/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211_common.h" #include "ieee80211_i.h" #include "ieee80211_rate.h" #include "wep.h" #include "wpa.h" #include "tkip.h" #include "wme.h" #include "aes_ccm.h" #include "ieee80211_led.h" #include "ieee80211_cfg.h" #include "debugfs.h" #include "debugfs_netdev.h" #include "debugfs_key.h" /* privid for wiphys to determine whether they belong to us or not */ void *mac80211_wiphy_privid = &mac80211_wiphy_privid; /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ static const unsigned char rfc1042_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ static const unsigned char bridge_tunnel_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; /* No encapsulation header if EtherType < 0x600 (=length) */ static const unsigned char eapol_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e }; /* * For seeing transmitted packets on monitor interfaces * we have a radiotap header too. */ struct ieee80211_tx_status_rtap_hdr { struct ieee80211_radiotap_header hdr; __le16 tx_flags; u8 data_retries; } __attribute__ ((packed)); static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata, struct ieee80211_hdr *hdr) { /* Set the sequence number for this frame. */ hdr->seq_ctrl = cpu_to_le16(sdata->sequence); /* Increase the sequence number. */ sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ; } struct ieee80211_key_conf * ieee80211_key_data2conf(struct ieee80211_local *local, const struct ieee80211_key *data) { struct ieee80211_key_conf *conf; conf = kmalloc(sizeof(*conf) + data->keylen, GFP_ATOMIC); if (!conf) return NULL; conf->hw_key_idx = data->hw_key_idx; conf->alg = data->alg; conf->keylen = data->keylen; conf->flags = 0; if (data->force_sw_encrypt) conf->flags |= IEEE80211_KEY_FORCE_SW_ENCRYPT; conf->keyidx = data->keyidx; if (data->default_tx_key) conf->flags |= IEEE80211_KEY_DEFAULT_TX_KEY; if (local->default_wep_only) conf->flags |= IEEE80211_KEY_DEFAULT_WEP_ONLY; memcpy(conf->key, data->key, data->keylen); return conf; } struct ieee80211_key *ieee80211_key_alloc(struct ieee80211_sub_if_data *sdata, int idx, size_t key_len, gfp_t flags) { struct ieee80211_key *key; key = kzalloc(sizeof(struct ieee80211_key) + key_len, flags); if (!key) return NULL; kref_init(&key->kref); return key; } static void ieee80211_key_release(struct kref *kref) { struct ieee80211_key *key; key = container_of(kref, struct ieee80211_key, kref); if (key->alg == ALG_CCMP) ieee80211_aes_key_free(key->u.ccmp.tfm); ieee80211_debugfs_key_remove(key); kfree(key); } void ieee80211_key_free(struct ieee80211_key *key) { if (key) kref_put(&key->kref, ieee80211_key_release); } static int rate_list_match(const int *rate_list, int rate) { int i; if (!rate_list) return 0; for (i = 0; rate_list[i] >= 0; i++) if (rate_list[i] == rate) return 1; return 0; } void ieee80211_prepare_rates(struct ieee80211_local *local, struct ieee80211_hw_mode *mode) { int i; for (i = 0; i < mode->num_rates; i++) { struct ieee80211_rate *rate = &mode->rates[i]; rate->flags &= ~(IEEE80211_RATE_SUPPORTED | IEEE80211_RATE_BASIC); if (local->supp_rates[mode->mode]) { if (!rate_list_match(local->supp_rates[mode->mode], rate->rate)) continue; } rate->flags |= IEEE80211_RATE_SUPPORTED; /* Use configured basic rate set if it is available. If not, * use defaults that are sane for most cases. */ if (local->basic_rates[mode->mode]) { if (rate_list_match(local->basic_rates[mode->mode], rate->rate)) rate->flags |= IEEE80211_RATE_BASIC; } else switch (mode->mode) { case MODE_IEEE80211A: if (rate->rate == 60 || rate->rate == 120 || rate->rate == 240) rate->flags |= IEEE80211_RATE_BASIC; break; case MODE_IEEE80211B: if (rate->rate == 10 || rate->rate == 20) rate->flags |= IEEE80211_RATE_BASIC; break; case MODE_ATHEROS_TURBO: if (rate->rate == 120 || rate->rate == 240 || rate->rate == 480) rate->flags |= IEEE80211_RATE_BASIC; break; case MODE_IEEE80211G: if (rate->rate == 10 || rate->rate == 20 || rate->rate == 55 || rate->rate == 110) rate->flags |= IEEE80211_RATE_BASIC; break; } /* Set ERP and MANDATORY flags based on phymode */ switch (mode->mode) { case MODE_IEEE80211A: if (rate->rate == 60 || rate->rate == 120 || rate->rate == 240) rate->flags |= IEEE80211_RATE_MANDATORY; break; case MODE_IEEE80211B: if (rate->rate == 10) rate->flags |= IEEE80211_RATE_MANDATORY; break; case MODE_ATHEROS_TURBO: break; case MODE_IEEE80211G: if (rate->rate == 10 || rate->rate == 20 || rate->rate == 55 || rate->rate == 110 || rate->rate == 60 || rate->rate == 120 || rate->rate == 240) rate->flags |= IEEE80211_RATE_MANDATORY; break; } if (ieee80211_is_erp_rate(mode->mode, rate->rate)) rate->flags |= IEEE80211_RATE_ERP; } } static void ieee80211_key_threshold_notify(struct net_device *dev, struct ieee80211_key *key, struct sta_info *sta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sk_buff *skb; struct ieee80211_msg_key_notification *msg; /* if no one will get it anyway, don't even allocate it. * unlikely because this is only relevant for APs * where the device must be open... */ if (unlikely(!local->apdev)) return; skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) + sizeof(struct ieee80211_msg_key_notification)); if (!skb) return; skb_reserve(skb, sizeof(struct ieee80211_frame_info)); msg = (struct ieee80211_msg_key_notification *) skb_put(skb, sizeof(struct ieee80211_msg_key_notification)); msg->tx_rx_count = key->tx_rx_count; memcpy(msg->ifname, dev->name, IFNAMSIZ); if (sta) memcpy(msg->addr, sta->addr, ETH_ALEN); else memset(msg->addr, 0xff, ETH_ALEN); key->tx_rx_count = 0; ieee80211_rx_mgmt(local, skb, NULL, ieee80211_msg_key_threshold_notification); } static u8 * ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len) { u16 fc; if (len < 24) return NULL; fc = le16_to_cpu(hdr->frame_control); switch (fc & IEEE80211_FCTL_FTYPE) { case IEEE80211_FTYPE_DATA: switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { case IEEE80211_FCTL_TODS: return hdr->addr1; case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): return NULL; case IEEE80211_FCTL_FROMDS: return hdr->addr2; case 0: return hdr->addr3; } break; case IEEE80211_FTYPE_MGMT: return hdr->addr3; case IEEE80211_FTYPE_CTL: if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL) return hdr->addr1; else return NULL; } return NULL; } int ieee80211_get_hdrlen(u16 fc) { int hdrlen = 24; switch (fc & IEEE80211_FCTL_FTYPE) { case IEEE80211_FTYPE_DATA: if ((fc & IEEE80211_FCTL_FROMDS) && (fc & IEEE80211_FCTL_TODS)) hdrlen = 30; /* Addr4 */ /* * The QoS Control field is two bytes and its presence is * indicated by the IEEE80211_STYPE_QOS_DATA bit. Add 2 to * hdrlen if that bit is set. * This works by masking out the bit and shifting it to * bit position 1 so the result has the value 0 or 2. */ hdrlen += (fc & IEEE80211_STYPE_QOS_DATA) >> (ilog2(IEEE80211_STYPE_QOS_DATA)-1); break; case IEEE80211_FTYPE_CTL: /* * ACK and CTS are 10 bytes, all others 16. To see how * to get this condition consider * subtype mask: 0b0000000011110000 (0x00F0) * ACK subtype: 0b0000000011010000 (0x00D0) * CTS subtype: 0b0000000011000000 (0x00C0) * bits that matter: ^^^ (0x00E0) * value of those: 0b0000000011000000 (0x00C0) */ if ((fc & 0xE0) == 0xC0) hdrlen = 10; else hdrlen = 16; break; } return hdrlen; } EXPORT_SYMBOL(ieee80211_get_hdrlen); int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) { const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *) skb->data; int hdrlen; if (unlikely(skb->len < 10)) return 0; hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)); if (unlikely(hdrlen > skb->len)) return 0; return hdrlen; } EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); static int ieee80211_get_radiotap_len(struct sk_buff *skb) { struct ieee80211_radiotap_header *hdr = (struct ieee80211_radiotap_header *) skb->data; return le16_to_cpu(hdr->it_len); } #ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP static void ieee80211_dump_frame(const char *ifname, const char *title, const struct sk_buff *skb) { const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u16 fc; int hdrlen; printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len); if (skb->len < 4) { printk("\n"); return; } fc = le16_to_cpu(hdr->frame_control); hdrlen = ieee80211_get_hdrlen(fc); if (hdrlen > skb->len) hdrlen = skb->len; if (hdrlen >= 4) printk(" FC=0x%04x DUR=0x%04x", fc, le16_to_cpu(hdr->duration_id)); if (hdrlen >= 10) printk(" A1=" MAC_FMT, MAC_ARG(hdr->addr1)); if (hdrlen >= 16) printk(" A2=" MAC_FMT, MAC_ARG(hdr->addr2)); if (hdrlen >= 24) printk(" A3=" MAC_FMT, MAC_ARG(hdr->addr3)); if (hdrlen >= 30) printk(" A4=" MAC_FMT, MAC_ARG(hdr->addr4)); printk("\n"); } #else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ static inline void ieee80211_dump_frame(const char *ifname, const char *title, struct sk_buff *skb) { } #endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ static int ieee80211_is_eapol(const struct sk_buff *skb) { const struct ieee80211_hdr *hdr; u16 fc; int hdrlen; if (unlikely(skb->len < 10)) return 0; hdr = (const struct ieee80211_hdr *) skb->data; fc = le16_to_cpu(hdr->frame_control); if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) return 0; hdrlen = ieee80211_get_hdrlen(fc); if (unlikely(skb->len >= hdrlen + sizeof(eapol_header) && memcmp(skb->data + hdrlen, eapol_header, sizeof(eapol_header)) == 0)) return 1; return 0; } static ieee80211_txrx_result ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx) { struct rate_control_extra extra; memset(&extra, 0, sizeof(extra)); extra.mode = tx->u.tx.mode; extra.mgmt_data = tx->sdata && tx->sdata->type == IEEE80211_IF_TYPE_MGMT; extra.ethertype = tx->ethertype; tx->u.tx.rate = rate_control_get_rate(tx->local, tx->dev, tx->skb, &extra); if (unlikely(extra.probe != NULL)) { tx->u.tx.control->flags |= IEEE80211_TXCTL_RATE_CTRL_PROBE; tx->u.tx.probe_last_frag = 1; tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val; tx->u.tx.rate = extra.probe; } else { tx->u.tx.control->alt_retry_rate = -1; } if (!tx->u.tx.rate) return TXRX_DROP; if (tx->u.tx.mode->mode == MODE_IEEE80211G && tx->local->cts_protect_erp_frames && tx->fragmented && extra.nonerp) { tx->u.tx.last_frag_rate = tx->u.tx.rate; tx->u.tx.probe_last_frag = extra.probe ? 1 : 0; tx->u.tx.rate = extra.nonerp; tx->u.tx.control->rate = extra.nonerp; tx->u.tx.control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE; } else { tx->u.tx.last_frag_rate = tx->u.tx.rate; tx->u.tx.control->rate = tx->u.tx.rate; } tx->u.tx.control->tx_rate = tx->u.tx.rate->val; if ((tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) && tx->local->short_preamble && (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) { tx->u.tx.short_preamble = 1; tx->u.tx.control->tx_rate = tx->u.tx.rate->val2; } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx) { if (tx->sta) tx->u.tx.control->key_idx = tx->sta->key_idx_compression; else tx->u.tx.control->key_idx = HW_KEY_IDX_INVALID; if (unlikely(tx->u.tx.control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) tx->key = NULL; else if (tx->sta && tx->sta->key) tx->key = tx->sta->key; else if (tx->sdata->default_key) tx->key = tx->sdata->default_key; else if (tx->sdata->drop_unencrypted && !(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) { I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); return TXRX_DROP; } else tx->key = NULL; if (tx->key) { tx->key->tx_rx_count++; if (unlikely(tx->local->key_tx_rx_threshold && tx->key->tx_rx_count > tx->local->key_tx_rx_threshold)) { ieee80211_key_threshold_notify(tx->dev, tx->key, tx->sta); } } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; size_t hdrlen, per_fragm, num_fragm, payload_len, left; struct sk_buff **frags, *first, *frag; int i; u16 seq; u8 *pos; int frag_threshold = tx->local->fragmentation_threshold; if (!tx->fragmented) return TXRX_CONTINUE; first = tx->skb; hdrlen = ieee80211_get_hdrlen(tx->fc); payload_len = first->len - hdrlen; per_fragm = frag_threshold - hdrlen - FCS_LEN; num_fragm = (payload_len + per_fragm - 1) / per_fragm; frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC); if (!frags) goto fail; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ; pos = first->data + hdrlen + per_fragm; left = payload_len - per_fragm; for (i = 0; i < num_fragm - 1; i++) { struct ieee80211_hdr *fhdr; size_t copylen; if (left <= 0) goto fail; /* reserve enough extra head and tail room for possible * encryption */ frag = frags[i] = dev_alloc_skb(tx->local->tx_headroom + frag_threshold + IEEE80211_ENCRYPT_HEADROOM + IEEE80211_ENCRYPT_TAILROOM); if (!frag) goto fail; /* Make sure that all fragments use the same priority so * that they end up using the same TX queue */ frag->priority = first->priority; skb_reserve(frag, tx->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM); fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen); memcpy(fhdr, first->data, hdrlen); if (i == num_fragm - 2) fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS); fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG)); copylen = left > per_fragm ? per_fragm : left; memcpy(skb_put(frag, copylen), pos, copylen); pos += copylen; left -= copylen; } skb_trim(first, hdrlen + per_fragm); tx->u.tx.num_extra_frag = num_fragm - 1; tx->u.tx.extra_frag = frags; return TXRX_CONTINUE; fail: printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name); if (frags) { for (i = 0; i < num_fragm - 1; i++) if (frags[i]) dev_kfree_skb(frags[i]); kfree(frags); } I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment); return TXRX_DROP; } static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb) { if (tx->key->force_sw_encrypt) { if (ieee80211_wep_encrypt(tx->local, skb, tx->key)) return -1; } else { tx->u.tx.control->key_idx = tx->key->hw_key_idx; if (tx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) { if (ieee80211_wep_add_iv(tx->local, skb, tx->key) == NULL) return -1; } } return 0; } void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); if (tx->u.tx.extra_frag) { struct ieee80211_hdr *fhdr; int i; for (i = 0; i < tx->u.tx.num_extra_frag; i++) { fhdr = (struct ieee80211_hdr *) tx->u.tx.extra_frag[i]->data; fhdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); } } } static ieee80211_txrx_result ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; u16 fc; fc = le16_to_cpu(hdr->frame_control); if (!tx->key || tx->key->alg != ALG_WEP || ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA && ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || (fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH))) return TXRX_CONTINUE; tx->u.tx.control->iv_len = WEP_IV_LEN; tx->u.tx.control->icv_len = WEP_ICV_LEN; ieee80211_tx_set_iswep(tx); if (wep_encrypt_skb(tx, tx->skb) < 0) { I802_DEBUG_INC(tx->local->tx_handlers_drop_wep); return TXRX_DROP; } if (tx->u.tx.extra_frag) { int i; for (i = 0; i < tx->u.tx.num_extra_frag; i++) { if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) { I802_DEBUG_INC(tx->local-> tx_handlers_drop_wep); return TXRX_DROP; } } } return TXRX_CONTINUE; } static int ieee80211_frame_duration(struct ieee80211_local *local, size_t len, int rate, int erp, int short_preamble) { int dur; /* calculate duration (in microseconds, rounded up to next higher * integer if it includes a fractional microsecond) to send frame of * len bytes (does not include FCS) at the given rate. Duration will * also include SIFS. * * rate is in 100 kbps, so divident is multiplied by 10 in the * DIV_ROUND_UP() operations. */ if (local->hw.conf.phymode == MODE_IEEE80211A || erp || local->hw.conf.phymode == MODE_ATHEROS_TURBO) { /* * OFDM: * * N_DBPS = DATARATE x 4 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) * (16 = SIGNAL time, 6 = tail bits) * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext * * T_SYM = 4 usec * 802.11a - 17.5.2: aSIFSTime = 16 usec * 802.11g - 19.8.4: aSIFSTime = 10 usec + * signal ext = 6 usec */ /* FIX: Atheros Turbo may have different (shorter) duration? */ dur = 16; /* SIFS + signal ext */ dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */ dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */ dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 4 * rate); /* T_SYM x N_SYM */ } else { /* * 802.11b or 802.11g with 802.11b compatibility: * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. * * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 * aSIFSTime = 10 usec * aPreambleLength = 144 usec or 72 usec with short preamble * aPLCPHeaderLength = 48 usec or 24 usec with short preamble */ dur = 10; /* aSIFSTime = 10 usec */ dur += short_preamble ? (72 + 24) : (144 + 48); dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); } return dur; } /* Exported duration function for driver use */ __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, size_t frame_len, int rate) { struct ieee80211_local *local = hw_to_local(hw); u16 dur; int erp; erp = ieee80211_is_erp_rate(hw->conf.phymode, rate); dur = ieee80211_frame_duration(local, frame_len, rate, erp, local->short_preamble); return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_generic_frame_duration); static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr, int next_frag_len) { int rate, mrate, erp, dur, i; struct ieee80211_rate *txrate = tx->u.tx.rate; struct ieee80211_local *local = tx->local; struct ieee80211_hw_mode *mode = tx->u.tx.mode; erp = txrate->flags & IEEE80211_RATE_ERP; /* * data and mgmt (except PS Poll): * - during CFP: 32768 * - during contention period: * if addr1 is group address: 0 * if more fragments = 0 and addr1 is individual address: time to * transmit one ACK plus SIFS * if more fragments = 1 and addr1 is individual address: time to * transmit next fragment plus 2 x ACK plus 3 x SIFS * * IEEE 802.11, 9.6: * - control response frame (CTS or ACK) shall be transmitted using the * same rate as the immediately previous frame in the frame exchange * sequence, if this rate belongs to the PHY mandatory rates, or else * at the highest possible rate belonging to the PHY rates in the * BSSBasicRateSet */ if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) { /* TODO: These control frames are not currently sent by * 80211.o, but should they be implemented, this function * needs to be updated to support duration field calculation. * * RTS: time needed to transmit pending data/mgmt frame plus * one CTS frame plus one ACK frame plus 3 x SIFS * CTS: duration of immediately previous RTS minus time * required to transmit CTS and its SIFS * ACK: 0 if immediately previous directed data/mgmt had * more=0, with more=1 duration in ACK frame is duration * from previous frame minus time needed to transmit ACK * and its SIFS * PS Poll: BIT(15) | BIT(14) | aid */ return 0; } /* data/mgmt */ if (0 /* FIX: data/mgmt during CFP */) return 32768; if (group_addr) /* Group address as the destination - no ACK */ return 0; /* Individual destination address: * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) * CTS and ACK frames shall be transmitted using the highest rate in * basic rate set that is less than or equal to the rate of the * immediately previous frame and that is using the same modulation * (CCK or OFDM). If no basic rate set matches with these requirements, * the highest mandatory rate of the PHY that is less than or equal to * the rate of the previous frame is used. * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps */ rate = -1; mrate = 10; /* use 1 Mbps if everything fails */ for (i = 0; i < mode->num_rates; i++) { struct ieee80211_rate *r = &mode->rates[i]; if (r->rate > txrate->rate) break; if (IEEE80211_RATE_MODULATION(txrate->flags) != IEEE80211_RATE_MODULATION(r->flags)) continue; if (r->flags & IEEE80211_RATE_BASIC) rate = r->rate; else if (r->flags & IEEE80211_RATE_MANDATORY) mrate = r->rate; } if (rate == -1) { /* No matching basic rate found; use highest suitable mandatory * PHY rate */ rate = mrate; } /* Time needed to transmit ACK * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up * to closest integer */ dur = ieee80211_frame_duration(local, 10, rate, erp, local->short_preamble); if (next_frag_len) { /* Frame is fragmented: duration increases with time needed to * transmit next fragment plus ACK and 2 x SIFS. */ dur *= 2; /* ACK + SIFS */ /* next fragment */ dur += ieee80211_frame_duration(local, next_frag_len, txrate->rate, erp, local->short_preamble); } return dur; } static ieee80211_txrx_result ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; u16 dur; struct ieee80211_tx_control *control = tx->u.tx.control; struct ieee80211_hw_mode *mode = tx->u.tx.mode; if (!is_multicast_ether_addr(hdr->addr1)) { if (tx->skb->len + FCS_LEN > tx->local->rts_threshold && tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) { control->flags |= IEEE80211_TXCTL_USE_RTS_CTS; control->retry_limit = tx->local->long_retry_limit; } else { control->retry_limit = tx->local->short_retry_limit; } } else { control->retry_limit = 1; } if (tx->fragmented) { /* Do not use multiple retry rates when sending fragmented * frames. * TODO: The last fragment could still use multiple retry * rates. */ control->alt_retry_rate = -1; } /* Use CTS protection for unicast frames sent using extended rates if * there are associated non-ERP stations and RTS/CTS is not configured * for the frame. */ if (mode->mode == MODE_IEEE80211G && (tx->u.tx.rate->flags & IEEE80211_RATE_ERP) && tx->u.tx.unicast && tx->local->cts_protect_erp_frames && !(control->flags & IEEE80211_TXCTL_USE_RTS_CTS)) control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT; /* Setup duration field for the first fragment of the frame. Duration * for remaining fragments will be updated when they are being sent * to low-level driver in ieee80211_tx(). */ dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1), tx->fragmented ? tx->u.tx.extra_frag[0]->len : 0); hdr->duration_id = cpu_to_le16(dur); if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) || (control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) { struct ieee80211_rate *rate; /* Do not use multiple retry rates when using RTS/CTS */ control->alt_retry_rate = -1; /* Use min(data rate, max base rate) as CTS/RTS rate */ rate = tx->u.tx.rate; while (rate > mode->rates && !(rate->flags & IEEE80211_RATE_BASIC)) rate--; control->rts_cts_rate = rate->val; control->rts_rate = rate; } if (tx->sta) { tx->sta->tx_packets++; tx->sta->tx_fragments++; tx->sta->tx_bytes += tx->skb->len; if (tx->u.tx.extra_frag) { int i; tx->sta->tx_fragments += tx->u.tx.num_extra_frag; for (i = 0; i < tx->u.tx.num_extra_frag; i++) { tx->sta->tx_bytes += tx->u.tx.extra_frag[i]->len; } } } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG struct sk_buff *skb = tx->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ u32 sta_flags; if (unlikely(tx->local->sta_scanning != 0) && ((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || (tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ)) return TXRX_DROP; if (tx->u.tx.ps_buffered) return TXRX_CONTINUE; sta_flags = tx->sta ? tx->sta->flags : 0; if (likely(tx->u.tx.unicast)) { if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && tx->sdata->type != IEEE80211_IF_TYPE_IBSS && (tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: dropped data frame to not " "associated station " MAC_FMT "\n", tx->dev->name, MAC_ARG(hdr->addr1)); #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); return TXRX_DROP; } } else { if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && tx->local->num_sta == 0 && !tx->local->allow_broadcast_always && tx->sdata->type != IEEE80211_IF_TYPE_IBSS)) { /* * No associated STAs - no need to send multicast * frames. */ return TXRX_DROP; } return TXRX_CONTINUE; } if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x && !(sta_flags & WLAN_STA_AUTHORIZED))) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: dropped frame to " MAC_FMT " (unauthorized port)\n", tx->dev->name, MAC_ARG(hdr->addr1)); #endif I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port); return TXRX_DROP; } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_tx_h_sequence(struct ieee80211_txrx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24) ieee80211_include_sequence(tx->sdata, hdr); return TXRX_CONTINUE; } /* This function is called whenever the AP is about to exceed the maximum limit * of buffered frames for power saving STAs. This situation should not really * happen often during normal operation, so dropping the oldest buffered packet * from each queue should be OK to make some room for new frames. */ static void purge_old_ps_buffers(struct ieee80211_local *local) { int total = 0, purged = 0; struct sk_buff *skb; struct ieee80211_sub_if_data *sdata; struct sta_info *sta; read_lock(&local->sub_if_lock); list_for_each_entry(sdata, &local->sub_if_list, list) { struct ieee80211_if_ap *ap; if (sdata->dev == local->mdev || sdata->type != IEEE80211_IF_TYPE_AP) continue; ap = &sdata->u.ap; skb = skb_dequeue(&ap->ps_bc_buf); if (skb) { purged++; dev_kfree_skb(skb); } total += skb_queue_len(&ap->ps_bc_buf); } read_unlock(&local->sub_if_lock); spin_lock_bh(&local->sta_lock); list_for_each_entry(sta, &local->sta_list, list) { skb = skb_dequeue(&sta->ps_tx_buf); if (skb) { purged++; dev_kfree_skb(skb); } total += skb_queue_len(&sta->ps_tx_buf); } spin_unlock_bh(&local->sta_lock); local->total_ps_buffered = total; printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", local->mdev->name, purged); } static inline ieee80211_txrx_result ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx) { /* broadcast/multicast frame */ /* If any of the associated stations is in power save mode, * the frame is buffered to be sent after DTIM beacon frame */ if ((tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) && tx->sdata->type != IEEE80211_IF_TYPE_WDS && tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) && !(tx->fc & IEEE80211_FCTL_ORDER)) { if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: BC TX buffer full - " "dropping the oldest frame\n", tx->dev->name); } dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); } else tx->local->total_ps_buffered++; skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); return TXRX_QUEUED; } return TXRX_CONTINUE; } static inline ieee80211_txrx_result ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx) { struct sta_info *sta = tx->sta; if (unlikely(!sta || ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && (tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP))) return TXRX_CONTINUE; if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) { struct ieee80211_tx_packet_data *pkt_data; #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS buffer (entries " "before %d)\n", MAC_ARG(sta->addr), sta->aid, skb_queue_len(&sta->ps_tx_buf)); #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ sta->flags |= WLAN_STA_TIM; if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); if (net_ratelimit()) { printk(KERN_DEBUG "%s: STA " MAC_FMT " TX " "buffer full - dropping oldest frame\n", tx->dev->name, MAC_ARG(sta->addr)); } dev_kfree_skb(old); } else tx->local->total_ps_buffered++; /* Queue frame to be sent after STA sends an PS Poll frame */ if (skb_queue_empty(&sta->ps_tx_buf)) { if (tx->local->ops->set_tim) tx->local->ops->set_tim(local_to_hw(tx->local), sta->aid, 1); if (tx->sdata->bss) bss_tim_set(tx->local, tx->sdata->bss, sta->aid); } pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb; pkt_data->jiffies = jiffies; skb_queue_tail(&sta->ps_tx_buf, tx->skb); return TXRX_QUEUED; } #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG else if (unlikely(sta->flags & WLAN_STA_PS)) { printk(KERN_DEBUG "%s: STA " MAC_FMT " in PS mode, but pspoll " "set -> send frame\n", tx->dev->name, MAC_ARG(sta->addr)); } #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ sta->pspoll = 0; return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx) { if (unlikely(tx->u.tx.ps_buffered)) return TXRX_CONTINUE; if (tx->u.tx.unicast) return ieee80211_tx_h_unicast_ps_buf(tx); else return ieee80211_tx_h_multicast_ps_buf(tx); } /* * deal with packet injection down monitor interface * with Radiotap Header -- only called for monitor mode interface */ static ieee80211_txrx_result __ieee80211_parse_tx_radiotap( struct ieee80211_txrx_data *tx, struct sk_buff *skb, struct ieee80211_tx_control *control) { /* * this is the moment to interpret and discard the radiotap header that * must be at the start of the packet injected in Monitor mode * * Need to take some care with endian-ness since radiotap * args are little-endian */ struct ieee80211_radiotap_iterator iterator; struct ieee80211_radiotap_header *rthdr = (struct ieee80211_radiotap_header *) skb->data; struct ieee80211_hw_mode *mode = tx->local->hw.conf.mode; int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); /* * default control situation for all injected packets * FIXME: this does not suit all usage cases, expand to allow control */ control->retry_limit = 1; /* no retry */ control->key_idx = -1; /* no encryption key */ control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS | IEEE80211_TXCTL_USE_CTS_PROTECT); control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT | IEEE80211_TXCTL_NO_ACK; control->antenna_sel_tx = 0; /* default to default antenna */ /* * for every radiotap entry that is present * (ieee80211_radiotap_iterator_next returns -ENOENT when no more * entries present, or -EINVAL on error) */ while (!ret) { int i, target_rate; ret = ieee80211_radiotap_iterator_next(&iterator); if (ret) continue; /* see if this argument is something we can use */ switch (iterator.this_arg_index) { /* * You must take care when dereferencing iterator.this_arg * for multibyte types... the pointer is not aligned. Use * get_unaligned((type *)iterator.this_arg) to dereference * iterator.this_arg for type "type" safely on all arches. */ case IEEE80211_RADIOTAP_RATE: /* * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps */ target_rate = (*iterator.this_arg) * 5; for (i = 0; i < mode->num_rates; i++) { struct ieee80211_rate *r = &mode->rates[i]; if (r->rate > target_rate) continue; control->rate = r; if (r->flags & IEEE80211_RATE_PREAMBLE2) control->tx_rate = r->val2; else control->tx_rate = r->val; /* end on exact match */ if (r->rate == target_rate) i = mode->num_rates; } break; case IEEE80211_RADIOTAP_ANTENNA: /* * radiotap uses 0 for 1st ant, mac80211 is 1 for * 1st ant */ control->antenna_sel_tx = (*iterator.this_arg) + 1; break; case IEEE80211_RADIOTAP_DBM_TX_POWER: control->power_level = *iterator.this_arg; break; case IEEE80211_RADIOTAP_FLAGS: if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { /* * this indicates that the skb we have been * handed has the 32-bit FCS CRC at the end... * we should react to that by snipping it off * because it will be recomputed and added * on transmission */ if (skb->len < (iterator.max_length + FCS_LEN)) return TXRX_DROP; skb_trim(skb, skb->len - FCS_LEN); } break; default: break; } } if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ return TXRX_DROP; /* * remove the radiotap header * iterator->max_length was sanity-checked against * skb->len by iterator init */ skb_pull(skb, iterator.max_length); return TXRX_CONTINUE; } static ieee80211_txrx_result inline __ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, struct sk_buff *skb, struct net_device *dev, struct ieee80211_tx_control *control) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_sub_if_data *sdata; ieee80211_txrx_result res = TXRX_CONTINUE; int hdrlen; memset(tx, 0, sizeof(*tx)); tx->skb = skb; tx->dev = dev; /* use original interface */ tx->local = local; tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev); tx->sta = sta_info_get(local, hdr->addr1); tx->fc = le16_to_cpu(hdr->frame_control); /* * set defaults for things that can be set by * injected radiotap headers */ control->power_level = local->hw.conf.power_level; control->antenna_sel_tx = local->hw.conf.antenna_sel_tx; if (local->sta_antenna_sel != STA_ANTENNA_SEL_AUTO && tx->sta) control->antenna_sel_tx = tx->sta->antenna_sel_tx; /* process and remove the injection radiotap header */ sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (unlikely(sdata->type == IEEE80211_IF_TYPE_MNTR)) { if (__ieee80211_parse_tx_radiotap(tx, skb, control) == TXRX_DROP) { return TXRX_DROP; } /* * we removed the radiotap header after this point, * we filled control with what we could use * set to the actual ieee header now */ hdr = (struct ieee80211_hdr *) skb->data; res = TXRX_QUEUED; /* indication it was monitor packet */ } tx->u.tx.control = control; tx->u.tx.unicast = !is_multicast_ether_addr(hdr->addr1); if (is_multicast_ether_addr(hdr->addr1)) control->flags |= IEEE80211_TXCTL_NO_ACK; else control->flags &= ~IEEE80211_TXCTL_NO_ACK; tx->fragmented = local->fragmentation_threshold < IEEE80211_MAX_FRAG_THRESHOLD && tx->u.tx.unicast && skb->len + FCS_LEN > local->fragmentation_threshold && (!local->ops->set_frag_threshold); if (!tx->sta) control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; else if (tx->sta->clear_dst_mask) { control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; tx->sta->clear_dst_mask = 0; } hdrlen = ieee80211_get_hdrlen(tx->fc); if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; tx->ethertype = (pos[0] << 8) | pos[1]; } control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT; return res; } static int inline is_ieee80211_device(struct net_device *dev, struct net_device *master) { return (wdev_priv(dev->ieee80211_ptr) == wdev_priv(master->ieee80211_ptr)); } /* Device in tx->dev has a reference added; use dev_put(tx->dev) when * finished with it. */ static int inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, struct sk_buff *skb, struct net_device *mdev, struct ieee80211_tx_control *control) { struct ieee80211_tx_packet_data *pkt_data; struct net_device *dev; pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; dev = dev_get_by_index(pkt_data->ifindex); if (unlikely(dev && !is_ieee80211_device(dev, mdev))) { dev_put(dev); dev = NULL; } if (unlikely(!dev)) return -ENODEV; __ieee80211_tx_prepare(tx, skb, dev, control); return 0; } static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local, int queue) { return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]); } static inline int __ieee80211_queue_pending(const struct ieee80211_local *local, int queue) { return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]); } #define IEEE80211_TX_OK 0 #define IEEE80211_TX_AGAIN 1 #define IEEE80211_TX_FRAG_AGAIN 2 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_txrx_data *tx) { struct ieee80211_tx_control *control = tx->u.tx.control; int ret, i; if (!ieee80211_qdisc_installed(local->mdev) && __ieee80211_queue_stopped(local, 0)) { netif_stop_queue(local->mdev); return IEEE80211_TX_AGAIN; } if (skb) { ieee80211_dump_frame(local->mdev->name, "TX to low-level driver", skb); ret = local->ops->tx(local_to_hw(local), skb, control); if (ret) return IEEE80211_TX_AGAIN; local->mdev->trans_start = jiffies; ieee80211_led_tx(local, 1); } if (tx->u.tx.extra_frag) { control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS | IEEE80211_TXCTL_USE_CTS_PROTECT | IEEE80211_TXCTL_CLEAR_DST_MASK | IEEE80211_TXCTL_FIRST_FRAGMENT); for (i = 0; i < tx->u.tx.num_extra_frag; i++) { if (!tx->u.tx.extra_frag[i]) continue; if (__ieee80211_queue_stopped(local, control->queue)) return IEEE80211_TX_FRAG_AGAIN; if (i == tx->u.tx.num_extra_frag) { control->tx_rate = tx->u.tx.last_frag_hwrate; control->rate = tx->u.tx.last_frag_rate; if (tx->u.tx.probe_last_frag) control->flags |= IEEE80211_TXCTL_RATE_CTRL_PROBE; else control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE; } ieee80211_dump_frame(local->mdev->name, "TX to low-level driver", tx->u.tx.extra_frag[i]); ret = local->ops->tx(local_to_hw(local), tx->u.tx.extra_frag[i], control); if (ret) return IEEE80211_TX_FRAG_AGAIN; local->mdev->trans_start = jiffies; ieee80211_led_tx(local, 1); tx->u.tx.extra_frag[i] = NULL; } kfree(tx->u.tx.extra_frag); tx->u.tx.extra_frag = NULL; } return IEEE80211_TX_OK; } static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb, struct ieee80211_tx_control *control, int mgmt) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sta_info *sta; ieee80211_tx_handler *handler; struct ieee80211_txrx_data tx; ieee80211_txrx_result res = TXRX_DROP, res_prepare; int ret, i; WARN_ON(__ieee80211_queue_pending(local, control->queue)); if (unlikely(skb->len < 10)) { dev_kfree_skb(skb); return 0; } res_prepare = __ieee80211_tx_prepare(&tx, skb, dev, control); if (res_prepare == TXRX_DROP) { dev_kfree_skb(skb); return 0; } sta = tx.sta; tx.u.tx.mgmt_interface = mgmt; tx.u.tx.mode = local->hw.conf.mode; if (res_prepare == TXRX_QUEUED) { /* if it was an injected packet */ res = TXRX_CONTINUE; } else { for (handler = local->tx_handlers; *handler != NULL; handler++) { res = (*handler)(&tx); if (res != TXRX_CONTINUE) break; } } skb = tx.skb; /* handlers are allowed to change skb */ if (sta) sta_info_put(sta); if (unlikely(res == TXRX_DROP)) { I802_DEBUG_INC(local->tx_handlers_drop); goto drop; } if (unlikely(res == TXRX_QUEUED)) { I802_DEBUG_INC(local->tx_handlers_queued); return 0; } if (tx.u.tx.extra_frag) { for (i = 0; i < tx.u.tx.num_extra_frag; i++) { int next_len, dur; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx.u.tx.extra_frag[i]->data; if (i + 1 < tx.u.tx.num_extra_frag) { next_len = tx.u.tx.extra_frag[i + 1]->len; } else { next_len = 0; tx.u.tx.rate = tx.u.tx.last_frag_rate; tx.u.tx.last_frag_hwrate = tx.u.tx.rate->val; } dur = ieee80211_duration(&tx, 0, next_len); hdr->duration_id = cpu_to_le16(dur); } } retry: ret = __ieee80211_tx(local, skb, &tx); if (ret) { struct ieee80211_tx_stored_packet *store = &local->pending_packet[control->queue]; if (ret == IEEE80211_TX_FRAG_AGAIN) skb = NULL; set_bit(IEEE80211_LINK_STATE_PENDING, &local->state[control->queue]); smp_mb(); /* When the driver gets out of buffers during sending of * fragments and calls ieee80211_stop_queue, there is * a small window between IEEE80211_LINK_STATE_XOFF and * IEEE80211_LINK_STATE_PENDING flags are set. If a buffer * gets available in that window (i.e. driver calls * ieee80211_wake_queue), we would end up with ieee80211_tx * called with IEEE80211_LINK_STATE_PENDING. Prevent this by * continuing transmitting here when that situation is * possible to have happened. */ if (!__ieee80211_queue_stopped(local, control->queue)) { clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[control->queue]); goto retry; } memcpy(&store->control, control, sizeof(struct ieee80211_tx_control)); store->skb = skb; store->extra_frag = tx.u.tx.extra_frag; store->num_extra_frag = tx.u.tx.num_extra_frag; store->last_frag_hwrate = tx.u.tx.last_frag_hwrate; store->last_frag_rate = tx.u.tx.last_frag_rate; store->last_frag_rate_ctrl_probe = tx.u.tx.probe_last_frag; } return 0; drop: if (skb) dev_kfree_skb(skb); for (i = 0; i < tx.u.tx.num_extra_frag; i++) if (tx.u.tx.extra_frag[i]) dev_kfree_skb(tx.u.tx.extra_frag[i]); kfree(tx.u.tx.extra_frag); return 0; } static void ieee80211_tx_pending(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *)data; struct net_device *dev = local->mdev; struct ieee80211_tx_stored_packet *store; struct ieee80211_txrx_data tx; int i, ret, reschedule = 0; netif_tx_lock_bh(dev); for (i = 0; i < local->hw.queues; i++) { if (__ieee80211_queue_stopped(local, i)) continue; if (!__ieee80211_queue_pending(local, i)) { reschedule = 1; continue; } store = &local->pending_packet[i]; tx.u.tx.control = &store->control; tx.u.tx.extra_frag = store->extra_frag; tx.u.tx.num_extra_frag = store->num_extra_frag; tx.u.tx.last_frag_hwrate = store->last_frag_hwrate; tx.u.tx.last_frag_rate = store->last_frag_rate; tx.u.tx.probe_last_frag = store->last_frag_rate_ctrl_probe; ret = __ieee80211_tx(local, store->skb, &tx); if (ret) { if (ret == IEEE80211_TX_FRAG_AGAIN) store->skb = NULL; } else { clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]); reschedule = 1; } } netif_tx_unlock_bh(dev); if (reschedule) { if (!ieee80211_qdisc_installed(dev)) { if (!__ieee80211_queue_stopped(local, 0)) netif_wake_queue(dev); } else netif_schedule(dev); } } static void ieee80211_clear_tx_pending(struct ieee80211_local *local) { int i, j; struct ieee80211_tx_stored_packet *store; for (i = 0; i < local->hw.queues; i++) { if (!__ieee80211_queue_pending(local, i)) continue; store = &local->pending_packet[i]; kfree_skb(store->skb); for (j = 0; j < store->num_extra_frag; j++) kfree_skb(store->extra_frag[j]); kfree(store->extra_frag); clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]); } } static int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_tx_control control; struct ieee80211_tx_packet_data *pkt_data; struct net_device *odev = NULL; struct ieee80211_sub_if_data *osdata; int headroom; int ret; /* * copy control out of the skb so other people can use skb->cb */ pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; memset(&control, 0, sizeof(struct ieee80211_tx_control)); if (pkt_data->ifindex) odev = dev_get_by_index(pkt_data->ifindex); if (unlikely(odev && !is_ieee80211_device(odev, dev))) { dev_put(odev); odev = NULL; } if (unlikely(!odev)) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: Discarded packet with nonexistent " "originating device\n", dev->name); #endif dev_kfree_skb(skb); return 0; } osdata = IEEE80211_DEV_TO_SUB_IF(odev); headroom = osdata->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM; if (skb_headroom(skb) < headroom) { if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) { dev_kfree_skb(skb); return 0; } } control.ifindex = odev->ifindex; control.type = osdata->type; if (pkt_data->req_tx_status) control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS; if (pkt_data->do_not_encrypt) control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; if (pkt_data->requeue) control.flags |= IEEE80211_TXCTL_REQUEUE; control.queue = pkt_data->queue; ret = ieee80211_tx(odev, skb, &control, control.type == IEEE80211_IF_TYPE_MGMT); dev_put(odev); return ret; } /** * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type * subinterfaces (wlan#, WDS, and VLAN interfaces) * @skb: packet to be sent * @dev: incoming interface * * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will * not be freed, and caller is responsible for either retrying later or freeing * skb). * * This function takes in an Ethernet header and encapsulates it with suitable * IEEE 802.11 header based on which interface the packet is coming in. The * encapsulated packet will then be passed to master interface, wlan#.11, for * transmission (through low-level driver). */ static int ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_tx_packet_data *pkt_data; struct ieee80211_sub_if_data *sdata; int ret = 1, head_need; u16 ethertype, hdrlen, fc; struct ieee80211_hdr hdr; const u8 *encaps_data; int encaps_len, skip_header_bytes; int nh_pos, h_pos, no_encrypt = 0; struct sta_info *sta; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (unlikely(skb->len < ETH_HLEN)) { printk(KERN_DEBUG "%s: short skb (len=%d)\n", dev->name, skb->len); ret = 0; goto fail; } if (unlikely(sdata->type == IEEE80211_IF_TYPE_MNTR)) { struct ieee80211_radiotap_header *prthdr = (struct ieee80211_radiotap_header *)skb->data; u16 len; /* * there must be a radiotap header at the * start in this case */ if (unlikely(prthdr->it_version)) { /* only version 0 is supported */ ret = 0; goto fail; } skb->dev = local->mdev; pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; memset(pkt_data, 0, sizeof(*pkt_data)); pkt_data->ifindex = sdata->dev->ifindex; pkt_data->mgmt_iface = 0; pkt_data->do_not_encrypt = 1; /* above needed because we set skb device to master */ /* * fix up the pointers accounting for the radiotap * header still being in there. We are being given * a precooked IEEE80211 header so no need for * normal processing */ len = le16_to_cpu(get_unaligned(&prthdr->it_len)); skb_set_mac_header(skb, len); skb_set_network_header(skb, len + sizeof(hdr)); skb_set_transport_header(skb, len + sizeof(hdr)); /* * pass the radiotap header up to * the next stage intact */ dev_queue_xmit(skb); return 0; } nh_pos = skb_network_header(skb) - skb->data; h_pos = skb_transport_header(skb) - skb->data; /* convert Ethernet header to proper 802.11 header (based on * operation mode) */ ethertype = (skb->data[12] << 8) | skb->data[13]; /* TODO: handling for 802.1x authorized/unauthorized port */ fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA; if (likely(sdata->type == IEEE80211_IF_TYPE_AP || sdata->type == IEEE80211_IF_TYPE_VLAN)) { fc |= IEEE80211_FCTL_FROMDS; /* DA BSSID SA */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 24; } else if (sdata->type == IEEE80211_IF_TYPE_WDS) { fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS; /* RA TA DA SA */ memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; } else if (sdata->type == IEEE80211_IF_TYPE_STA) { fc |= IEEE80211_FCTL_TODS; /* BSSID SA DA */ memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); hdrlen = 24; } else if (sdata->type == IEEE80211_IF_TYPE_IBSS) { /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN); hdrlen = 24; } else { ret = 0; goto fail; } /* receiver is QoS enabled, use a QoS type frame */ sta = sta_info_get(local, hdr.addr1); if (sta) { if (sta->flags & WLAN_STA_WME) { fc |= IEEE80211_STYPE_QOS_DATA; hdrlen += 2; } sta_info_put(sta); } hdr.frame_control = cpu_to_le16(fc); hdr.duration_id = 0; hdr.seq_ctrl = 0; skip_header_bytes = ETH_HLEN; if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { encaps_data = bridge_tunnel_header; encaps_len = sizeof(bridge_tunnel_header); skip_header_bytes -= 2; } else if (ethertype >= 0x600) { encaps_data = rfc1042_header; encaps_len = sizeof(rfc1042_header); skip_header_bytes -= 2; } else { encaps_data = NULL; encaps_len = 0; } skb_pull(skb, skip_header_bytes); nh_pos -= skip_header_bytes; h_pos -= skip_header_bytes; /* TODO: implement support for fragments so that there is no need to * reallocate and copy payload; it might be enough to support one * extra fragment that would be copied in the beginning of the frame * data.. anyway, it would be nice to include this into skb structure * somehow * * There are few options for this: * use skb->cb as an extra space for 802.11 header * allocate new buffer if not enough headroom * make sure that there is enough headroom in every skb by increasing * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and * alloc_skb() (net/core/skbuff.c) */ head_need = hdrlen + encaps_len + local->tx_headroom; head_need -= skb_headroom(skb); /* We are going to modify skb data, so make a copy of it if happens to * be cloned. This could happen, e.g., with Linux bridge code passing * us broadcast frames. */ if (head_need > 0 || skb_cloned(skb)) { #if 0 printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes " "of headroom\n", dev->name, head_need); #endif if (skb_cloned(skb)) I802_DEBUG_INC(local->tx_expand_skb_head_cloned); else I802_DEBUG_INC(local->tx_expand_skb_head); /* Since we have to reallocate the buffer, make sure that there * is enough room for possible WEP IV/ICV and TKIP (8 bytes * before payload and 12 after). */ if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8), 12, GFP_ATOMIC)) { printk(KERN_DEBUG "%s: failed to reallocate TX buffer" "\n", dev->name); goto fail; } } if (encaps_data) { memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); nh_pos += encaps_len; h_pos += encaps_len; } memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); nh_pos += hdrlen; h_pos += hdrlen; pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); pkt_data->ifindex = sdata->dev->ifindex; pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT); pkt_data->do_not_encrypt = no_encrypt; skb->dev = local->mdev; sdata->stats.tx_packets++; sdata->stats.tx_bytes += skb->len; /* Update skb pointers to various headers since this modified frame * is going to go through Linux networking code that may potentially * need things like pointer to IP header. */ skb_set_mac_header(skb, 0); skb_set_network_header(skb, nh_pos); skb_set_transport_header(skb, h_pos); dev->trans_start = jiffies; dev_queue_xmit(skb); return 0; fail: if (!ret) dev_kfree_skb(skb); return ret; } /* * This is the transmit routine for the 802.11 type interfaces * called by upper layers of the linux networking * stack when it has a frame to transmit */ static int ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata; struct ieee80211_tx_packet_data *pkt_data; struct ieee80211_hdr *hdr; u16 fc; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (skb->len < 10) { dev_kfree_skb(skb); return 0; } if (skb_headroom(skb) < sdata->local->tx_headroom) { if (pskb_expand_head(skb, sdata->local->tx_headroom, 0, GFP_ATOMIC)) { dev_kfree_skb(skb); return 0; } } hdr = (struct ieee80211_hdr *) skb->data; fc = le16_to_cpu(hdr->frame_control); pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); pkt_data->ifindex = sdata->dev->ifindex; pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT); skb->priority = 20; /* use hardcoded priority for mgmt TX queue */ skb->dev = sdata->local->mdev; /* * We're using the protocol field of the the frame control header * to request TX callback for hostapd. BIT(1) is checked. */ if ((fc & BIT(1)) == BIT(1)) { pkt_data->req_tx_status = 1; fc &= ~BIT(1); hdr->frame_control = cpu_to_le16(fc); } pkt_data->do_not_encrypt = !(fc & IEEE80211_FCTL_PROTECTED); sdata->stats.tx_packets++; sdata->stats.tx_bytes += skb->len; dev_queue_xmit(skb); return 0; } static void ieee80211_beacon_add_tim(struct ieee80211_local *local, struct ieee80211_if_ap *bss, struct sk_buff *skb) { u8 *pos, *tim; int aid0 = 0; int i, have_bits = 0, n1, n2; /* Generate bitmap for TIM only if there are any STAs in power save * mode. */ spin_lock_bh(&local->sta_lock); if (atomic_read(&bss->num_sta_ps) > 0) /* in the hope that this is faster than * checking byte-for-byte */ have_bits = !bitmap_empty((unsigned long*)bss->tim, IEEE80211_MAX_AID+1); if (bss->dtim_count == 0) bss->dtim_count = bss->dtim_period - 1; else bss->dtim_count--; tim = pos = (u8 *) skb_put(skb, 6); *pos++ = WLAN_EID_TIM; *pos++ = 4; *pos++ = bss->dtim_count; *pos++ = bss->dtim_period; if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) aid0 = 1; if (have_bits) { /* Find largest even number N1 so that bits numbered 1 through * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits * (N2 + 1) x 8 through 2007 are 0. */ n1 = 0; for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { if (bss->tim[i]) { n1 = i & 0xfe; break; } } n2 = n1; for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { if (bss->tim[i]) { n2 = i; break; } } /* Bitmap control */ *pos++ = n1 | aid0; /* Part Virt Bitmap */ memcpy(pos, bss->tim + n1, n2 - n1 + 1); tim[1] = n2 - n1 + 4; skb_put(skb, n2 - n1); } else { *pos++ = aid0; /* Bitmap control */ *pos++ = 0; /* Part Virt Bitmap */ } spin_unlock_bh(&local->sta_lock); } struct sk_buff * ieee80211_beacon_get(struct ieee80211_hw *hw, int if_id, struct ieee80211_tx_control *control) { struct ieee80211_local *local = hw_to_local(hw); struct sk_buff *skb; struct net_device *bdev; struct ieee80211_sub_if_data *sdata = NULL; struct ieee80211_if_ap *ap = NULL; struct ieee80211_rate *rate; struct rate_control_extra extra; u8 *b_head, *b_tail; int bh_len, bt_len; bdev = dev_get_by_index(if_id); if (bdev) { sdata = IEEE80211_DEV_TO_SUB_IF(bdev); ap = &sdata->u.ap; dev_put(bdev); } if (!ap || sdata->type != IEEE80211_IF_TYPE_AP || !ap->beacon_head) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG if (net_ratelimit()) printk(KERN_DEBUG "no beacon data avail for idx=%d " "(%s)\n", if_id, bdev ? bdev->name : "N/A"); #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ return NULL; } /* Assume we are generating the normal beacon locally */ b_head = ap->beacon_head; b_tail = ap->beacon_tail; bh_len = ap->beacon_head_len; bt_len = ap->beacon_tail_len; skb = dev_alloc_skb(local->tx_headroom + bh_len + bt_len + 256 /* maximum TIM len */); if (!skb) return NULL; skb_reserve(skb, local->tx_headroom); memcpy(skb_put(skb, bh_len), b_head, bh_len); ieee80211_include_sequence(sdata, (struct ieee80211_hdr *)skb->data); ieee80211_beacon_add_tim(local, ap, skb); if (b_tail) { memcpy(skb_put(skb, bt_len), b_tail, bt_len); } if (control) { memset(&extra, 0, sizeof(extra)); extra.mode = local->oper_hw_mode; rate = rate_control_get_rate(local, local->mdev, skb, &extra); if (!rate) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate " "found\n", local->mdev->name); } dev_kfree_skb(skb); return NULL; } control->tx_rate = (local->short_preamble && (rate->flags & IEEE80211_RATE_PREAMBLE2)) ? rate->val2 : rate->val; control->antenna_sel_tx = local->hw.conf.antenna_sel_tx; control->power_level = local->hw.conf.power_level; control->flags |= IEEE80211_TXCTL_NO_ACK; control->retry_limit = 1; control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; } ap->num_beacons++; return skb; } EXPORT_SYMBOL(ieee80211_beacon_get); __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, size_t frame_len, const struct ieee80211_tx_control *frame_txctl) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; int short_preamble = local->short_preamble; int erp; u16 dur; rate = frame_txctl->rts_rate; erp = !!(rate->flags & IEEE80211_RATE_ERP); /* CTS duration */ dur = ieee80211_frame_duration(local, 10, rate->rate, erp, short_preamble); /* Data frame duration */ dur += ieee80211_frame_duration(local, frame_len, rate->rate, erp, short_preamble); /* ACK duration */ dur += ieee80211_frame_duration(local, 10, rate->rate, erp, short_preamble); return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_rts_duration); __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, size_t frame_len, const struct ieee80211_tx_control *frame_txctl) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; int short_preamble = local->short_preamble; int erp; u16 dur; rate = frame_txctl->rts_rate; erp = !!(rate->flags & IEEE80211_RATE_ERP); /* Data frame duration */ dur = ieee80211_frame_duration(local, frame_len, rate->rate, erp, short_preamble); if (!(frame_txctl->flags & IEEE80211_TXCTL_NO_ACK)) { /* ACK duration */ dur += ieee80211_frame_duration(local, 10, rate->rate, erp, short_preamble); } return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_ctstoself_duration); void ieee80211_rts_get(struct ieee80211_hw *hw, const void *frame, size_t frame_len, const struct ieee80211_tx_control *frame_txctl, struct ieee80211_rts *rts) { const struct ieee80211_hdr *hdr = frame; u16 fctl; fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS; rts->frame_control = cpu_to_le16(fctl); rts->duration = ieee80211_rts_duration(hw, frame_len, frame_txctl); memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); } EXPORT_SYMBOL(ieee80211_rts_get); void ieee80211_ctstoself_get(struct ieee80211_hw *hw, const void *frame, size_t frame_len, const struct ieee80211_tx_control *frame_txctl, struct ieee80211_cts *cts) { const struct ieee80211_hdr *hdr = frame; u16 fctl; fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS; cts->frame_control = cpu_to_le16(fctl); cts->duration = ieee80211_ctstoself_duration(hw, frame_len, frame_txctl); memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); } EXPORT_SYMBOL(ieee80211_ctstoself_get); struct sk_buff * ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id, struct ieee80211_tx_control *control) { struct ieee80211_local *local = hw_to_local(hw); struct sk_buff *skb; struct sta_info *sta; ieee80211_tx_handler *handler; struct ieee80211_txrx_data tx; ieee80211_txrx_result res = TXRX_DROP; struct net_device *bdev; struct ieee80211_sub_if_data *sdata; struct ieee80211_if_ap *bss = NULL; bdev = dev_get_by_index(if_id); if (bdev) { sdata = IEEE80211_DEV_TO_SUB_IF(bdev); bss = &sdata->u.ap; dev_put(bdev); } if (!bss || sdata->type != IEEE80211_IF_TYPE_AP || !bss->beacon_head) return NULL; if (bss->dtim_count != 0) return NULL; /* send buffered bc/mc only after DTIM beacon */ memset(control, 0, sizeof(*control)); while (1) { skb = skb_dequeue(&bss->ps_bc_buf); if (!skb) return NULL; local->total_ps_buffered--; if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; /* more buffered multicast/broadcast frames ==> set * MoreData flag in IEEE 802.11 header to inform PS * STAs */ hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } if (ieee80211_tx_prepare(&tx, skb, local->mdev, control) == 0) break; dev_kfree_skb_any(skb); } sta = tx.sta; tx.u.tx.ps_buffered = 1; for (handler = local->tx_handlers; *handler != NULL; handler++) { res = (*handler)(&tx); if (res == TXRX_DROP || res == TXRX_QUEUED) break; } dev_put(tx.dev); skb = tx.skb; /* handlers are allowed to change skb */ if (res == TXRX_DROP) { I802_DEBUG_INC(local->tx_handlers_drop); dev_kfree_skb(skb); skb = NULL; } else if (res == TXRX_QUEUED) { I802_DEBUG_INC(local->tx_handlers_queued); skb = NULL; } if (sta) sta_info_put(sta); return skb; } EXPORT_SYMBOL(ieee80211_get_buffered_bc); static int __ieee80211_if_config(struct net_device *dev, struct sk_buff *beacon, struct ieee80211_tx_control *control) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_if_conf conf; static u8 scan_bssid[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (!local->ops->config_interface || !netif_running(dev)) return 0; memset(&conf, 0, sizeof(conf)); conf.type = sdata->type; if (sdata->type == IEEE80211_IF_TYPE_STA || sdata->type == IEEE80211_IF_TYPE_IBSS) { if (local->sta_scanning && local->scan_dev == dev) conf.bssid = scan_bssid; else conf.bssid = sdata->u.sta.bssid; conf.ssid = sdata->u.sta.ssid; conf.ssid_len = sdata->u.sta.ssid_len; conf.generic_elem = sdata->u.sta.extra_ie; conf.generic_elem_len = sdata->u.sta.extra_ie_len; } else if (sdata->type == IEEE80211_IF_TYPE_AP) { conf.ssid = sdata->u.ap.ssid; conf.ssid_len = sdata->u.ap.ssid_len; conf.generic_elem = sdata->u.ap.generic_elem; conf.generic_elem_len = sdata->u.ap.generic_elem_len; conf.beacon = beacon; conf.beacon_control = control; } return local->ops->config_interface(local_to_hw(local), dev->ifindex, &conf); } int ieee80211_if_config(struct net_device *dev) { return __ieee80211_if_config(dev, NULL, NULL); } int ieee80211_if_config_beacon(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_tx_control control; struct sk_buff *skb; if (!(local->hw.flags & IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE)) return 0; skb = ieee80211_beacon_get(local_to_hw(local), dev->ifindex, &control); if (!skb) return -ENOMEM; return __ieee80211_if_config(dev, skb, &control); } int ieee80211_hw_config(struct ieee80211_local *local) { struct ieee80211_hw_mode *mode; struct ieee80211_channel *chan; int ret = 0; if (local->sta_scanning) { chan = local->scan_channel; mode = local->scan_hw_mode; } else { chan = local->oper_channel; mode = local->oper_hw_mode; } local->hw.conf.channel = chan->chan; local->hw.conf.channel_val = chan->val; local->hw.conf.power_level = chan->power_level; local->hw.conf.freq = chan->freq; local->hw.conf.phymode = mode->mode; local->hw.conf.antenna_max = chan->antenna_max; local->hw.conf.chan = chan; local->hw.conf.mode = mode; #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "HW CONFIG: channel=%d freq=%d " "phymode=%d\n", local->hw.conf.channel, local->hw.conf.freq, local->hw.conf.phymode); #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ if (local->ops->config) ret = local->ops->config(local_to_hw(local), &local->hw.conf); return ret; } static int ieee80211_change_mtu(struct net_device *dev, int new_mtu) { /* FIX: what would be proper limits for MTU? * This interface uses 802.3 frames. */ if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN - 24 - 6) { printk(KERN_WARNING "%s: invalid MTU %d\n", dev->name, new_mtu); return -EINVAL; } #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu); #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ dev->mtu = new_mtu; return 0; } static int ieee80211_change_mtu_apdev(struct net_device *dev, int new_mtu) { /* FIX: what would be proper limits for MTU? * This interface uses 802.11 frames. */ if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN) { printk(KERN_WARNING "%s: invalid MTU %d\n", dev->name, new_mtu); return -EINVAL; } #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu); #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ dev->mtu = new_mtu; return 0; } enum netif_tx_lock_class { TX_LOCK_NORMAL, TX_LOCK_MASTER, }; static inline void netif_tx_lock_nested(struct net_device *dev, int subclass) { spin_lock_nested(&dev->_xmit_lock, subclass); dev->xmit_lock_owner = smp_processor_id(); } static void ieee80211_set_multicast_list(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); unsigned short flags; netif_tx_lock_nested(local->mdev, TX_LOCK_MASTER); if (((dev->flags & IFF_ALLMULTI) != 0) ^ (sdata->allmulti != 0)) { if (sdata->allmulti) { sdata->allmulti = 0; local->iff_allmultis--; } else { sdata->allmulti = 1; local->iff_allmultis++; } } if (((dev->flags & IFF_PROMISC) != 0) ^ (sdata->promisc != 0)) { if (sdata->promisc) { sdata->promisc = 0; local->iff_promiscs--; } else { sdata->promisc = 1; local->iff_promiscs++; } } if (dev->mc_count != sdata->mc_count) { local->mc_count = local->mc_count - sdata->mc_count + dev->mc_count; sdata->mc_count = dev->mc_count; } if (local->ops->set_multicast_list) { flags = local->mdev->flags; if (local->iff_allmultis) flags |= IFF_ALLMULTI; if (local->iff_promiscs) flags |= IFF_PROMISC; read_lock(&local->sub_if_lock); local->ops->set_multicast_list(local_to_hw(local), flags, local->mc_count); read_unlock(&local->sub_if_lock); } netif_tx_unlock(local->mdev); } struct dev_mc_list *ieee80211_get_mc_list_item(struct ieee80211_hw *hw, struct dev_mc_list *prev, void **ptr) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata = *ptr; struct dev_mc_list *mc; if (!prev) { WARN_ON(sdata); sdata = NULL; } if (!prev || !prev->next) { if (sdata) sdata = list_entry(sdata->list.next, struct ieee80211_sub_if_data, list); else sdata = list_entry(local->sub_if_list.next, struct ieee80211_sub_if_data, list); if (&sdata->list != &local->sub_if_list) mc = sdata->dev->mc_list; else mc = NULL; } else mc = prev->next; *ptr = sdata; return mc; } EXPORT_SYMBOL(ieee80211_get_mc_list_item); static struct net_device_stats *ieee80211_get_stats(struct net_device *dev) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); return &(sdata->stats); } static void ieee80211_if_shutdown(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); ASSERT_RTNL(); switch (sdata->type) { case IEEE80211_IF_TYPE_STA: case IEEE80211_IF_TYPE_IBSS: sdata->u.sta.state = IEEE80211_DISABLED; del_timer_sync(&sdata->u.sta.timer); skb_queue_purge(&sdata->u.sta.skb_queue); if (!local->ops->hw_scan && local->scan_dev == sdata->dev) { local->sta_scanning = 0; cancel_delayed_work(&local->scan_work); } flush_workqueue(local->hw.workqueue); break; } } static inline int identical_mac_addr_allowed(int type1, int type2) { return (type1 == IEEE80211_IF_TYPE_MNTR || type2 == IEEE80211_IF_TYPE_MNTR || (type1 == IEEE80211_IF_TYPE_AP && type2 == IEEE80211_IF_TYPE_WDS) || (type1 == IEEE80211_IF_TYPE_WDS && (type2 == IEEE80211_IF_TYPE_WDS || type2 == IEEE80211_IF_TYPE_AP)) || (type1 == IEEE80211_IF_TYPE_AP && type2 == IEEE80211_IF_TYPE_VLAN) || (type1 == IEEE80211_IF_TYPE_VLAN && (type2 == IEEE80211_IF_TYPE_AP || type2 == IEEE80211_IF_TYPE_VLAN))); } static int ieee80211_master_open(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata; int res = -EOPNOTSUPP; read_lock(&local->sub_if_lock); list_for_each_entry(sdata, &local->sub_if_list, list) { if (sdata->dev != dev && netif_running(sdata->dev)) { res = 0; break; } } read_unlock(&local->sub_if_lock); return res; } static int ieee80211_master_stop(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata; read_lock(&local->sub_if_lock); list_for_each_entry(sdata, &local->sub_if_list, list) if (sdata->dev != dev && netif_running(sdata->dev)) dev_close(sdata->dev); read_unlock(&local->sub_if_lock); return 0; } static int ieee80211_mgmt_open(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); if (!netif_running(local->mdev)) return -EOPNOTSUPP; return 0; } static int ieee80211_mgmt_stop(struct net_device *dev) { return 0; } /* Check if running monitor interfaces should go to a "soft monitor" mode * and switch them if necessary. */ static inline void ieee80211_start_soft_monitor(struct ieee80211_local *local) { struct ieee80211_if_init_conf conf; if (local->open_count && local->open_count == local->monitors && !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER) && local->ops->remove_interface) { conf.if_id = -1; conf.type = IEEE80211_IF_TYPE_MNTR; conf.mac_addr = NULL; local->ops->remove_interface(local_to_hw(local), &conf); } } /* Check if running monitor interfaces should go to a "hard monitor" mode * and switch them if necessary. */ static void ieee80211_start_hard_monitor(struct ieee80211_local *local) { struct ieee80211_if_init_conf conf; if (local->open_count && local->open_count == local->monitors && !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER) && local->ops->add_interface) { conf.if_id = -1; conf.type = IEEE80211_IF_TYPE_MNTR; conf.mac_addr = NULL; local->ops->add_interface(local_to_hw(local), &conf); } } static int ieee80211_open(struct net_device *dev) { struct ieee80211_sub_if_data *sdata, *nsdata; struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_if_init_conf conf; int res; sdata = IEEE80211_DEV_TO_SUB_IF(dev); read_lock(&local->sub_if_lock); list_for_each_entry(nsdata, &local->sub_if_list, list) { struct net_device *ndev = nsdata->dev; if (ndev != dev && ndev != local->mdev && netif_running(ndev) && compare_ether_addr(dev->dev_addr, ndev->dev_addr) == 0 && !identical_mac_addr_allowed(sdata->type, nsdata->type)) { read_unlock(&local->sub_if_lock); return -ENOTUNIQ; } } read_unlock(&local->sub_if_lock); if (sdata->type == IEEE80211_IF_TYPE_WDS && is_zero_ether_addr(sdata->u.wds.remote_addr)) return -ENOLINK; if (sdata->type == IEEE80211_IF_TYPE_MNTR && local->open_count && !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) { /* run the interface in a "soft monitor" mode */ local->monitors++; local->open_count++; local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP; return 0; } ieee80211_start_soft_monitor(local); if (local->ops->add_interface) { conf.if_id = dev->ifindex; conf.type = sdata->type; conf.mac_addr = dev->dev_addr; res = local->ops->add_interface(local_to_hw(local), &conf); if (res) { if (sdata->type == IEEE80211_IF_TYPE_MNTR) ieee80211_start_hard_monitor(local); return res; } } else { if (sdata->type != IEEE80211_IF_TYPE_STA) return -EOPNOTSUPP; if (local->open_count > 0) return -ENOBUFS; } if (local->open_count == 0) { res = 0; tasklet_enable(&local->tx_pending_tasklet); tasklet_enable(&local->tasklet); if (local->ops->open) res = local->ops->open(local_to_hw(local)); if (res == 0) { res = dev_open(local->mdev); if (res) { if (local->ops->stop) local->ops->stop(local_to_hw(local)); } else { res = ieee80211_hw_config(local); if (res && local->ops->stop) local->ops->stop(local_to_hw(local)); else if (!res && local->apdev) dev_open(local->apdev); } } if (res) { if (local->ops->remove_interface) local->ops->remove_interface(local_to_hw(local), &conf); return res; } } local->open_count++; if (sdata->type == IEEE80211_IF_TYPE_MNTR) { local->monitors++; local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP; } else ieee80211_if_config(dev); if (sdata->type == IEEE80211_IF_TYPE_STA && !local->user_space_mlme) netif_carrier_off(dev); else netif_carrier_on(dev); netif_start_queue(dev); return 0; } static int ieee80211_stop(struct net_device *dev) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (sdata->type == IEEE80211_IF_TYPE_MNTR && local->open_count > 1 && !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) { /* remove "soft monitor" interface */ local->open_count--; local->monitors--; if (!local->monitors) local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP; return 0; } netif_stop_queue(dev); ieee80211_if_shutdown(dev); if (sdata->type == IEEE80211_IF_TYPE_MNTR) { local->monitors--; if (!local->monitors) local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP; } local->open_count--; if (local->open_count == 0) { if (netif_running(local->mdev)) dev_close(local->mdev); if (local->apdev) dev_close(local->apdev); if (local->ops->stop) local->ops->stop(local_to_hw(local)); tasklet_disable(&local->tx_pending_tasklet); tasklet_disable(&local->tasklet); } if (local->ops->remove_interface) { struct ieee80211_if_init_conf conf; conf.if_id = dev->ifindex; conf.type = sdata->type; conf.mac_addr = dev->dev_addr; local->ops->remove_interface(local_to_hw(local), &conf); } ieee80211_start_hard_monitor(local); return 0; } static int header_parse_80211(struct sk_buff *skb, unsigned char *haddr) { memcpy(haddr, skb_mac_header(skb) + 10, ETH_ALEN); /* addr2 */ return ETH_ALEN; } static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) { return compare_ether_addr(raddr, addr) == 0 || is_broadcast_ether_addr(raddr); } static ieee80211_txrx_result ieee80211_rx_h_data(struct ieee80211_txrx_data *rx) { struct net_device *dev = rx->dev; struct ieee80211_local *local = rx->local; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; u16 fc, hdrlen, ethertype; u8 *payload; u8 dst[ETH_ALEN]; u8 src[ETH_ALEN]; struct sk_buff *skb = rx->skb, *skb2; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); fc = rx->fc; if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)) return TXRX_CONTINUE; if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) return TXRX_DROP; hdrlen = ieee80211_get_hdrlen(fc); /* convert IEEE 802.11 header + possible LLC headers into Ethernet * header * IEEE 802.11 address fields: * ToDS FromDS Addr1 Addr2 Addr3 Addr4 * 0 0 DA SA BSSID n/a * 0 1 DA BSSID SA n/a * 1 0 BSSID SA DA n/a * 1 1 RA TA DA SA */ switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { case IEEE80211_FCTL_TODS: /* BSSID SA DA */ memcpy(dst, hdr->addr3, ETH_ALEN); memcpy(src, hdr->addr2, ETH_ALEN); if (unlikely(sdata->type != IEEE80211_IF_TYPE_AP && sdata->type != IEEE80211_IF_TYPE_VLAN)) { printk(KERN_DEBUG "%s: dropped ToDS frame (BSSID=" MAC_FMT " SA=" MAC_FMT " DA=" MAC_FMT ")\n", dev->name, MAC_ARG(hdr->addr1), MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3)); return TXRX_DROP; } break; case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): /* RA TA DA SA */ memcpy(dst, hdr->addr3, ETH_ALEN); memcpy(src, hdr->addr4, ETH_ALEN); if (unlikely(sdata->type != IEEE80211_IF_TYPE_WDS)) { printk(KERN_DEBUG "%s: dropped FromDS&ToDS frame (RA=" MAC_FMT " TA=" MAC_FMT " DA=" MAC_FMT " SA=" MAC_FMT ")\n", rx->dev->name, MAC_ARG(hdr->addr1), MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3), MAC_ARG(hdr->addr4)); return TXRX_DROP; } break; case IEEE80211_FCTL_FROMDS: /* DA BSSID SA */ memcpy(dst, hdr->addr1, ETH_ALEN); memcpy(src, hdr->addr3, ETH_ALEN); if (sdata->type != IEEE80211_IF_TYPE_STA) { return TXRX_DROP; } break; case 0: /* DA SA BSSID */ memcpy(dst, hdr->addr1, ETH_ALEN); memcpy(src, hdr->addr2, ETH_ALEN); if (sdata->type != IEEE80211_IF_TYPE_IBSS) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: dropped IBSS frame (DA=" MAC_FMT " SA=" MAC_FMT " BSSID=" MAC_FMT ")\n", dev->name, MAC_ARG(hdr->addr1), MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3)); } return TXRX_DROP; } break; } payload = skb->data + hdrlen; if (unlikely(skb->len - hdrlen < 8)) { if (net_ratelimit()) { printk(KERN_DEBUG "%s: RX too short data frame " "payload\n", dev->name); } return TXRX_DROP; } ethertype = (payload[6] << 8) | payload[7]; if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || compare_ether_addr(payload, bridge_tunnel_header) == 0)) { /* remove RFC1042 or Bridge-Tunnel encapsulation and * replace EtherType */ skb_pull(skb, hdrlen + 6); memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); } else { struct ethhdr *ehdr; __be16 len; skb_pull(skb, hdrlen); len = htons(skb->len); ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); memcpy(ehdr->h_dest, dst, ETH_ALEN); memcpy(ehdr->h_source, src, ETH_ALEN); ehdr->h_proto = len; } skb->dev = dev; skb2 = NULL; sdata->stats.rx_packets++; sdata->stats.rx_bytes += skb->len; if (local->bridge_packets && (sdata->type == IEEE80211_IF_TYPE_AP || sdata->type == IEEE80211_IF_TYPE_VLAN) && rx->u.rx.ra_match) { if (is_multicast_ether_addr(skb->data)) { /* send multicast frames both to higher layers in * local net stack and back to the wireless media */ skb2 = skb_copy(skb, GFP_ATOMIC); if (!skb2) printk(KERN_DEBUG "%s: failed to clone " "multicast frame\n", dev->name); } else { struct sta_info *dsta; dsta = sta_info_get(local, skb->data); if (dsta && !dsta->dev) { printk(KERN_DEBUG "Station with null dev " "structure!\n"); } else if (dsta && dsta->dev == dev) { /* Destination station is associated to this * AP, so send the frame directly to it and * do not pass the frame to local net stack. */ skb2 = skb; skb = NULL; } if (dsta) sta_info_put(dsta); } } if (skb) { /* deliver to local stack */ skb->protocol = eth_type_trans(skb, dev); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } if (skb2) { /* send to wireless media */ skb2->protocol = __constant_htons(ETH_P_802_3); skb_set_network_header(skb2, 0); skb_set_mac_header(skb2, 0); dev_queue_xmit(skb2); } return TXRX_QUEUED; } static struct ieee80211_rate * ieee80211_get_rate(struct ieee80211_local *local, int phymode, int hw_rate) { struct ieee80211_hw_mode *mode; int r; list_for_each_entry(mode, &local->modes_list, list) { if (mode->mode != phymode) continue; for (r = 0; r < mode->num_rates; r++) { struct ieee80211_rate *rate = &mode->rates[r]; if (rate->val == hw_rate || (rate->flags & IEEE80211_RATE_PREAMBLE2 && rate->val2 == hw_rate)) return rate; } } return NULL; } static void ieee80211_fill_frame_info(struct ieee80211_local *local, struct ieee80211_frame_info *fi, struct ieee80211_rx_status *status) { if (status) { struct timespec ts; struct ieee80211_rate *rate; jiffies_to_timespec(jiffies, &ts); fi->hosttime = cpu_to_be64((u64) ts.tv_sec * 1000000 + ts.tv_nsec / 1000); fi->mactime = cpu_to_be64(status->mactime); switch (status->phymode) { case MODE_IEEE80211A: fi->phytype = htonl(ieee80211_phytype_ofdm_dot11_a); break; case MODE_IEEE80211B: fi->phytype = htonl(ieee80211_phytype_dsss_dot11_b); break; case MODE_IEEE80211G: fi->phytype = htonl(ieee80211_phytype_pbcc_dot11_g); break; case MODE_ATHEROS_TURBO: fi->phytype = htonl(ieee80211_phytype_dsss_dot11_turbo); break; default: fi->phytype = htonl(0xAAAAAAAA); break; } fi->channel = htonl(status->channel); rate = ieee80211_get_rate(local, status->phymode, status->rate); if (rate) { fi->datarate = htonl(rate->rate); if (rate->flags & IEEE80211_RATE_PREAMBLE2) { if (status->rate == rate->val) fi->preamble = htonl(2); /* long */ else if (status->rate == rate->val2) fi->preamble = htonl(1); /* short */ } else fi->preamble = htonl(0); } else { fi->datarate = htonl(0); fi->preamble = htonl(0); } fi->antenna = htonl(status->antenna); fi->priority = htonl(0xffffffff); /* no clue */ fi->ssi_type = htonl(ieee80211_ssi_raw); fi->ssi_signal = htonl(status->ssi); fi->ssi_noise = 0x00000000; fi->encoding = 0; } else { /* clear everything because we really don't know. * the msg_type field isn't present on monitor frames * so we don't know whether it will be present or not, * but it's ok to not clear it since it'll be assigned * anyway */ memset(fi, 0, sizeof(*fi) - sizeof(fi->msg_type)); fi->ssi_type = htonl(ieee80211_ssi_none); } fi->version = htonl(IEEE80211_FI_VERSION); fi->length = cpu_to_be32(sizeof(*fi) - sizeof(fi->msg_type)); } /* this routine is actually not just for this, but also * for pushing fake 'management' frames into userspace. * it shall be replaced by a netlink-based system. */ void ieee80211_rx_mgmt(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_rx_status *status, u32 msg_type) { struct ieee80211_frame_info *fi; const size_t hlen = sizeof(struct ieee80211_frame_info); struct ieee80211_sub_if_data *sdata; skb->dev = local->apdev; sdata = IEEE80211_DEV_TO_SUB_IF(local->apdev); if (skb_headroom(skb) < hlen) { I802_DEBUG_INC(local->rx_expand_skb_head); if (pskb_expand_head(skb, hlen, 0, GFP_ATOMIC)) { dev_kfree_skb(skb); return; } } fi = (struct ieee80211_frame_info *) skb_push(skb, hlen); ieee80211_fill_frame_info(local, fi, status); fi->msg_type = htonl(msg_type); sdata->stats.rx_packets++; sdata->stats.rx_bytes += skb->len; skb_set_mac_header(skb, 0); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } static void ieee80211_rx_monitor(struct net_device *dev, struct sk_buff *skb, struct ieee80211_rx_status *status) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata; struct ieee80211_rate *rate; struct ieee80211_rtap_hdr { struct ieee80211_radiotap_header hdr; u8 flags; u8 rate; __le16 chan_freq; __le16 chan_flags; u8 antsignal; } __attribute__ ((packed)) *rthdr; skb->dev = dev; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (status->flag & RX_FLAG_RADIOTAP) goto out; if (skb_headroom(skb) < sizeof(*rthdr)) { I802_DEBUG_INC(local->rx_expand_skb_head); if (pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) { dev_kfree_skb(skb); return; } } rthdr = (struct ieee80211_rtap_hdr *) skb_push(skb, sizeof(*rthdr)); memset(rthdr, 0, sizeof(*rthdr)); rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); rthdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL)); rthdr->flags = local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS ? IEEE80211_RADIOTAP_F_FCS : 0; rate = ieee80211_get_rate(local, status->phymode, status->rate); if (rate) rthdr->rate = rate->rate / 5; rthdr->chan_freq = cpu_to_le16(status->freq); rthdr->chan_flags = status->phymode == MODE_IEEE80211A ? cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ) : cpu_to_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ); rthdr->antsignal = status->ssi; out: sdata->stats.rx_packets++; sdata->stats.rx_bytes += skb->len; skb_set_mac_header(skb, 0); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } int ieee80211_radar_status(struct ieee80211_hw *hw, int channel, int radar, int radar_type) { struct sk_buff *skb; struct ieee80211_radar_info *msg; struct ieee80211_local *local = hw_to_local(hw); if (!local->apdev) return 0; skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) + sizeof(struct ieee80211_radar_info)); if (!skb) return -ENOMEM; skb_reserve(skb, sizeof(struct ieee80211_frame_info)); msg = (struct ieee80211_radar_info *) skb_put(skb, sizeof(struct ieee80211_radar_info)); msg->channel = channel; msg->radar = radar; msg->radar_type = radar_type; ieee80211_rx_mgmt(local, skb, NULL, ieee80211_msg_radar); return 0; } EXPORT_SYMBOL(ieee80211_radar_status); int ieee80211_set_aid_for_sta(struct ieee80211_hw *hw, u8 *peer_address, u16 aid) { struct sk_buff *skb; struct ieee80211_msg_set_aid_for_sta *msg; struct ieee80211_local *local = hw_to_local(hw); /* unlikely because if this event only happens for APs, * which require an open ap device. */ if (unlikely(!local->apdev)) return 0; skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) + sizeof(struct ieee80211_msg_set_aid_for_sta)); if (!skb) return -ENOMEM; skb_reserve(skb, sizeof(struct ieee80211_frame_info)); msg = (struct ieee80211_msg_set_aid_for_sta *) skb_put(skb, sizeof(struct ieee80211_msg_set_aid_for_sta)); memcpy(msg->sta_address, peer_address, ETH_ALEN); msg->aid = aid; ieee80211_rx_mgmt(local, skb, NULL, ieee80211_msg_set_aid_for_sta); return 0; } EXPORT_SYMBOL(ieee80211_set_aid_for_sta); static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev); if (sdata->bss) atomic_inc(&sdata->bss->num_sta_ps); sta->flags |= WLAN_STA_PS; sta->pspoll = 0; #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d enters power " "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid); #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ } static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct sk_buff *skb; int sent = 0; struct ieee80211_sub_if_data *sdata; struct ieee80211_tx_packet_data *pkt_data; sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev); if (sdata->bss) atomic_dec(&sdata->bss->num_sta_ps); sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM); sta->pspoll = 0; if (!skb_queue_empty(&sta->ps_tx_buf)) { if (local->ops->set_tim) local->ops->set_tim(local_to_hw(local), sta->aid, 0); if (sdata->bss) bss_tim_clear(local, sdata->bss, sta->aid); } #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d exits power " "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid); #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ /* Send all buffered frames to the station */ while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) { pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; sent++; pkt_data->requeue = 1; dev_queue_xmit(skb); } while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) { pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; local->total_ps_buffered--; sent++; #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d send PS frame " "since STA not sleeping anymore\n", dev->name, MAC_ARG(sta->addr), sta->aid); #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ pkt_data->requeue = 1; dev_queue_xmit(skb); } return sent; } static ieee80211_txrx_result ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx) { struct sk_buff *skb; int no_pending_pkts; if (likely(!rx->sta || (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL || (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL || !rx->u.rx.ra_match)) return TXRX_CONTINUE; skb = skb_dequeue(&rx->sta->tx_filtered); if (!skb) { skb = skb_dequeue(&rx->sta->ps_tx_buf); if (skb) rx->local->total_ps_buffered--; } no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) && skb_queue_empty(&rx->sta->ps_tx_buf); if (skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; /* tell TX path to send one frame even though the STA may * still remain is PS mode after this frame exchange */ rx->sta->pspoll = 1; #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS Poll (entries " "after %d)\n", MAC_ARG(rx->sta->addr), rx->sta->aid, skb_queue_len(&rx->sta->ps_tx_buf)); #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ /* Use MoreData flag to indicate whether there are more * buffered frames for this STA */ if (no_pending_pkts) { hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA); rx->sta->flags &= ~WLAN_STA_TIM; } else hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); dev_queue_xmit(skb); if (no_pending_pkts) { if (rx->local->ops->set_tim) rx->local->ops->set_tim(local_to_hw(rx->local), rx->sta->aid, 0); if (rx->sdata->bss) bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid); } #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG } else if (!rx->u.rx.sent_ps_buffered) { printk(KERN_DEBUG "%s: STA " MAC_FMT " sent PS Poll even " "though there is no buffered frames for it\n", rx->dev->name, MAC_ARG(rx->sta->addr)); #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ } /* Free PS Poll skb here instead of returning TXRX_DROP that would * count as an dropped frame. */ dev_kfree_skb(rx->skb); return TXRX_QUEUED; } static inline struct ieee80211_fragment_entry * ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, unsigned int frag, unsigned int seq, int rx_queue, struct sk_buff **skb) { struct ieee80211_fragment_entry *entry; int idx; idx = sdata->fragment_next; entry = &sdata->fragments[sdata->fragment_next++]; if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) sdata->fragment_next = 0; if (!skb_queue_empty(&entry->skb_list)) { #ifdef CONFIG_MAC80211_DEBUG struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) entry->skb_list.next->data; printk(KERN_DEBUG "%s: RX reassembly removed oldest " "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " "addr1=" MAC_FMT " addr2=" MAC_FMT "\n", sdata->dev->name, idx, jiffies - entry->first_frag_time, entry->seq, entry->last_frag, MAC_ARG(hdr->addr1), MAC_ARG(hdr->addr2)); #endif /* CONFIG_MAC80211_DEBUG */ __skb_queue_purge(&entry->skb_list); } __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ *skb = NULL; entry->first_frag_time = jiffies; entry->seq = seq; entry->rx_queue = rx_queue; entry->last_frag = frag; entry->ccmp = 0; entry->extra_len = 0; return entry; } static inline struct ieee80211_fragment_entry * ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, u16 fc, unsigned int frag, unsigned int seq, int rx_queue, struct ieee80211_hdr *hdr) { struct ieee80211_fragment_entry *entry; int i, idx; idx = sdata->fragment_next; for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { struct ieee80211_hdr *f_hdr; u16 f_fc; idx--; if (idx < 0) idx = IEEE80211_FRAGMENT_MAX - 1; entry = &sdata->fragments[idx]; if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || entry->rx_queue != rx_queue || entry->last_frag + 1 != frag) continue; f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data; f_fc = le16_to_cpu(f_hdr->frame_control); if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) || compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) continue; if (entry->first_frag_time + 2 * HZ < jiffies) { __skb_queue_purge(&entry->skb_list); continue; } return entry; } return NULL; } static ieee80211_txrx_result ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx) { struct ieee80211_hdr *hdr; u16 sc; unsigned int frag, seq; struct ieee80211_fragment_entry *entry; struct sk_buff *skb; hdr = (struct ieee80211_hdr *) rx->skb->data; sc = le16_to_cpu(hdr->seq_ctrl); frag = sc & IEEE80211_SCTL_FRAG; if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) || (rx->skb)->len < 24 || is_multicast_ether_addr(hdr->addr1))) { /* not fragmented */ goto out; } I802_DEBUG_INC(rx->local->rx_handlers_fragments); seq = (sc & IEEE80211_SCTL_SEQ) >> 4; if (frag == 0) { /* This is the first fragment of a new frame. */ entry = ieee80211_reassemble_add(rx->sdata, frag, seq, rx->u.rx.queue, &(rx->skb)); if (rx->key && rx->key->alg == ALG_CCMP && (rx->fc & IEEE80211_FCTL_PROTECTED)) { /* Store CCMP PN so that we can verify that the next * fragment has a sequential PN value. */ entry->ccmp = 1; memcpy(entry->last_pn, rx->key->u.ccmp.rx_pn[rx->u.rx.queue], CCMP_PN_LEN); } return TXRX_QUEUED; } /* This is a fragment for a frame that should already be pending in * fragment cache. Add this fragment to the end of the pending entry. */ entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq, rx->u.rx.queue, hdr); if (!entry) { I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); return TXRX_DROP; } /* Verify that MPDUs within one MSDU have sequential PN values. * (IEEE 802.11i, 8.3.3.4.5) */ if (entry->ccmp) { int i; u8 pn[CCMP_PN_LEN], *rpn; if (!rx->key || rx->key->alg != ALG_CCMP) return TXRX_DROP; memcpy(pn, entry->last_pn, CCMP_PN_LEN); for (i = CCMP_PN_LEN - 1; i >= 0; i--) { pn[i]++; if (pn[i]) break; } rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue]; if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) { printk(KERN_DEBUG "%s: defrag: CCMP PN not sequential" " A2=" MAC_FMT " PN=%02x%02x%02x%02x%02x%02x " "(expected %02x%02x%02x%02x%02x%02x)\n", rx->dev->name, MAC_ARG(hdr->addr2), rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5], pn[0], pn[1], pn[2], pn[3], pn[4], pn[5]); return TXRX_DROP; } memcpy(entry->last_pn, pn, CCMP_PN_LEN); } skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc)); __skb_queue_tail(&entry->skb_list, rx->skb); entry->last_frag = frag; entry->extra_len += rx->skb->len; if (rx->fc & IEEE80211_FCTL_MOREFRAGS) { rx->skb = NULL; return TXRX_QUEUED; } rx->skb = __skb_dequeue(&entry->skb_list); if (skb_tailroom(rx->skb) < entry->extra_len) { I802_DEBUG_INC(rx->local->rx_expand_skb_head2); if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, GFP_ATOMIC))) { I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); __skb_queue_purge(&entry->skb_list); return TXRX_DROP; } } while ((skb = __skb_dequeue(&entry->skb_list))) { memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); dev_kfree_skb(skb); } /* Complete frame has been reassembled - process it now */ rx->fragmented = 1; out: if (rx->sta) rx->sta->rx_packets++; if (is_multicast_ether_addr(hdr->addr1)) rx->local->dot11MulticastReceivedFrameCount++; else ieee80211_led_rx(rx->local); return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx) { if (rx->sdata->type == IEEE80211_IF_TYPE_MNTR) { ieee80211_rx_monitor(rx->dev, rx->skb, rx->u.rx.status); return TXRX_QUEUED; } if (rx->u.rx.status->flag & RX_FLAG_RADIOTAP) skb_pull(rx->skb, ieee80211_get_radiotap_len(rx->skb)); return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_check(struct ieee80211_txrx_data *rx) { struct ieee80211_hdr *hdr; int always_sta_key; hdr = (struct ieee80211_hdr *) rx->skb->data; /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { if (unlikely(rx->fc & IEEE80211_FCTL_RETRY && rx->sta->last_seq_ctrl[rx->u.rx.queue] == hdr->seq_ctrl)) { if (rx->u.rx.ra_match) { rx->local->dot11FrameDuplicateCount++; rx->sta->num_duplicates++; } return TXRX_DROP; } else rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl; } if ((rx->local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) && rx->skb->len > FCS_LEN) skb_trim(rx->skb, rx->skb->len - FCS_LEN); if (unlikely(rx->skb->len < 16)) { I802_DEBUG_INC(rx->local->rx_handlers_drop_short); return TXRX_DROP; } if (!rx->u.rx.ra_match) rx->skb->pkt_type = PACKET_OTHERHOST; else if (compare_ether_addr(rx->dev->dev_addr, hdr->addr1) == 0) rx->skb->pkt_type = PACKET_HOST; else if (is_multicast_ether_addr(hdr->addr1)) { if (is_broadcast_ether_addr(hdr->addr1)) rx->skb->pkt_type = PACKET_BROADCAST; else rx->skb->pkt_type = PACKET_MULTICAST; } else rx->skb->pkt_type = PACKET_OTHERHOST; /* Drop disallowed frame classes based on STA auth/assoc state; * IEEE 802.11, Chap 5.5. * * 80211.o does filtering only based on association state, i.e., it * drops Class 3 frames from not associated stations. hostapd sends * deauth/disassoc frames when needed. In addition, hostapd is * responsible for filtering on both auth and assoc states. */ if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA || ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL && (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) && rx->sdata->type != IEEE80211_IF_TYPE_IBSS && (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) { if ((!(rx->fc & IEEE80211_FCTL_FROMDS) && !(rx->fc & IEEE80211_FCTL_TODS) && (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) || !rx->u.rx.ra_match) { /* Drop IBSS frames and frames for other hosts * silently. */ return TXRX_DROP; } if (!rx->local->apdev) return TXRX_DROP; ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status, ieee80211_msg_sta_not_assoc); return TXRX_QUEUED; } if (rx->sdata->type == IEEE80211_IF_TYPE_STA) always_sta_key = 0; else always_sta_key = 1; if (rx->sta && rx->sta->key && always_sta_key) { rx->key = rx->sta->key; } else { if (rx->sta && rx->sta->key) rx->key = rx->sta->key; else rx->key = rx->sdata->default_key; if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) && rx->fc & IEEE80211_FCTL_PROTECTED) { int keyidx = ieee80211_wep_get_keyidx(rx->skb); if (keyidx >= 0 && keyidx < NUM_DEFAULT_KEYS && (!rx->sta || !rx->sta->key || keyidx > 0)) rx->key = rx->sdata->keys[keyidx]; if (!rx->key) { if (!rx->u.rx.ra_match) return TXRX_DROP; printk(KERN_DEBUG "%s: RX WEP frame with " "unknown keyidx %d (A1=" MAC_FMT " A2=" MAC_FMT " A3=" MAC_FMT ")\n", rx->dev->name, keyidx, MAC_ARG(hdr->addr1), MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3)); if (!rx->local->apdev) return TXRX_DROP; ieee80211_rx_mgmt( rx->local, rx->skb, rx->u.rx.status, ieee80211_msg_wep_frame_unknown_key); return TXRX_QUEUED; } } } if (rx->fc & IEEE80211_FCTL_PROTECTED && rx->key && rx->u.rx.ra_match) { rx->key->tx_rx_count++; if (unlikely(rx->local->key_tx_rx_threshold && rx->key->tx_rx_count > rx->local->key_tx_rx_threshold)) { ieee80211_key_threshold_notify(rx->dev, rx->key, rx->sta); } } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx) { struct sta_info *sta = rx->sta; struct net_device *dev = rx->dev; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; if (!sta) return TXRX_CONTINUE; /* Update last_rx only for IBSS packets which are for the current * BSSID to avoid keeping the current IBSS network alive in cases where * other STAs are using different BSSID. */ if (rx->sdata->type == IEEE80211_IF_TYPE_IBSS) { u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len); if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0) sta->last_rx = jiffies; } else if (!is_multicast_ether_addr(hdr->addr1) || rx->sdata->type == IEEE80211_IF_TYPE_STA) { /* Update last_rx only for unicast frames in order to prevent * the Probe Request frames (the only broadcast frames from a * STA in infrastructure mode) from keeping a connection alive. */ sta->last_rx = jiffies; } if (!rx->u.rx.ra_match) return TXRX_CONTINUE; sta->rx_fragments++; sta->rx_bytes += rx->skb->len; sta->last_rssi = (sta->last_rssi * 15 + rx->u.rx.status->ssi) / 16; sta->last_signal = (sta->last_signal * 15 + rx->u.rx.status->signal) / 16; sta->last_noise = (sta->last_noise * 15 + rx->u.rx.status->noise) / 16; if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) { /* Change STA power saving mode only in the end of a frame * exchange sequence */ if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM)) rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta); else if (!(sta->flags & WLAN_STA_PS) && (rx->fc & IEEE80211_FCTL_PM)) ap_sta_ps_start(dev, sta); } /* Drop data::nullfunc frames silently, since they are used only to * control station power saving mode. */ if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) { I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); /* Update counter and free packet here to avoid counting this * as a dropped packed. */ sta->rx_packets++; dev_kfree_skb(rx->skb); return TXRX_QUEUED; } return TXRX_CONTINUE; } /* ieee80211_rx_h_sta_process */ static ieee80211_txrx_result ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx) { if (!rx->sta || !(rx->fc & IEEE80211_FCTL_PROTECTED) || (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA || !rx->key || rx->key->alg != ALG_WEP || !rx->u.rx.ra_match) return TXRX_CONTINUE; /* Check for weak IVs, if hwaccel did not remove IV from the frame */ if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) || rx->key->force_sw_encrypt) { u8 *iv = ieee80211_wep_is_weak_iv(rx->skb, rx->key); if (iv) { rx->sta->wep_weak_iv_count++; } } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx) { /* If the device handles decryption totally, skip this test */ if (rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP) return TXRX_CONTINUE; if ((rx->key && rx->key->alg != ALG_WEP) || !(rx->fc & IEEE80211_FCTL_PROTECTED) || ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA && ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH))) return TXRX_CONTINUE; if (!rx->key) { printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n", rx->dev->name); return TXRX_DROP; } if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED) || rx->key->force_sw_encrypt) { if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) { printk(KERN_DEBUG "%s: RX WEP frame, decrypt " "failed\n", rx->dev->name); return TXRX_DROP; } } else if (rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) { ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key); /* remove ICV */ skb_trim(rx->skb, rx->skb->len - 4); } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx) { if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) && rx->sdata->type != IEEE80211_IF_TYPE_STA && rx->u.rx.ra_match) { /* Pass both encrypted and unencrypted EAPOL frames to user * space for processing. */ if (!rx->local->apdev) return TXRX_DROP; ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status, ieee80211_msg_normal); return TXRX_QUEUED; } if (unlikely(rx->sdata->ieee802_1x && (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC && (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) && !ieee80211_is_eapol(rx->skb))) { #ifdef CONFIG_MAC80211_DEBUG struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; printk(KERN_DEBUG "%s: dropped frame from " MAC_FMT " (unauthorized port)\n", rx->dev->name, MAC_ARG(hdr->addr2)); #endif /* CONFIG_MAC80211_DEBUG */ return TXRX_DROP; } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx) { /* If the device handles decryption totally, skip this test */ if (rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP) return TXRX_CONTINUE; /* Drop unencrypted frames if key is set. */ if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) && (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC && (rx->key || rx->sdata->drop_unencrypted) && (rx->sdata->eapol == 0 || !ieee80211_is_eapol(rx->skb)))) { printk(KERN_DEBUG "%s: RX non-WEP frame, but expected " "encryption\n", rx->dev->name); return TXRX_DROP; } return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx) { struct ieee80211_sub_if_data *sdata; if (!rx->u.rx.ra_match) return TXRX_DROP; sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); if ((sdata->type == IEEE80211_IF_TYPE_STA || sdata->type == IEEE80211_IF_TYPE_IBSS) && !rx->local->user_space_mlme) { ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status); } else { /* Management frames are sent to hostapd for processing */ if (!rx->local->apdev) return TXRX_DROP; ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status, ieee80211_msg_normal); } return TXRX_QUEUED; } static ieee80211_txrx_result ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx) { struct ieee80211_local *local = rx->local; struct sk_buff *skb = rx->skb; if (unlikely(local->sta_scanning != 0)) { ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status); return TXRX_QUEUED; } if (unlikely(rx->u.rx.in_scan)) { /* scanning finished during invoking of handlers */ I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); return TXRX_DROP; } return TXRX_CONTINUE; } static void ieee80211_rx_michael_mic_report(struct net_device *dev, struct ieee80211_hdr *hdr, struct sta_info *sta, struct ieee80211_txrx_data *rx) { int keyidx, hdrlen; hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb); if (rx->skb->len >= hdrlen + 4) keyidx = rx->skb->data[hdrlen + 3] >> 6; else keyidx = -1; /* TODO: verify that this is not triggered by fragmented * frames (hw does not verify MIC for them). */ printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC " "failure from " MAC_FMT " to " MAC_FMT " keyidx=%d\n", dev->name, MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr1), keyidx); if (!sta) { /* Some hardware versions seem to generate incorrect * Michael MIC reports; ignore them to avoid triggering * countermeasures. */ printk(KERN_DEBUG "%s: ignored spurious Michael MIC " "error for unknown address " MAC_FMT "\n", dev->name, MAC_ARG(hdr->addr2)); goto ignore; } if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) { printk(KERN_DEBUG "%s: ignored spurious Michael MIC " "error for a frame with no ISWEP flag (src " MAC_FMT ")\n", dev->name, MAC_ARG(hdr->addr2)); goto ignore; } if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) && rx->sdata->type == IEEE80211_IF_TYPE_AP) { keyidx = ieee80211_wep_get_keyidx(rx->skb); /* AP with Pairwise keys support should never receive Michael * MIC errors for non-zero keyidx because these are reserved * for group keys and only the AP is sending real multicast * frames in BSS. */ if (keyidx) { printk(KERN_DEBUG "%s: ignored Michael MIC error for " "a frame with non-zero keyidx (%d) (src " MAC_FMT ")\n", dev->name, keyidx, MAC_ARG(hdr->addr2)); goto ignore; } } if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA && ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) { printk(KERN_DEBUG "%s: ignored spurious Michael MIC " "error for a frame that cannot be encrypted " "(fc=0x%04x) (src " MAC_FMT ")\n", dev->name, rx->fc, MAC_ARG(hdr->addr2)); goto ignore; } do { union iwreq_data wrqu; char *buf = kmalloc(128, GFP_ATOMIC); if (!buf) break; /* TODO: needed parameters: count, key type, TSC */ sprintf(buf, "MLME-MICHAELMICFAILURE.indication(" "keyid=%d %scast addr=" MAC_FMT ")", keyidx, hdr->addr1[0] & 0x01 ? "broad" : "uni", MAC_ARG(hdr->addr2)); memset(&wrqu, 0, sizeof(wrqu)); wrqu.data.length = strlen(buf); wireless_send_event(rx->dev, IWEVCUSTOM, &wrqu, buf); kfree(buf); } while (0); /* TODO: consider verifying the MIC error report with software * implementation if we get too many spurious reports from the * hardware. */ if (!rx->local->apdev) goto ignore; ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status, ieee80211_msg_michael_mic_failure); return; ignore: dev_kfree_skb(rx->skb); rx->skb = NULL; } static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers( struct ieee80211_local *local, ieee80211_rx_handler *handlers, struct ieee80211_txrx_data *rx, struct sta_info *sta) { ieee80211_rx_handler *handler; ieee80211_txrx_result res = TXRX_DROP; for (handler = handlers; *handler != NULL; handler++) { res = (*handler)(rx); if (res != TXRX_CONTINUE) { if (res == TXRX_DROP) { I802_DEBUG_INC(local->rx_handlers_drop); if (sta) sta->rx_dropped++; } if (res == TXRX_QUEUED) I802_DEBUG_INC(local->rx_handlers_queued); break; } } if (res == TXRX_DROP) { dev_kfree_skb(rx->skb); } return res; } static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local, ieee80211_rx_handler *handlers, struct ieee80211_txrx_data *rx, struct sta_info *sta) { if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) == TXRX_CONTINUE) dev_kfree_skb(rx->skb); } /* * This is the receive path handler. It is called by a low level driver when an * 802.11 MPDU is received from the hardware. */ void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_rx_status *status) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata; struct sta_info *sta; struct ieee80211_hdr *hdr; struct ieee80211_txrx_data rx; u16 type; int multicast; int radiotap_len = 0; if (status->flag & RX_FLAG_RADIOTAP) { radiotap_len = ieee80211_get_radiotap_len(skb); skb_pull(skb, radiotap_len); } hdr = (struct ieee80211_hdr *) skb->data; memset(&rx, 0, sizeof(rx)); rx.skb = skb; rx.local = local; rx.u.rx.status = status; rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0; type = rx.fc & IEEE80211_FCTL_FTYPE; if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT) local->dot11ReceivedFragmentCount++; multicast = is_multicast_ether_addr(hdr->addr1); if (skb->len >= 16) sta = rx.sta = sta_info_get(local, hdr->addr2); else sta = rx.sta = NULL; if (sta) { rx.dev = sta->dev; rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev); } if ((status->flag & RX_FLAG_MMIC_ERROR)) { ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx); goto end; } if (unlikely(local->sta_scanning)) rx.u.rx.in_scan = 1; if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx, sta) != TXRX_CONTINUE) goto end; skb = rx.skb; skb_push(skb, radiotap_len); if (sta && !sta->assoc_ap && !(sta->flags & WLAN_STA_WDS) && !local->iff_promiscs && !multicast) { rx.u.rx.ra_match = 1; ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx, sta); } else { struct ieee80211_sub_if_data *prev = NULL; struct sk_buff *skb_new; u8 *bssid = ieee80211_get_bssid(hdr, skb->len - radiotap_len); read_lock(&local->sub_if_lock); list_for_each_entry(sdata, &local->sub_if_list, list) { rx.u.rx.ra_match = 1; switch (sdata->type) { case IEEE80211_IF_TYPE_STA: if (!bssid) continue; if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) { if (!rx.u.rx.in_scan) continue; rx.u.rx.ra_match = 0; } else if (!multicast && compare_ether_addr(sdata->dev->dev_addr, hdr->addr1) != 0) { if (!sdata->promisc) continue; rx.u.rx.ra_match = 0; } break; case IEEE80211_IF_TYPE_IBSS: if (!bssid) continue; if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) { if (!rx.u.rx.in_scan) continue; rx.u.rx.ra_match = 0; } else if (!multicast && compare_ether_addr(sdata->dev->dev_addr, hdr->addr1) != 0) { if (!sdata->promisc) continue; rx.u.rx.ra_match = 0; } else if (!sta) sta = rx.sta = ieee80211_ibss_add_sta(sdata->dev, skb, bssid, hdr->addr2); break; case IEEE80211_IF_TYPE_AP: if (!bssid) { if (compare_ether_addr(sdata->dev->dev_addr, hdr->addr1) != 0) continue; } else if (!ieee80211_bssid_match(bssid, sdata->dev->dev_addr)) { if (!rx.u.rx.in_scan) continue; rx.u.rx.ra_match = 0; } if (sdata->dev == local->mdev && !rx.u.rx.in_scan) /* do not receive anything via * master device when not scanning */ continue; break; case IEEE80211_IF_TYPE_WDS: if (bssid || (rx.fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA) continue; if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2) != 0) continue; break; } if (prev) { skb_new = skb_copy(skb, GFP_ATOMIC); if (!skb_new) { if (net_ratelimit()) printk(KERN_DEBUG "%s: failed to copy " "multicast frame for %s", local->mdev->name, prev->dev->name); continue; } rx.skb = skb_new; rx.dev = prev->dev; rx.sdata = prev; ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx, sta); } prev = sdata; } if (prev) { rx.skb = skb; rx.dev = prev->dev; rx.sdata = prev; ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx, sta); } else dev_kfree_skb(skb); read_unlock(&local->sub_if_lock); } end: if (sta) sta_info_put(sta); } EXPORT_SYMBOL(__ieee80211_rx); static ieee80211_txrx_result ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx) { struct ieee80211_local *local = tx->local; struct ieee80211_hw_mode *mode = tx->u.tx.mode; struct sk_buff *skb = tx->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u32 load = 0, hdrtime; /* TODO: this could be part of tx_status handling, so that the number * of retries would be known; TX rate should in that case be stored * somewhere with the packet */ /* Estimate total channel use caused by this frame */ /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values, * 1 usec = 1/8 * (1080 / 10) = 13.5 */ if (mode->mode == MODE_IEEE80211A || mode->mode == MODE_ATHEROS_TURBO || mode->mode == MODE_ATHEROS_TURBOG || (mode->mode == MODE_IEEE80211G && tx->u.tx.rate->flags & IEEE80211_RATE_ERP)) hdrtime = CHAN_UTIL_HDR_SHORT; else hdrtime = CHAN_UTIL_HDR_LONG; load = hdrtime; if (!is_multicast_ether_addr(hdr->addr1)) load += hdrtime; if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_RTS_CTS) load += 2 * hdrtime; else if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT) load += hdrtime; load += skb->len * tx->u.tx.rate->rate_inv; if (tx->u.tx.extra_frag) { int i; for (i = 0; i < tx->u.tx.num_extra_frag; i++) { load += 2 * hdrtime; load += tx->u.tx.extra_frag[i]->len * tx->u.tx.rate->rate; } } /* Divide channel_use by 8 to avoid wrapping around the counter */ load >>= CHAN_UTIL_SHIFT; local->channel_use_raw += load; if (tx->sta) tx->sta->channel_use_raw += load; tx->sdata->channel_use_raw += load; return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx) { struct ieee80211_local *local = rx->local; struct sk_buff *skb = rx->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u32 load = 0, hdrtime; struct ieee80211_rate *rate; struct ieee80211_hw_mode *mode = local->hw.conf.mode; int i; /* Estimate total channel use caused by this frame */ if (unlikely(mode->num_rates < 0)) return TXRX_CONTINUE; rate = &mode->rates[0]; for (i = 0; i < mode->num_rates; i++) { if (mode->rates[i].val == rx->u.rx.status->rate) { rate = &mode->rates[i]; break; } } /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values, * 1 usec = 1/8 * (1080 / 10) = 13.5 */ if (mode->mode == MODE_IEEE80211A || mode->mode == MODE_ATHEROS_TURBO || mode->mode == MODE_ATHEROS_TURBOG || (mode->mode == MODE_IEEE80211G && rate->flags & IEEE80211_RATE_ERP)) hdrtime = CHAN_UTIL_HDR_SHORT; else hdrtime = CHAN_UTIL_HDR_LONG; load = hdrtime; if (!is_multicast_ether_addr(hdr->addr1)) load += hdrtime; load += skb->len * rate->rate_inv; /* Divide channel_use by 8 to avoid wrapping around the counter */ load >>= CHAN_UTIL_SHIFT; local->channel_use_raw += load; if (rx->sta) rx->sta->channel_use_raw += load; rx->u.rx.load = load; return TXRX_CONTINUE; } static ieee80211_txrx_result ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx) { rx->sdata->channel_use_raw += rx->u.rx.load; return TXRX_CONTINUE; } static void ieee80211_stat_refresh(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *) data; struct sta_info *sta; struct ieee80211_sub_if_data *sdata; if (!local->stat_time) return; /* go through all stations */ spin_lock_bh(&local->sta_lock); list_for_each_entry(sta, &local->sta_list, list) { sta->channel_use = (sta->channel_use_raw / local->stat_time) / CHAN_UTIL_PER_10MS; sta->channel_use_raw = 0; } spin_unlock_bh(&local->sta_lock); /* go through all subinterfaces */ read_lock(&local->sub_if_lock); list_for_each_entry(sdata, &local->sub_if_list, list) { sdata->channel_use = (sdata->channel_use_raw / local->stat_time) / CHAN_UTIL_PER_10MS; sdata->channel_use_raw = 0; } read_unlock(&local->sub_if_lock); /* hardware interface */ local->channel_use = (local->channel_use_raw / local->stat_time) / CHAN_UTIL_PER_10MS; local->channel_use_raw = 0; local->stat_timer.expires = jiffies + HZ * local->stat_time / 100; add_timer(&local->stat_timer); } /* This is a version of the rx handler that can be called from hard irq * context. Post the skb on the queue and schedule the tasklet */ void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_rx_status *status) { struct ieee80211_local *local = hw_to_local(hw); BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); skb->dev = local->mdev; /* copy status into skb->cb for use by tasklet */ memcpy(skb->cb, status, sizeof(*status)); skb->pkt_type = IEEE80211_RX_MSG; skb_queue_tail(&local->skb_queue, skb); tasklet_schedule(&local->tasklet); } EXPORT_SYMBOL(ieee80211_rx_irqsafe); void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_status *status) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_status *saved; int tmp; skb->dev = local->mdev; saved = kmalloc(sizeof(struct ieee80211_tx_status), GFP_ATOMIC); if (unlikely(!saved)) { if (net_ratelimit()) printk(KERN_WARNING "%s: Not enough memory, " "dropping tx status", skb->dev->name); /* should be dev_kfree_skb_irq, but due to this function being * named _irqsafe instead of just _irq we can't be sure that * people won't call it from non-irq contexts */ dev_kfree_skb_any(skb); return; } memcpy(saved, status, sizeof(struct ieee80211_tx_status)); /* copy pointer to saved status into skb->cb for use by tasklet */ memcpy(skb->cb, &saved, sizeof(saved)); skb->pkt_type = IEEE80211_TX_STATUS_MSG; skb_queue_tail(status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS ? &local->skb_queue : &local->skb_queue_unreliable, skb); tmp = skb_queue_len(&local->skb_queue) + skb_queue_len(&local->skb_queue_unreliable); while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT && (skb = skb_dequeue(&local->skb_queue_unreliable))) { memcpy(&saved, skb->cb, sizeof(saved)); kfree(saved); dev_kfree_skb_irq(skb); tmp--; I802_DEBUG_INC(local->tx_status_drop); } tasklet_schedule(&local->tasklet); } EXPORT_SYMBOL(ieee80211_tx_status_irqsafe); static void ieee80211_tasklet_handler(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *) data; struct sk_buff *skb; struct ieee80211_rx_status rx_status; struct ieee80211_tx_status *tx_status; while ((skb = skb_dequeue(&local->skb_queue)) || (skb = skb_dequeue(&local->skb_queue_unreliable))) { switch (skb->pkt_type) { case IEEE80211_RX_MSG: /* status is in skb->cb */ memcpy(&rx_status, skb->cb, sizeof(rx_status)); /* Clear skb->type in order to not confuse kernel * netstack. */ skb->pkt_type = 0; __ieee80211_rx(local_to_hw(local), skb, &rx_status); break; case IEEE80211_TX_STATUS_MSG: /* get pointer to saved status out of skb->cb */ memcpy(&tx_status, skb->cb, sizeof(tx_status)); skb->pkt_type = 0; ieee80211_tx_status(local_to_hw(local), skb, tx_status); kfree(tx_status); break; default: /* should never get here! */ printk(KERN_ERR "%s: Unknown message type (%d)\n", local->mdev->name, skb->pkt_type); dev_kfree_skb(skb); break; } } } /* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to * make a prepared TX frame (one that has been given to hw) to look like brand * new IEEE 802.11 frame that is ready to go through TX processing again. * Also, tx_packet_data in cb is restored from tx_control. */ static void ieee80211_remove_tx_extra(struct ieee80211_local *local, struct ieee80211_key *key, struct sk_buff *skb, struct ieee80211_tx_control *control) { int hdrlen, iv_len, mic_len; struct ieee80211_tx_packet_data *pkt_data; pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; pkt_data->ifindex = control->ifindex; pkt_data->mgmt_iface = (control->type == IEEE80211_IF_TYPE_MGMT); pkt_data->req_tx_status = !!(control->flags & IEEE80211_TXCTL_REQ_TX_STATUS); pkt_data->do_not_encrypt = !!(control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT); pkt_data->requeue = !!(control->flags & IEEE80211_TXCTL_REQUEUE); pkt_data->queue = control->queue; hdrlen = ieee80211_get_hdrlen_from_skb(skb); if (!key) goto no_key; switch (key->alg) { case ALG_WEP: iv_len = WEP_IV_LEN; mic_len = WEP_ICV_LEN; break; case ALG_TKIP: iv_len = TKIP_IV_LEN; mic_len = TKIP_ICV_LEN; break; case ALG_CCMP: iv_len = CCMP_HDR_LEN; mic_len = CCMP_MIC_LEN; break; default: goto no_key; } if (skb->len >= mic_len && key->force_sw_encrypt) skb_trim(skb, skb->len - mic_len); if (skb->len >= iv_len && skb->len > hdrlen) { memmove(skb->data + iv_len, skb->data, hdrlen); skb_pull(skb, iv_len); } no_key: { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u16 fc = le16_to_cpu(hdr->frame_control); if ((fc & 0x8C) == 0x88) /* QoS Control Field */ { fc &= ~IEEE80211_STYPE_QOS_DATA; hdr->frame_control = cpu_to_le16(fc); memmove(skb->data + 2, skb->data, hdrlen - 2); skb_pull(skb, 2); } } } void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_status *status) { struct sk_buff *skb2; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_local *local = hw_to_local(hw); u16 frag, type; u32 msg_type; struct ieee80211_tx_status_rtap_hdr *rthdr; struct ieee80211_sub_if_data *sdata; int monitors; if (!status) { printk(KERN_ERR "%s: ieee80211_tx_status called with NULL status\n", local->mdev->name); dev_kfree_skb(skb); return; } if (status->excessive_retries) { struct sta_info *sta; sta = sta_info_get(local, hdr->addr1); if (sta) { if (sta->flags & WLAN_STA_PS) { /* The STA is in power save mode, so assume * that this TX packet failed because of that. */ status->excessive_retries = 0; status->flags |= IEEE80211_TX_STATUS_TX_FILTERED; } sta_info_put(sta); } } if (status->flags & IEEE80211_TX_STATUS_TX_FILTERED) { struct sta_info *sta; sta = sta_info_get(local, hdr->addr1); if (sta) { sta->tx_filtered_count++; /* Clear the TX filter mask for this STA when sending * the next packet. If the STA went to power save mode, * this will happen when it is waking up for the next * time. */ sta->clear_dst_mask = 1; /* TODO: Is the WLAN_STA_PS flag always set here or is * the race between RX and TX status causing some * packets to be filtered out before 80211.o gets an * update for PS status? This seems to be the case, so * no changes are likely to be needed. */ if (sta->flags & WLAN_STA_PS && skb_queue_len(&sta->tx_filtered) < STA_MAX_TX_BUFFER) { ieee80211_remove_tx_extra(local, sta->key, skb, &status->control); skb_queue_tail(&sta->tx_filtered, skb); } else if (!(sta->flags & WLAN_STA_PS) && !(status->control.flags & IEEE80211_TXCTL_REQUEUE)) { /* Software retry the packet once */ status->control.flags |= IEEE80211_TXCTL_REQUEUE; ieee80211_remove_tx_extra(local, sta->key, skb, &status->control); dev_queue_xmit(skb); } else { if (net_ratelimit()) { printk(KERN_DEBUG "%s: dropped TX " "filtered frame queue_len=%d " "PS=%d @%lu\n", local->mdev->name, skb_queue_len( &sta->tx_filtered), !!(sta->flags & WLAN_STA_PS), jiffies); } dev_kfree_skb(skb); } sta_info_put(sta); return; } } else { /* FIXME: STUPID to call this with both local and local->mdev */ rate_control_tx_status(local, local->mdev, skb, status); } ieee80211_led_tx(local, 0); /* SNMP counters * Fragments are passed to low-level drivers as separate skbs, so these * are actually fragments, not frames. Update frame counters only for * the first fragment of the frame. */ frag = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE; if (status->flags & IEEE80211_TX_STATUS_ACK) { if (frag == 0) { local->dot11TransmittedFrameCount++; if (is_multicast_ether_addr(hdr->addr1)) local->dot11MulticastTransmittedFrameCount++; if (status->retry_count > 0) local->dot11RetryCount++; if (status->retry_count > 1) local->dot11MultipleRetryCount++; } /* This counter shall be incremented for an acknowledged MPDU * with an individual address in the address 1 field or an MPDU * with a multicast address in the address 1 field of type Data * or Management. */ if (!is_multicast_ether_addr(hdr->addr1) || type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT) local->dot11TransmittedFragmentCount++; } else { if (frag == 0) local->dot11FailedCount++; } msg_type = (status->flags & IEEE80211_TX_STATUS_ACK) ? ieee80211_msg_tx_callback_ack : ieee80211_msg_tx_callback_fail; /* this was a transmitted frame, but now we want to reuse it */ skb_orphan(skb); if ((status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS) && local->apdev) { if (local->monitors) { skb2 = skb_clone(skb, GFP_ATOMIC); } else { skb2 = skb; skb = NULL; } if (skb2) /* Send frame to hostapd */ ieee80211_rx_mgmt(local, skb2, NULL, msg_type); if (!skb) return; } if (!local->monitors) { dev_kfree_skb(skb); return; } /* send frame to monitor interfaces now */ if (skb_headroom(skb) < sizeof(*rthdr)) { printk(KERN_ERR "ieee80211_tx_status: headroom too small\n"); dev_kfree_skb(skb); return; } rthdr = (struct ieee80211_tx_status_rtap_hdr*) skb_push(skb, sizeof(*rthdr)); memset(rthdr, 0, sizeof(*rthdr)); rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); rthdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_TX_FLAGS) | (1 << IEEE80211_RADIOTAP_DATA_RETRIES)); if (!(status->flags & IEEE80211_TX_STATUS_ACK) && !is_multicast_ether_addr(hdr->addr1)) rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_FAIL); if ((status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) && (status->control.flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_CTS); else if (status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_RTS); rthdr->data_retries = status->retry_count; read_lock(&local->sub_if_lock); monitors = local->monitors; list_for_each_entry(sdata, &local->sub_if_list, list) { /* * Using the monitors counter is possibly racy, but * if the value is wrong we simply either clone the skb * once too much or forget sending it to one monitor iface * The latter case isn't nice but fixing the race is much * more complicated. */ if (!monitors || !skb) goto out; if (sdata->type == IEEE80211_IF_TYPE_MNTR) { if (!netif_running(sdata->dev)) continue; monitors--; if (monitors) skb2 = skb_clone(skb, GFP_KERNEL); else skb2 = NULL; skb->dev = sdata->dev; /* XXX: is this sufficient for BPF? */ skb_set_mac_header(skb, 0); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); skb = skb2; break; } } out: read_unlock(&local->sub_if_lock); if (skb) dev_kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_tx_status); /* TODO: implement register/unregister functions for adding TX/RX handlers * into ordered list */ /* rx_pre handlers don't have dev and sdata fields available in * ieee80211_txrx_data */ static ieee80211_rx_handler ieee80211_rx_pre_handlers[] = { ieee80211_rx_h_parse_qos, ieee80211_rx_h_load_stats, NULL }; static ieee80211_rx_handler ieee80211_rx_handlers[] = { ieee80211_rx_h_if_stats, ieee80211_rx_h_monitor, ieee80211_rx_h_passive_scan, ieee80211_rx_h_check, ieee80211_rx_h_sta_process, ieee80211_rx_h_ccmp_decrypt, ieee80211_rx_h_tkip_decrypt, ieee80211_rx_h_wep_weak_iv_detection, ieee80211_rx_h_wep_decrypt, ieee80211_rx_h_defragment, ieee80211_rx_h_ps_poll, ieee80211_rx_h_michael_mic_verify, /* this must be after decryption - so header is counted in MPDU mic * must be before pae and data, so QOS_DATA format frames * are not passed to user space by these functions */ ieee80211_rx_h_remove_qos_control, ieee80211_rx_h_802_1x_pae, ieee80211_rx_h_drop_unencrypted, ieee80211_rx_h_data, ieee80211_rx_h_mgmt, NULL }; static ieee80211_tx_handler ieee80211_tx_handlers[] = { ieee80211_tx_h_check_assoc, ieee80211_tx_h_sequence, ieee80211_tx_h_ps_buf, ieee80211_tx_h_select_key, ieee80211_tx_h_michael_mic_add, ieee80211_tx_h_fragment, ieee80211_tx_h_tkip_encrypt, ieee80211_tx_h_ccmp_encrypt, ieee80211_tx_h_wep_encrypt, ieee80211_tx_h_rate_ctrl, ieee80211_tx_h_misc, ieee80211_tx_h_load_stats, NULL }; int ieee80211_if_update_wds(struct net_device *dev, u8 *remote_addr) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct sta_info *sta; if (compare_ether_addr(remote_addr, sdata->u.wds.remote_addr) == 0) return 0; /* Create STA entry for the new peer */ sta = sta_info_add(local, dev, remote_addr, GFP_KERNEL); if (!sta) return -ENOMEM; sta_info_put(sta); /* Remove STA entry for the old peer */ sta = sta_info_get(local, sdata->u.wds.remote_addr); if (sta) { sta_info_put(sta); sta_info_free(sta, 0); } else { printk(KERN_DEBUG "%s: could not find STA entry for WDS link " "peer " MAC_FMT "\n", dev->name, MAC_ARG(sdata->u.wds.remote_addr)); } /* Update WDS link data */ memcpy(&sdata->u.wds.remote_addr, remote_addr, ETH_ALEN); return 0; } /* Must not be called for mdev and apdev */ void ieee80211_if_setup(struct net_device *dev) { ether_setup(dev); dev->hard_start_xmit = ieee80211_subif_start_xmit; dev->wireless_handlers = &ieee80211_iw_handler_def; dev->set_multicast_list = ieee80211_set_multicast_list; dev->change_mtu = ieee80211_change_mtu; dev->get_stats = ieee80211_get_stats; dev->open = ieee80211_open; dev->stop = ieee80211_stop; dev->uninit = ieee80211_if_reinit; dev->destructor = ieee80211_if_free; } void ieee80211_if_mgmt_setup(struct net_device *dev) { ether_setup(dev); dev->hard_start_xmit = ieee80211_mgmt_start_xmit; dev->change_mtu = ieee80211_change_mtu_apdev; dev->get_stats = ieee80211_get_stats; dev->open = ieee80211_mgmt_open; dev->stop = ieee80211_mgmt_stop; dev->type = ARPHRD_IEEE80211_PRISM; dev->hard_header_parse = header_parse_80211; dev->uninit = ieee80211_if_reinit; dev->destructor = ieee80211_if_free; } int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local, const char *name) { struct rate_control_ref *ref, *old; ASSERT_RTNL(); if (local->open_count || netif_running(local->mdev) || (local->apdev && netif_running(local->apdev))) return -EBUSY; ref = rate_control_alloc(name, local); if (!ref) { printk(KERN_WARNING "%s: Failed to select rate control " "algorithm\n", local->mdev->name); return -ENOENT; } old = local->rate_ctrl; local->rate_ctrl = ref; if (old) { rate_control_put(old); sta_info_flush(local, NULL); } printk(KERN_DEBUG "%s: Selected rate control " "algorithm '%s'\n", local->mdev->name, ref->ops->name); return 0; } static void rate_control_deinitialize(struct ieee80211_local *local) { struct rate_control_ref *ref; ref = local->rate_ctrl; local->rate_ctrl = NULL; rate_control_put(ref); } struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, const struct ieee80211_ops *ops) { struct net_device *mdev; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; int priv_size; struct wiphy *wiphy; /* Ensure 32-byte alignment of our private data and hw private data. * We use the wiphy priv data for both our ieee80211_local and for * the driver's private data * * In memory it'll be like this: * * +-------------------------+ * | struct wiphy | * +-------------------------+ * | struct ieee80211_local | * +-------------------------+ * | driver's private data | * +-------------------------+ * */ priv_size = ((sizeof(struct ieee80211_local) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST) + priv_data_len; wiphy = wiphy_new(&mac80211_config_ops, priv_size); if (!wiphy) return NULL; wiphy->privid = mac80211_wiphy_privid; local = wiphy_priv(wiphy); local->hw.wiphy = wiphy; local->hw.priv = (char *)local + ((sizeof(struct ieee80211_local) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); local->ops = ops; /* for now, mdev needs sub_if_data :/ */ mdev = alloc_netdev(sizeof(struct ieee80211_sub_if_data), "wmaster%d", ether_setup); if (!mdev) { wiphy_free(wiphy); return NULL; } sdata = IEEE80211_DEV_TO_SUB_IF(mdev); mdev->ieee80211_ptr = &sdata->wdev; sdata->wdev.wiphy = wiphy; local->hw.queues = 1; /* default */ local->mdev = mdev; local->rx_pre_handlers = ieee80211_rx_pre_handlers; local->rx_handlers = ieee80211_rx_handlers; local->tx_handlers = ieee80211_tx_handlers; local->bridge_packets = 1; local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD; local->short_retry_limit = 7; local->long_retry_limit = 4; local->hw.conf.radio_enabled = 1; local->rate_ctrl_num_up = RATE_CONTROL_NUM_UP; local->rate_ctrl_num_down = RATE_CONTROL_NUM_DOWN; local->enabled_modes = (unsigned int) -1; INIT_LIST_HEAD(&local->modes_list); rwlock_init(&local->sub_if_lock); INIT_LIST_HEAD(&local->sub_if_list); INIT_DELAYED_WORK(&local->scan_work, ieee80211_sta_scan_work); init_timer(&local->stat_timer); local->stat_timer.function = ieee80211_stat_refresh; local->stat_timer.data = (unsigned long) local; ieee80211_rx_bss_list_init(mdev); sta_info_init(local); mdev->hard_start_xmit = ieee80211_master_start_xmit; mdev->open = ieee80211_master_open; mdev->stop = ieee80211_master_stop; mdev->type = ARPHRD_IEEE80211; mdev->hard_header_parse = header_parse_80211; sdata->type = IEEE80211_IF_TYPE_AP; sdata->dev = mdev; sdata->local = local; sdata->u.ap.force_unicast_rateidx = -1; sdata->u.ap.max_ratectrl_rateidx = -1; ieee80211_if_sdata_init(sdata); list_add_tail(&sdata->list, &local->sub_if_list); tasklet_init(&local->tx_pending_tasklet, ieee80211_tx_pending, (unsigned long)local); tasklet_disable(&local->tx_pending_tasklet); tasklet_init(&local->tasklet, ieee80211_tasklet_handler, (unsigned long) local); tasklet_disable(&local->tasklet); skb_queue_head_init(&local->skb_queue); skb_queue_head_init(&local->skb_queue_unreliable); return local_to_hw(local); } EXPORT_SYMBOL(ieee80211_alloc_hw); int ieee80211_register_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); const char *name; int result; result = wiphy_register(local->hw.wiphy); if (result < 0) return result; name = wiphy_dev(local->hw.wiphy)->driver->name; local->hw.workqueue = create_singlethread_workqueue(name); if (!local->hw.workqueue) { result = -ENOMEM; goto fail_workqueue; } /* * The hardware needs headroom for sending the frame, * and we need some headroom for passing the frame to monitor * interfaces, but never both at the same time. */ local->tx_headroom = max(local->hw.extra_tx_headroom, sizeof(struct ieee80211_tx_status_rtap_hdr)); debugfs_hw_add(local); local->hw.conf.beacon_int = 1000; local->wstats_flags |= local->hw.max_rssi ? IW_QUAL_LEVEL_UPDATED : IW_QUAL_LEVEL_INVALID; local->wstats_flags |= local->hw.max_signal ? IW_QUAL_QUAL_UPDATED : IW_QUAL_QUAL_INVALID; local->wstats_flags |= local->hw.max_noise ? IW_QUAL_NOISE_UPDATED : IW_QUAL_NOISE_INVALID; if (local->hw.max_rssi < 0 || local->hw.max_noise < 0) local->wstats_flags |= IW_QUAL_DBM; result = sta_info_start(local); if (result < 0) goto fail_sta_info; rtnl_lock(); result = dev_alloc_name(local->mdev, local->mdev->name); if (result < 0) goto fail_dev; memcpy(local->mdev->dev_addr, local->hw.wiphy->perm_addr, ETH_ALEN); SET_NETDEV_DEV(local->mdev, wiphy_dev(local->hw.wiphy)); result = register_netdevice(local->mdev); if (result < 0) goto fail_dev; ieee80211_debugfs_add_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev)); result = ieee80211_init_rate_ctrl_alg(local, NULL); if (result < 0) { printk(KERN_DEBUG "%s: Failed to initialize rate control " "algorithm\n", local->mdev->name); goto fail_rate; } result = ieee80211_wep_init(local); if (result < 0) { printk(KERN_DEBUG "%s: Failed to initialize wep\n", local->mdev->name); goto fail_wep; } ieee80211_install_qdisc(local->mdev); /* add one default STA interface */ result = ieee80211_if_add(local->mdev, "wlan%d", NULL, IEEE80211_IF_TYPE_STA); if (result) printk(KERN_WARNING "%s: Failed to add default virtual iface\n", local->mdev->name); local->reg_state = IEEE80211_DEV_REGISTERED; rtnl_unlock(); ieee80211_led_init(local); return 0; fail_wep: rate_control_deinitialize(local); fail_rate: ieee80211_debugfs_remove_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev)); unregister_netdevice(local->mdev); fail_dev: rtnl_unlock(); sta_info_stop(local); fail_sta_info: debugfs_hw_del(local); destroy_workqueue(local->hw.workqueue); fail_workqueue: wiphy_unregister(local->hw.wiphy); return result; } EXPORT_SYMBOL(ieee80211_register_hw); int ieee80211_register_hwmode(struct ieee80211_hw *hw, struct ieee80211_hw_mode *mode) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; int i; INIT_LIST_HEAD(&mode->list); list_add_tail(&mode->list, &local->modes_list); local->hw_modes |= (1 << mode->mode); for (i = 0; i < mode->num_rates; i++) { rate = &(mode->rates[i]); rate->rate_inv = CHAN_UTIL_RATE_LCM / rate->rate; } ieee80211_prepare_rates(local, mode); if (!local->oper_hw_mode) { /* Default to this mode */ local->hw.conf.phymode = mode->mode; local->oper_hw_mode = local->scan_hw_mode = mode; local->oper_channel = local->scan_channel = &mode->channels[0]; local->hw.conf.mode = local->oper_hw_mode; local->hw.conf.chan = local->oper_channel; } if (!(hw->flags & IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED)) ieee80211_init_client(local->mdev); return 0; } EXPORT_SYMBOL(ieee80211_register_hwmode); void ieee80211_unregister_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata, *tmp; struct list_head tmp_list; int i; tasklet_kill(&local->tx_pending_tasklet); tasklet_kill(&local->tasklet); rtnl_lock(); BUG_ON(local->reg_state != IEEE80211_DEV_REGISTERED); local->reg_state = IEEE80211_DEV_UNREGISTERED; if (local->apdev) ieee80211_if_del_mgmt(local); write_lock_bh(&local->sub_if_lock); list_replace_init(&local->sub_if_list, &tmp_list); write_unlock_bh(&local->sub_if_lock); list_for_each_entry_safe(sdata, tmp, &tmp_list, list) __ieee80211_if_del(local, sdata); rtnl_unlock(); if (local->stat_time) del_timer_sync(&local->stat_timer); ieee80211_rx_bss_list_deinit(local->mdev); ieee80211_clear_tx_pending(local); sta_info_stop(local); rate_control_deinitialize(local); debugfs_hw_del(local); for (i = 0; i < NUM_IEEE80211_MODES; i++) { kfree(local->supp_rates[i]); kfree(local->basic_rates[i]); } if (skb_queue_len(&local->skb_queue) || skb_queue_len(&local->skb_queue_unreliable)) printk(KERN_WARNING "%s: skb_queue not empty\n", local->mdev->name); skb_queue_purge(&local->skb_queue); skb_queue_purge(&local->skb_queue_unreliable); destroy_workqueue(local->hw.workqueue); wiphy_unregister(local->hw.wiphy); ieee80211_wep_free(local); ieee80211_led_exit(local); } EXPORT_SYMBOL(ieee80211_unregister_hw); void ieee80211_free_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); ieee80211_if_free(local->mdev); wiphy_free(local->hw.wiphy); } EXPORT_SYMBOL(ieee80211_free_hw); void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) { struct ieee80211_local *local = hw_to_local(hw); if (test_and_clear_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue])) { if (test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue])) tasklet_schedule(&local->tx_pending_tasklet); else if (!ieee80211_qdisc_installed(local->mdev)) { if (queue == 0) netif_wake_queue(local->mdev); } else __netif_schedule(local->mdev); } } EXPORT_SYMBOL(ieee80211_wake_queue); void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) { struct ieee80211_local *local = hw_to_local(hw); if (!ieee80211_qdisc_installed(local->mdev) && queue == 0) netif_stop_queue(local->mdev); set_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]); } EXPORT_SYMBOL(ieee80211_stop_queue); void ieee80211_start_queues(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); int i; for (i = 0; i < local->hw.queues; i++) clear_bit(IEEE80211_LINK_STATE_XOFF, &local->state[i]); if (!ieee80211_qdisc_installed(local->mdev)) netif_start_queue(local->mdev); } EXPORT_SYMBOL(ieee80211_start_queues); void ieee80211_stop_queues(struct ieee80211_hw *hw) { int i; for (i = 0; i < hw->queues; i++) ieee80211_stop_queue(hw, i); } EXPORT_SYMBOL(ieee80211_stop_queues); void ieee80211_wake_queues(struct ieee80211_hw *hw) { int i; for (i = 0; i < hw->queues; i++) ieee80211_wake_queue(hw, i); } EXPORT_SYMBOL(ieee80211_wake_queues); struct net_device_stats *ieee80211_dev_stats(struct net_device *dev) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); return &sdata->stats; } static int __init ieee80211_init(void) { struct sk_buff *skb; int ret; BUILD_BUG_ON(sizeof(struct ieee80211_tx_packet_data) > sizeof(skb->cb)); ret = ieee80211_wme_register(); if (ret) { printk(KERN_DEBUG "ieee80211_init: failed to " "initialize WME (err=%d)\n", ret); return ret; } ieee80211_debugfs_netdev_init(); return 0; } static void __exit ieee80211_exit(void) { ieee80211_wme_unregister(); ieee80211_debugfs_netdev_exit(); } module_init(ieee80211_init); module_exit(ieee80211_exit); MODULE_DESCRIPTION("IEEE 802.11 subsystem"); MODULE_LICENSE("GPL");