it */ skb_orphan(skb); if ((status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS) && local->apdev) { if (local->monitors) { skb2 = skb_clone(skb, GFP_ATOMIC); } else { skb2 = skb; skb = NULL; } if (skb2) /* Send frame to hostapd */ ieee80211_rx_mgmt(local, skb2, NULL, msg_type); if (!skb) return; } if (!local->monitors) { dev_kfree_skb(skb); return; } /* send frame to monitor interfaces now */ if (skb_headroom(skb) < sizeof(*rthdr)) { printk(KERN_ERR "ieee80211_tx_status: headroom too small\n"); dev_kfree_skb(skb); return; } rthdr = (struct ieee80211_tx_status_rtap_hdr*) skb_push(skb, sizeof(*rthdr)); memset(rthdr, 0, sizeof(*rthdr)); rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); rthdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_TX_FLAGS) | (1 << IEEE80211_RADIOTAP_DATA_RETRIES)); if (!(status->flags & IEEE80211_TX_STATUS_ACK) && !is_multicast_ether_addr(hdr->addr1)) rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_FAIL); if ((status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) && (status->control.flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_CTS); else if (status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_RTS); rthdr->data_retries = status->retry_count; read_lock(&local->sub_if_lock); monitors = local->monitors; list_for_each_entry(sdata, &local->sub_if_list, list) { /* * Using the monitors counter is possibly racy, but * if the value is wrong we simply either clone the skb * once too much or forget sending it to one monitor iface * The latter case isn't nice but fixing the race is much * more complicated. */ if (!monitors || !skb) goto out; if (sdata->type == IEEE80211_IF_TYPE_MNTR) { if (!netif_running(sdata->dev)) continue; monitors--; if (monitors) skb2 = skb_clone(skb, GFP_KERNEL); else skb2 = NULL; skb->dev = sdata->dev; /* XXX: is this sufficient for BPF? */ skb_set_mac_header(skb, 0); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); skb = skb2; } } out: read_unlock(&local->sub_if_lock); if (skb) dev_kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_tx_status); int ieee80211_if_update_wds(struct net_device *dev, u8 *remote_addr) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct sta_info *sta; if (compare_ether_addr(remote_addr, sdata->u.wds.remote_addr) == 0) return 0; /* Create STA entry for the new peer */ sta = sta_info_add(local, dev, remote_addr, GFP_KERNEL); if (!sta) return -ENOMEM; sta_info_put(sta); /* Remove STA entry for the old peer */ sta = sta_info_get(local, sdata->u.wds.remote_addr); if (sta) { sta_info_put(sta); sta_info_free(sta, 0); } else { printk(KERN_DEBUG "%s: could not find STA entry for WDS link " "peer " MAC_FMT "\n", dev->name, MAC_ARG(sdata->u.wds.remote_addr)); } /* Update WDS link data */ memcpy(&sdata->u.wds.remote_addr, remote_addr, ETH_ALEN); return 0; } /* Must not be called for mdev and apdev */ void ieee80211_if_setup(struct net_device *dev) { ether_setup(dev); dev->hard_start_xmit = ieee80211_subif_start_xmit; dev->wireless_handlers = &ieee80211_iw_handler_def; dev->set_multicast_list = ieee80211_set_multicast_list; dev->change_mtu = ieee80211_change_mtu; dev->get_stats = ieee80211_get_stats; dev->open = ieee80211_open; dev->stop = ieee80211_stop; dev->uninit = ieee80211_if_reinit; dev->destructor = ieee80211_if_free; } void ieee80211_if_mgmt_setup(struct net_device *dev) { ether_setup(dev); dev->hard_start_xmit = ieee80211_mgmt_start_xmit; dev->change_mtu = ieee80211_change_mtu_apdev; dev->get_stats = ieee80211_get_stats; dev->open = ieee80211_mgmt_open; dev->stop = ieee80211_mgmt_stop; dev->type = ARPHRD_IEEE80211_PRISM; dev->hard_header_parse = header_parse_80211; dev->uninit = ieee80211_if_reinit; dev->destructor = ieee80211_if_free; } int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local, const char *name) { struct rate_control_ref *ref, *old; ASSERT_RTNL(); if (local->open_count || netif_running(local->mdev) || (local->apdev && netif_running(local->apdev))) return -EBUSY; ref = rate_control_alloc(name, local); if (!ref) { printk(KERN_WARNING "%s: Failed to select rate control " "algorithm\n", local->mdev->name); return -ENOENT; } old = local->rate_ctrl; local->rate_ctrl = ref; if (old) { rate_control_put(old); sta_info_flush(local, NULL); } printk(KERN_DEBUG "%s: Selected rate control " "algorithm '%s'\n", local->mdev->name, ref->ops->name); return 0; } static void rate_control_deinitialize(struct ieee80211_local *local) { struct rate_control_ref *ref; ref = local->rate_ctrl; local->rate_ctrl = NULL; rate_control_put(ref); } struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, const struct ieee80211_ops *ops) { struct net_device *mdev; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; int priv_size; struct wiphy *wiphy; /* Ensure 32-byte alignment of our private data and hw private data. * We use the wiphy priv data for both our ieee80211_local and for * the driver's private data * * In memory it'll be like this: * * +-------------------------+ * | struct wiphy | * +-------------------------+ * | struct ieee80211_local | * +-------------------------+ * | driver's private data | * +-------------------------+ * */ priv_size = ((sizeof(struct ieee80211_local) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST) + priv_data_len; wiphy = wiphy_new(&mac80211_config_ops, priv_size); if (!wiphy) return NULL; wiphy->privid = mac80211_wiphy_privid; local = wiphy_priv(wiphy); local->hw.wiphy = wiphy; local->hw.priv = (char *)local + ((sizeof(struct ieee80211_local) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); BUG_ON(!ops->tx); BUG_ON(!ops->config); BUG_ON(!ops->add_interface); local->ops = ops; /* for now, mdev needs sub_if_data :/ */ mdev = alloc_netdev(sizeof(struct ieee80211_sub_if_data), "wmaster%d", ether_setup); if (!mdev) { wiphy_free(wiphy); return NULL; } sdata = IEEE80211_DEV_TO_SUB_IF(mdev); mdev->ieee80211_ptr = &sdata->wdev; sdata->wdev.wiphy = wiphy; local->hw.queues = 1; /* default */ local->mdev = mdev; local->rx_pre_handlers = ieee80211_rx_pre_handlers; local->rx_handlers = ieee80211_rx_handlers; local->tx_handlers = ieee80211_tx_handlers; local->bridge_packets = 1; local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD; local->short_retry_limit = 7; local->long_retry_limit = 4; local->hw.conf.radio_enabled = 1; local->enabled_modes = (unsigned int) -1; INIT_LIST_HEAD(&local->modes_list); rwlock_init(&local->sub_if_lock); INIT_LIST_HEAD(&local->sub_if_list); INIT_DELAYED_WORK(&local->scan_work, ieee80211_sta_scan_work); init_timer(&local->stat_timer); local->stat_timer.function = ieee80211_stat_refresh; local->stat_timer.data = (unsigned long) local; ieee80211_rx_bss_list_init(mdev); sta_info_init(local); mdev->hard_start_xmit = ieee80211_master_start_xmit; mdev->open = ieee80211_master_open; mdev->stop = ieee80211_master_stop; mdev->type = ARPHRD_IEEE80211; mdev->hard_header_parse = header_parse_80211; sdata->type = IEEE80211_IF_TYPE_AP; sdata->dev = mdev; sdata->local = local; sdata->u.ap.force_unicast_rateidx = -1; sdata->u.ap.max_ratectrl_rateidx = -1; ieee80211_if_sdata_init(sdata); list_add_tail(&sdata->list, &local->sub_if_list); tasklet_init(&local->tx_pending_tasklet, ieee80211_tx_pending, (unsigned long)local); tasklet_disable(&local->tx_pending_tasklet); tasklet_init(&local->tasklet, ieee80211_tasklet_handler, (unsigned long) local); tasklet_disable(&local->tasklet); skb_queue_head_init(&local->skb_queue); skb_queue_head_init(&local->skb_queue_unreliable); return local_to_hw(local); } EXPORT_SYMBOL(ieee80211_alloc_hw); int ieee80211_register_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); const char *name; int result; result = wiphy_register(local->hw.wiphy); if (result < 0) return result; name = wiphy_dev(local->hw.wiphy)->driver->name; local->hw.workqueue = create_singlethread_workqueue(name); if (!local->hw.workqueue) { result = -ENOMEM; goto fail_workqueue; } /* * The hardware needs headroom for sending the frame, * and we need some headroom for passing the frame to monitor * interfaces, but never both at the same time. */ local->tx_headroom = max_t(unsigned int , local->hw.extra_tx_headroom, sizeof(struct ieee80211_tx_status_rtap_hdr)); debugfs_hw_add(local); local->hw.conf.beacon_int = 1000; local->wstats_flags |= local->hw.max_rssi ? IW_QUAL_LEVEL_UPDATED : IW_QUAL_LEVEL_INVALID; local->wstats_flags |= local->hw.max_signal ? IW_QUAL_QUAL_UPDATED : IW_QUAL_QUAL_INVALID; local->wstats_flags |= local->hw.max_noise ? IW_QUAL_NOISE_UPDATED : IW_QUAL_NOISE_INVALID; if (local->hw.max_rssi < 0 || local->hw.max_noise < 0) local->wstats_flags |= IW_QUAL_DBM; result = sta_info_start(local); if (result < 0) goto fail_sta_info; rtnl_lock(); result = dev_alloc_name(local->mdev, local->mdev->name); if (result < 0) goto fail_dev; memcpy(local->mdev->dev_addr, local->hw.wiphy->perm_addr, ETH_ALEN); SET_NETDEV_DEV(local->mdev, wiphy_dev(local->hw.wiphy)); result = register_netdevice(local->mdev); if (result < 0) goto fail_dev; ieee80211_debugfs_add_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev)); result = ieee80211_init_rate_ctrl_alg(local, NULL); if (result < 0) { printk(KERN_DEBUG "%s: Failed to initialize rate control " "algorithm\n", local->mdev->name); goto fail_rate; } result = ieee80211_wep_init(local); if (result < 0) { printk(KERN_DEBUG "%s: Failed to initialize wep\n", local->mdev->name); goto fail_wep; } ieee80211_install_qdisc(local->mdev); /* add one default STA interface */ result = ieee80211_if_add(local->mdev, "wlan%d", NULL, IEEE80211_IF_TYPE_STA); if (result) printk(KERN_WARNING "%s: Failed to add default virtual iface\n", local->mdev->name); local->reg_state = IEEE80211_DEV_REGISTERED; rtnl_unlock(); ieee80211_led_init(local); return 0; fail_wep: rate_control_deinitialize(local); fail_rate: ieee80211_debugfs_remove_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev)); unregister_netdevice(local->mdev); fail_dev: rtnl_unlock(); sta_info_stop(local); fail_sta_info: debugfs_hw_del(local); destroy_workqueue(local->hw.workqueue); fail_workqueue: wiphy_unregister(local->hw.wiphy); return result; } EXPORT_SYMBOL(ieee80211_register_hw); int ieee80211_register_hwmode(struct ieee80211_hw *hw, struct ieee80211_hw_mode *mode) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; int i; INIT_LIST_HEAD(&mode->list); list_add_tail(&mode->list, &local->modes_list); local->hw_modes |= (1 << mode->mode); for (i = 0; i < mode->num_rates; i++) { rate = &(mode->rates[i]); rate->rate_inv = CHAN_UTIL_RATE_LCM / rate->rate; } ieee80211_prepare_rates(local, mode); if (!local->oper_hw_mode) { /* Default to this mode */ local->hw.conf.phymode = mode->mode; local->oper_hw_mode = local->scan_hw_mode = mode; local->oper_channel = local->scan_channel = &mode->channels[0]; local->hw.conf.mode = local->oper_hw_mode; local->hw.conf.chan = local->oper_channel; } if (!(hw->flags & IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED)) ieee80211_set_default_regdomain(mode); return 0; } EXPORT_SYMBOL(ieee80211_register_hwmode); void ieee80211_unregister_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata, *tmp; struct list_head tmp_list; int i; tasklet_kill(&local->tx_pending_tasklet); tasklet_kill(&local->tasklet); rtnl_lock(); BUG_ON(local->reg_state != IEEE80211_DEV_REGISTERED); local->reg_state = IEEE80211_DEV_UNREGISTERED; if (local->apdev) ieee80211_if_del_mgmt(local); write_lock_bh(&local->sub_if_lock); list_replace_init(&local->sub_if_list, &tmp_list); write_unlock_bh(&local->sub_if_lock); list_for_each_entry_safe(sdata, tmp, &tmp_list, list) __ieee80211_if_del(local, sdata); rtnl_unlock(); if (local->stat_time) del_timer_sync(&local->stat_timer); ieee80211_rx_bss_list_deinit(local->mdev); ieee80211_clear_tx_pending(local); sta_info_stop(local); rate_control_deinitialize(local); debugfs_hw_del(local); for (i = 0; i < NUM_IEEE80211_MODES; i++) { kfree(local->supp_rates[i]); kfree(local->basic_rates[i]); } if (skb_queue_len(&local->skb_queue) || skb_queue_len(&local->skb_queue_unreliable)) printk(KERN_WARNING "%s: skb_queue not empty\n", local->mdev->name); skb_queue_purge(&local->skb_queue); skb_queue_purge(&local->skb_queue_unreliable); destroy_workqueue(local->hw.workqueue); wiphy_unregister(local->hw.wiphy); ieee80211_wep_free(local); ieee80211_led_exit(local); } EXPORT_SYMBOL(ieee80211_unregister_hw); void ieee80211_free_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); ieee80211_if_free(local->mdev); wiphy_free(local->hw.wiphy); } EXPORT_SYMBOL(ieee80211_free_hw); void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) { struct ieee80211_local *local = hw_to_local(hw); if (test_and_clear_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue])) { if (test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue])) tasklet_schedule(&local->tx_pending_tasklet); else if (!ieee80211_qdisc_installed(local->mdev)) { if (queue == 0) netif_wake_queue(local->mdev); } else __netif_schedule(local->mdev); } } EXPORT_SYMBOL(ieee80211_wake_queue); void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) { struct ieee80211_local *local = hw_to_local(hw); if (!ieee80211_qdisc_installed(local->mdev) && queue == 0) netif_stop_queue(local->mdev); set_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]); } EXPORT_SYMBOL(ieee80211_stop_queue); void ieee80211_start_queues(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); int i; for (i = 0; i < local->hw.queues; i++) clear_bit(IEEE80211_LINK_STATE_XOFF, &local->state[i]); if (!ieee80211_qdisc_installed(local->mdev)) netif_start_queue(local->mdev); } EXPORT_SYMBOL(ieee80211_start_queues); void ieee80211_stop_queues(struct ieee80211_hw *hw) { int i; for (i = 0; i < hw->queues; i++) ieee80211_stop_queue(hw, i); } EXPORT_SYMBOL(ieee80211_stop_queues); void ieee80211_wake_queues(struct ieee80211_hw *hw) { int i; for (i = 0; i < hw->queues; i++) ieee80211_wake_queue(hw, i); } EXPORT_SYMBOL(ieee80211_wake_queues); struct net_device_stats *ieee80211_dev_stats(struct net_device *dev) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); return &sdata->stats; } static int __init ieee80211_init(void) { struct sk_buff *skb; int ret; BUILD_BUG_ON(sizeof(struct ieee80211_tx_packet_data) > sizeof(skb->cb)); ret = ieee80211_wme_register(); if (ret) { printk(KERN_DEBUG "ieee80211_init: failed to " "initialize WME (err=%d)\n", ret); return ret; } ieee80211_debugfs_netdev_init(); ieee80211_regdomain_init(); return 0; } static void __exit ieee80211_exit(void) { ieee80211_wme_unregister(); ieee80211_debugfs_netdev_exit(); } subsys_initcall(ieee80211_init); module_exit(ieee80211_exit); MODULE_DESCRIPTION("IEEE 802.11 subsystem"); MODULE_LICENSE("GPL");