/* * net/key/af_key.c An implementation of PF_KEYv2 sockets. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Maxim Giryaev <gem@asplinux.ru> * David S. Miller <davem@redhat.com> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * Kunihiro Ishiguro <kunihiro@ipinfusion.com> * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org> * Derek Atkins <derek@ihtfp.com> */ #include <linux/config.h> #include <linux/capability.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/socket.h> #include <linux/pfkeyv2.h> #include <linux/ipsec.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/proc_fs.h> #include <linux/init.h> #include <net/xfrm.h> #include <net/sock.h> #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x)) #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x)) /* List of all pfkey sockets. */ static HLIST_HEAD(pfkey_table); static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait); static DEFINE_RWLOCK(pfkey_table_lock); static atomic_t pfkey_table_users = ATOMIC_INIT(0); static atomic_t pfkey_socks_nr = ATOMIC_INIT(0); struct pfkey_sock { /* struct sock must be the first member of struct pfkey_sock */ struct sock sk; int registered; int promisc; }; static inline struct pfkey_sock *pfkey_sk(struct sock *sk) { return (struct pfkey_sock *)sk; } static void pfkey_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_receive_queue); if (!sock_flag(sk, SOCK_DEAD)) { printk("Attempt to release alive pfkey socket: %p\n", sk); return; } BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc)); BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc)); atomic_dec(&pfkey_socks_nr); } static void pfkey_table_grab(void) { write_lock_bh(&pfkey_table_lock); if (atomic_read(&pfkey_table_users)) { DECLARE_WAITQUEUE(wait, current); add_wait_queue_exclusive(&pfkey_table_wait, &wait); for(;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (atomic_read(&pfkey_table_users) == 0) break; write_unlock_bh(&pfkey_table_lock); schedule(); write_lock_bh(&pfkey_table_lock); } __set_current_state(TASK_RUNNING); remove_wait_queue(&pfkey_table_wait, &wait); } } static __inline__ void pfkey_table_ungrab(void) { write_unlock_bh(&pfkey_table_lock); wake_up(&pfkey_table_wait); } static __inline__ void pfkey_lock_table(void) { /* read_lock() synchronizes us to pfkey_table_grab */ read_lock(&pfkey_table_lock); atomic_inc(&pfkey_table_users); read_unlock(&pfkey_table_lock); } static __inline__ void pfkey_unlock_table(void) { if (atomic_dec_and_test(&pfkey_table_users)) wake_up(&pfkey_table_wait); } static const struct proto_ops pfkey_ops; static void pfkey_insert(struct sock *sk) { pfkey_table_grab(); sk_add_node(sk, &pfkey_table); pfkey_table_ungrab(); } static void pfkey_remove(struct sock *sk) { pfkey_table_grab(); sk_del_node_init(sk); pfkey_table_ungrab(); } static struct proto key_proto = { .name = "KEY", .owner = THIS_MODULE, .obj_size = sizeof(struct pfkey_sock), }; static int pfkey_create(struct socket *sock, int protocol) { struct sock *sk; int err; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (sock->type != SOCK_RAW) return -ESOCKTNOSUPPORT; if (protocol != PF_KEY_V2) return -EPROTONOSUPPORT; err = -ENOMEM; sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1); if (sk == NULL) goto out; sock->ops = &pfkey_ops; sock_init_data(sock, sk); sk->sk_family = PF_KEY; sk->sk_destruct = pfkey_sock_destruct; atomic_inc(&pfkey_socks_nr); pfkey_insert(sk); return 0; out: return err; } static int pfkey_release(struct socket *sock) { struct sock *sk = sock->sk; if (!sk) return 0; pfkey_remove(sk); sock_orphan(sk); sock->sk = NULL; skb_queue_purge(&sk->sk_write_queue); sock_put(sk); return 0; } static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2, gfp_t allocation, struct sock *sk) { int err = -ENOBUFS; sock_hold(sk); if (*skb2 == NULL) { if (atomic_read(&skb->users) != 1) { *skb2 = skb_clone(skb, allocation); } else { *skb2 = skb; atomic_inc(&skb->users); } } if (*skb2 != NULL) { if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) { skb_orphan(*skb2); skb_set_owner_r(*skb2, sk); skb_queue_tail(&sk->sk_receive_queue, *skb2); sk->sk_data_ready(sk, (*skb2)->len); *skb2 = NULL; err = 0; } } sock_put(sk); return err; } /* Send SKB to all pfkey sockets matching selected criteria. */ #define BROADCAST_ALL 0 #define BROADCAST_ONE 1 #define BROADCAST_REGISTERED 2 #define BROADCAST_PROMISC_ONLY 4 static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation, int broadcast_flags, struct sock *one_sk) { struct sock *sk; struct hlist_node *node; struct sk_buff *skb2 = NULL; int err = -ESRCH; /* XXX Do we need something like netlink_overrun? I think * XXX PF_KEY socket apps will not mind current behavior. */ if (!skb) return -ENOMEM; pfkey_lock_table(); sk_for_each(sk, node, &pfkey_table) { struct pfkey_sock *pfk = pfkey_sk(sk); int err2; /* Yes, it means that if you are meant to receive this * pfkey message you receive it twice as promiscuous * socket. */ if (pfk->promisc) pfkey_broadcast_one(skb, &skb2, allocation, sk); /* the exact target will be processed later */ if (sk == one_sk) continue; if (broadcast_flags != BROADCAST_ALL) { if (broadcast_flags & BROADCAST_PROMISC_ONLY) continue; if ((broadcast_flags & BROADCAST_REGISTERED) && !pfk->registered) continue; if (broadcast_flags & BROADCAST_ONE) continue; } err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk); /* Error is cleare after succecful sending to at least one * registered KM */ if ((broadcast_flags & BROADCAST_REGISTERED) && err) err = err2; } pfkey_unlock_table(); if (one_sk != NULL) err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk); if (skb2) kfree_skb(skb2); kfree_skb(skb); return err; } static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig) { *new = *orig; } static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk) { struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL); struct sadb_msg *hdr; if (!skb) return -ENOBUFS; /* Woe be to the platform trying to support PFKEY yet * having normal errnos outside the 1-255 range, inclusive. */ err = -err; if (err == ERESTARTSYS || err == ERESTARTNOHAND || err == ERESTARTNOINTR) err = EINTR; if (err >= 512) err = EINVAL; BUG_ON(err <= 0 || err >= 256); hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); pfkey_hdr_dup(hdr, orig); hdr->sadb_msg_errno = (uint8_t) err; hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk); return 0; } static u8 sadb_ext_min_len[] = { [SADB_EXT_RESERVED] = (u8) 0, [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa), [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime), [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime), [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime), [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address), [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address), [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address), [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key), [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key), [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident), [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident), [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens), [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop), [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported), [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported), [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange), [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate), [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy), [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2), [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type), [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port), [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port), [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address), [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx), }; /* Verify sadb_address_{len,prefixlen} against sa_family. */ static int verify_address_len(void *p) { struct sadb_address *sp = p; struct sockaddr *addr = (struct sockaddr *)(sp + 1); struct sockaddr_in *sin; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) struct sockaddr_in6 *sin6; #endif int len; switch (addr->sa_family) { case AF_INET: len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1); len /= sizeof(uint64_t); if (sp->sadb_address_len != len || sp->sadb_address_prefixlen > 32) return -EINVAL; break; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) case AF_INET6: len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1); len /= sizeof(uint64_t); if (sp->sadb_address_len != len || sp->sadb_address_prefixlen > 128) return -EINVAL; break; #endif default: /* It is user using kernel to keep track of security * associations for another protocol, such as * OSPF/RSVP/RIPV2/MIP. It is user's job to verify * lengths. * * XXX Actually, association/policy database is not yet * XXX able to cope with arbitrary sockaddr families. * XXX When it can, remove this -EINVAL. -DaveM */ return -EINVAL; break; }; return 0; } static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx) { int len = 0; len += sizeof(struct sadb_x_sec_ctx); len += sec_ctx->sadb_x_ctx_len; len += sizeof(uint64_t) - 1; len /= sizeof(uint64_t); return len; } static inline int verify_sec_ctx_len(void *p) { struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p; int len; if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE) return -EINVAL; len = pfkey_sec_ctx_len(sec_ctx); if (sec_ctx->sadb_x_sec_len != len) return -EINVAL; return 0; } static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx) { struct xfrm_user_sec_ctx *uctx = NULL; int ctx_size = sec_ctx->sadb_x_ctx_len; uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL); if (!uctx) return NULL; uctx->len = pfkey_sec_ctx_len(sec_ctx); uctx->exttype = sec_ctx->sadb_x_sec_exttype; uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi; uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg; uctx->ctx_len = sec_ctx->sadb_x_ctx_len; memcpy(uctx + 1, sec_ctx + 1, uctx->ctx_len); return uctx; } static int present_and_same_family(struct sadb_address *src, struct sadb_address *dst) { struct sockaddr *s_addr, *d_addr; if (!src || !dst) return 0; s_addr = (struct sockaddr *)(src + 1); d_addr = (struct sockaddr *)(dst + 1); if (s_addr->sa_family != d_addr->sa_family) return 0; if (s_addr->sa_family != AF_INET #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) && s_addr->sa_family != AF_INET6 #endif ) return 0; return 1; } static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { char *p = (char *) hdr; int len = skb->len; len -= sizeof(*hdr); p += sizeof(*hdr); while (len > 0) { struct sadb_ext *ehdr = (struct sadb_ext *) p; uint16_t ext_type; int ext_len; ext_len = ehdr->sadb_ext_len; ext_len *= sizeof(uint64_t); ext_type = ehdr->sadb_ext_type; if (ext_len < sizeof(uint64_t) || ext_len > len || ext_type == SADB_EXT_RESERVED) return -EINVAL; if (ext_type <= SADB_EXT_MAX) { int min = (int) sadb_ext_min_len[ext_type]; if (ext_len < min) return -EINVAL; if (ext_hdrs[ext_type-1] != NULL) return -EINVAL; if (ext_type == SADB_EXT_ADDRESS_SRC || ext_type == SADB_EXT_ADDRESS_DST || ext_type == SADB_EXT_ADDRESS_PROXY || ext_type == SADB_X_EXT_NAT_T_OA) { if (verify_address_len(p)) return -EINVAL; } if (ext_type == SADB_X_EXT_SEC_CTX) { if (verify_sec_ctx_len(p)) return -EINVAL; } ext_hdrs[ext_type-1] = p; } p += ext_len; len -= ext_len; } return 0; } static uint16_t pfkey_satype2proto(uint8_t satype) { switch (satype) { case SADB_SATYPE_UNSPEC: return IPSEC_PROTO_ANY; case SADB_SATYPE_AH: return IPPROTO_AH; case SADB_SATYPE_ESP: return IPPROTO_ESP; case SADB_X_SATYPE_IPCOMP: return IPPROTO_COMP; break; default: return 0; } /* NOTREACHED */ } static uint8_t pfkey_proto2satype(uint16_t proto) { switch (proto) { case IPPROTO_AH: return SADB_SATYPE_AH; case IPPROTO_ESP: return SADB_SATYPE_ESP; case IPPROTO_COMP: return SADB_X_SATYPE_IPCOMP; break; default: return 0; } /* NOTREACHED */ } /* BTW, this scheme means that there is no way with PFKEY2 sockets to * say specifically 'just raw sockets' as we encode them as 255. */ static uint8_t pfkey_proto_to_xfrm(uint8_t proto) { return (proto == IPSEC_PROTO_ANY ? 0 : proto); } static uint8_t pfkey_proto_from_xfrm(uint8_t proto) { return (proto ? proto : IPSEC_PROTO_ANY); } static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr) { switch (((struct sockaddr*)(addr + 1))->sa_family) { case AF_INET: xaddr->a4 = ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr; return AF_INET; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) case AF_INET6: memcpy(xaddr->a6, &((struct sockaddr_in6 *)(addr + 1))->sin6_addr, sizeof(struct in6_addr)); return AF_INET6; #endif default: return 0; } /* NOTREACHED */ } static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs) { struct sadb_sa *sa; struct sadb_address *addr; uint16_t proto; unsigned short family; xfrm_address_t *xaddr; sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1]; if (sa == NULL) return NULL; proto = pfkey_satype2proto(hdr->sadb_msg_satype); if (proto == 0) return NULL; /* sadb_address_len should be checked by caller */ addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1]; if (addr == NULL) return NULL; family = ((struct sockaddr *)(addr + 1))->sa_family; switch (family) { case AF_INET: xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr; break; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) case AF_INET6: xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr; break; #endif default: xaddr = NULL; } if (!xaddr) return NULL; return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family); } #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1))) static int pfkey_sockaddr_size(sa_family_t family) { switch (family) { case AF_INET: return PFKEY_ALIGN8(sizeof(struct sockaddr_in)); #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) case AF_INET6: return PFKEY_ALIGN8(sizeof(struct sockaddr_in6)); #endif default: return 0; } /* NOTREACHED */ } static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc) { struct sk_buff *skb; struct sadb_msg *hdr; struct sadb_sa *sa; struct sadb_lifetime *lifetime; struct sadb_address *addr; struct sadb_key *key; struct sadb_x_sa2 *sa2; struct sockaddr_in *sin; struct sadb_x_sec_ctx *sec_ctx; struct xfrm_sec_ctx *xfrm_ctx; int ctx_size = 0; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) struct sockaddr_in6 *sin6; #endif int size; int auth_key_size = 0; int encrypt_key_size = 0; int sockaddr_size; struct xfrm_encap_tmpl *natt = NULL; /* address family check */ sockaddr_size = pfkey_sockaddr_size(x->props.family); if (!sockaddr_size) return ERR_PTR(-EINVAL); /* base, SA, (lifetime (HSC),) address(SD), (address(P),) key(AE), (identity(SD),) (sensitivity)> */ size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) + sizeof(struct sadb_lifetime) + ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) + ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) + sizeof(struct sadb_address)*2 + sockaddr_size*2 + sizeof(struct sadb_x_sa2); if ((xfrm_ctx = x->security)) { ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len); size += sizeof(struct sadb_x_sec_ctx) + ctx_size; } /* identity & sensitivity */ if ((x->props.family == AF_INET && x->sel.saddr.a4 != x->props.saddr.a4) #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) || (x->props.family == AF_INET6 && memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr))) #endif ) size += sizeof(struct sadb_address) + sockaddr_size; if (add_keys) { if (x->aalg && x->aalg->alg_key_len) { auth_key_size = PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8); size += sizeof(struct sadb_key) + auth_key_size; } if (x->ealg && x->ealg->alg_key_len) { encrypt_key_size = PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8); size += sizeof(struct sadb_key) + encrypt_key_size; } } if (x->encap) natt = x->encap; if (natt && natt->encap_type) { size += sizeof(struct sadb_x_nat_t_type); size += sizeof(struct sadb_x_nat_t_port); size += sizeof(struct sadb_x_nat_t_port); } skb = alloc_skb(size + 16, GFP_ATOMIC); if (skb == NULL) return ERR_PTR(-ENOBUFS); /* call should fill header later */ hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); memset(hdr, 0, size); /* XXX do we need this ? */ hdr->sadb_msg_len = size / sizeof(uint64_t); /* sa */ sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa)); sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t); sa->sadb_sa_exttype = SADB_EXT_SA; sa->sadb_sa_spi = x->id.spi; sa->sadb_sa_replay = x->props.replay_window; switch (x->km.state) { case XFRM_STATE_VALID: sa->sadb_sa_state = x->km.dying ? SADB_SASTATE_DYING : SADB_SASTATE_MATURE; break; case XFRM_STATE_ACQ: sa->sadb_sa_state = SADB_SASTATE_LARVAL; break; default: sa->sadb_sa_state = SADB_SASTATE_DEAD; break; } sa->sadb_sa_auth = 0; if (x->aalg) { struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0); sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0; } sa->sadb_sa_encrypt = 0; BUG_ON(x->ealg && x->calg); if (x->ealg) { struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0); sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0; } /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */ if (x->calg) { struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0); sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0; } sa->sadb_sa_flags = 0; if (x->props.flags & XFRM_STATE_NOECN) sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN; if (x->props.flags & XFRM_STATE_DECAP_DSCP) sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP; if (x->props.flags & XFRM_STATE_NOPMTUDISC) sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC; /* hard time */ if (hsc & 2) { lifetime = (struct sadb_lifetime *) skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit); lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit); lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds; lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds; } /* soft time */ if (hsc & 1) { lifetime = (struct sadb_lifetime *) skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit); lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit); lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds; lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds; } /* current time */ lifetime = (struct sadb_lifetime *) skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lifetime->sadb_lifetime_allocations = x->curlft.packets; lifetime->sadb_lifetime_bytes = x->curlft.bytes; lifetime->sadb_lifetime_addtime = x->curlft.add_time; lifetime->sadb_lifetime_usetime = x->curlft.use_time; /* src address */ addr = (struct sadb_address*) skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; /* "if the ports are non-zero, then the sadb_address_proto field, normally zero, MUST be filled in with the transport protocol's number." - RFC2367 */ addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; if (x->props.family == AF_INET) { addr->sadb_address_prefixlen = 32; sin = (struct sockaddr_in *) (addr + 1); sin->sin_family = AF_INET; sin->sin_addr.s_addr = x->props.saddr.a4; sin->sin_port = 0; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (x->props.family == AF_INET6) { addr->sadb_address_prefixlen = 128; sin6 = (struct sockaddr_in6 *) (addr + 1); sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, x->props.saddr.a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; } #endif else BUG(); /* dst address */ addr = (struct sadb_address*) skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; addr->sadb_address_proto = 0; addr->sadb_address_prefixlen = 32; /* XXX */ addr->sadb_address_reserved = 0; if (x->props.family == AF_INET) { sin = (struct sockaddr_in *) (addr + 1); sin->sin_family = AF_INET; sin->sin_addr.s_addr = x->id.daddr.a4; sin->sin_port = 0; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); if (x->sel.saddr.a4 != x->props.saddr.a4) { addr = (struct sadb_address*) skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY; addr->sadb_address_proto = pfkey_proto_from_xfrm(x->sel.proto); addr->sadb_address_prefixlen = x->sel.prefixlen_s; addr->sadb_address_reserved = 0; sin = (struct sockaddr_in *) (addr + 1); sin->sin_family = AF_INET; sin->sin_addr.s_addr = x->sel.saddr.a4; sin->sin_port = x->sel.sport; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (x->props.family == AF_INET6) { addr->sadb_address_prefixlen = 128; sin6 = (struct sockaddr_in6 *) (addr + 1); sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; if (memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof(struct in6_addr))) { addr = (struct sadb_address *) skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY; addr->sadb_address_proto = pfkey_proto_from_xfrm(x->sel.proto); addr->sadb_address_prefixlen = x->sel.prefixlen_s; addr->sadb_address_reserved = 0; sin6 = (struct sockaddr_in6 *) (addr + 1); sin6->sin6_family = AF_INET6; sin6->sin6_port = x->sel.sport; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, x->sel.saddr.a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; } } #endif else BUG(); /* auth key */ if (add_keys && auth_key_size) { key = (struct sadb_key *) skb_put(skb, sizeof(struct sadb_key)+auth_key_size); key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) / sizeof(uint64_t); key->sadb_key_exttype = SADB_EXT_KEY_AUTH; key->sadb_key_bits = x->aalg->alg_key_len; key->sadb_key_reserved = 0; memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8); } /* encrypt key */ if (add_keys && encrypt_key_size) { key = (struct sadb_key *) skb_put(skb, sizeof(struct sadb_key)+encrypt_key_size); key->sadb_key_len = (sizeof(struct sadb_key) + encrypt_key_size) / sizeof(uint64_t); key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT; key->sadb_key_bits = x->ealg->alg_key_len; key->sadb_key_reserved = 0; memcpy(key + 1, x->ealg->alg_key, (x->ealg->alg_key_len+7)/8); } /* sa */ sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2)); sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t); sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2; sa2->sadb_x_sa2_mode = x->props.mode + 1; sa2->sadb_x_sa2_reserved1 = 0; sa2->sadb_x_sa2_reserved2 = 0; sa2->sadb_x_sa2_sequence = 0; sa2->sadb_x_sa2_reqid = x->props.reqid; if (natt && natt->encap_type) { struct sadb_x_nat_t_type *n_type; struct sadb_x_nat_t_port *n_port; /* type */ n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type)); n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t); n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; n_type->sadb_x_nat_t_type_type = natt->encap_type; n_type->sadb_x_nat_t_type_reserved[0] = 0; n_type->sadb_x_nat_t_type_reserved[1] = 0; n_type->sadb_x_nat_t_type_reserved[2] = 0; /* source port */ n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; n_port->sadb_x_nat_t_port_port = natt->encap_sport; n_port->sadb_x_nat_t_port_reserved = 0; /* dest port */ n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; n_port->sadb_x_nat_t_port_port = natt->encap_dport; n_port->sadb_x_nat_t_port_reserved = 0; } /* security context */ if (xfrm_ctx) { sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, sizeof(struct sadb_x_sec_ctx) + ctx_size); sec_ctx->sadb_x_sec_len = (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t); sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, xfrm_ctx->ctx_len); } return skb; } static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr, void **ext_hdrs) { struct xfrm_state *x; struct sadb_lifetime *lifetime; struct sadb_sa *sa; struct sadb_key *key; struct sadb_x_sec_ctx *sec_ctx; uint16_t proto; int err; sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1]; if (!sa || !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1])) return ERR_PTR(-EINVAL); if (hdr->sadb_msg_satype == SADB_SATYPE_ESP && !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]) return ERR_PTR(-EINVAL); if (hdr->sadb_msg_satype == SADB_SATYPE_AH && !ext_hdrs[SADB_EXT_KEY_AUTH-1]) return ERR_PTR(-EINVAL); if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] != !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) return ERR_PTR(-EINVAL); proto = pfkey_satype2proto(hdr->sadb_msg_satype); if (proto == 0) return ERR_PTR(-EINVAL); /* default error is no buffer space */ err = -ENOBUFS; /* RFC2367: Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state. Therefore, the sadb_sa_state field of all submitted SAs MUST be SADB_SASTATE_MATURE and the kernel MUST return an error if this is not true. However, KAME setkey always uses SADB_SASTATE_LARVAL. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable. */ if (sa->sadb_sa_auth > SADB_AALG_MAX || (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP && sa->sadb_sa_encrypt > SADB_X_CALG_MAX) || sa->sadb_sa_encrypt > SADB_EALG_MAX) return ERR_PTR(-EINVAL); key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1]; if (key != NULL && sa->sadb_sa_auth != SADB_X_AALG_NULL && ((key->sadb_key_bits+7) / 8 == 0 || (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t))) return ERR_PTR(-EINVAL); key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]; if (key != NULL && sa->sadb_sa_encrypt != SADB_EALG_NULL && ((key->sadb_key_bits+7) / 8 == 0 || (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t))) return ERR_PTR(-EINVAL); x = xfrm_state_alloc(); if (x == NULL) return ERR_PTR(-ENOBUFS); x->id.proto = proto; x->id.spi = sa->sadb_sa_spi; x->props.replay_window = sa->sadb_sa_replay; if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN) x->props.flags |= XFRM_STATE_NOECN; if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP) x->props.flags |= XFRM_STATE_DECAP_DSCP; if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC) x->props.flags |= XFRM_STATE_NOPMTUDISC; lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1]; if (lifetime != NULL) { x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime; x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime; } lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]; if (lifetime != NULL) { x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime; x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime; } sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1]; if (sec_ctx != NULL) { struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); if (!uctx) goto out; err = security_xfrm_state_alloc(x, uctx); kfree(uctx); if (err) goto out; } key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1]; if (sa->sadb_sa_auth) { int keysize = 0; struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth); if (!a) { err = -ENOSYS; goto out; } if (key) keysize = (key->sadb_key_bits + 7) / 8; x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL); if (!x->aalg) goto out; strcpy(x->aalg->alg_name, a->name); x->aalg->alg_key_len = 0; if (key) { x->aalg->alg_key_len = key->sadb_key_bits; memcpy(x->aalg->alg_key, key+1, keysize); } x->props.aalgo = sa->sadb_sa_auth; /* x->algo.flags = sa->sadb_sa_flags; */ } if (sa->sadb_sa_encrypt) { if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) { struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt); if (!a) { err = -ENOSYS; goto out; } x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL); if (!x->calg) goto out; strcpy(x->calg->alg_name, a->name); x->props.calgo = sa->sadb_sa_encrypt; } else { int keysize = 0; struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt); if (!a) { err = -ENOSYS; goto out; } key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]; if (key) keysize = (key->sadb_key_bits + 7) / 8; x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL); if (!x->ealg) goto out; strcpy(x->ealg->alg_name, a->name); x->ealg->alg_key_len = 0; if (key) { x->ealg->alg_key_len = key->sadb_key_bits; memcpy(x->ealg->alg_key, key+1, keysize); } x->props.ealgo = sa->sadb_sa_encrypt; } } /* x->algo.flags = sa->sadb_sa_flags; */ x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1], &x->props.saddr); if (!x->props.family) { err = -EAFNOSUPPORT; goto out; } pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1], &x->id.daddr); if (ext_hdrs[SADB_X_EXT_SA2-1]) { struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1]; x->props.mode = sa2->sadb_x_sa2_mode; if (x->props.mode) x->props.mode--; x->props.reqid = sa2->sadb_x_sa2_reqid; } if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) { struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]; /* Nobody uses this, but we try. */ x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr); x->sel.prefixlen_s = addr->sadb_address_prefixlen; } if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) { struct sadb_x_nat_t_type* n_type; struct xfrm_encap_tmpl *natt; x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL); if (!x->encap) goto out; natt = x->encap; n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]; natt->encap_type = n_type->sadb_x_nat_t_type_type; if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) { struct sadb_x_nat_t_port* n_port = ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]; natt->encap_sport = n_port->sadb_x_nat_t_port_port; } if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) { struct sadb_x_nat_t_port* n_port = ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]; natt->encap_dport = n_port->sadb_x_nat_t_port_port; } } err = xfrm_init_state(x); if (err) goto out; x->km.seq = hdr->sadb_msg_seq; return x; out: x->km.state = XFRM_STATE_DEAD; xfrm_state_put(x); return ERR_PTR(err); } static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { return -EOPNOTSUPP; } static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { struct sk_buff *resp_skb; struct sadb_x_sa2 *sa2; struct sadb_address *saddr, *daddr; struct sadb_msg *out_hdr; struct xfrm_state *x = NULL; u8 mode; u32 reqid; u8 proto; unsigned short family; xfrm_address_t *xsaddr = NULL, *xdaddr = NULL; if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1])) return -EINVAL; proto = pfkey_satype2proto(hdr->sadb_msg_satype); if (proto == 0) return -EINVAL; if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) { mode = sa2->sadb_x_sa2_mode - 1; reqid = sa2->sadb_x_sa2_reqid; } else { mode = 0; reqid = 0; } saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1]; daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1]; family = ((struct sockaddr *)(saddr + 1))->sa_family; switch (family) { case AF_INET: xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr; xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr; break; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) case AF_INET6: xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr; xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr; break; #endif } if (hdr->sadb_msg_seq) { x = xfrm_find_acq_byseq(hdr->sadb_msg_seq); if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) { xfrm_state_put(x); x = NULL; } } if (!x) x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family); if (x == NULL) return -ENOENT; resp_skb = ERR_PTR(-ENOENT); spin_lock_bh(&x->lock); if (x->km.state != XFRM_STATE_DEAD) { struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1]; u32 min_spi, max_spi; if (range != NULL) { min_spi = range->sadb_spirange_min; max_spi = range->sadb_spirange_max; } else { min_spi = 0x100; max_spi = 0x0fffffff; } xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi)); if (x->id.spi) resp_skb = pfkey_xfrm_state2msg(x, 0, 3); } spin_unlock_bh(&x->lock); if (IS_ERR(resp_skb)) { xfrm_state_put(x); return PTR_ERR(resp_skb); } out_hdr = (struct sadb_msg *) resp_skb->data; out_hdr->sadb_msg_version = hdr->sadb_msg_version; out_hdr->sadb_msg_type = SADB_GETSPI; out_hdr->sadb_msg_satype = pfkey_proto2satype(proto); out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_reserved = 0; out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; xfrm_state_put(x); pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk); return 0; } static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { struct xfrm_state *x; if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8) return -EOPNOTSUPP; if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0) return 0; x = xfrm_find_acq_byseq(hdr->sadb_msg_seq); if (x == NULL) return 0; spin_lock_bh(&x->lock); if (x->km.state == XFRM_STATE_ACQ) { x->km.state = XFRM_STATE_ERROR; wake_up(&km_waitq); } spin_unlock_bh(&x->lock); xfrm_state_put(x); return 0; } static inline int event2poltype(int event) { switch (event) { case XFRM_MSG_DELPOLICY: return SADB_X_SPDDELETE; case XFRM_MSG_NEWPOLICY: return SADB_X_SPDADD; case XFRM_MSG_UPDPOLICY: return SADB_X_SPDUPDATE; case XFRM_MSG_POLEXPIRE: // return SADB_X_SPDEXPIRE; default: printk("pfkey: Unknown policy event %d\n", event); break; } return 0; } static inline int event2keytype(int event) { switch (event) { case XFRM_MSG_DELSA: return SADB_DELETE; case XFRM_MSG_NEWSA: return SADB_ADD; case XFRM_MSG_UPDSA: return SADB_UPDATE; case XFRM_MSG_EXPIRE: return SADB_EXPIRE; default: printk("pfkey: Unknown SA event %d\n", event); break; } return 0; } /* ADD/UPD/DEL */ static int key_notify_sa(struct xfrm_state *x, struct km_event *c) { struct sk_buff *skb; struct sadb_msg *hdr; int hsc = 3; if (c->event == XFRM_MSG_DELSA) hsc = 0; skb = pfkey_xfrm_state2msg(x, 0, hsc); if (IS_ERR(skb)) return PTR_ERR(skb); hdr = (struct sadb_msg *) skb->data; hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_type = event2keytype(c->event); hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); hdr->sadb_msg_errno = 0; hdr->sadb_msg_reserved = 0; hdr->sadb_msg_seq = c->seq; hdr->sadb_msg_pid = c->pid; pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL); return 0; } static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { struct xfrm_state *x; int err; struct km_event c; xfrm_probe_algs(); x = pfkey_msg2xfrm_state(hdr, ext_hdrs); if (IS_ERR(x)) return PTR_ERR(x); xfrm_state_hold(x); if (hdr->sadb_msg_type == SADB_ADD) err = xfrm_state_add(x); else err = xfrm_state_update(x); if (err < 0) { x->km.state = XFRM_STATE_DEAD; __xfrm_state_put(x); goto out; } if (hdr->sadb_msg_type == SADB_ADD) c.event = XFRM_MSG_NEWSA; else c.event = XFRM_MSG_UPDSA; c.seq = hdr->sadb_msg_seq; c.pid = hdr->sadb_msg_pid; km_state_notify(x, &c); out: xfrm_state_put(x); return err; } static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { struct xfrm_state *x; struct km_event c; int err; if (!ext_hdrs[SADB_EXT_SA-1] || !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1])) return -EINVAL; x = pfkey_xfrm_state_lookup(hdr, ext_hdrs); if (x == NULL) return -ESRCH; if (xfrm_state_kern(x)) { xfrm_state_put(x); return -EPERM; } err = xfrm_state_delete(x); if (err < 0) { xfrm_state_put(x); return err; } c.seq = hdr->sadb_msg_seq; c.pid = hdr->sadb_msg_pid; c.event = XFRM_MSG_DELSA; km_state_notify(x, &c); xfrm_state_put(x); return err; } static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { __u8 proto; struct sk_buff *out_skb; struct sadb_msg *out_hdr; struct xfrm_state *x; if (!ext_hdrs[SADB_EXT_SA-1] || !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1])) return -EINVAL; x = pfkey_xfrm_state_lookup(hdr, ext_hdrs); if (x == NULL) return -ESRCH; out_skb = pfkey_xfrm_state2msg(x, 1, 3); proto = x->id.proto; xfrm_state_put(x); if (IS_ERR(out_skb)) return PTR_ERR(out_skb); out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = hdr->sadb_msg_version; out_hdr->sadb_msg_type = SADB_DUMP; out_hdr->sadb_msg_satype = pfkey_proto2satype(proto); out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_reserved = 0; out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk); return 0; } static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig, gfp_t allocation) { struct sk_buff *skb; struct sadb_msg *hdr; int len, auth_len, enc_len, i; auth_len = xfrm_count_auth_supported(); if (auth_len) { auth_len *= sizeof(struct sadb_alg); auth_len += sizeof(struct sadb_supported); } enc_len = xfrm_count_enc_supported(); if (enc_len) { enc_len *= sizeof(struct sadb_alg); enc_len += sizeof(struct sadb_supported); } len = enc_len + auth_len + sizeof(struct sadb_msg); skb = alloc_skb(len + 16, allocation); if (!skb) goto out_put_algs; hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr)); pfkey_hdr_dup(hdr, orig); hdr->sadb_msg_errno = 0; hdr->sadb_msg_len = len / sizeof(uint64_t); if (auth_len) { struct sadb_supported *sp; struct sadb_alg *ap; sp = (struct sadb_supported *) skb_put(skb, auth_len); ap = (struct sadb_alg *) (sp + 1); sp->sadb_supported_len = auth_len / sizeof(uint64_t); sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; for (i = 0; ; i++) { struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); if (!aalg) break; if (aalg->available) *ap++ = aalg->desc; } } if (enc_len) { struct sadb_supported *sp; struct sadb_alg *ap; sp = (struct sadb_supported *) skb_put(skb, enc_len); ap = (struct sadb_alg *) (sp + 1); sp->sadb_supported_len = enc_len / sizeof(uint64_t); sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; for (i = 0; ; i++) { struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); if (!ealg) break; if (ealg->available) *ap++ = ealg->desc; } } out_put_algs: return skb; } static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { struct pfkey_sock *pfk = pfkey_sk(sk); struct sk_buff *supp_skb; if (hdr->sadb_msg_satype > SADB_SATYPE_MAX) return -EINVAL; if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) { if (pfk->registered&(1<<hdr->sadb_msg_satype)) return -EEXIST; pfk->registered |= (1<<hdr->sadb_msg_satype); } xfrm_probe_algs(); supp_skb = compose_sadb_supported(hdr, GFP_KERNEL); if (!supp_skb) { if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) pfk->registered &= ~(1<<hdr->sadb_msg_satype); return -ENOBUFS; } pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk); return 0; } static int key_notify_sa_flush(struct km_event *c) { struct sk_buff *skb; struct sadb_msg *hdr; skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); if (!skb) return -ENOBUFS; hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto); hdr->sadb_msg_type = SADB_FLUSH; hdr->sadb_msg_seq = c->seq; hdr->sadb_msg_pid = c->pid; hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_errno = (uint8_t) 0; hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL); return 0; } static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { unsigned proto; struct km_event c; proto = pfkey_satype2proto(hdr->sadb_msg_satype); if (proto == 0) return -EINVAL; xfrm_state_flush(proto); c.data.proto = proto; c.seq = hdr->sadb_msg_seq; c.pid = hdr->sadb_msg_pid; c.event = XFRM_MSG_FLUSHSA; km_state_notify(NULL, &c); return 0; } struct pfkey_dump_data { struct sk_buff *skb; struct sadb_msg *hdr; struct sock *sk; }; static int dump_sa(struct xfrm_state *x, int count, void *ptr) { struct pfkey_dump_data *data = ptr; struct sk_buff *out_skb; struct sadb_msg *out_hdr; out_skb = pfkey_xfrm_state2msg(x, 1, 3); if (IS_ERR(out_skb)) return PTR_ERR(out_skb); out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = data->hdr->sadb_msg_version; out_hdr->sadb_msg_type = SADB_DUMP; out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_reserved = 0; out_hdr->sadb_msg_seq = count; out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid; pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk); return 0; } static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { u8 proto; struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk }; proto = pfkey_satype2proto(hdr->sadb_msg_satype); if (proto == 0) return -EINVAL; return xfrm_state_walk(proto, dump_sa, &data); } static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { struct pfkey_sock *pfk = pfkey_sk(sk); int satype = hdr->sadb_msg_satype; if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) { /* XXX we mangle packet... */ hdr->sadb_msg_errno = 0; if (satype != 0 && satype != 1) return -EINVAL; pfk->promisc = satype; } pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL); return 0; } static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr) { int i; u32 reqid = *(u32*)ptr; for (i=0; i<xp->xfrm_nr; i++) { if (xp->xfrm_vec[i].reqid == reqid) return -EEXIST; } return 0; } static u32 gen_reqid(void) { u32 start; static u32 reqid = IPSEC_MANUAL_REQID_MAX; start = reqid; do { ++reqid; if (reqid == 0) reqid = IPSEC_MANUAL_REQID_MAX+1; if (xfrm_policy_walk(check_reqid, (void*)&reqid) != -EEXIST) return reqid; } while (reqid != start); return 0; } static int parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq) { struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr; struct sockaddr_in *sin; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) struct sockaddr_in6 *sin6; #endif if (xp->xfrm_nr >= XFRM_MAX_DEPTH) return -ELOOP; if (rq->sadb_x_ipsecrequest_mode == 0) return -EINVAL; t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */ t->mode = rq->sadb_x_ipsecrequest_mode-1; if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE) t->optional = 1; else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) { t->reqid = rq->sadb_x_ipsecrequest_reqid; if (t->reqid > IPSEC_MANUAL_REQID_MAX) t->reqid = 0; if (!t->reqid && !(t->reqid = gen_reqid())) return -ENOBUFS; } /* addresses present only in tunnel mode */ if (t->mode) { switch (xp->family) { case AF_INET: sin = (void*)(rq+1); if (sin->sin_family != AF_INET) return -EINVAL; t->saddr.a4 = sin->sin_addr.s_addr; sin++; if (sin->sin_family != AF_INET) return -EINVAL; t->id.daddr.a4 = sin->sin_addr.s_addr; break; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) case AF_INET6: sin6 = (void *)(rq+1); if (sin6->sin6_family != AF_INET6) return -EINVAL; memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr)); sin6++; if (sin6->sin6_family != AF_INET6) return -EINVAL; memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr)); break; #endif default: return -EINVAL; } } /* No way to set this via kame pfkey */ t->aalgos = t->ealgos = t->calgos = ~0; xp->xfrm_nr++; return 0; } static int parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol) { int err; int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy); struct sadb_x_ipsecrequest *rq = (void*)(pol+1); while (len >= sizeof(struct sadb_x_ipsecrequest)) { if ((err = parse_ipsecrequest(xp, rq)) < 0) return err; len -= rq->sadb_x_ipsecrequest_len; rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len); } return 0; } static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp) { struct xfrm_sec_ctx *xfrm_ctx = xp->security; if (xfrm_ctx) { int len = sizeof(struct sadb_x_sec_ctx); len += xfrm_ctx->ctx_len; return PFKEY_ALIGN8(len); } return 0; } static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp) { int sockaddr_size = pfkey_sockaddr_size(xp->family); int socklen = (xp->family == AF_INET ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)); return sizeof(struct sadb_msg) + (sizeof(struct sadb_lifetime) * 3) + (sizeof(struct sadb_address) * 2) + (sockaddr_size * 2) + sizeof(struct sadb_x_policy) + (xp->xfrm_nr * (sizeof(struct sadb_x_ipsecrequest) + (socklen * 2))) + pfkey_xfrm_policy2sec_ctx_size(xp); } static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp) { struct sk_buff *skb; int size; size = pfkey_xfrm_policy2msg_size(xp); skb = alloc_skb(size + 16, GFP_ATOMIC); if (skb == NULL) return ERR_PTR(-ENOBUFS); return skb; } static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir) { struct sadb_msg *hdr; struct sadb_address *addr; struct sadb_lifetime *lifetime; struct sadb_x_policy *pol; struct sockaddr_in *sin; struct sadb_x_sec_ctx *sec_ctx; struct xfrm_sec_ctx *xfrm_ctx; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) struct sockaddr_in6 *sin6; #endif int i; int size; int sockaddr_size = pfkey_sockaddr_size(xp->family); int socklen = (xp->family == AF_INET ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)); size = pfkey_xfrm_policy2msg_size(xp); /* call should fill header later */ hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); memset(hdr, 0, size); /* XXX do we need this ? */ /* src address */ addr = (struct sadb_address*) skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto); addr->sadb_address_prefixlen = xp->selector.prefixlen_s; addr->sadb_address_reserved = 0; /* src address */ if (xp->family == AF_INET) { sin = (struct sockaddr_in *) (addr + 1); sin->sin_family = AF_INET; sin->sin_addr.s_addr = xp->selector.saddr.a4; sin->sin_port = xp->selector.sport; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (xp->family == AF_INET6) { sin6 = (struct sockaddr_in6 *) (addr + 1); sin6->sin6_family = AF_INET6; sin6->sin6_port = xp->selector.sport; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, xp->selector.saddr.a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; } #endif else BUG(); /* dst address */ addr = (struct sadb_address*) skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto); addr->sadb_address_prefixlen = xp->selector.prefixlen_d; addr->sadb_address_reserved = 0; if (xp->family == AF_INET) { sin = (struct sockaddr_in *) (addr + 1); sin->sin_family = AF_INET; sin->sin_addr.s_addr = xp->selector.daddr.a4; sin->sin_port = xp->selector.dport; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (xp->family == AF_INET6) { sin6 = (struct sockaddr_in6 *) (addr + 1); sin6->sin6_family = AF_INET6; sin6->sin6_port = xp->selector.dport; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, xp->selector.daddr.a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; } #endif else BUG(); /* hard time */ lifetime = (struct sadb_lifetime *) skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit); lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit); lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds; lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds; /* soft time */ lifetime = (struct sadb_lifetime *) skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit); lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit); lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds; lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds; /* current time */ lifetime = (struct sadb_lifetime *) skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lifetime->sadb_lifetime_allocations = xp->curlft.packets; lifetime->sadb_lifetime_bytes = xp->curlft.bytes; lifetime->sadb_lifetime_addtime = xp->curlft.add_time; lifetime->sadb_lifetime_usetime = xp->curlft.use_time; pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy)); pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t); pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD; if (xp->action == XFRM_POLICY_ALLOW) { if (xp->xfrm_nr) pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; else pol->sadb_x_policy_type = IPSEC_POLICY_NONE; } pol->sadb_x_policy_dir = dir+1; pol->sadb_x_policy_id = xp->index; pol->sadb_x_policy_priority = xp->priority; for (i=0; i<xp->xfrm_nr; i++) { struct sadb_x_ipsecrequest *rq; struct xfrm_tmpl *t = xp->xfrm_vec + i; int req_size; req_size = sizeof(struct sadb_x_ipsecrequest); if (t->mode) req_size += 2*socklen; else size -= 2*socklen; rq = (void*)skb_put(skb, req_size); pol->sadb_x_policy_len += req_size/8; memset(rq, 0, sizeof(*rq)); rq->sadb_x_ipsecrequest_len = req_size; rq->sadb_x_ipsecrequest_proto = t->id.proto; rq->sadb_x_ipsecrequest_mode = t->mode+1; rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE; if (t->reqid) rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE; if (t->optional) rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE; rq->sadb_x_ipsecrequest_reqid = t->reqid; if (t->mode) { switch (xp->family) { case AF_INET: sin = (void*)(rq+1); sin->sin_family = AF_INET; sin->sin_addr.s_addr = t->saddr.a4; sin->sin_port = 0; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); sin++; sin->sin_family = AF_INET; sin->sin_addr.s_addr = t->id.daddr.a4; sin->sin_port = 0; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); break; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) case AF_INET6: sin6 = (void*)(rq+1); sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, t->saddr.a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; sin6++; sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, t->id.daddr.a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; break; #endif default: break; } } } /* security context */ if ((xfrm_ctx = xp->security)) { int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp); sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size); sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t); sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, xfrm_ctx->ctx_len); } hdr->sadb_msg_len = size / sizeof(uint64_t); hdr->sadb_msg_reserved = atomic_read(&xp->refcnt); } static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c) { struct sk_buff *out_skb; struct sadb_msg *out_hdr; int err; out_skb = pfkey_xfrm_policy2msg_prep(xp); if (IS_ERR(out_skb)) { err = PTR_ERR(out_skb); goto out; } pfkey_xfrm_policy2msg(out_skb, xp, dir); out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = PF_KEY_V2; if (c->data.byid && c->event == XFRM_MSG_DELPOLICY) out_hdr->sadb_msg_type = SADB_X_SPDDELETE2; else out_hdr->sadb_msg_type = event2poltype(c->event); out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_seq = c->seq; out_hdr->sadb_msg_pid = c->pid; pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL); out: return 0; } static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { int err = 0; struct sadb_lifetime *lifetime; struct sadb_address *sa; struct sadb_x_policy *pol; struct xfrm_policy *xp; struct km_event c; struct sadb_x_sec_ctx *sec_ctx; if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1]) || !ext_hdrs[SADB_X_EXT_POLICY-1]) return -EINVAL; pol = ext_hdrs[SADB_X_EXT_POLICY-1]; if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC) return -EINVAL; if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) return -EINVAL; xp = xfrm_policy_alloc(GFP_KERNEL); if (xp == NULL) return -ENOBUFS; xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ? XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW); xp->priority = pol->sadb_x_policy_priority; sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1], xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr); if (!xp->family) { err = -EINVAL; goto out; } xp->selector.family = xp->family; xp->selector.prefixlen_s = sa->sadb_address_prefixlen; xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port; if (xp->selector.sport) xp->selector.sport_mask = ~0; sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1], pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr); xp->selector.prefixlen_d = sa->sadb_address_prefixlen; /* Amusing, we set this twice. KAME apps appear to set same value * in both addresses. */ xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port; if (xp->selector.dport) xp->selector.dport_mask = ~0; sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1]; if (sec_ctx != NULL) { struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); if (!uctx) { err = -ENOBUFS; goto out; } err = security_xfrm_policy_alloc(xp, uctx); kfree(uctx); if (err) goto out; } xp->lft.soft_byte_limit = XFRM_INF; xp->lft.hard_byte_limit = XFRM_INF; xp->lft.soft_packet_limit = XFRM_INF; xp->lft.hard_packet_limit = XFRM_INF; if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) { xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime; xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime; } if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) { xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime; xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime; } xp->xfrm_nr = 0; if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC && (err = parse_ipsecrequests(xp, pol)) < 0) goto out; err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp, hdr->sadb_msg_type != SADB_X_SPDUPDATE); if (err) goto out; if (hdr->sadb_msg_type == SADB_X_SPDUPDATE) c.event = XFRM_MSG_UPDPOLICY; else c.event = XFRM_MSG_NEWPOLICY; c.seq = hdr->sadb_msg_seq; c.pid = hdr->sadb_msg_pid; km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c); xfrm_pol_put(xp); return 0; out: security_xfrm_policy_free(xp); kfree(xp); return err; } static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { int err; struct sadb_address *sa; struct sadb_x_policy *pol; struct xfrm_policy *xp, tmp; struct xfrm_selector sel; struct km_event c; struct sadb_x_sec_ctx *sec_ctx; if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1]) || !ext_hdrs[SADB_X_EXT_POLICY-1]) return -EINVAL; pol = ext_hdrs[SADB_X_EXT_POLICY-1]; if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) return -EINVAL; memset(&sel, 0, sizeof(sel)); sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1], sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr); sel.prefixlen_s = sa->sadb_address_prefixlen; sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port; if (sel.sport) sel.sport_mask = ~0; sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1], pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr); sel.prefixlen_d = sa->sadb_address_prefixlen; sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port; if (sel.dport) sel.dport_mask = ~0; sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1]; memset(&tmp, 0, sizeof(struct xfrm_policy)); if (sec_ctx != NULL) { struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); if (!uctx) return -ENOMEM; err = security_xfrm_policy_alloc(&tmp, uctx); kfree(uctx); if (err) return err; } xp = xfrm_policy_bysel_ctx(pol->sadb_x_policy_dir-1, &sel, tmp.security, 1); security_xfrm_policy_free(&tmp); if (xp == NULL) return -ENOENT; err = 0; c.seq = hdr->sadb_msg_seq; c.pid = hdr->sadb_msg_pid; c.event = XFRM_MSG_DELPOLICY; km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c); xfrm_pol_put(xp); return err; } static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir) { int err; struct sk_buff *out_skb; struct sadb_msg *out_hdr; err = 0; out_skb = pfkey_xfrm_policy2msg_prep(xp); if (IS_ERR(out_skb)) { err = PTR_ERR(out_skb); goto out; } pfkey_xfrm_policy2msg(out_skb, xp, dir); out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = hdr->sadb_msg_version; out_hdr->sadb_msg_type = hdr->sadb_msg_type; out_hdr->sadb_msg_satype = 0; out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk); err = 0; out: return err; } static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { unsigned int dir; int err; struct sadb_x_policy *pol; struct xfrm_policy *xp; struct km_event c; if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL) return -EINVAL; dir = xfrm_policy_id2dir(pol->sadb_x_policy_id); if (dir >= XFRM_POLICY_MAX) return -EINVAL; xp = xfrm_policy_byid(dir, pol->sadb_x_policy_id, hdr->sadb_msg_type == SADB_X_SPDDELETE2); if (xp == NULL) return -ENOENT; err = 0; c.seq = hdr->sadb_msg_seq; c.pid = hdr->sadb_msg_pid; if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) { c.data.byid = 1; c.event = XFRM_MSG_DELPOLICY; km_policy_notify(xp, dir, &c); } else { err = key_pol_get_resp(sk, xp, hdr, dir); } xfrm_pol_put(xp); return err; } static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr) { struct pfkey_dump_data *data = ptr; struct sk_buff *out_skb; struct sadb_msg *out_hdr; out_skb = pfkey_xfrm_policy2msg_prep(xp); if (IS_ERR(out_skb)) return PTR_ERR(out_skb); pfkey_xfrm_policy2msg(out_skb, xp, dir); out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = data->hdr->sadb_msg_version; out_hdr->sadb_msg_type = SADB_X_SPDDUMP; out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC; out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_seq = count; out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid; pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk); return 0; } static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk }; return xfrm_policy_walk(dump_sp, &data); } static int key_notify_policy_flush(struct km_event *c) { struct sk_buff *skb_out; struct sadb_msg *hdr; skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); if (!skb_out) return -ENOBUFS; hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg)); hdr->sadb_msg_type = SADB_X_SPDFLUSH; hdr->sadb_msg_seq = c->seq; hdr->sadb_msg_pid = c->pid; hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_errno = (uint8_t) 0; hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL); return 0; } static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) { struct km_event c; xfrm_policy_flush(); c.event = XFRM_MSG_FLUSHPOLICY; c.pid = hdr->sadb_msg_pid; c.seq = hdr->sadb_msg_seq; km_policy_notify(NULL, 0, &c); return 0; } typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs); static pfkey_handler pfkey_funcs[SADB_MAX + 1] = { [SADB_RESERVED] = pfkey_reserved, [SADB_GETSPI] = pfkey_getspi, [SADB_UPDATE] = pfkey_add, [SADB_ADD] = pfkey_add, [SADB_DELETE] = pfkey_delete, [SADB_GET] = pfkey_get, [SADB_ACQUIRE] = pfkey_acquire, [SADB_REGISTER] = pfkey_register, [SADB_EXPIRE] = NULL, [SADB_FLUSH] = pfkey_flush, [SADB_DUMP] = pfkey_dump, [SADB_X_PROMISC] = pfkey_promisc, [SADB_X_PCHANGE] = NULL, [SADB_X_SPDUPDATE] = pfkey_spdadd, [SADB_X_SPDADD] = pfkey_spdadd, [SADB_X_SPDDELETE] = pfkey_spddelete, [SADB_X_SPDGET] = pfkey_spdget, [SADB_X_SPDACQUIRE] = NULL, [SADB_X_SPDDUMP] = pfkey_spddump, [SADB_X_SPDFLUSH] = pfkey_spdflush, [SADB_X_SPDSETIDX] = pfkey_spdadd, [SADB_X_SPDDELETE2] = pfkey_spdget, }; static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr) { void *ext_hdrs[SADB_EXT_MAX]; int err; pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_PROMISC_ONLY, NULL); memset(ext_hdrs, 0, sizeof(ext_hdrs)); err = parse_exthdrs(skb, hdr, ext_hdrs); if (!err) { err = -EOPNOTSUPP; if (pfkey_funcs[hdr->sadb_msg_type]) err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs); } return err; } static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp) { struct sadb_msg *hdr = NULL; if (skb->len < sizeof(*hdr)) { *errp = -EMSGSIZE; } else { hdr = (struct sadb_msg *) skb->data; if (hdr->sadb_msg_version != PF_KEY_V2 || hdr->sadb_msg_reserved != 0 || (hdr->sadb_msg_type <= SADB_RESERVED || hdr->sadb_msg_type > SADB_MAX)) { hdr = NULL; *errp = -EINVAL; } else if (hdr->sadb_msg_len != (skb->len / sizeof(uint64_t)) || hdr->sadb_msg_len < (sizeof(struct sadb_msg) / sizeof(uint64_t))) { hdr = NULL; *errp = -EMSGSIZE; } else { *errp = 0; } } return hdr; } static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d) { return t->aalgos & (1 << d->desc.sadb_alg_id); } static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d) { return t->ealgos & (1 << d->desc.sadb_alg_id); } static int count_ah_combs(struct xfrm_tmpl *t) { int i, sz = 0; for (i = 0; ; i++) { struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); if (!aalg) break; if (aalg_tmpl_set(t, aalg) && aalg->available) sz += sizeof(struct sadb_comb); } return sz + sizeof(struct sadb_prop); } static int count_esp_combs(struct xfrm_tmpl *t) { int i, k, sz = 0; for (i = 0; ; i++) { struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); if (!ealg) break; if (!(ealg_tmpl_set(t, ealg) && ealg->available)) continue; for (k = 1; ; k++) { struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k); if (!aalg) break; if (aalg_tmpl_set(t, aalg) && aalg->available) sz += sizeof(struct sadb_comb); } } return sz + sizeof(struct sadb_prop); } static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t) { struct sadb_prop *p; int i; p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop)); p->sadb_prop_len = sizeof(struct sadb_prop)/8; p->sadb_prop_exttype = SADB_EXT_PROPOSAL; p->sadb_prop_replay = 32; memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved)); for (i = 0; ; i++) { struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); if (!aalg) break; if (aalg_tmpl_set(t, aalg) && aalg->available) { struct sadb_comb *c; c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb)); memset(c, 0, sizeof(*c)); p->sadb_prop_len += sizeof(struct sadb_comb)/8; c->sadb_comb_auth = aalg->desc.sadb_alg_id; c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits; c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits; c->sadb_comb_hard_addtime = 24*60*60; c->sadb_comb_soft_addtime = 20*60*60; c->sadb_comb_hard_usetime = 8*60*60; c->sadb_comb_soft_usetime = 7*60*60; } } } static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t) { struct sadb_prop *p; int i, k; p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop)); p->sadb_prop_len = sizeof(struct sadb_prop)/8; p->sadb_prop_exttype = SADB_EXT_PROPOSAL; p->sadb_prop_replay = 32; memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved)); for (i=0; ; i++) { struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); if (!ealg) break; if (!(ealg_tmpl_set(t, ealg) && ealg->available)) continue; for (k = 1; ; k++) { struct sadb_comb *c; struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k); if (!aalg) break; if (!(aalg_tmpl_set(t, aalg) && aalg->available)) continue; c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb)); memset(c, 0, sizeof(*c)); p->sadb_prop_len += sizeof(struct sadb_comb)/8; c->sadb_comb_auth = aalg->desc.sadb_alg_id; c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits; c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits; c->sadb_comb_encrypt = ealg->desc.sadb_alg_id; c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits; c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits; c->sadb_comb_hard_addtime = 24*60*60; c->sadb_comb_soft_addtime = 20*60*60; c->sadb_comb_hard_usetime = 8*60*60; c->sadb_comb_soft_usetime = 7*60*60; } } } static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c) { return 0; } static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c) { struct sk_buff *out_skb; struct sadb_msg *out_hdr; int hard; int hsc; hard = c->data.hard; if (hard) hsc = 2; else hsc = 1; out_skb = pfkey_xfrm_state2msg(x, 0, hsc); if (IS_ERR(out_skb)) return PTR_ERR(out_skb); out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = PF_KEY_V2; out_hdr->sadb_msg_type = SADB_EXPIRE; out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_reserved = 0; out_hdr->sadb_msg_seq = 0; out_hdr->sadb_msg_pid = 0; pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); return 0; } static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c) { switch (c->event) { case XFRM_MSG_EXPIRE: return key_notify_sa_expire(x, c); case XFRM_MSG_DELSA: case XFRM_MSG_NEWSA: case XFRM_MSG_UPDSA: return key_notify_sa(x, c); case XFRM_MSG_FLUSHSA: return key_notify_sa_flush(c); case XFRM_MSG_NEWAE: /* not yet supported */ break; default: printk("pfkey: Unknown SA event %d\n", c->event); break; } return 0; } static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c) { switch (c->event) { case XFRM_MSG_POLEXPIRE: return key_notify_policy_expire(xp, c); case XFRM_MSG_DELPOLICY: case XFRM_MSG_NEWPOLICY: case XFRM_MSG_UPDPOLICY: return key_notify_policy(xp, dir, c); case XFRM_MSG_FLUSHPOLICY: return key_notify_policy_flush(c); default: printk("pfkey: Unknown policy event %d\n", c->event); break; } return 0; } static u32 get_acqseq(void) { u32 res; static u32 acqseq; static DEFINE_SPINLOCK(acqseq_lock); spin_lock_bh(&acqseq_lock); res = (++acqseq ? : ++acqseq); spin_unlock_bh(&acqseq_lock); return res; } static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir) { struct sk_buff *skb; struct sadb_msg *hdr; struct sadb_address *addr; struct sadb_x_policy *pol; struct sockaddr_in *sin; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) struct sockaddr_in6 *sin6; #endif int sockaddr_size; int size; sockaddr_size = pfkey_sockaddr_size(x->props.family); if (!sockaddr_size) return -EINVAL; size = sizeof(struct sadb_msg) + (sizeof(struct sadb_address) * 2) + (sockaddr_size * 2) + sizeof(struct sadb_x_policy); if (x->id.proto == IPPROTO_AH) size += count_ah_combs(t); else if (x->id.proto == IPPROTO_ESP) size += count_esp_combs(t); skb = alloc_skb(size + 16, GFP_ATOMIC); if (skb == NULL) return -ENOMEM; hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_type = SADB_ACQUIRE; hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); hdr->sadb_msg_len = size / sizeof(uint64_t); hdr->sadb_msg_errno = 0; hdr->sadb_msg_reserved = 0; hdr->sadb_msg_seq = x->km.seq = get_acqseq(); hdr->sadb_msg_pid = 0; /* src address */ addr = (struct sadb_address*) skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; if (x->props.family == AF_INET) { addr->sadb_address_prefixlen = 32; sin = (struct sockaddr_in *) (addr + 1); sin->sin_family = AF_INET; sin->sin_addr.s_addr = x->props.saddr.a4; sin->sin_port = 0; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (x->props.family == AF_INET6) { addr->sadb_address_prefixlen = 128; sin6 = (struct sockaddr_in6 *) (addr + 1); sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, x->props.saddr.a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; } #endif else BUG(); /* dst address */ addr = (struct sadb_address*) skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; if (x->props.family == AF_INET) { addr->sadb_address_prefixlen = 32; sin = (struct sockaddr_in *) (addr + 1); sin->sin_family = AF_INET; sin->sin_addr.s_addr = x->id.daddr.a4; sin->sin_port = 0; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (x->props.family == AF_INET6) { addr->sadb_address_prefixlen = 128; sin6 = (struct sockaddr_in6 *) (addr + 1); sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; } #endif else BUG(); pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy)); pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t); pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; pol->sadb_x_policy_dir = dir+1; pol->sadb_x_policy_id = xp->index; /* Set sadb_comb's. */ if (x->id.proto == IPPROTO_AH) dump_ah_combs(skb, t); else if (x->id.proto == IPPROTO_ESP) dump_esp_combs(skb, t); return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); } static struct xfrm_policy *pfkey_compile_policy(u16 family, int opt, u8 *data, int len, int *dir) { struct xfrm_policy *xp; struct sadb_x_policy *pol = (struct sadb_x_policy*)data; struct sadb_x_sec_ctx *sec_ctx; switch (family) { case AF_INET: if (opt != IP_IPSEC_POLICY) { *dir = -EOPNOTSUPP; return NULL; } break; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) case AF_INET6: if (opt != IPV6_IPSEC_POLICY) { *dir = -EOPNOTSUPP; return NULL; } break; #endif default: *dir = -EINVAL; return NULL; } *dir = -EINVAL; if (len < sizeof(struct sadb_x_policy) || pol->sadb_x_policy_len*8 > len || pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS || (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND)) return NULL; xp = xfrm_policy_alloc(GFP_ATOMIC); if (xp == NULL) { *dir = -ENOBUFS; return NULL; } xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ? XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW); xp->lft.soft_byte_limit = XFRM_INF; xp->lft.hard_byte_limit = XFRM_INF; xp->lft.soft_packet_limit = XFRM_INF; xp->lft.hard_packet_limit = XFRM_INF; xp->family = family; xp->xfrm_nr = 0; if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC && (*dir = parse_ipsecrequests(xp, pol)) < 0) goto out; /* security context too */ if (len >= (pol->sadb_x_policy_len*8 + sizeof(struct sadb_x_sec_ctx))) { char *p = (char *)pol; struct xfrm_user_sec_ctx *uctx; p += pol->sadb_x_policy_len*8; sec_ctx = (struct sadb_x_sec_ctx *)p; if (len < pol->sadb_x_policy_len*8 + sec_ctx->sadb_x_sec_len) goto out; if ((*dir = verify_sec_ctx_len(p))) goto out; uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); *dir = security_xfrm_policy_alloc(xp, uctx); kfree(uctx); if (*dir) goto out; } *dir = pol->sadb_x_policy_dir-1; return xp; out: security_xfrm_policy_free(xp); kfree(xp); return NULL; } static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport) { struct sk_buff *skb; struct sadb_msg *hdr; struct sadb_sa *sa; struct sadb_address *addr; struct sadb_x_nat_t_port *n_port; struct sockaddr_in *sin; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) struct sockaddr_in6 *sin6; #endif int sockaddr_size; int size; __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0); struct xfrm_encap_tmpl *natt = NULL; sockaddr_size = pfkey_sockaddr_size(x->props.family); if (!sockaddr_size) return -EINVAL; if (!satype) return -EINVAL; if (!x->encap) return -EINVAL; natt = x->encap; /* Build an SADB_X_NAT_T_NEW_MAPPING message: * * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) | * ADDRESS_DST (new addr) | NAT_T_DPORT (new port) */ size = sizeof(struct sadb_msg) + sizeof(struct sadb_sa) + (sizeof(struct sadb_address) * 2) + (sockaddr_size * 2) + (sizeof(struct sadb_x_nat_t_port) * 2); skb = alloc_skb(size + 16, GFP_ATOMIC); if (skb == NULL) return -ENOMEM; hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING; hdr->sadb_msg_satype = satype; hdr->sadb_msg_len = size / sizeof(uint64_t); hdr->sadb_msg_errno = 0; hdr->sadb_msg_reserved = 0; hdr->sadb_msg_seq = x->km.seq = get_acqseq(); hdr->sadb_msg_pid = 0; /* SA */ sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa)); sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t); sa->sadb_sa_exttype = SADB_EXT_SA; sa->sadb_sa_spi = x->id.spi; sa->sadb_sa_replay = 0; sa->sadb_sa_state = 0; sa->sadb_sa_auth = 0; sa->sadb_sa_encrypt = 0; sa->sadb_sa_flags = 0; /* ADDRESS_SRC (old addr) */ addr = (struct sadb_address*) skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; if (x->props.family == AF_INET) { addr->sadb_address_prefixlen = 32; sin = (struct sockaddr_in *) (addr + 1); sin->sin_family = AF_INET; sin->sin_addr.s_addr = x->props.saddr.a4; sin->sin_port = 0; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (x->props.family == AF_INET6) { addr->sadb_address_prefixlen = 128; sin6 = (struct sockaddr_in6 *) (addr + 1); sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, x->props.saddr.a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; } #endif else BUG(); /* NAT_T_SPORT (old port) */ n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; n_port->sadb_x_nat_t_port_port = natt->encap_sport; n_port->sadb_x_nat_t_port_reserved = 0; /* ADDRESS_DST (new addr) */ addr = (struct sadb_address*) skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; if (x->props.family == AF_INET) { addr->sadb_address_prefixlen = 32; sin = (struct sockaddr_in *) (addr + 1); sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipaddr->a4; sin->sin_port = 0; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (x->props.family == AF_INET6) { addr->sadb_address_prefixlen = 128; sin6 = (struct sockaddr_in6 *) (addr + 1); sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_flowinfo = 0; memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr)); sin6->sin6_scope_id = 0; } #endif else BUG(); /* NAT_T_DPORT (new port) */ n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; n_port->sadb_x_nat_t_port_port = sport; n_port->sadb_x_nat_t_port_reserved = 0; return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); } static int pfkey_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct sk_buff *skb = NULL; struct sadb_msg *hdr = NULL; int err; err = -EOPNOTSUPP; if (msg->msg_flags & MSG_OOB) goto out; err = -EMSGSIZE; if ((unsigned)len > sk->sk_sndbuf - 32) goto out; err = -ENOBUFS; skb = alloc_skb(len, GFP_KERNEL); if (skb == NULL) goto out; err = -EFAULT; if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) goto out; hdr = pfkey_get_base_msg(skb, &err); if (!hdr) goto out; down(&xfrm_cfg_sem); err = pfkey_process(sk, skb, hdr); up(&xfrm_cfg_sem); out: if (err && hdr && pfkey_error(hdr, err, sk) == 0) err = 0; if (skb) kfree_skb(skb); return err ? : len; } static int pfkey_recvmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct sk_buff *skb; int copied, err; err = -EINVAL; if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT)) goto out; msg->msg_namelen = 0; skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); if (skb == NULL) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } skb->h.raw = skb->data; err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); if (err) goto out_free; sock_recv_timestamp(msg, sk, skb); err = (flags & MSG_TRUNC) ? skb->len : copied; out_free: skb_free_datagram(sk, skb); out: return err; } static const struct proto_ops pfkey_ops = { .family = PF_KEY, .owner = THIS_MODULE, /* Operations that make no sense on pfkey sockets. */ .bind = sock_no_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, /* Now the operations that really occur. */ .release = pfkey_release, .poll = datagram_poll, .sendmsg = pfkey_sendmsg, .recvmsg = pfkey_recvmsg, }; static struct net_proto_family pfkey_family_ops = { .family = PF_KEY, .create = pfkey_create, .owner = THIS_MODULE, }; #ifdef CONFIG_PROC_FS static int pfkey_read_proc(char *buffer, char **start, off_t offset, int length, int *eof, void *data) { off_t pos = 0; off_t begin = 0; int len = 0; struct sock *s; struct hlist_node *node; len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n"); read_lock(&pfkey_table_lock); sk_for_each(s, node, &pfkey_table) { len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu", s, atomic_read(&s->sk_refcnt), atomic_read(&s->sk_rmem_alloc), atomic_read(&s->sk_wmem_alloc), sock_i_uid(s), sock_i_ino(s) ); buffer[len++] = '\n'; pos = begin + len; if (pos < offset) { len = 0; begin = pos; } if(pos > offset + length) goto done; } *eof = 1; done: read_unlock(&pfkey_table_lock); *start = buffer + (offset - begin); len -= (offset - begin); if (len > length) len = length; if (len < 0) len = 0; return len; } #endif static struct xfrm_mgr pfkeyv2_mgr = { .id = "pfkeyv2", .notify = pfkey_send_notify, .acquire = pfkey_send_acquire, .compile_policy = pfkey_compile_policy, .new_mapping = pfkey_send_new_mapping, .notify_policy = pfkey_send_policy_notify, }; static void __exit ipsec_pfkey_exit(void) { xfrm_unregister_km(&pfkeyv2_mgr); remove_proc_entry("net/pfkey", NULL); sock_unregister(PF_KEY); proto_unregister(&key_proto); } static int __init ipsec_pfkey_init(void) { int err = proto_register(&key_proto, 0); if (err != 0) goto out; err = sock_register(&pfkey_family_ops); if (err != 0) goto out_unregister_key_proto; #ifdef CONFIG_PROC_FS err = -ENOMEM; if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL) goto out_sock_unregister; #endif err = xfrm_register_km(&pfkeyv2_mgr); if (err != 0) goto out_remove_proc_entry; out: return err; out_remove_proc_entry: #ifdef CONFIG_PROC_FS remove_proc_entry("net/pfkey", NULL); out_sock_unregister: #endif sock_unregister(PF_KEY); out_unregister_key_proto: proto_unregister(&key_proto); goto out; } module_init(ipsec_pfkey_init); module_exit(ipsec_pfkey_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_KEY);