/* * IPv6 Address [auto]configuration * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * Changes: * * Janos Farkas : delete timer on ifdown * <chexum@bankinf.banki.hu> * Andi Kleen : kill double kfree on module * unload. * Maciej W. Rozycki : FDDI support * sekiya@USAGI : Don't send too many RS * packets. * yoshfuji@USAGI : Fixed interval between DAD * packets. * YOSHIFUJI Hideaki @USAGI : improved accuracy of * address validation timer. * YOSHIFUJI Hideaki @USAGI : Privacy Extensions (RFC3041) * support. * Yuji SEKIYA @USAGI : Don't assign a same IPv6 * address on a same interface. * YOSHIFUJI Hideaki @USAGI : ARCnet support * YOSHIFUJI Hideaki @USAGI : convert /proc/net/if_inet6 to * seq_file. * YOSHIFUJI Hideaki @USAGI : improved source address * selection; consider scope, * status etc. */ #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/if_addr.h> #include <linux/if_arp.h> #include <linux/if_arcnet.h> #include <linux/if_infiniband.h> #include <linux/route.h> #include <linux/inetdevice.h> #include <linux/init.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/capability.h> #include <linux/delay.h> #include <linux/notifier.h> #include <linux/string.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/tcp.h> #include <net/ip.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <linux/if_tunnel.h> #include <linux/rtnetlink.h> #ifdef CONFIG_IPV6_PRIVACY #include <linux/random.h> #endif #include <asm/uaccess.h> #include <asm/unaligned.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> /* Set to 3 to get tracing... */ #define ACONF_DEBUG 2 #if ACONF_DEBUG >= 3 #define ADBG(x) printk x #else #define ADBG(x) #endif #define INFINITY_LIFE_TIME 0xFFFFFFFF #define TIME_DELTA(a,b) ((unsigned long)((long)(a) - (long)(b))) #ifdef CONFIG_SYSCTL static void addrconf_sysctl_register(struct inet6_dev *idev); static void addrconf_sysctl_unregister(struct inet6_dev *idev); #else static inline void addrconf_sysctl_register(struct inet6_dev *idev) { } static inline void addrconf_sysctl_unregister(struct inet6_dev *idev) { } #endif #ifdef CONFIG_IPV6_PRIVACY static int __ipv6_regen_rndid(struct inet6_dev *idev); static int __ipv6_try_regen_rndid(struct inet6_dev *idev, struct in6_addr *tmpaddr); static void ipv6_regen_rndid(unsigned long data); static int desync_factor = MAX_DESYNC_FACTOR * HZ; #endif static int ipv6_generate_eui64(u8 *eui, struct net_device *dev); static int ipv6_count_addresses(struct inet6_dev *idev); /* * Configured unicast address hash table */ static struct inet6_ifaddr *inet6_addr_lst[IN6_ADDR_HSIZE]; static DEFINE_RWLOCK(addrconf_hash_lock); static void addrconf_verify(unsigned long); static DEFINE_TIMER(addr_chk_timer, addrconf_verify, 0, 0); static DEFINE_SPINLOCK(addrconf_verify_lock); static void addrconf_join_anycast(struct inet6_ifaddr *ifp); static void addrconf_leave_anycast(struct inet6_ifaddr *ifp); static int addrconf_ifdown(struct net_device *dev, int how); static void addrconf_dad_start(struct inet6_ifaddr *ifp, u32 flags); static void addrconf_dad_timer(unsigned long data); static void addrconf_dad_completed(struct inet6_ifaddr *ifp); static void addrconf_dad_run(struct inet6_dev *idev); static void addrconf_rs_timer(unsigned long data); static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa); static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa); static void inet6_prefix_notify(int event, struct inet6_dev *idev, struct prefix_info *pinfo); static int ipv6_chk_same_addr(struct net *net, const struct in6_addr *addr, struct net_device *dev); static ATOMIC_NOTIFIER_HEAD(inet6addr_chain); static struct ipv6_devconf ipv6_devconf __read_mostly = { .forwarding = 0, .hop_limit = IPV6_DEFAULT_HOPLIMIT, .mtu6 = IPV6_MIN_MTU, .accept_ra = 1, .accept_redirects = 1, .autoconf = 1, .force_mld_version = 0, .dad_transmits = 1, .rtr_solicits = MAX_RTR_SOLICITATIONS, .rtr_solicit_interval = RTR_SOLICITATION_INTERVAL, .rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY, #ifdef CONFIG_IPV6_PRIVACY .use_tempaddr = 0, .temp_valid_lft = TEMP_VALID_LIFETIME, .temp_prefered_lft = TEMP_PREFERRED_LIFETIME, .regen_max_retry = REGEN_MAX_RETRY, .max_desync_factor = MAX_DESYNC_FACTOR, #endif .max_addresses = IPV6_MAX_ADDRESSES, .accept_ra_defrtr = 1, .accept_ra_pinfo = 1, #ifdef CONFIG_IPV6_ROUTER_PREF .accept_ra_rtr_pref = 1, .rtr_probe_interval = 60 * HZ, #ifdef CONFIG_IPV6_ROUTE_INFO .accept_ra_rt_info_max_plen = 0, #endif #endif .proxy_ndp = 0, .accept_source_route = 0, /* we do not accept RH0 by default. */ .disable_ipv6 = 0, .accept_dad = 1, }; static struct ipv6_devconf ipv6_devconf_dflt __read_mostly = { .forwarding = 0, .hop_limit = IPV6_DEFAULT_HOPLIMIT, .mtu6 = IPV6_MIN_MTU, .accept_ra = 1, .accept_redirects = 1, .autoconf = 1, .dad_transmits = 1, .rtr_solicits = MAX_RTR_SOLICITATIONS, .rtr_solicit_interval = RTR_SOLICITATION_INTERVAL, .rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY, #ifdef CONFIG_IPV6_PRIVACY .use_tempaddr = 0, .temp_valid_lft = TEMP_VALID_LIFETIME, .temp_prefered_lft = TEMP_PREFERRED_LIFETIME, .regen_max_retry = REGEN_MAX_RETRY, .max_desync_factor = MAX_DESYNC_FACTOR, #endif .max_addresses = IPV6_MAX_ADDRESSES, .accept_ra_defrtr = 1, .accept_ra_pinfo = 1, #ifdef CONFIG_IPV6_ROUTER_PREF .accept_ra_rtr_pref = 1, .rtr_probe_interval = 60 * HZ, #ifdef CONFIG_IPV6_ROUTE_INFO .accept_ra_rt_info_max_plen = 0, #endif #endif .proxy_ndp = 0, .accept_source_route = 0, /* we do not accept RH0 by default. */ .disable_ipv6 = 0, .accept_dad = 1, }; /* IPv6 Wildcard Address and Loopback Address defined by RFC2553 */ const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; const struct in6_addr in6addr_linklocal_allnodes = IN6ADDR_LINKLOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allrouters = IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; /* Check if a valid qdisc is available */ static inline bool addrconf_qdisc_ok(const struct net_device *dev) { return !qdisc_tx_is_noop(dev); } /* Check if a route is valid prefix route */ static inline int addrconf_is_prefix_route(const struct rt6_info *rt) { return ((rt->rt6i_flags & (RTF_GATEWAY | RTF_DEFAULT)) == 0); } static void addrconf_del_timer(struct inet6_ifaddr *ifp) { if (del_timer(&ifp->timer)) __in6_ifa_put(ifp); } enum addrconf_timer_t { AC_NONE, AC_DAD, AC_RS, }; static void addrconf_mod_timer(struct inet6_ifaddr *ifp, enum addrconf_timer_t what, unsigned long when) { if (!del_timer(&ifp->timer)) in6_ifa_hold(ifp); switch (what) { case AC_DAD: ifp->timer.function = addrconf_dad_timer; break; case AC_RS: ifp->timer.function = addrconf_rs_timer; break; default:; } ifp->timer.expires = jiffies + when; add_timer(&ifp->timer); } static int snmp6_alloc_dev(struct inet6_dev *idev) { if (snmp_mib_init((void **)idev->stats.ipv6, sizeof(struct ipstats_mib)) < 0) goto err_ip; if (snmp_mib_init((void **)idev->stats.icmpv6, sizeof(struct icmpv6_mib)) < 0) goto err_icmp; if (snmp_mib_init((void **)idev->stats.icmpv6msg, sizeof(struct icmpv6msg_mib)) < 0) goto err_icmpmsg; return 0; err_icmpmsg: snmp_mib_free((void **)idev->stats.icmpv6); err_icmp: snmp_mib_free((void **)idev->stats.ipv6); err_ip: return -ENOMEM; } static void snmp6_free_dev(struct inet6_dev *idev) { snmp_mib_free((void **)idev->stats.icmpv6msg); snmp_mib_free((void **)idev->stats.icmpv6); snmp_mib_free((void **)idev->stats.ipv6); } /* Nobody refers to this device, we may destroy it. */ static void in6_dev_finish_destroy_rcu(struct rcu_head *head) { struct inet6_dev *idev = container_of(head, struct inet6_dev, rcu); kfree(idev); } void in6_dev_finish_destroy(struct inet6_dev *idev) { struct net_device *dev = idev->dev; BUG_TRAP(idev->addr_list==NULL); BUG_TRAP(idev->mc_list==NULL); #ifdef NET_REFCNT_DEBUG printk(KERN_DEBUG "in6_dev_finish_destroy: %s\n", dev ? dev->name : "NIL"); #endif dev_put(dev); if (!idev->dead) { printk("Freeing alive inet6 device %p\n", idev); return; } snmp6_free_dev(idev); call_rcu(&idev->rcu, in6_dev_finish_destroy_rcu); } EXPORT_SYMBOL(in6_dev_finish_destroy); static struct inet6_dev * ipv6_add_dev(struct net_device *dev) { struct inet6_dev *ndev; ASSERT_RTNL(); if (dev->mtu < IPV6_MIN_MTU) return NULL; ndev = kzalloc(sizeof(struct inet6_dev), GFP_KERNEL); if (ndev == NULL) return NULL; rwlock_init(&ndev->lock); ndev->dev = dev; memcpy(&ndev->cnf, dev_net(dev)->ipv6.devconf_dflt, sizeof(ndev->cnf)); ndev->cnf.mtu6 = dev->mtu; ndev->cnf.sysctl = NULL; ndev->nd_parms = neigh_parms_alloc(dev, &nd_tbl); if (ndev->nd_parms == NULL) { kfree(ndev); return NULL; } if (ndev->cnf.forwarding) dev_disable_lro(dev); /* We refer to the device */ dev_hold(dev); if (snmp6_alloc_dev(ndev) < 0) { ADBG((KERN_WARNING "%s(): cannot allocate memory for statistics; dev=%s.\n", __func__, dev->name)); neigh_parms_release(&nd_tbl, ndev->nd_parms); ndev->dead = 1; in6_dev_finish_destroy(ndev); return NULL; } if (snmp6_register_dev(ndev) < 0) { ADBG((KERN_WARNING "%s(): cannot create /proc/net/dev_snmp6/%s\n", __func__, dev->name)); neigh_parms_release(&nd_tbl, ndev->nd_parms); ndev->dead = 1; in6_dev_finish_destroy(ndev); return NULL; } /* One reference from device. We must do this before * we invoke __ipv6_regen_rndid(). */ in6_dev_hold(ndev); if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) ndev->cnf.accept_dad = -1; #if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE) if (dev->type == ARPHRD_SIT && (dev->priv_flags & IFF_ISATAP)) { printk(KERN_INFO "%s: Disabled Multicast RS\n", dev->name); ndev->cnf.rtr_solicits = 0; } #endif #ifdef CONFIG_IPV6_PRIVACY setup_timer(&ndev->regen_timer, ipv6_regen_rndid, (unsigned long)ndev); if ((dev->flags&IFF_LOOPBACK) || dev->type == ARPHRD_TUNNEL || dev->type == ARPHRD_TUNNEL6 || dev->type == ARPHRD_SIT || dev->type == ARPHRD_NONE) { printk(KERN_INFO "%s: Disabled Privacy Extensions\n", dev->name); ndev->cnf.use_tempaddr = -1; } else { in6_dev_hold(ndev); ipv6_regen_rndid((unsigned long) ndev); } #endif if (netif_running(dev) && addrconf_qdisc_ok(dev)) ndev->if_flags |= IF_READY; ipv6_mc_init_dev(ndev); ndev->tstamp = jiffies; addrconf_sysctl_register(ndev); /* protected by rtnl_lock */ rcu_assign_pointer(dev->ip6_ptr, ndev); /* Join all-node multicast group */ ipv6_dev_mc_inc(dev, &in6addr_linklocal_allnodes); return ndev; } static struct inet6_dev * ipv6_find_idev(struct net_device *dev) { struct inet6_dev *idev; ASSERT_RTNL(); if ((idev = __in6_dev_get(dev)) == NULL) { if ((idev = ipv6_add_dev(dev)) == NULL) return NULL; } if (dev->flags&IFF_UP) ipv6_mc_up(idev); return idev; } #ifdef CONFIG_SYSCTL static void dev_forward_change(struct inet6_dev *idev) { struct net_device *dev; struct inet6_ifaddr *ifa; if (!idev) return; dev = idev->dev; if (idev->cnf.forwarding) dev_disable_lro(dev); if (dev && (dev->flags & IFF_MULTICAST)) { if (idev->cnf.forwarding) ipv6_dev_mc_inc(dev, &in6addr_linklocal_allrouters); else ipv6_dev_mc_dec(dev, &in6addr_linklocal_allrouters); } for (ifa=idev->addr_list; ifa; ifa=ifa->if_next) { if (ifa->flags&IFA_F_TENTATIVE) continue; if (idev->cnf.forwarding) addrconf_join_anycast(ifa); else addrconf_leave_anycast(ifa); } } static void addrconf_forward_change(struct net *net, __s32 newf) { struct net_device *dev; struct inet6_dev *idev; read_lock(&dev_base_lock); for_each_netdev(net, dev) { rcu_read_lock(); idev = __in6_dev_get(dev); if (idev) { int changed = (!idev->cnf.forwarding) ^ (!newf); idev->cnf.forwarding = newf; if (changed) dev_forward_change(idev); } rcu_read_unlock(); } read_unlock(&dev_base_lock); } static void addrconf_fixup_forwarding(struct ctl_table *table, int *p, int old) { struct net *net; net = (struct net *)table->extra2; if (p == &net->ipv6.devconf_dflt->forwarding) return; rtnl_lock(); if (p == &net->ipv6.devconf_all->forwarding) { __s32 newf = net->ipv6.devconf_all->forwarding; net->ipv6.devconf_dflt->forwarding = newf; addrconf_forward_change(net, newf); } else if ((!*p) ^ (!old)) dev_forward_change((struct inet6_dev *)table->extra1); rtnl_unlock(); if (*p) rt6_purge_dflt_routers(net); } #endif /* Nobody refers to this ifaddr, destroy it */ void inet6_ifa_finish_destroy(struct inet6_ifaddr *ifp) { BUG_TRAP(ifp->if_next==NULL); BUG_TRAP(ifp->lst_next==NULL); #ifdef NET_REFCNT_DEBUG printk(KERN_DEBUG "inet6_ifa_finish_destroy\n"); #endif in6_dev_put(ifp->idev); if (del_timer(&ifp->timer)) printk("Timer is still running, when freeing ifa=%p\n", ifp); if (!ifp->dead) { printk("Freeing alive inet6 address %p\n", ifp); return; } dst_release(&ifp->rt->u.dst); kfree(ifp); } static void ipv6_link_dev_addr(struct inet6_dev *idev, struct inet6_ifaddr *ifp) { struct inet6_ifaddr *ifa, **ifap; int ifp_scope = ipv6_addr_src_scope(&ifp->addr); /* * Each device address list is sorted in order of scope - * global before linklocal. */ for (ifap = &idev->addr_list; (ifa = *ifap) != NULL; ifap = &ifa->if_next) { if (ifp_scope >= ipv6_addr_src_scope(&ifa->addr)) break; } ifp->if_next = *ifap; *ifap = ifp; } /* * Hash function taken from net_alias.c */ static u8 ipv6_addr_hash(const struct in6_addr *addr) { __u32 word; /* * We perform the hash function over the last 64 bits of the address * This will include the IEEE address token on links that support it. */ word = (__force u32)(addr->s6_addr32[2] ^ addr->s6_addr32[3]); word ^= (word >> 16); word ^= (word >> 8); return ((word ^ (word >> 4)) & 0x0f); } /* On success it returns ifp with increased reference count */ static struct inet6_ifaddr * ipv6_add_addr(struct inet6_dev *idev, const struct in6_addr *addr, int pfxlen, int scope, u32 flags) { struct inet6_ifaddr *ifa = NULL; struct rt6_info *rt; int hash; int err = 0; int addr_type = ipv6_addr_type(addr); if (addr_type == IPV6_ADDR_ANY || addr_type & IPV6_ADDR_MULTICAST || (!(idev->dev->flags & IFF_LOOPBACK) && addr_type & IPV6_ADDR_LOOPBACK)) return ERR_PTR(-EADDRNOTAVAIL); rcu_read_lock_bh(); if (idev->dead) { err = -ENODEV; /*XXX*/ goto out2; } write_lock(&addrconf_hash_lock); /* Ignore adding duplicate addresses on an interface */ if (ipv6_chk_same_addr(dev_net(idev->dev), addr, idev->dev)) { ADBG(("ipv6_add_addr: already assigned\n")); err = -EEXIST; goto out; } ifa = kzalloc(sizeof(struct inet6_ifaddr), GFP_ATOMIC); if (ifa == NULL) { ADBG(("ipv6_add_addr: malloc failed\n")); err = -ENOBUFS; goto out; } rt = addrconf_dst_alloc(idev, addr, 0); if (IS_ERR(rt)) { err = PTR_ERR(rt); goto out; } ipv6_addr_copy(&ifa->addr, addr); spin_lock_init(&ifa->lock); init_timer(&ifa->timer); ifa->timer.data = (unsigned long) ifa; ifa->scope = scope; ifa->prefix_len = pfxlen; ifa->flags = flags | IFA_F_TENTATIVE; ifa->cstamp = ifa->tstamp = jiffies; ifa->rt = rt; /* * part one of RFC 4429, section 3.3 * We should not configure an address as * optimistic if we do not yet know the link * layer address of our nexhop router */ if (rt->rt6i_nexthop == NULL) ifa->flags &= ~IFA_F_OPTIMISTIC; ifa->idev = idev; in6_dev_hold(idev); /* For caller */ in6_ifa_hold(ifa); /* Add to big hash table */ hash = ipv6_addr_hash(addr); ifa->lst_next = inet6_addr_lst[hash]; inet6_addr_lst[hash] = ifa; in6_ifa_hold(ifa); write_unlock(&addrconf_hash_lock); write_lock(&idev->lock); /* Add to inet6_dev unicast addr list. */ ipv6_link_dev_addr(idev, ifa); #ifdef CONFIG_IPV6_PRIVACY if (ifa->flags&IFA_F_TEMPORARY) { ifa->tmp_next = idev->tempaddr_list; idev->tempaddr_list = ifa; in6_ifa_hold(ifa); } #endif in6_ifa_hold(ifa); write_unlock(&idev->lock); out2: rcu_read_unlock_bh(); if (likely(err == 0)) atomic_notifier_call_chain(&inet6addr_chain, NETDEV_UP, ifa); else { kfree(ifa); ifa = ERR_PTR(err); } return ifa; out: write_unlock(&addrconf_hash_lock); goto out2; } /* This function wants to get referenced ifp and releases it before return */ static void ipv6_del_addr(struct inet6_ifaddr *ifp) { struct inet6_ifaddr *ifa, **ifap; struct inet6_dev *idev = ifp->idev; int hash; int deleted = 0, onlink = 0; unsigned long expires = jiffies; hash = ipv6_addr_hash(&ifp->addr); ifp->dead = 1; write_lock_bh(&addrconf_hash_lock); for (ifap = &inet6_addr_lst[hash]; (ifa=*ifap) != NULL; ifap = &ifa->lst_next) { if (ifa == ifp) { *ifap = ifa->lst_next; __in6_ifa_put(ifp); ifa->lst_next = NULL; break; } } write_unlock_bh(&addrconf_hash_lock); write_lock_bh(&idev->lock); #ifdef CONFIG_IPV6_PRIVACY if (ifp->flags&IFA_F_TEMPORARY) { for (ifap = &idev->tempaddr_list; (ifa=*ifap) != NULL; ifap = &ifa->tmp_next) { if (ifa == ifp) { *ifap = ifa->tmp_next; if (ifp->ifpub) { in6_ifa_put(ifp->ifpub); ifp->ifpub = NULL; } __in6_ifa_put(ifp); ifa->tmp_next = NULL; break; } } } #endif for (ifap = &idev->addr_list; (ifa=*ifap) != NULL;) { if (ifa == ifp) { *ifap = ifa->if_next; __in6_ifa_put(ifp); ifa->if_next = NULL; if (!(ifp->flags & IFA_F_PERMANENT) || onlink > 0) break; deleted = 1; continue; } else if (ifp->flags & IFA_F_PERMANENT) { if (ipv6_prefix_equal(&ifa->addr, &ifp->addr, ifp->prefix_len)) { if (ifa->flags & IFA_F_PERMANENT) { onlink = 1; if (deleted) break; } else { unsigned long lifetime; if (!onlink) onlink = -1; spin_lock(&ifa->lock); lifetime = addrconf_timeout_fixup(ifa->valid_lft, HZ); /* * Note: Because this address is * not permanent, lifetime < * LONG_MAX / HZ here. */ if (time_before(expires, ifa->tstamp + lifetime * HZ)) expires = ifa->tstamp + lifetime * HZ; spin_unlock(&ifa->lock); } } } ifap = &ifa->if_next; } write_unlock_bh(&idev->lock); addrconf_del_timer(ifp); ipv6_ifa_notify(RTM_DELADDR, ifp); atomic_notifier_call_chain(&inet6addr_chain, NETDEV_DOWN, ifp); /* * Purge or update corresponding prefix * * 1) we don't purge prefix here if address was not permanent. * prefix is managed by its own lifetime. * 2) if there're no addresses, delete prefix. * 3) if there're still other permanent address(es), * corresponding prefix is still permanent. * 4) otherwise, update prefix lifetime to the * longest valid lifetime among the corresponding * addresses on the device. * Note: subsequent RA will update lifetime. * * --yoshfuji */ if ((ifp->flags & IFA_F_PERMANENT) && onlink < 1) { struct in6_addr prefix; struct rt6_info *rt; struct net *net = dev_net(ifp->idev->dev); ipv6_addr_prefix(&prefix, &ifp->addr, ifp->prefix_len); rt = rt6_lookup(net, &prefix, NULL, ifp->idev->dev->ifindex, 1); if (rt && addrconf_is_prefix_route(rt)) { if (onlink == 0) { ip6_del_rt(rt); rt = NULL; } else if (!(rt->rt6i_flags & RTF_EXPIRES)) { rt->rt6i_expires = expires; rt->rt6i_flags |= RTF_EXPIRES; } } dst_release(&rt->u.dst); } in6_ifa_put(ifp); } #ifdef CONFIG_IPV6_PRIVACY static int ipv6_create_tempaddr(struct inet6_ifaddr *ifp, struct inet6_ifaddr *ift) { struct inet6_dev *idev = ifp->idev; struct in6_addr addr, *tmpaddr; unsigned long tmp_prefered_lft, tmp_valid_lft, tmp_cstamp, tmp_tstamp; unsigned long regen_advance; int tmp_plen; int ret = 0; int max_addresses; u32 addr_flags; write_lock(&idev->lock); if (ift) { spin_lock_bh(&ift->lock); memcpy(&addr.s6_addr[8], &ift->addr.s6_addr[8], 8); spin_unlock_bh(&ift->lock); tmpaddr = &addr; } else { tmpaddr = NULL; } retry: in6_dev_hold(idev); if (idev->cnf.use_tempaddr <= 0) { write_unlock(&idev->lock); printk(KERN_INFO "ipv6_create_tempaddr(): use_tempaddr is disabled.\n"); in6_dev_put(idev); ret = -1; goto out; } spin_lock_bh(&ifp->lock); if (ifp->regen_count++ >= idev->cnf.regen_max_retry) { idev->cnf.use_tempaddr = -1; /*XXX*/ spin_unlock_bh(&ifp->lock); write_unlock(&idev->lock); printk(KERN_WARNING "ipv6_create_tempaddr(): regeneration time exceeded. disabled temporary address support.\n"); in6_dev_put(idev); ret = -1; goto out; } in6_ifa_hold(ifp); memcpy(addr.s6_addr, ifp->addr.s6_addr, 8); if (__ipv6_try_regen_rndid(idev, tmpaddr) < 0) { spin_unlock_bh(&ifp->lock); write_unlock(&idev->lock); printk(KERN_WARNING "ipv6_create_tempaddr(): regeneration of randomized interface id failed.\n"); in6_ifa_put(ifp); in6_dev_put(idev); ret = -1; goto out; } memcpy(&addr.s6_addr[8], idev->rndid, 8); tmp_valid_lft = min_t(__u32, ifp->valid_lft, idev->cnf.temp_valid_lft); tmp_prefered_lft = min_t(__u32, ifp->prefered_lft, idev->cnf.temp_prefered_lft - desync_factor / HZ); tmp_plen = ifp->prefix_len; max_addresses = idev->cnf.max_addresses; tmp_cstamp = ifp->cstamp; tmp_tstamp = ifp->tstamp; spin_unlock_bh(&ifp->lock); regen_advance = idev->cnf.regen_max_retry * idev->cnf.dad_transmits * idev->nd_parms->retrans_time / HZ; write_unlock(&idev->lock); /* A temporary address is created only if this calculated Preferred * Lifetime is greater than REGEN_ADVANCE time units. In particular, * an implementation must not create a temporary address with a zero * Preferred Lifetime. */ if (tmp_prefered_lft <= regen_advance) { in6_ifa_put(ifp); in6_dev_put(idev); ret = -1; goto out; } addr_flags = IFA_F_TEMPORARY; /* set in addrconf_prefix_rcv() */ if (ifp->flags & IFA_F_OPTIMISTIC) addr_flags |= IFA_F_OPTIMISTIC; ift = !max_addresses || ipv6_count_addresses(idev) < max_addresses ? ipv6_add_addr(idev, &addr, tmp_plen, ipv6_addr_type(&addr)&IPV6_ADDR_SCOPE_MASK, addr_flags) : NULL; if (!ift || IS_ERR(ift)) { in6_ifa_put(ifp); in6_dev_put(idev); printk(KERN_INFO "ipv6_create_tempaddr(): retry temporary address regeneration.\n"); tmpaddr = &addr; write_lock(&idev->lock); goto retry; } spin_lock_bh(&ift->lock); ift->ifpub = ifp; ift->valid_lft = tmp_valid_lft; ift->prefered_lft = tmp_prefered_lft; ift->cstamp = tmp_cstamp; ift->tstamp = tmp_tstamp; spin_unlock_bh(&ift->lock); addrconf_dad_start(ift, 0); in6_ifa_put(ift); in6_dev_put(idev); out: return ret; } #endif /* * Choose an appropriate source address (RFC3484) */ enum { IPV6_SADDR_RULE_INIT = 0, IPV6_SADDR_RULE_LOCAL, IPV6_SADDR_RULE_SCOPE, IPV6_SADDR_RULE_PREFERRED, #ifdef CONFIG_IPV6_MIP6 IPV6_SADDR_RULE_HOA, #endif IPV6_SADDR_RULE_OIF, IPV6_SADDR_RULE_LABEL, #ifdef CONFIG_IPV6_PRIVACY IPV6_SADDR_RULE_PRIVACY, #endif IPV6_SADDR_RULE_ORCHID, IPV6_SADDR_RULE_PREFIX, IPV6_SADDR_RULE_MAX }; struct ipv6_saddr_score { int rule; int addr_type; struct inet6_ifaddr *ifa; DECLARE_BITMAP(scorebits, IPV6_SADDR_RULE_MAX); int scopedist; int matchlen; }; struct ipv6_saddr_dst { const struct in6_addr *addr; int ifindex; int scope; int label; unsigned int prefs; }; static inline int ipv6_saddr_preferred(int type) { if (type & (IPV6_ADDR_MAPPED|IPV6_ADDR_COMPATv4| IPV6_ADDR_LOOPBACK|IPV6_ADDR_RESERVED)) return 1; return 0; } static int ipv6_get_saddr_eval(struct net *net, struct ipv6_saddr_score *score, struct ipv6_saddr_dst *dst, int i) { int ret; if (i <= score->rule) { switch (i) { case IPV6_SADDR_RULE_SCOPE: ret = score->scopedist; break; case IPV6_SADDR_RULE_PREFIX: ret = score->matchlen; break; default: ret = !!test_bit(i, score->scorebits); } goto out; } switch (i) { case IPV6_SADDR_RULE_INIT: /* Rule 0: remember if hiscore is not ready yet */ ret = !!score->ifa; break; case IPV6_SADDR_RULE_LOCAL: /* Rule 1: Prefer same address */ ret = ipv6_addr_equal(&score->ifa->addr, dst->addr); break; case IPV6_SADDR_RULE_SCOPE: /* Rule 2: Prefer appropriate scope * * ret * ^ * -1 | d 15 * ---+--+-+---> scope * | * | d is scope of the destination. * B-d | \ * | \ <- smaller scope is better if * B-15 | \ if scope is enough for destinaion. * | ret = B - scope (-1 <= scope >= d <= 15). * d-C-1 | / * |/ <- greater is better * -C / if scope is not enough for destination. * /| ret = scope - C (-1 <= d < scope <= 15). * * d - C - 1 < B -15 (for all -1 <= d <= 15). * C > d + 14 - B >= 15 + 14 - B = 29 - B. * Assume B = 0 and we get C > 29. */ ret = __ipv6_addr_src_scope(score->addr_type); if (ret >= dst->scope) ret = -ret; else ret -= 128; /* 30 is enough */ score->scopedist = ret; break; case IPV6_SADDR_RULE_PREFERRED: /* Rule 3: Avoid deprecated and optimistic addresses */ ret = ipv6_saddr_preferred(score->addr_type) || !(score->ifa->flags & (IFA_F_DEPRECATED|IFA_F_OPTIMISTIC)); break; #ifdef CONFIG_IPV6_MIP6 case IPV6_SADDR_RULE_HOA: { /* Rule 4: Prefer home address */ int prefhome = !(dst->prefs & IPV6_PREFER_SRC_COA); ret = !(score->ifa->flags & IFA_F_HOMEADDRESS) ^ prefhome; break; } #endif case IPV6_SADDR_RULE_OIF: /* Rule 5: Prefer outgoing interface */ ret = (!dst->ifindex || dst->ifindex == score->ifa->idev->dev->ifindex); break; case IPV6_SADDR_RULE_LABEL: /* Rule 6: Prefer matching label */ ret = ipv6_addr_label(net, &score->ifa->addr, score->addr_type, score->ifa->idev->dev->ifindex) == dst->label; break; #ifdef CONFIG_IPV6_PRIVACY case IPV6_SADDR_RULE_PRIVACY: { /* Rule 7: Prefer public address * Note: prefer temprary address if use_tempaddr >= 2 */ int preftmp = dst->prefs & (IPV6_PREFER_SRC_PUBLIC|IPV6_PREFER_SRC_TMP) ? !!(dst->prefs & IPV6_PREFER_SRC_TMP) : score->ifa->idev->cnf.use_tempaddr >= 2; ret = (!(score->ifa->flags & IFA_F_TEMPORARY)) ^ preftmp; break; } #endif case IPV6_SADDR_RULE_ORCHID: /* Rule 8-: Prefer ORCHID vs ORCHID or * non-ORCHID vs non-ORCHID */ ret = !(ipv6_addr_orchid(&score->ifa->addr) ^ ipv6_addr_orchid(dst->addr)); break; case IPV6_SADDR_RULE_PREFIX: /* Rule 8: Use longest matching prefix */ score->matchlen = ret = ipv6_addr_diff(&score->ifa->addr, dst->addr); break; default: ret = 0; } if (ret) __set_bit(i, score->scorebits); score->rule = i; out: return ret; } int ipv6_dev_get_saddr(struct net_device *dst_dev, const struct in6_addr *daddr, unsigned int prefs, struct in6_addr *saddr) { struct ipv6_saddr_score scores[2], *score = &scores[0], *hiscore = &scores[1]; struct net *net = dev_net(dst_dev); struct ipv6_saddr_dst dst; struct net_device *dev; int dst_type; dst_type = __ipv6_addr_type(daddr); dst.addr = daddr; dst.ifindex = dst_dev ? dst_dev->ifindex : 0; dst.scope = __ipv6_addr_src_scope(dst_type); dst.label = ipv6_addr_label(net, daddr, dst_type, dst.ifindex); dst.prefs = prefs; hiscore->rule = -1; hiscore->ifa = NULL; read_lock(&dev_base_lock); rcu_read_lock(); for_each_netdev(net, dev) { struct inet6_dev *idev; /* Candidate Source Address (section 4) * - multicast and link-local destination address, * the set of candidate source address MUST only * include addresses assigned to interfaces * belonging to the same link as the outgoing * interface. * (- For site-local destination addresses, the * set of candidate source addresses MUST only * include addresses assigned to interfaces * belonging to the same site as the outgoing * interface.) */ if (((dst_type & IPV6_ADDR_MULTICAST) || dst.scope <= IPV6_ADDR_SCOPE_LINKLOCAL) && dst.ifindex && dev->ifindex != dst.ifindex) continue; idev = __in6_dev_get(dev); if (!idev) continue; read_lock_bh(&idev->lock); for (score->ifa = idev->addr_list; score->ifa; score->ifa = score->ifa->if_next) { int i; /* * - Tentative Address (RFC2462 section 5.4) * - A tentative address is not considered * "assigned to an interface" in the traditional * sense, unless it is also flagged as optimistic. * - Candidate Source Address (section 4) * - In any case, anycast addresses, multicast * addresses, and the unspecified address MUST * NOT be included in a candidate set. */ if ((score->ifa->flags & IFA_F_TENTATIVE) && (!(score->ifa->flags & IFA_F_OPTIMISTIC))) continue; score->addr_type = __ipv6_addr_type(&score->ifa->addr); if (unlikely(score->addr_type == IPV6_ADDR_ANY || score->addr_type & IPV6_ADDR_MULTICAST)) { LIMIT_NETDEBUG(KERN_DEBUG "ADDRCONF: unspecified / multicast address " "assigned as unicast address on %s", dev->name); continue; } score->rule = -1; bitmap_zero(score->scorebits, IPV6_SADDR_RULE_MAX); for (i = 0; i < IPV6_SADDR_RULE_MAX; i++) { int minihiscore, miniscore; minihiscore = ipv6_get_saddr_eval(net, hiscore, &dst, i); miniscore = ipv6_get_saddr_eval(net, score, &dst, i); if (minihiscore > miniscore) { if (i == IPV6_SADDR_RULE_SCOPE && score->scopedist > 0) { /* * special case: * each remaining entry * has too small (not enough) * scope, because ifa entries * are sorted by their scope * values. */ goto try_nextdev; } break; } else if (minihiscore < miniscore) { struct ipv6_saddr_score *tmp; if (hiscore->ifa) in6_ifa_put(hiscore->ifa); in6_ifa_hold(score->ifa); tmp = hiscore; hiscore = score; score = tmp; /* restore our iterator */ score->ifa = hiscore->ifa; break; } } } try_nextdev: read_unlock_bh(&idev->lock); } rcu_read_unlock(); read_unlock(&dev_base_lock); if (!hiscore->ifa) return -EADDRNOTAVAIL; ipv6_addr_copy(saddr, &hiscore->ifa->addr); in6_ifa_put(hiscore->ifa); return 0; } EXPORT_SYMBOL(ipv6_dev_get_saddr); int ipv6_get_lladdr(struct net_device *dev, struct in6_addr *addr, unsigned char banned_flags) { struct inet6_dev *idev; int err = -EADDRNOTAVAIL; rcu_read_lock(); if ((idev = __in6_dev_get(dev)) != NULL) { struct inet6_ifaddr *ifp; read_lock_bh(&idev->lock); for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) { if (ifp->scope == IFA_LINK && !(ifp->flags & banned_flags)) { ipv6_addr_copy(addr, &ifp->addr); err = 0; break; } } read_unlock_bh(&idev->lock); } rcu_read_unlock(); return err; } static int ipv6_count_addresses(struct inet6_dev *idev) { int cnt = 0; struct inet6_ifaddr *ifp; read_lock_bh(&idev->lock); for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) cnt++; read_unlock_bh(&idev->lock); return cnt; } int ipv6_chk_addr(struct net *net, struct in6_addr *addr, struct net_device *dev, int strict) { struct inet6_ifaddr * ifp; u8 hash = ipv6_addr_hash(addr); read_lock_bh(&addrconf_hash_lock); for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) { if (!net_eq(dev_net(ifp->idev->dev), net)) continue; if (ipv6_addr_equal(&ifp->addr, addr) && !(ifp->flags&IFA_F_TENTATIVE)) { if (dev == NULL || ifp->idev->dev == dev || !(ifp->scope&(IFA_LINK|IFA_HOST) || strict)) break; } } read_unlock_bh(&addrconf_hash_lock); return ifp != NULL; } EXPORT_SYMBOL(ipv6_chk_addr); static int ipv6_chk_same_addr(struct net *net, const struct in6_addr *addr, struct net_device *dev) { struct inet6_ifaddr * ifp; u8 hash = ipv6_addr_hash(addr); for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) { if (!net_eq(dev_net(ifp->idev->dev), net)) continue; if (ipv6_addr_equal(&ifp->addr, addr)) { if (dev == NULL || ifp->idev->dev == dev) break; } } return ifp != NULL; } int ipv6_chk_prefix(struct in6_addr *addr, struct net_device *dev) { struct inet6_dev *idev; struct inet6_ifaddr *ifa; int onlink; onlink = 0; rcu_read_lock(); idev = __in6_dev_get(dev); if (idev) { read_lock_bh(&idev->lock); for (ifa = idev->addr_list; ifa; ifa = ifa->if_next) { onlink = ipv6_prefix_equal(addr, &ifa->addr, ifa->prefix_len); if (onlink) break; } read_unlock_bh(&idev->lock); } rcu_read_unlock(); return onlink; } EXPORT_SYMBOL(ipv6_chk_prefix); struct inet6_ifaddr *ipv6_get_ifaddr(struct net *net, const struct in6_addr *addr, struct net_device *dev, int strict) { struct inet6_ifaddr * ifp; u8 hash = ipv6_addr_hash(addr); read_lock_bh(&addrconf_hash_lock); for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) { if (!net_eq(dev_net(ifp->idev->dev), net)) continue; if (ipv6_addr_equal(&ifp->addr, addr)) { if (dev == NULL || ifp->idev->dev == dev || !(ifp->scope&(IFA_LINK|IFA_HOST) || strict)) { in6_ifa_hold(ifp); break; } } } read_unlock_bh(&addrconf_hash_lock); return ifp; } int ipv6_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2) { const struct in6_addr *sk_rcv_saddr6 = &inet6_sk(sk)->rcv_saddr; const struct in6_addr *sk2_rcv_saddr6 = inet6_rcv_saddr(sk2); __be32 sk_rcv_saddr = inet_sk(sk)->rcv_saddr; __be32 sk2_rcv_saddr = inet_rcv_saddr(sk2); int sk_ipv6only = ipv6_only_sock(sk); int sk2_ipv6only = inet_v6_ipv6only(sk2); int addr_type = ipv6_addr_type(sk_rcv_saddr6); int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; if (!sk2_rcv_saddr && !sk_ipv6only) return 1; if (addr_type2 == IPV6_ADDR_ANY && !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) return 1; if (addr_type == IPV6_ADDR_ANY && !(sk_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) return 1; if (sk2_rcv_saddr6 && ipv6_addr_equal(sk_rcv_saddr6, sk2_rcv_saddr6)) return 1; if (addr_type == IPV6_ADDR_MAPPED && !sk2_ipv6only && (!sk2_rcv_saddr || !sk_rcv_saddr || sk_rcv_saddr == sk2_rcv_saddr)) return 1; return 0; } /* Gets referenced address, destroys ifaddr */ static void addrconf_dad_stop(struct inet6_ifaddr *ifp) { if (ifp->flags&IFA_F_PERMANENT) { spin_lock_bh(&ifp->lock); addrconf_del_timer(ifp); ifp->flags |= IFA_F_TENTATIVE; spin_unlock_bh(&ifp->lock); in6_ifa_put(ifp); #ifdef CONFIG_IPV6_PRIVACY } else if (ifp->flags&IFA_F_TEMPORARY) { struct inet6_ifaddr *ifpub; spin_lock_bh(&ifp->lock); ifpub = ifp->ifpub; if (ifpub) { in6_ifa_hold(ifpub); spin_unlock_bh(&ifp->lock); ipv6_create_tempaddr(ifpub, ifp); in6_ifa_put(ifpub); } else { spin_unlock_bh(&ifp->lock); } ipv6_del_addr(ifp); #endif } else ipv6_del_addr(ifp); } void addrconf_dad_failure(struct inet6_ifaddr *ifp) { struct inet6_dev *idev = ifp->idev; if (idev->cnf.accept_dad > 1 && !idev->cnf.disable_ipv6) { struct in6_addr addr; addr.s6_addr32[0] = htonl(0xfe800000); addr.s6_addr32[1] = 0; if (!ipv6_generate_eui64(addr.s6_addr + 8, idev->dev) && ipv6_addr_equal(&ifp->addr, &addr)) { /* DAD failed for link-local based on MAC address */ idev->cnf.disable_ipv6 = 1; } } if (net_ratelimit()) printk(KERN_INFO "%s: duplicate address detected!\n", ifp->idev->dev->name); addrconf_dad_stop(ifp); } /* Join to solicited addr multicast group. */ void addrconf_join_solict(struct net_device *dev, struct in6_addr *addr) { struct in6_addr maddr; if (dev->flags&(IFF_LOOPBACK|IFF_NOARP)) return; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_inc(dev, &maddr); } void addrconf_leave_solict(struct inet6_dev *idev, struct in6_addr *addr) { struct in6_addr maddr; if (idev->dev->flags&(IFF_LOOPBACK|IFF_NOARP)) return; addrconf_addr_solict_mult(addr, &maddr); __ipv6_dev_mc_dec(idev, &maddr); } static void addrconf_join_anycast(struct inet6_ifaddr *ifp) { struct in6_addr addr; ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len); if (ipv6_addr_any(&addr)) return; ipv6_dev_ac_inc(ifp->idev->dev, &addr); } static void addrconf_leave_anycast(struct inet6_ifaddr *ifp) { struct in6_addr addr; ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len); if (ipv6_addr_any(&addr)) return; __ipv6_dev_ac_dec(ifp->idev, &addr); } static int addrconf_ifid_eui48(u8 *eui, struct net_device *dev) { if (dev->addr_len != ETH_ALEN) return -1; memcpy(eui, dev->dev_addr, 3); memcpy(eui + 5, dev->dev_addr + 3, 3); /* * The zSeries OSA network cards can be shared among various * OS instances, but the OSA cards have only one MAC address. * This leads to duplicate address conflicts in conjunction * with IPv6 if more than one instance uses the same card. * * The driver for these cards can deliver a unique 16-bit * identifier for each instance sharing the same card. It is * placed instead of 0xFFFE in the interface identifier. The * "u" bit of the interface identifier is not inverted in this * case. Hence the resulting interface identifier has local * scope according to RFC2373. */ if (dev->dev_id) { eui[3] = (dev->dev_id >> 8) & 0xFF; eui[4] = dev->dev_id & 0xFF; } else { eui[3] = 0xFF; eui[4] = 0xFE; eui[0] ^= 2; } return 0; } static int addrconf_ifid_arcnet(u8 *eui, struct net_device *dev) { /* XXX: inherit EUI-64 from other interface -- yoshfuji */ if (dev->addr_len != ARCNET_ALEN) return -1; memset(eui, 0, 7); eui[7] = *(u8*)dev->dev_addr; return 0; } static int addrconf_ifid_infiniband(u8 *eui, struct net_device *dev) { if (dev->addr_len != INFINIBAND_ALEN) return -1; memcpy(eui, dev->dev_addr + 12, 8); eui[0] |= 2; return 0; } int __ipv6_isatap_ifid(u8 *eui, __be32 addr) { eui[0] = (ipv4_is_zeronet(addr) || ipv4_is_private_10(addr) || ipv4_is_loopback(addr) || ipv4_is_linklocal_169(addr) || ipv4_is_private_172(addr) || ipv4_is_test_192(addr) || ipv4_is_anycast_6to4(addr) || ipv4_is_private_192(addr) || ipv4_is_test_198(addr) || ipv4_is_multicast(addr) || ipv4_is_lbcast(addr)) ? 0x00 : 0x02; eui[1] = 0; eui[2] = 0x5E; eui[3] = 0xFE; memcpy(eui + 4, &addr, 4); return 0; } EXPORT_SYMBOL(__ipv6_isatap_ifid); static int addrconf_ifid_sit(u8 *eui, struct net_device *dev) { if (dev->priv_flags & IFF_ISATAP) return __ipv6_isatap_ifid(eui, *(__be32 *)dev->dev_addr); return -1; } static int ipv6_generate_eui64(u8 *eui, struct net_device *dev) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_FDDI: case ARPHRD_IEEE802_TR: return addrconf_ifid_eui48(eui, dev); case ARPHRD_ARCNET: return addrconf_ifid_arcnet(eui, dev); case ARPHRD_INFINIBAND: return addrconf_ifid_infiniband(eui, dev); case ARPHRD_SIT: return addrconf_ifid_sit(eui, dev); } return -1; } static int ipv6_inherit_eui64(u8 *eui, struct inet6_dev *idev) { int err = -1; struct inet6_ifaddr *ifp; read_lock_bh(&idev->lock); for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) { if (ifp->scope == IFA_LINK && !(ifp->flags&IFA_F_TENTATIVE)) { memcpy(eui, ifp->addr.s6_addr+8, 8); err = 0; break; } } read_unlock_bh(&idev->lock); return err; } #ifdef CONFIG_IPV6_PRIVACY /* (re)generation of randomized interface identifier (RFC 3041 3.2, 3.5) */ static int __ipv6_regen_rndid(struct inet6_dev *idev) { regen: get_random_bytes(idev->rndid, sizeof(idev->rndid)); idev->rndid[0] &= ~0x02; /* * <draft-ietf-ipngwg-temp-addresses-v2-00.txt>: * check if generated address is not inappropriate * * - Reserved subnet anycast (RFC 2526) * 11111101 11....11 1xxxxxxx * - ISATAP (RFC4214) 6.1 * 00-00-5E-FE-xx-xx-xx-xx * - value 0 * - XXX: already assigned to an address on the device */ if (idev->rndid[0] == 0xfd && (idev->rndid[1]&idev->rndid[2]&idev->rndid[3]&idev->rndid[4]&idev->rndid[5]&idev->rndid[6]) == 0xff && (idev->rndid[7]&0x80)) goto regen; if ((idev->rndid[0]|idev->rndid[1]) == 0) { if (idev->rndid[2] == 0x5e && idev->rndid[3] == 0xfe) goto regen; if ((idev->rndid[2]|idev->rndid[3]|idev->rndid[4]|idev->rndid[5]|idev->rndid[6]|idev->rndid[7]) == 0x00) goto regen; } return 0; } static void ipv6_regen_rndid(unsigned long data) { struct inet6_dev *idev = (struct inet6_dev *) data; unsigned long expires; rcu_read_lock_bh(); write_lock_bh(&idev->lock); if (idev->dead) goto out; if (__ipv6_regen_rndid(idev) < 0) goto out; expires = jiffies + idev->cnf.temp_prefered_lft * HZ - idev->cnf.regen_max_retry * idev->cnf.dad_transmits * idev->nd_parms->retrans_time - desync_factor; if (time_before(expires, jiffies)) { printk(KERN_WARNING "ipv6_regen_rndid(): too short regeneration interval; timer disabled for %s.\n", idev->dev->name); goto out; } if (!mod_timer(&idev->regen_timer, expires)) in6_dev_hold(idev); out: write_unlock_bh(&idev->lock); rcu_read_unlock_bh(); in6_dev_put(idev); } static int __ipv6_try_regen_rndid(struct inet6_dev *idev, struct in6_addr *tmpaddr) { int ret = 0; if (tmpaddr && memcmp(idev->rndid, &tmpaddr->s6_addr[8], 8) == 0) ret = __ipv6_regen_rndid(idev); return ret; } #endif /* * Add prefix route. */ static void addrconf_prefix_route(struct in6_addr *pfx, int plen, struct net_device *dev, unsigned long expires, u32 flags) { struct fib6_config cfg = { .fc_table = RT6_TABLE_PREFIX, .fc_metric = IP6_RT_PRIO_ADDRCONF, .fc_ifindex = dev->ifindex, .fc_expires = expires, .fc_dst_len = plen, .fc_flags = RTF_UP | flags, .fc_nlinfo.nl_net = dev_net(dev), }; ipv6_addr_copy(&cfg.fc_dst, pfx); /* Prevent useless cloning on PtP SIT. This thing is done here expecting that the whole class of non-broadcast devices need not cloning. */ #if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE) if (dev->type == ARPHRD_SIT && (dev->flags & IFF_POINTOPOINT)) cfg.fc_flags |= RTF_NONEXTHOP; #endif ip6_route_add(&cfg); } /* Create "default" multicast route to the interface */ static void addrconf_add_mroute(struct net_device *dev) { struct fib6_config cfg = { .fc_table = RT6_TABLE_LOCAL, .fc_metric = IP6_RT_PRIO_ADDRCONF, .fc_ifindex = dev->ifindex, .fc_dst_len = 8, .fc_flags = RTF_UP, .fc_nlinfo.nl_net = dev_net(dev), }; ipv6_addr_set(&cfg.fc_dst, htonl(0xFF000000), 0, 0, 0); ip6_route_add(&cfg); } #if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE) static void sit_route_add(struct net_device *dev) { struct fib6_config cfg = { .fc_table = RT6_TABLE_MAIN, .fc_metric = IP6_RT_PRIO_ADDRCONF, .fc_ifindex = dev->ifindex, .fc_dst_len = 96, .fc_flags = RTF_UP | RTF_NONEXTHOP, .fc_nlinfo.nl_net = dev_net(dev), }; /* prefix length - 96 bits "::d.d.d.d" */ ip6_route_add(&cfg); } #endif static void addrconf_add_lroute(struct net_device *dev) { struct in6_addr addr; ipv6_addr_set(&addr, htonl(0xFE800000), 0, 0, 0); addrconf_prefix_route(&addr, 64, dev, 0, 0); } static struct inet6_dev *addrconf_add_dev(struct net_device *dev) { struct inet6_dev *idev; ASSERT_RTNL(); if ((idev = ipv6_find_idev(dev)) == NULL) return NULL; /* Add default multicast route */ addrconf_add_mroute(dev); /* Add link local route */ addrconf_add_lroute(dev); return idev; } void addrconf_prefix_rcv(struct net_device *dev, u8 *opt, int len) { struct prefix_info *pinfo; __u32 valid_lft; __u32 prefered_lft; int addr_type; struct inet6_dev *in6_dev; pinfo = (struct prefix_info *) opt; if (len < sizeof(struct prefix_info)) { ADBG(("addrconf: prefix option too short\n")); return; } /* * Validation checks ([ADDRCONF], page 19) */ addr_type = ipv6_addr_type(&pinfo->prefix); if (addr_type & (IPV6_ADDR_MULTICAST|IPV6_ADDR_LINKLOCAL)) return; valid_lft = ntohl(pinfo->valid); prefered_lft = ntohl(pinfo->prefered); if (prefered_lft > valid_lft) { if (net_ratelimit()) printk(KERN_WARNING "addrconf: prefix option has invalid lifetime\n"); return; } in6_dev = in6_dev_get(dev); if (in6_dev == NULL) { if (net_ratelimit()) printk(KERN_DEBUG "addrconf: device %s not configured\n", dev->name); return; } /* * Two things going on here: * 1) Add routes for on-link prefixes * 2) Configure prefixes with the auto flag set */ if (pinfo->onlink) { struct rt6_info *rt; unsigned long rt_expires; /* Avoid arithmetic overflow. Really, we could * save rt_expires in seconds, likely valid_lft, * but it would require division in fib gc, that it * not good. */ if (HZ > USER_HZ) rt_expires = addrconf_timeout_fixup(valid_lft, HZ); else rt_expires = addrconf_timeout_fixup(valid_lft, USER_HZ); if (addrconf_finite_timeout(rt_expires)) rt_expires *= HZ; rt = rt6_lookup(dev_net(dev), &pinfo->prefix, NULL, dev->ifindex, 1); if (rt && addrconf_is_prefix_route(rt)) { /* Autoconf prefix route */ if (valid_lft == 0) { ip6_del_rt(rt); rt = NULL; } else if (addrconf_finite_timeout(rt_expires)) { /* not infinity */ rt->rt6i_expires = jiffies + rt_expires; rt->rt6i_flags |= RTF_EXPIRES; } else { rt->rt6i_flags &= ~RTF_EXPIRES; rt->rt6i_expires = 0; } } else if (valid_lft) { clock_t expires = 0; int flags = RTF_ADDRCONF | RTF_PREFIX_RT; if (addrconf_finite_timeout(rt_expires)) { /* not infinity */ flags |= RTF_EXPIRES; expires = jiffies_to_clock_t(rt_expires); } addrconf_prefix_route(&pinfo->prefix, pinfo->prefix_len, dev, expires, flags); } if (rt) dst_release(&rt->u.dst); } /* Try to figure out our local address for this prefix */ if (pinfo->autoconf && in6_dev->cnf.autoconf) { struct inet6_ifaddr * ifp; struct in6_addr addr; int create = 0, update_lft = 0; struct net *net = dev_net(dev); if (pinfo->prefix_len == 64) { memcpy(&addr, &pinfo->prefix, 8); if (ipv6_generate_eui64(addr.s6_addr + 8, dev) && ipv6_inherit_eui64(addr.s6_addr + 8, in6_dev)) { in6_dev_put(in6_dev); return; } goto ok; } if (net_ratelimit()) printk(KERN_DEBUG "IPv6 addrconf: prefix with wrong length %d\n", pinfo->prefix_len); in6_dev_put(in6_dev); return; ok: ifp = ipv6_get_ifaddr(net, &addr, dev, 1); if (ifp == NULL && valid_lft) { int max_addresses = in6_dev->cnf.max_addresses; u32 addr_flags = 0; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD if (in6_dev->cnf.optimistic_dad && !net->ipv6.devconf_all->forwarding) addr_flags = IFA_F_OPTIMISTIC; #endif /* Do not allow to create too much of autoconfigured * addresses; this would be too easy way to crash kernel. */ if (!max_addresses || ipv6_count_addresses(in6_dev) < max_addresses) ifp = ipv6_add_addr(in6_dev, &addr, pinfo->prefix_len, addr_type&IPV6_ADDR_SCOPE_MASK, addr_flags); if (!ifp || IS_ERR(ifp)) { in6_dev_put(in6_dev); return; } update_lft = create = 1; ifp->cstamp = jiffies; addrconf_dad_start(ifp, RTF_ADDRCONF|RTF_PREFIX_RT); } if (ifp) { int flags; unsigned long now; #ifdef CONFIG_IPV6_PRIVACY struct inet6_ifaddr *ift; #endif u32 stored_lft; /* update lifetime (RFC2462 5.5.3 e) */ spin_lock(&ifp->lock); now = jiffies; if (ifp->valid_lft > (now - ifp->tstamp) / HZ) stored_lft = ifp->valid_lft - (now - ifp->tstamp) / HZ; else stored_lft = 0; if (!update_lft && stored_lft) { if (valid_lft > MIN_VALID_LIFETIME || valid_lft > stored_lft) update_lft = 1; else if (stored_lft <= MIN_VALID_LIFETIME) { /* valid_lft <= stored_lft is always true */ /* XXX: IPsec */ update_lft = 0; } else { valid_lft = MIN_VALID_LIFETIME; if (valid_lft < prefered_lft) prefered_lft = valid_lft; update_lft = 1; } } if (update_lft) { ifp->valid_lft = valid_lft; ifp->prefered_lft = prefered_lft; ifp->tstamp = now; flags = ifp->flags; ifp->flags &= ~IFA_F_DEPRECATED; spin_unlock(&ifp->lock); if (!(flags&IFA_F_TENTATIVE)) ipv6_ifa_notify(0, ifp); } else spin_unlock(&ifp->lock); #ifdef CONFIG_IPV6_PRIVACY read_lock_bh(&in6_dev->lock); /* update all temporary addresses in the list */ for (ift=in6_dev->tempaddr_list; ift; ift=ift->tmp_next) { /* * When adjusting the lifetimes of an existing * temporary address, only lower the lifetimes. * Implementations must not increase the * lifetimes of an existing temporary address * when processing a Prefix Information Option. */ if (ifp != ift->ifpub) continue; spin_lock(&ift->lock); flags = ift->flags; if (ift->valid_lft > valid_lft && ift->valid_lft - valid_lft > (jiffies - ift->tstamp) / HZ) ift->valid_lft = valid_lft + (jiffies - ift->tstamp) / HZ; if (ift->prefered_lft > prefered_lft && ift->prefered_lft - prefered_lft > (jiffies - ift->tstamp) / HZ) ift->prefered_lft = prefered_lft + (jiffies - ift->tstamp) / HZ; spin_unlock(&ift->lock); if (!(flags&IFA_F_TENTATIVE)) ipv6_ifa_notify(0, ift); } if (create && in6_dev->cnf.use_tempaddr > 0) { /* * When a new public address is created as described in [ADDRCONF], * also create a new temporary address. */ read_unlock_bh(&in6_dev->lock); ipv6_create_tempaddr(ifp, NULL); } else { read_unlock_bh(&in6_dev->lock); } #endif in6_ifa_put(ifp); addrconf_verify(0); } } inet6_prefix_notify(RTM_NEWPREFIX, in6_dev, pinfo); in6_dev_put(in6_dev); } /* * Set destination address. * Special case for SIT interfaces where we create a new "virtual" * device. */ int addrconf_set_dstaddr(struct net *net, void __user *arg) { struct in6_ifreq ireq; struct net_device *dev; int err = -EINVAL; rtnl_lock(); err = -EFAULT; if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq))) goto err_exit; dev = __dev_get_by_index(net, ireq.ifr6_ifindex); err = -ENODEV; if (dev == NULL) goto err_exit; #if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE) if (dev->type == ARPHRD_SIT) { struct ifreq ifr; mm_segment_t oldfs; struct ip_tunnel_parm p; err = -EADDRNOTAVAIL; if (!(ipv6_addr_type(&ireq.ifr6_addr) & IPV6_ADDR_COMPATv4)) goto err_exit; memset(&p, 0, sizeof(p)); p.iph.daddr = ireq.ifr6_addr.s6_addr32[3]; p.iph.saddr = 0; p.iph.version = 4; p.iph.ihl = 5; p.iph.protocol = IPPROTO_IPV6; p.iph.ttl = 64; ifr.ifr_ifru.ifru_data = (__force void __user *)&p; oldfs = get_fs(); set_fs(KERNEL_DS); err = dev->do_ioctl(dev, &ifr, SIOCADDTUNNEL); set_fs(oldfs); if (err == 0) { err = -ENOBUFS; dev = __dev_get_by_name(net, p.name); if (!dev) goto err_exit; err = dev_open(dev); } } #endif err_exit: rtnl_unlock(); return err; } /* * Manual configuration of address on an interface */ static int inet6_addr_add(struct net *net, int ifindex, struct in6_addr *pfx, unsigned int plen, __u8 ifa_flags, __u32 prefered_lft, __u32 valid_lft) { struct inet6_ifaddr *ifp; struct inet6_dev *idev; struct net_device *dev; int scope; u32 flags; clock_t expires; unsigned long timeout; ASSERT_RTNL(); if (plen > 128) return -EINVAL; /* check the lifetime */ if (!valid_lft || prefered_lft > valid_lft) return -EINVAL; dev = __dev_get_by_index(net, ifindex); if (!dev) return -ENODEV; if ((idev = addrconf_add_dev(dev)) == NULL) return -ENOBUFS; scope = ipv6_addr_scope(pfx); timeout = addrconf_timeout_fixup(valid_lft, HZ); if (addrconf_finite_timeout(timeout)) { expires = jiffies_to_clock_t(timeout * HZ); valid_lft = timeout; flags = RTF_EXPIRES; } else { expires = 0; flags = 0; ifa_flags |= IFA_F_PERMANENT; } timeout = addrconf_timeout_fixup(prefered_lft, HZ); if (addrconf_finite_timeout(timeout)) { if (timeout == 0) ifa_flags |= IFA_F_DEPRECATED; prefered_lft = timeout; } ifp = ipv6_add_addr(idev, pfx, plen, scope, ifa_flags); if (!IS_ERR(ifp)) { spin_lock_bh(&ifp->lock); ifp->valid_lft = valid_lft; ifp->prefered_lft = prefered_lft; ifp->tstamp = jiffies; spin_unlock_bh(&ifp->lock); addrconf_prefix_route(&ifp->addr, ifp->prefix_len, dev, expires, flags); /* * Note that section 3.1 of RFC 4429 indicates * that the Optimistic flag should not be set for * manually configured addresses */ addrconf_dad_start(ifp, 0); in6_ifa_put(ifp); addrconf_verify(0); return 0; } return PTR_ERR(ifp); } static int inet6_addr_del(struct net *net, int ifindex, struct in6_addr *pfx, unsigned int plen) { struct inet6_ifaddr *ifp; struct inet6_dev *idev; struct net_device *dev; if (plen > 128) return -EINVAL; dev = __dev_get_by_index(net, ifindex); if (!dev) return -ENODEV; if ((idev = __in6_dev_get(dev)) == NULL) return -ENXIO; read_lock_bh(&idev->lock); for (ifp = idev->addr_list; ifp; ifp=ifp->if_next) { if (ifp->prefix_len == plen && ipv6_addr_equal(pfx, &ifp->addr)) { in6_ifa_hold(ifp); read_unlock_bh(&idev->lock); ipv6_del_addr(ifp); /* If the last address is deleted administratively, disable IPv6 on this interface. */ if (idev->addr_list == NULL) addrconf_ifdown(idev->dev, 1); return 0; } } read_unlock_bh(&idev->lock); return -EADDRNOTAVAIL; } int addrconf_add_ifaddr(struct net *net, void __user *arg) { struct in6_ifreq ireq; int err; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq))) return -EFAULT; rtnl_lock(); err = inet6_addr_add(net, ireq.ifr6_ifindex, &ireq.ifr6_addr, ireq.ifr6_prefixlen, IFA_F_PERMANENT, INFINITY_LIFE_TIME, INFINITY_LIFE_TIME); rtnl_unlock(); return err; } int addrconf_del_ifaddr(struct net *net, void __user *arg) { struct in6_ifreq ireq; int err; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq))) return -EFAULT; rtnl_lock(); err = inet6_addr_del(net, ireq.ifr6_ifindex, &ireq.ifr6_addr, ireq.ifr6_prefixlen); rtnl_unlock(); return err; } #if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE) static void sit_add_v4_addrs(struct inet6_dev *idev) { struct inet6_ifaddr * ifp; struct in6_addr addr; struct net_device *dev; struct net *net = dev_net(idev->dev); int scope; ASSERT_RTNL(); memset(&addr, 0, sizeof(struct in6_addr)); memcpy(&addr.s6_addr32[3], idev->dev->dev_addr, 4); if (idev->dev->flags&IFF_POINTOPOINT) { addr.s6_addr32[0] = htonl(0xfe800000); scope = IFA_LINK; } else { scope = IPV6_ADDR_COMPATv4; } if (addr.s6_addr32[3]) { ifp = ipv6_add_addr(idev, &addr, 128, scope, IFA_F_PERMANENT); if (!IS_ERR(ifp)) { spin_lock_bh(&ifp->lock); ifp->flags &= ~IFA_F_TENTATIVE; spin_unlock_bh(&ifp->lock); ipv6_ifa_notify(RTM_NEWADDR, ifp); in6_ifa_put(ifp); } return; } for_each_netdev(net, dev) { struct in_device * in_dev = __in_dev_get_rtnl(dev); if (in_dev && (dev->flags & IFF_UP)) { struct in_ifaddr * ifa; int flag = scope; for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) { int plen; addr.s6_addr32[3] = ifa->ifa_local; if (ifa->ifa_scope == RT_SCOPE_LINK) continue; if (ifa->ifa_scope >= RT_SCOPE_HOST) { if (idev->dev->flags&IFF_POINTOPOINT) continue; flag |= IFA_HOST; } if (idev->dev->flags&IFF_POINTOPOINT) plen = 64; else plen = 96; ifp = ipv6_add_addr(idev, &addr, plen, flag, IFA_F_PERMANENT); if (!IS_ERR(ifp)) { spin_lock_bh(&ifp->lock); ifp->flags &= ~IFA_F_TENTATIVE; spin_unlock_bh(&ifp->lock); ipv6_ifa_notify(RTM_NEWADDR, ifp); in6_ifa_put(ifp); } } } } } #endif static void init_loopback(struct net_device *dev) { struct inet6_dev *idev; struct inet6_ifaddr * ifp; /* ::1 */ ASSERT_RTNL(); if ((idev = ipv6_find_idev(dev)) == NULL) { printk(KERN_DEBUG "init loopback: add_dev failed\n"); return; } ifp = ipv6_add_addr(idev, &in6addr_loopback, 128, IFA_HOST, IFA_F_PERMANENT); if (!IS_ERR(ifp)) { spin_lock_bh(&ifp->lock); ifp->flags &= ~IFA_F_TENTATIVE; spin_unlock_bh(&ifp->lock); ipv6_ifa_notify(RTM_NEWADDR, ifp); in6_ifa_put(ifp); } } static void addrconf_add_linklocal(struct inet6_dev *idev, struct in6_addr *addr) { struct inet6_ifaddr * ifp; u32 addr_flags = IFA_F_PERMANENT; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD if (idev->cnf.optimistic_dad && !dev_net(idev->dev)->ipv6.devconf_all->forwarding) addr_flags |= IFA_F_OPTIMISTIC; #endif ifp = ipv6_add_addr(idev, addr, 64, IFA_LINK, addr_flags); if (!IS_ERR(ifp)) { addrconf_prefix_route(&ifp->addr, ifp->prefix_len, idev->dev, 0, 0); addrconf_dad_start(ifp, 0); in6_ifa_put(ifp); } } static void addrconf_dev_config(struct net_device *dev) { struct in6_addr addr; struct inet6_dev * idev; ASSERT_RTNL(); if ((dev->type != ARPHRD_ETHER) && (dev->type != ARPHRD_FDDI) && (dev->type != ARPHRD_IEEE802_TR) && (dev->type != ARPHRD_ARCNET) && (dev->type != ARPHRD_INFINIBAND)) { /* Alas, we support only Ethernet autoconfiguration. */ return; } idev = addrconf_add_dev(dev); if (idev == NULL) return; memset(&addr, 0, sizeof(struct in6_addr)); addr.s6_addr32[0] = htonl(0xFE800000); if (ipv6_generate_eui64(addr.s6_addr + 8, dev) == 0) addrconf_add_linklocal(idev, &addr); } #if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE) static void addrconf_sit_config(struct net_device *dev) { struct inet6_dev *idev; ASSERT_RTNL(); /* * Configure the tunnel with one of our IPv4 * addresses... we should configure all of * our v4 addrs in the tunnel */ if ((idev = ipv6_find_idev(dev)) == NULL) { printk(KERN_DEBUG "init sit: add_dev failed\n"); return; } if (dev->priv_flags & IFF_ISATAP) { struct in6_addr addr; ipv6_addr_set(&addr, htonl(0xFE800000), 0, 0, 0); addrconf_prefix_route(&addr, 64, dev, 0, 0); if (!ipv6_generate_eui64(addr.s6_addr + 8, dev)) addrconf_add_linklocal(idev, &addr); return; } sit_add_v4_addrs(idev); if (dev->flags&IFF_POINTOPOINT) { addrconf_add_mroute(dev); addrconf_add_lroute(dev); } else sit_route_add(dev); } #endif static inline int ipv6_inherit_linklocal(struct inet6_dev *idev, struct net_device *link_dev) { struct in6_addr lladdr; if (!ipv6_get_lladdr(link_dev, &lladdr, IFA_F_TENTATIVE)) { addrconf_add_linklocal(idev, &lladdr); return 0; } return -1; } static void ip6_tnl_add_linklocal(struct inet6_dev *idev) { struct net_device *link_dev; struct net *net = dev_net(idev->dev); /* first try to inherit the link-local address from the link device */ if (idev->dev->iflink && (link_dev = __dev_get_by_index(net, idev->dev->iflink))) { if (!ipv6_inherit_linklocal(idev, link_dev)) return; } /* then try to inherit it from any device */ for_each_netdev(net, link_dev) { if (!ipv6_inherit_linklocal(idev, link_dev)) return; } printk(KERN_DEBUG "init ip6-ip6: add_linklocal failed\n"); } /* * Autoconfigure tunnel with a link-local address so routing protocols, * DHCPv6, MLD etc. can be run over the virtual link */ static void addrconf_ip6_tnl_config(struct net_device *dev) { struct inet6_dev *idev; ASSERT_RTNL(); if ((idev = addrconf_add_dev(dev)) == NULL) { printk(KERN_DEBUG "init ip6-ip6: add_dev failed\n"); return; } ip6_tnl_add_linklocal(idev); } static int addrconf_notify(struct notifier_block *this, unsigned long event, void * data) { struct net_device *dev = (struct net_device *) data; struct inet6_dev *idev = __in6_dev_get(dev); int run_pending = 0; int err; switch(event) { case NETDEV_REGISTER: if (!idev && dev->mtu >= IPV6_MIN_MTU) { idev = ipv6_add_dev(dev); if (!idev) return notifier_from_errno(-ENOMEM); } break; case NETDEV_UP: case NETDEV_CHANGE: if (dev->flags & IFF_SLAVE) break; if (event == NETDEV_UP) { if (!addrconf_qdisc_ok(dev)) { /* device is not ready yet. */ printk(KERN_INFO "ADDRCONF(NETDEV_UP): %s: " "link is not ready\n", dev->name); break; } if (!idev && dev->mtu >= IPV6_MIN_MTU) idev = ipv6_add_dev(dev); if (idev) idev->if_flags |= IF_READY; } else { if (!addrconf_qdisc_ok(dev)) { /* device is still not ready. */ break; } if (idev) { if (idev->if_flags & IF_READY) { /* device is already configured. */ break; } idev->if_flags |= IF_READY; } printk(KERN_INFO "ADDRCONF(NETDEV_CHANGE): %s: " "link becomes ready\n", dev->name); run_pending = 1; } switch(dev->type) { #if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE) case ARPHRD_SIT: addrconf_sit_config(dev); break; #endif case ARPHRD_TUNNEL6: addrconf_ip6_tnl_config(dev); break; case ARPHRD_LOOPBACK: init_loopback(dev); break; default: addrconf_dev_config(dev); break; } if (idev) { if (run_pending) addrconf_dad_run(idev); /* If the MTU changed during the interface down, when the interface up, the changed MTU must be reflected in the idev as well as routers. */ if (idev->cnf.mtu6 != dev->mtu && dev->mtu >= IPV6_MIN_MTU) { rt6_mtu_change(dev, dev->mtu); idev->cnf.mtu6 = dev->mtu; } idev->tstamp = jiffies; inet6_ifinfo_notify(RTM_NEWLINK, idev); /* If the changed mtu during down is lower than IPV6_MIN_MTU stop IPv6 on this interface. */ if (dev->mtu < IPV6_MIN_MTU) addrconf_ifdown(dev, event != NETDEV_DOWN); } break; case NETDEV_CHANGEMTU: if (idev && dev->mtu >= IPV6_MIN_MTU) { rt6_mtu_change(dev, dev->mtu); idev->cnf.mtu6 = dev->mtu; break; } if (!idev && dev->mtu >= IPV6_MIN_MTU) { idev = ipv6_add_dev(dev); if (idev) break; } /* MTU falled under IPV6_MIN_MTU. Stop IPv6 on this interface. */ case NETDEV_DOWN: case NETDEV_UNREGISTER: /* * Remove all addresses from this interface. */ addrconf_ifdown(dev, event != NETDEV_DOWN); break; case NETDEV_CHANGENAME: if (idev) { snmp6_unregister_dev(idev); addrconf_sysctl_unregister(idev); addrconf_sysctl_register(idev); err = snmp6_register_dev(idev); if (err) return notifier_from_errno(err); } break; } return NOTIFY_OK; } /* * addrconf module should be notified of a device going up */ static struct notifier_block ipv6_dev_notf = { .notifier_call = addrconf_notify, .priority = 0 }; static int addrconf_ifdown(struct net_device *dev, int how) { struct inet6_dev *idev; struct inet6_ifaddr *ifa, **bifa; struct net *net = dev_net(dev); int i; ASSERT_RTNL(); if ((dev->flags & IFF_LOOPBACK) && how == 1) how = 0; rt6_ifdown(net, dev); neigh_ifdown(&nd_tbl, dev); idev = __in6_dev_get(dev); if (idev == NULL) return -ENODEV; /* Step 1: remove reference to ipv6 device from parent device. Do not dev_put! */ if (how) { idev->dead = 1; /* protected by rtnl_lock */ rcu_assign_pointer(dev->ip6_ptr, NULL); /* Step 1.5: remove snmp6 entry */ snmp6_unregister_dev(idev); } /* Step 2: clear hash table */ for (i=0; i<IN6_ADDR_HSIZE; i++) { bifa = &inet6_addr_lst[i]; write_lock_bh(&addrconf_hash_lock); while ((ifa = *bifa) != NULL) { if (ifa->idev == idev) { *bifa = ifa->lst_next; ifa->lst_next = NULL; addrconf_del_timer(ifa); in6_ifa_put(ifa); continue; } bifa = &ifa->lst_next; } write_unlock_bh(&addrconf_hash_lock); } write_lock_bh(&idev->lock); /* Step 3: clear flags for stateless addrconf */ if (!how) idev->if_flags &= ~(IF_RS_SENT|IF_RA_RCVD|IF_READY); /* Step 4: clear address list */ #ifdef CONFIG_IPV6_PRIVACY if (how && del_timer(&idev->regen_timer)) in6_dev_put(idev); /* clear tempaddr list */ while ((ifa = idev->tempaddr_list) != NULL) { idev->tempaddr_list = ifa->tmp_next; ifa->tmp_next = NULL; ifa->dead = 1; write_unlock_bh(&idev->lock); spin_lock_bh(&ifa->lock); if (ifa->ifpub) { in6_ifa_put(ifa->ifpub); ifa->ifpub = NULL; } spin_unlock_bh(&ifa->lock); in6_ifa_put(ifa); write_lock_bh(&idev->lock); } #endif while ((ifa = idev->addr_list) != NULL) { idev->addr_list = ifa->if_next; ifa->if_next = NULL; ifa->dead = 1; addrconf_del_timer(ifa); write_unlock_bh(&idev->lock); __ipv6_ifa_notify(RTM_DELADDR, ifa); atomic_notifier_call_chain(&inet6addr_chain, NETDEV_DOWN, ifa); in6_ifa_put(ifa); write_lock_bh(&idev->lock); } write_unlock_bh(&idev->lock); /* Step 5: Discard multicast list */ if (how) ipv6_mc_destroy_dev(idev); else ipv6_mc_down(idev); idev->tstamp = jiffies; /* Shot the device (if unregistered) */ if (how) { addrconf_sysctl_unregister(idev); neigh_parms_release(&nd_tbl, idev->nd_parms); neigh_ifdown(&nd_tbl, dev); in6_dev_put(idev); } return 0; } static void addrconf_rs_timer(unsigned long data) { struct inet6_ifaddr *ifp = (struct inet6_ifaddr *) data; if (ifp->idev->cnf.forwarding) goto out; if (ifp->idev->if_flags & IF_RA_RCVD) { /* * Announcement received after solicitation * was sent */ goto out; } spin_lock(&ifp->lock); if (ifp->probes++ < ifp->idev->cnf.rtr_solicits) { /* The wait after the last probe can be shorter */ addrconf_mod_timer(ifp, AC_RS, (ifp->probes == ifp->idev->cnf.rtr_solicits) ? ifp->idev->cnf.rtr_solicit_delay : ifp->idev->cnf.rtr_solicit_interval); spin_unlock(&ifp->lock); ndisc_send_rs(ifp->idev->dev, &ifp->addr, &in6addr_linklocal_allrouters); } else { spin_unlock(&ifp->lock); /* * Note: we do not support deprecated "all on-link" * assumption any longer. */ printk(KERN_DEBUG "%s: no IPv6 routers present\n", ifp->idev->dev->name); } out: in6_ifa_put(ifp); } /* * Duplicate Address Detection */ static void addrconf_dad_kick(struct inet6_ifaddr *ifp) { unsigned long rand_num; struct inet6_dev *idev = ifp->idev; if (ifp->flags & IFA_F_OPTIMISTIC) rand_num = 0; else rand_num = net_random() % (idev->cnf.rtr_solicit_delay ? : 1); ifp->probes = idev->cnf.dad_transmits; addrconf_mod_timer(ifp, AC_DAD, rand_num); } static void addrconf_dad_start(struct inet6_ifaddr *ifp, u32 flags) { struct inet6_dev *idev = ifp->idev; struct net_device *dev = idev->dev; addrconf_join_solict(dev, &ifp->addr); net_srandom(ifp->addr.s6_addr32[3]); read_lock_bh(&idev->lock); if (ifp->dead) goto out; spin_lock_bh(&ifp->lock); if (dev->flags&(IFF_NOARP|IFF_LOOPBACK) || idev->cnf.accept_dad < 1 || !(ifp->flags&IFA_F_TENTATIVE) || ifp->flags & IFA_F_NODAD) { ifp->flags &= ~(IFA_F_TENTATIVE|IFA_F_OPTIMISTIC); spin_unlock_bh(&ifp->lock); read_unlock_bh(&idev->lock); addrconf_dad_completed(ifp); return; } if (!(idev->if_flags & IF_READY)) { spin_unlock_bh(&ifp->lock); read_unlock_bh(&idev->lock); /* * If the defice is not ready: * - keep it tentative if it is a permanent address. * - otherwise, kill it. */ in6_ifa_hold(ifp); addrconf_dad_stop(ifp); return; } /* * Optimistic nodes can start receiving * Frames right away */ if(ifp->flags & IFA_F_OPTIMISTIC) ip6_ins_rt(ifp->rt); addrconf_dad_kick(ifp); spin_unlock_bh(&ifp->lock); out: read_unlock_bh(&idev->lock); } static void addrconf_dad_timer(unsigned long data) { struct inet6_ifaddr *ifp = (struct inet6_ifaddr *) data; struct inet6_dev *idev = ifp->idev; struct in6_addr mcaddr; read_lock_bh(&idev->lock); if (idev->dead) { read_unlock_bh(&idev->lock); goto out; } if (idev->cnf.accept_dad > 1 && idev->cnf.disable_ipv6) { read_unlock_bh(&idev->lock); addrconf_dad_failure(ifp); return; } spin_lock_bh(&ifp->lock); if (ifp->probes == 0) { /* * DAD was successful */ ifp->flags &= ~(IFA_F_TENTATIVE|IFA_F_OPTIMISTIC); spin_unlock_bh(&ifp->lock); read_unlock_bh(&idev->lock); addrconf_dad_completed(ifp); goto out; } ifp->probes--; addrconf_mod_timer(ifp, AC_DAD, ifp->idev->nd_parms->retrans_time); spin_unlock_bh(&ifp->lock); read_unlock_bh(&idev->lock); /* send a neighbour solicitation for our addr */ addrconf_addr_solict_mult(&ifp->addr, &mcaddr); ndisc_send_ns(ifp->idev->dev, NULL, &ifp->addr, &mcaddr, &in6addr_any); out: in6_ifa_put(ifp); } static void addrconf_dad_completed(struct inet6_ifaddr *ifp) { struct net_device * dev = ifp->idev->dev; /* * Configure the address for reception. Now it is valid. */ ipv6_ifa_notify(RTM_NEWADDR, ifp); /* If added prefix is link local and forwarding is off, start sending router solicitations. */ if (ifp->idev->cnf.forwarding == 0 && ifp->idev->cnf.rtr_solicits > 0 && (dev->flags&IFF_LOOPBACK) == 0 && (ipv6_addr_type(&ifp->addr) & IPV6_ADDR_LINKLOCAL)) { /* * If a host as already performed a random delay * [...] as part of DAD [...] there is no need * to delay again before sending the first RS */ ndisc_send_rs(ifp->idev->dev, &ifp->addr, &in6addr_linklocal_allrouters); spin_lock_bh(&ifp->lock); ifp->probes = 1; ifp->idev->if_flags |= IF_RS_SENT; addrconf_mod_timer(ifp, AC_RS, ifp->idev->cnf.rtr_solicit_interval); spin_unlock_bh(&ifp->lock); } } static void addrconf_dad_run(struct inet6_dev *idev) { struct inet6_ifaddr *ifp; read_lock_bh(&idev->lock); for (ifp = idev->addr_list; ifp; ifp = ifp->if_next) { spin_lock_bh(&ifp->lock); if (!(ifp->flags & IFA_F_TENTATIVE)) { spin_unlock_bh(&ifp->lock); continue; } spin_unlock_bh(&ifp->lock); addrconf_dad_kick(ifp); } read_unlock_bh(&idev->lock); } #ifdef CONFIG_PROC_FS struct if6_iter_state { struct seq_net_private p; int bucket; }; static struct inet6_ifaddr *if6_get_first(struct seq_file *seq) { struct inet6_ifaddr *ifa = NULL; struct if6_iter_state *state = seq->private; struct net *net = seq_file_net(seq); for (state->bucket = 0; state->bucket < IN6_ADDR_HSIZE; ++state->bucket) { ifa = inet6_addr_lst[state->bucket]; while (ifa && !net_eq(dev_net(ifa->idev->dev), net)) ifa = ifa->lst_next; if (ifa) break; } return ifa; } static struct inet6_ifaddr *if6_get_next(struct seq_file *seq, struct inet6_ifaddr *ifa) { struct if6_iter_state *state = seq->private; struct net *net = seq_file_net(seq); ifa = ifa->lst_next; try_again: if (ifa) { if (!net_eq(dev_net(ifa->idev->dev), net)) { ifa = ifa->lst_next; goto try_again; } } if (!ifa && ++state->bucket < IN6_ADDR_HSIZE) { ifa = inet6_addr_lst[state->bucket]; goto try_again; } return ifa; } static struct inet6_ifaddr *if6_get_idx(struct seq_file *seq, loff_t pos) { struct inet6_ifaddr *ifa = if6_get_first(seq); if (ifa) while(pos && (ifa = if6_get_next(seq, ifa)) != NULL) --pos; return pos ? NULL : ifa; } static void *if6_seq_start(struct seq_file *seq, loff_t *pos) __acquires(addrconf_hash_lock) { read_lock_bh(&addrconf_hash_lock); return if6_get_idx(seq, *pos); } static void *if6_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct inet6_ifaddr *ifa; ifa = if6_get_next(seq, v); ++*pos; return ifa; } static void if6_seq_stop(struct seq_file *seq, void *v) __releases(addrconf_hash_lock) { read_unlock_bh(&addrconf_hash_lock); } static int if6_seq_show(struct seq_file *seq, void *v) { struct inet6_ifaddr *ifp = (struct inet6_ifaddr *)v; seq_printf(seq, NIP6_SEQFMT " %02x %02x %02x %02x %8s\n", NIP6(ifp->addr), ifp->idev->dev->ifindex, ifp->prefix_len, ifp->scope, ifp->flags, ifp->idev->dev->name); return 0; } static const struct seq_operations if6_seq_ops = { .start = if6_seq_start, .next = if6_seq_next, .show = if6_seq_show, .stop = if6_seq_stop, }; static int if6_seq_open(struct inode *inode, struct file *file) { return seq_open_net(inode, file, &if6_seq_ops, sizeof(struct if6_iter_state)); } static const struct file_operations if6_fops = { .owner = THIS_MODULE, .open = if6_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_net, }; static int if6_proc_net_init(struct net *net) { if (!proc_net_fops_create(net, "if_inet6", S_IRUGO, &if6_fops)) return -ENOMEM; return 0; } static void if6_proc_net_exit(struct net *net) { proc_net_remove(net, "if_inet6"); } static struct pernet_operations if6_proc_net_ops = { .init = if6_proc_net_init, .exit = if6_proc_net_exit, }; int __init if6_proc_init(void) { return register_pernet_subsys(&if6_proc_net_ops); } void if6_proc_exit(void) { unregister_pernet_subsys(&if6_proc_net_ops); } #endif /* CONFIG_PROC_FS */ #if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE) /* Check if address is a home address configured on any interface. */ int ipv6_chk_home_addr(struct net *net, struct in6_addr *addr) { int ret = 0; struct inet6_ifaddr * ifp; u8 hash = ipv6_addr_hash(addr); read_lock_bh(&addrconf_hash_lock); for (ifp = inet6_addr_lst[hash]; ifp; ifp = ifp->lst_next) { if (!net_eq(dev_net(ifp->idev->dev), net)) continue; if (ipv6_addr_equal(&ifp->addr, addr) && (ifp->flags & IFA_F_HOMEADDRESS)) { ret = 1; break; } } read_unlock_bh(&addrconf_hash_lock); return ret; } #endif /* * Periodic address status verification */ static void addrconf_verify(unsigned long foo) { struct inet6_ifaddr *ifp; unsigned long now, next; int i; spin_lock_bh(&addrconf_verify_lock); now = jiffies; next = now + ADDR_CHECK_FREQUENCY; del_timer(&addr_chk_timer); for (i=0; i < IN6_ADDR_HSIZE; i++) { restart: read_lock(&addrconf_hash_lock); for (ifp=inet6_addr_lst[i]; ifp; ifp=ifp->lst_next) { unsigned long age; #ifdef CONFIG_IPV6_PRIVACY unsigned long regen_advance; #endif if (ifp->flags & IFA_F_PERMANENT) continue; spin_lock(&ifp->lock); age = (now - ifp->tstamp) / HZ; #ifdef CONFIG_IPV6_PRIVACY regen_advance = ifp->idev->cnf.regen_max_retry * ifp->idev->cnf.dad_transmits * ifp->idev->nd_parms->retrans_time / HZ; #endif if (ifp->valid_lft != INFINITY_LIFE_TIME && age >= ifp->valid_lft) { spin_unlock(&ifp->lock); in6_ifa_hold(ifp); read_unlock(&addrconf_hash_lock); ipv6_del_addr(ifp); goto restart; } else if (ifp->prefered_lft == INFINITY_LIFE_TIME) { spin_unlock(&ifp->lock); continue; } else if (age >= ifp->prefered_lft) { /* jiffies - ifp->tsamp > age >= ifp->prefered_lft */ int deprecate = 0; if (!(ifp->flags&IFA_F_DEPRECATED)) { deprecate = 1; ifp->flags |= IFA_F_DEPRECATED; } if (time_before(ifp->tstamp + ifp->valid_lft * HZ, next)) next = ifp->tstamp + ifp->valid_lft * HZ; spin_unlock(&ifp->lock); if (deprecate) { in6_ifa_hold(ifp); read_unlock(&addrconf_hash_lock); ipv6_ifa_notify(0, ifp); in6_ifa_put(ifp); goto restart; } #ifdef CONFIG_IPV6_PRIVACY } else if ((ifp->flags&IFA_F_TEMPORARY) && !(ifp->flags&IFA_F_TENTATIVE)) { if (age >= ifp->prefered_lft - regen_advance) { struct inet6_ifaddr *ifpub = ifp->ifpub; if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next)) next = ifp->tstamp + ifp->prefered_lft * HZ; if (!ifp->regen_count && ifpub) { ifp->regen_count++; in6_ifa_hold(ifp); in6_ifa_hold(ifpub); spin_unlock(&ifp->lock); read_unlock(&addrconf_hash_lock); spin_lock(&ifpub->lock); ifpub->regen_count = 0; spin_unlock(&ifpub->lock); ipv6_create_tempaddr(ifpub, ifp); in6_ifa_put(ifpub); in6_ifa_put(ifp); goto restart; } } else if (time_before(ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ, next)) next = ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ; spin_unlock(&ifp->lock); #endif } else { /* ifp->prefered_lft <= ifp->valid_lft */ if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next)) next = ifp->tstamp + ifp->prefered_lft * HZ; spin_unlock(&ifp->lock); } } read_unlock(&addrconf_hash_lock); } addr_chk_timer.expires = time_before(next, jiffies + HZ) ? jiffies + HZ : next; add_timer(&addr_chk_timer); spin_unlock_bh(&addrconf_verify_lock); } static struct in6_addr *extract_addr(struct nlattr *addr, struct nlattr *local) { struct in6_addr *pfx = NULL; if (addr) pfx = nla_data(addr); if (local) { if (pfx && nla_memcmp(local, pfx, sizeof(*pfx))) pfx = NULL; else pfx = nla_data(local); } return pfx; } static const struct nla_policy ifa_ipv6_policy[IFA_MAX+1] = { [IFA_ADDRESS] = { .len = sizeof(struct in6_addr) }, [IFA_LOCAL] = { .len = sizeof(struct in6_addr) }, [IFA_CACHEINFO] = { .len = sizeof(struct ifa_cacheinfo) }, }; static int inet6_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct net *net = sock_net(skb->sk); struct ifaddrmsg *ifm; struct nlattr *tb[IFA_MAX+1]; struct in6_addr *pfx; int err; err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy); if (err < 0) return err; ifm = nlmsg_data(nlh); pfx = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL]); if (pfx == NULL) return -EINVAL; return inet6_addr_del(net, ifm->ifa_index, pfx, ifm->ifa_prefixlen); } static int inet6_addr_modify(struct inet6_ifaddr *ifp, u8 ifa_flags, u32 prefered_lft, u32 valid_lft) { u32 flags; clock_t expires; unsigned long timeout; if (!valid_lft || (prefered_lft > valid_lft)) return -EINVAL; timeout = addrconf_timeout_fixup(valid_lft, HZ); if (addrconf_finite_timeout(timeout)) { expires = jiffies_to_clock_t(timeout * HZ); valid_lft = timeout; flags = RTF_EXPIRES; } else { expires = 0; flags = 0; ifa_flags |= IFA_F_PERMANENT; } timeout = addrconf_timeout_fixup(prefered_lft, HZ); if (addrconf_finite_timeout(timeout)) { if (timeout == 0) ifa_flags |= IFA_F_DEPRECATED; prefered_lft = timeout; } spin_lock_bh(&ifp->lock); ifp->flags = (ifp->flags & ~(IFA_F_DEPRECATED | IFA_F_PERMANENT | IFA_F_NODAD | IFA_F_HOMEADDRESS)) | ifa_flags; ifp->tstamp = jiffies; ifp->valid_lft = valid_lft; ifp->prefered_lft = prefered_lft; spin_unlock_bh(&ifp->lock); if (!(ifp->flags&IFA_F_TENTATIVE)) ipv6_ifa_notify(0, ifp); addrconf_prefix_route(&ifp->addr, ifp->prefix_len, ifp->idev->dev, expires, flags); addrconf_verify(0); return 0; } static int inet6_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct net *net = sock_net(skb->sk); struct ifaddrmsg *ifm; struct nlattr *tb[IFA_MAX+1]; struct in6_addr *pfx; struct inet6_ifaddr *ifa; struct net_device *dev; u32 valid_lft = INFINITY_LIFE_TIME, preferred_lft = INFINITY_LIFE_TIME; u8 ifa_flags; int err; err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy); if (err < 0) return err; ifm = nlmsg_data(nlh); pfx = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL]); if (pfx == NULL) return -EINVAL; if (tb[IFA_CACHEINFO]) { struct ifa_cacheinfo *ci; ci = nla_data(tb[IFA_CACHEINFO]); valid_lft = ci->ifa_valid; preferred_lft = ci->ifa_prefered; } else { preferred_lft = INFINITY_LIFE_TIME; valid_lft = INFINITY_LIFE_TIME; } dev = __dev_get_by_index(net, ifm->ifa_index); if (dev == NULL) return -ENODEV; /* We ignore other flags so far. */ ifa_flags = ifm->ifa_flags & (IFA_F_NODAD | IFA_F_HOMEADDRESS); ifa = ipv6_get_ifaddr(net, pfx, dev, 1); if (ifa == NULL) { /* * It would be best to check for !NLM_F_CREATE here but * userspace alreay relies on not having to provide this. */ return inet6_addr_add(net, ifm->ifa_index, pfx, ifm->ifa_prefixlen, ifa_flags, preferred_lft, valid_lft); } if (nlh->nlmsg_flags & NLM_F_EXCL || !(nlh->nlmsg_flags & NLM_F_REPLACE)) err = -EEXIST; else err = inet6_addr_modify(ifa, ifa_flags, preferred_lft, valid_lft); in6_ifa_put(ifa); return err; } static void put_ifaddrmsg(struct nlmsghdr *nlh, u8 prefixlen, u8 flags, u8 scope, int ifindex) { struct ifaddrmsg *ifm; ifm = nlmsg_data(nlh); ifm->ifa_family = AF_INET6; ifm->ifa_prefixlen = prefixlen; ifm->ifa_flags = flags; ifm->ifa_scope = scope; ifm->ifa_index = ifindex; } static int put_cacheinfo(struct sk_buff *skb, unsigned long cstamp, unsigned long tstamp, u32 preferred, u32 valid) { struct ifa_cacheinfo ci; ci.cstamp = (u32)(TIME_DELTA(cstamp, INITIAL_JIFFIES) / HZ * 100 + TIME_DELTA(cstamp, INITIAL_JIFFIES) % HZ * 100 / HZ); ci.tstamp = (u32)(TIME_DELTA(tstamp, INITIAL_JIFFIES) / HZ * 100 + TIME_DELTA(tstamp, INITIAL_JIFFIES) % HZ * 100 / HZ); ci.ifa_prefered = preferred; ci.ifa_valid = valid; return nla_put(skb, IFA_CACHEINFO, sizeof(ci), &ci); } static inline int rt_scope(int ifa_scope) { if (ifa_scope & IFA_HOST) return RT_SCOPE_HOST; else if (ifa_scope & IFA_LINK) return RT_SCOPE_LINK; else if (ifa_scope & IFA_SITE) return RT_SCOPE_SITE; else return RT_SCOPE_UNIVERSE; } static inline int inet6_ifaddr_msgsize(void) { return NLMSG_ALIGN(sizeof(struct ifaddrmsg)) + nla_total_size(16) /* IFA_ADDRESS */ + nla_total_size(sizeof(struct ifa_cacheinfo)); } static int inet6_fill_ifaddr(struct sk_buff *skb, struct inet6_ifaddr *ifa, u32 pid, u32 seq, int event, unsigned int flags) { struct nlmsghdr *nlh; u32 preferred, valid; nlh = nlmsg_put(skb, pid, seq, event, sizeof(struct ifaddrmsg), flags); if (nlh == NULL) return -EMSGSIZE; put_ifaddrmsg(nlh, ifa->prefix_len, ifa->flags, rt_scope(ifa->scope), ifa->idev->dev->ifindex); if (!(ifa->flags&IFA_F_PERMANENT)) { preferred = ifa->prefered_lft; valid = ifa->valid_lft; if (preferred != INFINITY_LIFE_TIME) { long tval = (jiffies - ifa->tstamp)/HZ; preferred -= tval; if (valid != INFINITY_LIFE_TIME) valid -= tval; } } else { preferred = INFINITY_LIFE_TIME; valid = INFINITY_LIFE_TIME; } if (nla_put(skb, IFA_ADDRESS, 16, &ifa->addr) < 0 || put_cacheinfo(skb, ifa->cstamp, ifa->tstamp, preferred, valid) < 0) { nlmsg_cancel(skb, nlh); return -EMSGSIZE; } return nlmsg_end(skb, nlh); } static int inet6_fill_ifmcaddr(struct sk_buff *skb, struct ifmcaddr6 *ifmca, u32 pid, u32 seq, int event, u16 flags) { struct nlmsghdr *nlh; u8 scope = RT_SCOPE_UNIVERSE; int ifindex = ifmca->idev->dev->ifindex; if (ipv6_addr_scope(&ifmca->mca_addr) & IFA_SITE) scope = RT_SCOPE_SITE; nlh = nlmsg_put(skb, pid, seq, event, sizeof(struct ifaddrmsg), flags); if (nlh == NULL) return -EMSGSIZE; put_ifaddrmsg(nlh, 128, IFA_F_PERMANENT, scope, ifindex); if (nla_put(skb, IFA_MULTICAST, 16, &ifmca->mca_addr) < 0 || put_cacheinfo(skb, ifmca->mca_cstamp, ifmca->mca_tstamp, INFINITY_LIFE_TIME, INFINITY_LIFE_TIME) < 0) { nlmsg_cancel(skb, nlh); return -EMSGSIZE; } return nlmsg_end(skb, nlh); } static int inet6_fill_ifacaddr(struct sk_buff *skb, struct ifacaddr6 *ifaca, u32 pid, u32 seq, int event, unsigned int flags) { struct nlmsghdr *nlh; u8 scope = RT_SCOPE_UNIVERSE; int ifindex = ifaca->aca_idev->dev->ifindex; if (ipv6_addr_scope(&ifaca->aca_addr) & IFA_SITE) scope = RT_SCOPE_SITE; nlh = nlmsg_put(skb, pid, seq, event, sizeof(struct ifaddrmsg), flags); if (nlh == NULL) return -EMSGSIZE; put_ifaddrmsg(nlh, 128, IFA_F_PERMANENT, scope, ifindex); if (nla_put(skb, IFA_ANYCAST, 16, &ifaca->aca_addr) < 0 || put_cacheinfo(skb, ifaca->aca_cstamp, ifaca->aca_tstamp, INFINITY_LIFE_TIME, INFINITY_LIFE_TIME) < 0) { nlmsg_cancel(skb, nlh); return -EMSGSIZE; } return nlmsg_end(skb, nlh); } enum addr_type_t { UNICAST_ADDR, MULTICAST_ADDR, ANYCAST_ADDR, }; static int inet6_dump_addr(struct sk_buff *skb, struct netlink_callback *cb, enum addr_type_t type) { int idx, ip_idx; int s_idx, s_ip_idx; int err = 1; struct net_device *dev; struct inet6_dev *idev = NULL; struct inet6_ifaddr *ifa; struct ifmcaddr6 *ifmca; struct ifacaddr6 *ifaca; struct net *net = sock_net(skb->sk); s_idx = cb->args[0]; s_ip_idx = ip_idx = cb->args[1]; idx = 0; for_each_netdev(net, dev) { if (idx < s_idx) goto cont; if (idx > s_idx) s_ip_idx = 0; ip_idx = 0; if ((idev = in6_dev_get(dev)) == NULL) goto cont; read_lock_bh(&idev->lock); switch (type) { case UNICAST_ADDR: /* unicast address incl. temp addr */ for (ifa = idev->addr_list; ifa; ifa = ifa->if_next, ip_idx++) { if (ip_idx < s_ip_idx) continue; err = inet6_fill_ifaddr(skb, ifa, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, RTM_NEWADDR, NLM_F_MULTI); } break; case MULTICAST_ADDR: /* multicast address */ for (ifmca = idev->mc_list; ifmca; ifmca = ifmca->next, ip_idx++) { if (ip_idx < s_ip_idx) continue; err = inet6_fill_ifmcaddr(skb, ifmca, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, RTM_GETMULTICAST, NLM_F_MULTI); } break; case ANYCAST_ADDR: /* anycast address */ for (ifaca = idev->ac_list; ifaca; ifaca = ifaca->aca_next, ip_idx++) { if (ip_idx < s_ip_idx) continue; err = inet6_fill_ifacaddr(skb, ifaca, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, RTM_GETANYCAST, NLM_F_MULTI); } break; default: break; } read_unlock_bh(&idev->lock); in6_dev_put(idev); if (err <= 0) break; cont: idx++; } cb->args[0] = idx; cb->args[1] = ip_idx; return skb->len; } static int inet6_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb) { enum addr_type_t type = UNICAST_ADDR; return inet6_dump_addr(skb, cb, type); } static int inet6_dump_ifmcaddr(struct sk_buff *skb, struct netlink_callback *cb) { enum addr_type_t type = MULTICAST_ADDR; return inet6_dump_addr(skb, cb, type); } static int inet6_dump_ifacaddr(struct sk_buff *skb, struct netlink_callback *cb) { enum addr_type_t type = ANYCAST_ADDR; return inet6_dump_addr(skb, cb, type); } static int inet6_rtm_getaddr(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg) { struct net *net = sock_net(in_skb->sk); struct ifaddrmsg *ifm; struct nlattr *tb[IFA_MAX+1]; struct in6_addr *addr = NULL; struct net_device *dev = NULL; struct inet6_ifaddr *ifa; struct sk_buff *skb; int err; err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy); if (err < 0) goto errout; addr = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL]); if (addr == NULL) { err = -EINVAL; goto errout; } ifm = nlmsg_data(nlh); if (ifm->ifa_index) dev = __dev_get_by_index(net, ifm->ifa_index); if ((ifa = ipv6_get_ifaddr(net, addr, dev, 1)) == NULL) { err = -EADDRNOTAVAIL; goto errout; } if ((skb = nlmsg_new(inet6_ifaddr_msgsize(), GFP_KERNEL)) == NULL) { err = -ENOBUFS; goto errout_ifa; } err = inet6_fill_ifaddr(skb, ifa, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq, RTM_NEWADDR, 0); if (err < 0) { /* -EMSGSIZE implies BUG in inet6_ifaddr_msgsize() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout_ifa; } err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid); errout_ifa: in6_ifa_put(ifa); errout: return err; } static void inet6_ifa_notify(int event, struct inet6_ifaddr *ifa) { struct sk_buff *skb; struct net *net = dev_net(ifa->idev->dev); int err = -ENOBUFS; skb = nlmsg_new(inet6_ifaddr_msgsize(), GFP_ATOMIC); if (skb == NULL) goto errout; err = inet6_fill_ifaddr(skb, ifa, 0, 0, event, 0); if (err < 0) { /* -EMSGSIZE implies BUG in inet6_ifaddr_msgsize() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } err = rtnl_notify(skb, net, 0, RTNLGRP_IPV6_IFADDR, NULL, GFP_ATOMIC); errout: if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV6_IFADDR, err); } static inline void ipv6_store_devconf(struct ipv6_devconf *cnf, __s32 *array, int bytes) { BUG_ON(bytes < (DEVCONF_MAX * 4)); memset(array, 0, bytes); array[DEVCONF_FORWARDING] = cnf->forwarding; array[DEVCONF_HOPLIMIT] = cnf->hop_limit; array[DEVCONF_MTU6] = cnf->mtu6; array[DEVCONF_ACCEPT_RA] = cnf->accept_ra; array[DEVCONF_ACCEPT_REDIRECTS] = cnf->accept_redirects; array[DEVCONF_AUTOCONF] = cnf->autoconf; array[DEVCONF_DAD_TRANSMITS] = cnf->dad_transmits; array[DEVCONF_RTR_SOLICITS] = cnf->rtr_solicits; array[DEVCONF_RTR_SOLICIT_INTERVAL] = cnf->rtr_solicit_interval; array[DEVCONF_RTR_SOLICIT_DELAY] = cnf->rtr_solicit_delay; array[DEVCONF_FORCE_MLD_VERSION] = cnf->force_mld_version; #ifdef CONFIG_IPV6_PRIVACY array[DEVCONF_USE_TEMPADDR] = cnf->use_tempaddr; array[DEVCONF_TEMP_VALID_LFT] = cnf->temp_valid_lft; array[DEVCONF_TEMP_PREFERED_LFT] = cnf->temp_prefered_lft; array[DEVCONF_REGEN_MAX_RETRY] = cnf->regen_max_retry; array[DEVCONF_MAX_DESYNC_FACTOR] = cnf->max_desync_factor; #endif array[DEVCONF_MAX_ADDRESSES] = cnf->max_addresses; array[DEVCONF_ACCEPT_RA_DEFRTR] = cnf->accept_ra_defrtr; array[DEVCONF_ACCEPT_RA_PINFO] = cnf->accept_ra_pinfo; #ifdef CONFIG_IPV6_ROUTER_PREF array[DEVCONF_ACCEPT_RA_RTR_PREF] = cnf->accept_ra_rtr_pref; array[DEVCONF_RTR_PROBE_INTERVAL] = cnf->rtr_probe_interval; #ifdef CONFIG_IPV6_ROUTE_INFO array[DEVCONF_ACCEPT_RA_RT_INFO_MAX_PLEN] = cnf->accept_ra_rt_info_max_plen; #endif #endif array[DEVCONF_PROXY_NDP] = cnf->proxy_ndp; array[DEVCONF_ACCEPT_SOURCE_ROUTE] = cnf->accept_source_route; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD array[DEVCONF_OPTIMISTIC_DAD] = cnf->optimistic_dad; #endif #ifdef CONFIG_IPV6_MROUTE array[DEVCONF_MC_FORWARDING] = cnf->mc_forwarding; #endif array[DEVCONF_DISABLE_IPV6] = cnf->disable_ipv6; array[DEVCONF_ACCEPT_DAD] = cnf->accept_dad; } static inline size_t inet6_if_nlmsg_size(void) { return NLMSG_ALIGN(sizeof(struct ifinfomsg)) + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */ + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */ + nla_total_size(4) /* IFLA_MTU */ + nla_total_size(4) /* IFLA_LINK */ + nla_total_size( /* IFLA_PROTINFO */ nla_total_size(4) /* IFLA_INET6_FLAGS */ + nla_total_size(sizeof(struct ifla_cacheinfo)) + nla_total_size(DEVCONF_MAX * 4) /* IFLA_INET6_CONF */ + nla_total_size(IPSTATS_MIB_MAX * 8) /* IFLA_INET6_STATS */ + nla_total_size(ICMP6_MIB_MAX * 8) /* IFLA_INET6_ICMP6STATS */ ); } static inline void __snmp6_fill_stats(u64 *stats, void **mib, int items, int bytes) { int i; int pad = bytes - sizeof(u64) * items; BUG_ON(pad < 0); /* Use put_unaligned() because stats may not be aligned for u64. */ put_unaligned(items, &stats[0]); for (i = 1; i < items; i++) put_unaligned(snmp_fold_field(mib, i), &stats[i]); memset(&stats[items], 0, pad); } static void snmp6_fill_stats(u64 *stats, struct inet6_dev *idev, int attrtype, int bytes) { switch(attrtype) { case IFLA_INET6_STATS: __snmp6_fill_stats(stats, (void **)idev->stats.ipv6, IPSTATS_MIB_MAX, bytes); break; case IFLA_INET6_ICMP6STATS: __snmp6_fill_stats(stats, (void **)idev->stats.icmpv6, ICMP6_MIB_MAX, bytes); break; } } static int inet6_fill_ifinfo(struct sk_buff *skb, struct inet6_dev *idev, u32 pid, u32 seq, int event, unsigned int flags) { struct net_device *dev = idev->dev; struct nlattr *nla; struct ifinfomsg *hdr; struct nlmsghdr *nlh; void *protoinfo; struct ifla_cacheinfo ci; nlh = nlmsg_put(skb, pid, seq, event, sizeof(*hdr), flags); if (nlh == NULL) return -EMSGSIZE; hdr = nlmsg_data(nlh); hdr->ifi_family = AF_INET6; hdr->__ifi_pad = 0; hdr->ifi_type = dev->type; hdr->ifi_index = dev->ifindex; hdr->ifi_flags = dev_get_flags(dev); hdr->ifi_change = 0; NLA_PUT_STRING(skb, IFLA_IFNAME, dev->name); if (dev->addr_len) NLA_PUT(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr); NLA_PUT_U32(skb, IFLA_MTU, dev->mtu); if (dev->ifindex != dev->iflink) NLA_PUT_U32(skb, IFLA_LINK, dev->iflink); protoinfo = nla_nest_start(skb, IFLA_PROTINFO); if (protoinfo == NULL) goto nla_put_failure; NLA_PUT_U32(skb, IFLA_INET6_FLAGS, idev->if_flags); ci.max_reasm_len = IPV6_MAXPLEN; ci.tstamp = (__u32)(TIME_DELTA(idev->tstamp, INITIAL_JIFFIES) / HZ * 100 + TIME_DELTA(idev->tstamp, INITIAL_JIFFIES) % HZ * 100 / HZ); ci.reachable_time = idev->nd_parms->reachable_time; ci.retrans_time = idev->nd_parms->retrans_time; NLA_PUT(skb, IFLA_INET6_CACHEINFO, sizeof(ci), &ci); nla = nla_reserve(skb, IFLA_INET6_CONF, DEVCONF_MAX * sizeof(s32)); if (nla == NULL) goto nla_put_failure; ipv6_store_devconf(&idev->cnf, nla_data(nla), nla_len(nla)); /* XXX - MC not implemented */ nla = nla_reserve(skb, IFLA_INET6_STATS, IPSTATS_MIB_MAX * sizeof(u64)); if (nla == NULL) goto nla_put_failure; snmp6_fill_stats(nla_data(nla), idev, IFLA_INET6_STATS, nla_len(nla)); nla = nla_reserve(skb, IFLA_INET6_ICMP6STATS, ICMP6_MIB_MAX * sizeof(u64)); if (nla == NULL) goto nla_put_failure; snmp6_fill_stats(nla_data(nla), idev, IFLA_INET6_ICMP6STATS, nla_len(nla)); nla_nest_end(skb, protoinfo); return nlmsg_end(skb, nlh); nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int inet6_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); int idx, err; int s_idx = cb->args[0]; struct net_device *dev; struct inet6_dev *idev; read_lock(&dev_base_lock); idx = 0; for_each_netdev(net, dev) { if (idx < s_idx) goto cont; if ((idev = in6_dev_get(dev)) == NULL) goto cont; err = inet6_fill_ifinfo(skb, idev, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, RTM_NEWLINK, NLM_F_MULTI); in6_dev_put(idev); if (err <= 0) break; cont: idx++; } read_unlock(&dev_base_lock); cb->args[0] = idx; return skb->len; } void inet6_ifinfo_notify(int event, struct inet6_dev *idev) { struct sk_buff *skb; struct net *net = dev_net(idev->dev); int err = -ENOBUFS; skb = nlmsg_new(inet6_if_nlmsg_size(), GFP_ATOMIC); if (skb == NULL) goto errout; err = inet6_fill_ifinfo(skb, idev, 0, 0, event, 0); if (err < 0) { /* -EMSGSIZE implies BUG in inet6_if_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } err = rtnl_notify(skb, net, 0, RTNLGRP_IPV6_IFADDR, NULL, GFP_ATOMIC); errout: if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV6_IFADDR, err); } static inline size_t inet6_prefix_nlmsg_size(void) { return NLMSG_ALIGN(sizeof(struct prefixmsg)) + nla_total_size(sizeof(struct in6_addr)) + nla_total_size(sizeof(struct prefix_cacheinfo)); } static int inet6_fill_prefix(struct sk_buff *skb, struct inet6_dev *idev, struct prefix_info *pinfo, u32 pid, u32 seq, int event, unsigned int flags) { struct prefixmsg *pmsg; struct nlmsghdr *nlh; struct prefix_cacheinfo ci; nlh = nlmsg_put(skb, pid, seq, event, sizeof(*pmsg), flags); if (nlh == NULL) return -EMSGSIZE; pmsg = nlmsg_data(nlh); pmsg->prefix_family = AF_INET6; pmsg->prefix_pad1 = 0; pmsg->prefix_pad2 = 0; pmsg->prefix_ifindex = idev->dev->ifindex; pmsg->prefix_len = pinfo->prefix_len; pmsg->prefix_type = pinfo->type; pmsg->prefix_pad3 = 0; pmsg->prefix_flags = 0; if (pinfo->onlink) pmsg->prefix_flags |= IF_PREFIX_ONLINK; if (pinfo->autoconf) pmsg->prefix_flags |= IF_PREFIX_AUTOCONF; NLA_PUT(skb, PREFIX_ADDRESS, sizeof(pinfo->prefix), &pinfo->prefix); ci.preferred_time = ntohl(pinfo->prefered); ci.valid_time = ntohl(pinfo->valid); NLA_PUT(skb, PREFIX_CACHEINFO, sizeof(ci), &ci); return nlmsg_end(skb, nlh); nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static void inet6_prefix_notify(int event, struct inet6_dev *idev, struct prefix_info *pinfo) { struct sk_buff *skb; struct net *net = dev_net(idev->dev); int err = -ENOBUFS; skb = nlmsg_new(inet6_prefix_nlmsg_size(), GFP_ATOMIC); if (skb == NULL) goto errout; err = inet6_fill_prefix(skb, idev, pinfo, 0, 0, event, 0); if (err < 0) { /* -EMSGSIZE implies BUG in inet6_prefix_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } err = rtnl_notify(skb, net, 0, RTNLGRP_IPV6_PREFIX, NULL, GFP_ATOMIC); errout: if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV6_PREFIX, err); } static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp) { inet6_ifa_notify(event ? : RTM_NEWADDR, ifp); switch (event) { case RTM_NEWADDR: /* * If the address was optimistic * we inserted the route at the start of * our DAD process, so we don't need * to do it again */ if (!(ifp->rt->rt6i_node)) ip6_ins_rt(ifp->rt); if (ifp->idev->cnf.forwarding) addrconf_join_anycast(ifp); break; case RTM_DELADDR: if (ifp->idev->cnf.forwarding) addrconf_leave_anycast(ifp); addrconf_leave_solict(ifp->idev, &ifp->addr); dst_hold(&ifp->rt->u.dst); if (ip6_del_rt(ifp->rt)) dst_free(&ifp->rt->u.dst); break; } } static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp) { rcu_read_lock_bh(); if (likely(ifp->idev->dead == 0)) __ipv6_ifa_notify(event, ifp); rcu_read_unlock_bh(); } #ifdef CONFIG_SYSCTL static int addrconf_sysctl_forward(ctl_table *ctl, int write, struct file * filp, void __user *buffer, size_t *lenp, loff_t *ppos) { int *valp = ctl->data; int val = *valp; int ret; ret = proc_dointvec(ctl, write, filp, buffer, lenp, ppos); if (write) addrconf_fixup_forwarding(ctl, valp, val); return ret; } static int addrconf_sysctl_forward_strategy(ctl_table *table, int __user *name, int nlen, void __user *oldval, size_t __user *oldlenp, void __user *newval, size_t newlen) { int *valp = table->data; int val = *valp; int new; if (!newval || !newlen) return 0; if (newlen != sizeof(int)) return -EINVAL; if (get_user(new, (int __user *)newval)) return -EFAULT; if (new == *valp) return 0; if (oldval && oldlenp) { size_t len; if (get_user(len, oldlenp)) return -EFAULT; if (len) { if (len > table->maxlen) len = table->maxlen; if (copy_to_user(oldval, valp, len)) return -EFAULT; if (put_user(len, oldlenp)) return -EFAULT; } } *valp = new; addrconf_fixup_forwarding(table, valp, val); return 1; } static struct addrconf_sysctl_table { struct ctl_table_header *sysctl_header; ctl_table addrconf_vars[DEVCONF_MAX+1]; char *dev_name; } addrconf_sysctl __read_mostly = { .sysctl_header = NULL, .addrconf_vars = { { .ctl_name = NET_IPV6_FORWARDING, .procname = "forwarding", .data = &ipv6_devconf.forwarding, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &addrconf_sysctl_forward, .strategy = &addrconf_sysctl_forward_strategy, }, { .ctl_name = NET_IPV6_HOP_LIMIT, .procname = "hop_limit", .data = &ipv6_devconf.hop_limit, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .ctl_name = NET_IPV6_MTU, .procname = "mtu", .data = &ipv6_devconf.mtu6, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_ACCEPT_RA, .procname = "accept_ra", .data = &ipv6_devconf.accept_ra, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_ACCEPT_REDIRECTS, .procname = "accept_redirects", .data = &ipv6_devconf.accept_redirects, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_AUTOCONF, .procname = "autoconf", .data = &ipv6_devconf.autoconf, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_DAD_TRANSMITS, .procname = "dad_transmits", .data = &ipv6_devconf.dad_transmits, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_RTR_SOLICITS, .procname = "router_solicitations", .data = &ipv6_devconf.rtr_solicits, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_RTR_SOLICIT_INTERVAL, .procname = "router_solicitation_interval", .data = &ipv6_devconf.rtr_solicit_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec_jiffies, .strategy = &sysctl_jiffies, }, { .ctl_name = NET_IPV6_RTR_SOLICIT_DELAY, .procname = "router_solicitation_delay", .data = &ipv6_devconf.rtr_solicit_delay, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec_jiffies, .strategy = &sysctl_jiffies, }, { .ctl_name = NET_IPV6_FORCE_MLD_VERSION, .procname = "force_mld_version", .data = &ipv6_devconf.force_mld_version, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, #ifdef CONFIG_IPV6_PRIVACY { .ctl_name = NET_IPV6_USE_TEMPADDR, .procname = "use_tempaddr", .data = &ipv6_devconf.use_tempaddr, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_TEMP_VALID_LFT, .procname = "temp_valid_lft", .data = &ipv6_devconf.temp_valid_lft, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_TEMP_PREFERED_LFT, .procname = "temp_prefered_lft", .data = &ipv6_devconf.temp_prefered_lft, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_REGEN_MAX_RETRY, .procname = "regen_max_retry", .data = &ipv6_devconf.regen_max_retry, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_MAX_DESYNC_FACTOR, .procname = "max_desync_factor", .data = &ipv6_devconf.max_desync_factor, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, #endif { .ctl_name = NET_IPV6_MAX_ADDRESSES, .procname = "max_addresses", .data = &ipv6_devconf.max_addresses, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_ACCEPT_RA_DEFRTR, .procname = "accept_ra_defrtr", .data = &ipv6_devconf.accept_ra_defrtr, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_ACCEPT_RA_PINFO, .procname = "accept_ra_pinfo", .data = &ipv6_devconf.accept_ra_pinfo, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, #ifdef CONFIG_IPV6_ROUTER_PREF { .ctl_name = NET_IPV6_ACCEPT_RA_RTR_PREF, .procname = "accept_ra_rtr_pref", .data = &ipv6_devconf.accept_ra_rtr_pref, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_RTR_PROBE_INTERVAL, .procname = "router_probe_interval", .data = &ipv6_devconf.rtr_probe_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec_jiffies, .strategy = &sysctl_jiffies, }, #ifdef CONFIG_IPV6_ROUTE_INFO { .ctl_name = NET_IPV6_ACCEPT_RA_RT_INFO_MAX_PLEN, .procname = "accept_ra_rt_info_max_plen", .data = &ipv6_devconf.accept_ra_rt_info_max_plen, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, #endif #endif { .ctl_name = NET_IPV6_PROXY_NDP, .procname = "proxy_ndp", .data = &ipv6_devconf.proxy_ndp, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = NET_IPV6_ACCEPT_SOURCE_ROUTE, .procname = "accept_source_route", .data = &ipv6_devconf.accept_source_route, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, #ifdef CONFIG_IPV6_OPTIMISTIC_DAD { .ctl_name = CTL_UNNUMBERED, .procname = "optimistic_dad", .data = &ipv6_devconf.optimistic_dad, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, #endif #ifdef CONFIG_IPV6_MROUTE { .ctl_name = CTL_UNNUMBERED, .procname = "mc_forwarding", .data = &ipv6_devconf.mc_forwarding, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, #endif { .ctl_name = CTL_UNNUMBERED, .procname = "disable_ipv6", .data = &ipv6_devconf.disable_ipv6, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = CTL_UNNUMBERED, .procname = "accept_dad", .data = &ipv6_devconf.accept_dad, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = 0, /* sentinel */ } }, }; static int __addrconf_sysctl_register(struct net *net, char *dev_name, int ctl_name, struct inet6_dev *idev, struct ipv6_devconf *p) { int i; struct addrconf_sysctl_table *t; #define ADDRCONF_CTL_PATH_DEV 3 struct ctl_path addrconf_ctl_path[] = { { .procname = "net", .ctl_name = CTL_NET, }, { .procname = "ipv6", .ctl_name = NET_IPV6, }, { .procname = "conf", .ctl_name = NET_IPV6_CONF, }, { /* to be set */ }, { }, }; t = kmemdup(&addrconf_sysctl, sizeof(*t), GFP_KERNEL); if (t == NULL) goto out; for (i=0; t->addrconf_vars[i].data; i++) { t->addrconf_vars[i].data += (char*)p - (char*)&ipv6_devconf; t->addrconf_vars[i].extra1 = idev; /* embedded; no ref */ t->addrconf_vars[i].extra2 = net; } /* * Make a copy of dev_name, because '.procname' is regarded as const * by sysctl and we wouldn't want anyone to change it under our feet * (see SIOCSIFNAME). */ t->dev_name = kstrdup(dev_name, GFP_KERNEL); if (!t->dev_name) goto free; addrconf_ctl_path[ADDRCONF_CTL_PATH_DEV].procname = t->dev_name; addrconf_ctl_path[ADDRCONF_CTL_PATH_DEV].ctl_name = ctl_name; t->sysctl_header = register_net_sysctl_table(net, addrconf_ctl_path, t->addrconf_vars); if (t->sysctl_header == NULL) goto free_procname; p->sysctl = t; return 0; free_procname: kfree(t->dev_name); free: kfree(t); out: return -ENOBUFS; } static void __addrconf_sysctl_unregister(struct ipv6_devconf *p) { struct addrconf_sysctl_table *t; if (p->sysctl == NULL) return; t = p->sysctl; p->sysctl = NULL; unregister_sysctl_table(t->sysctl_header); kfree(t->dev_name); kfree(t); } static void addrconf_sysctl_register(struct inet6_dev *idev) { neigh_sysctl_register(idev->dev, idev->nd_parms, NET_IPV6, NET_IPV6_NEIGH, "ipv6", &ndisc_ifinfo_sysctl_change, ndisc_ifinfo_sysctl_strategy); __addrconf_sysctl_register(dev_net(idev->dev), idev->dev->name, idev->dev->ifindex, idev, &idev->cnf); } static void addrconf_sysctl_unregister(struct inet6_dev *idev) { __addrconf_sysctl_unregister(&idev->cnf); neigh_sysctl_unregister(idev->nd_parms); } #endif static int addrconf_init_net(struct net *net) { int err; struct ipv6_devconf *all, *dflt; err = -ENOMEM; all = &ipv6_devconf; dflt = &ipv6_devconf_dflt; if (net != &init_net) { all = kmemdup(all, sizeof(ipv6_devconf), GFP_KERNEL); if (all == NULL) goto err_alloc_all; dflt = kmemdup(dflt, sizeof(ipv6_devconf_dflt), GFP_KERNEL); if (dflt == NULL) goto err_alloc_dflt; } net->ipv6.devconf_all = all; net->ipv6.devconf_dflt = dflt; #ifdef CONFIG_SYSCTL err = __addrconf_sysctl_register(net, "all", NET_PROTO_CONF_ALL, NULL, all); if (err < 0) goto err_reg_all; err = __addrconf_sysctl_register(net, "default", NET_PROTO_CONF_DEFAULT, NULL, dflt); if (err < 0) goto err_reg_dflt; #endif return 0; #ifdef CONFIG_SYSCTL err_reg_dflt: __addrconf_sysctl_unregister(all); err_reg_all: kfree(dflt); #endif err_alloc_dflt: kfree(all); err_alloc_all: return err; } static void addrconf_exit_net(struct net *net) { #ifdef CONFIG_SYSCTL __addrconf_sysctl_unregister(net->ipv6.devconf_dflt); __addrconf_sysctl_unregister(net->ipv6.devconf_all); #endif if (net != &init_net) { kfree(net->ipv6.devconf_dflt); kfree(net->ipv6.devconf_all); } } static struct pernet_operations addrconf_ops = { .init = addrconf_init_net, .exit = addrconf_exit_net, }; /* * Device notifier */ int register_inet6addr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&inet6addr_chain, nb); } EXPORT_SYMBOL(register_inet6addr_notifier); int unregister_inet6addr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&inet6addr_chain,nb); } EXPORT_SYMBOL(unregister_inet6addr_notifier); static void addrconf_net_exit(struct net *net) { struct net_device *dev; rtnl_lock(); /* clean dev list */ for_each_netdev(net, dev) { if (__in6_dev_get(dev) == NULL) continue; addrconf_ifdown(dev, 1); } addrconf_ifdown(net->loopback_dev, 2); rtnl_unlock(); } static struct pernet_operations addrconf_net_ops = { .exit = addrconf_net_exit, }; /* * Init / cleanup code */ int __init addrconf_init(void) { int err; if ((err = ipv6_addr_label_init()) < 0) { printk(KERN_CRIT "IPv6 Addrconf: cannot initialize default policy table: %d.\n", err); return err; } register_pernet_subsys(&addrconf_ops); /* The addrconf netdev notifier requires that loopback_dev * has it's ipv6 private information allocated and setup * before it can bring up and give link-local addresses * to other devices which are up. * * Unfortunately, loopback_dev is not necessarily the first * entry in the global dev_base list of net devices. In fact, * it is likely to be the very last entry on that list. * So this causes the notifier registry below to try and * give link-local addresses to all devices besides loopback_dev * first, then loopback_dev, which cases all the non-loopback_dev * devices to fail to get a link-local address. * * So, as a temporary fix, allocate the ipv6 structure for * loopback_dev first by hand. * Longer term, all of the dependencies ipv6 has upon the loopback * device and it being up should be removed. */ rtnl_lock(); if (!ipv6_add_dev(init_net.loopback_dev)) err = -ENOMEM; rtnl_unlock(); if (err) goto errlo; err = register_pernet_device(&addrconf_net_ops); if (err) return err; register_netdevice_notifier(&ipv6_dev_notf); addrconf_verify(0); err = __rtnl_register(PF_INET6, RTM_GETLINK, NULL, inet6_dump_ifinfo); if (err < 0) goto errout; /* Only the first call to __rtnl_register can fail */ __rtnl_register(PF_INET6, RTM_NEWADDR, inet6_rtm_newaddr, NULL); __rtnl_register(PF_INET6, RTM_DELADDR, inet6_rtm_deladdr, NULL); __rtnl_register(PF_INET6, RTM_GETADDR, inet6_rtm_getaddr, inet6_dump_ifaddr); __rtnl_register(PF_INET6, RTM_GETMULTICAST, NULL, inet6_dump_ifmcaddr); __rtnl_register(PF_INET6, RTM_GETANYCAST, NULL, inet6_dump_ifacaddr); ipv6_addr_label_rtnl_register(); return 0; errout: unregister_netdevice_notifier(&ipv6_dev_notf); errlo: unregister_pernet_subsys(&addrconf_ops); return err; } void addrconf_cleanup(void) { struct inet6_ifaddr *ifa; int i; unregister_netdevice_notifier(&ipv6_dev_notf); unregister_pernet_device(&addrconf_net_ops); unregister_pernet_subsys(&addrconf_ops); rtnl_lock(); /* * Check hash table. */ write_lock_bh(&addrconf_hash_lock); for (i=0; i < IN6_ADDR_HSIZE; i++) { for (ifa=inet6_addr_lst[i]; ifa; ) { struct inet6_ifaddr *bifa; bifa = ifa; ifa = ifa->lst_next; printk(KERN_DEBUG "bug: IPv6 address leakage detected: ifa=%p\n", bifa); /* Do not free it; something is wrong. Now we can investigate it with debugger. */ } } write_unlock_bh(&addrconf_hash_lock); del_timer(&addr_chk_timer); rtnl_unlock(); unregister_pernet_subsys(&addrconf_net_ops); }